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Abstract

We introduce a novel framework BEATRICE to identify putative causal variants from
GWAS summary statistics (https://github.com/sayangsep/Beatrice-Finemapping).
Identifying causal variants is challenging due to their sparsity and to highly correlated
variants in the nearby regions. To account for these challenges, our approach relies on a
hierarchical Bayesian model that imposes a binary concrete prior on the set of causal
variants. We derive a variational algorithm for this fine-mapping problem by minimizing
the KL divergence between an approximate density and the posterior probability
distribution of the causal configurations. Correspondingly, we use a deep neural network
as an inference machine to estimate the parameters of our proposal distribution. Our
stochastic optimization procedure allows us to simultaneously sample from the space of
causal configurations. We use these samples to compute the posterior inclusion
probabilities and determine credible sets for each causal variant. We conduct a detailed
simulation study to quantify the performance of our framework across different numbers
of causal variants and different noise paradigms, as defined by the relative genetic
contributions of causal and non-causal variants. Using this simulated data, we perform
a comparative analysis against two state-of-the-art baseline methods for fine-mapping.
We demonstrate that BEATRICE achieves uniformly better coverage with comparable
power and set sizes, and that the performance gain increases with the number of causal
variants. Thus, BEATRICE is a valuable tool to identify causal variants from eQTL
and GWAS summary statistics across complex diseases and traits.

Author summary

Fine-mapping provides a way to uncover genetic variants that causally affect some trait
of interest. However, correct identification of the causal variants is challenging due to
the correlation structure shared across variants. While current fine-mapping approaches
take into account this correlation structure, they are often computationally intensive to
run and cannot handle spurious effects from non-causal variants. In this paper, we
introduce BEATRICE, a novel framework for Bayesian fine-mapping from summary
data. Our strategy is to impose a binary concrete prior over the causal configurations
that can handle non-zero spurious effects and to infer the posterior probabilities of the
causal variant locations using deep variational inference. In a simulation study, we
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demonstrate that BEATRICE achieves comparable or better performance to the current
fine-mapping methods across increasing numbers of causal variants and increasing noise,
as determined by the polygenecity of the trait.

1 Introduction 1

Genome-Wide Association Studies (GWAS) provide a natural way to quantify the 2

contribution each genetic variant to the observed phenotype [1]. However, the univariate 3

nature of GWAS does not take into account the correlation structure shared between 4

the genetic variants, which arises from to low genomic recombination of nearby DNA 5

regions [2]. Consequently, strong correlations can inflate the effect size of a non-causal 6

genetic variant, thus leading to false positive identifications [3] Fine-mapping [4, 5] 7

addresses this problem by analyzing the correlation structure of the data to identify 8

small subsets of causal genetic variants [5, 6]. These subsets, known as credible sets, 9

capture the uncertainty of finding the true causal variant within a highly correlated 10

region [7]. Unlike p-values, the corresponding posterior inclusion probabilities (PIPs) 11

computed during fine-mapping can be compared across studies of different sample sizes. 12

Traditional fine-mapping methods can be grouped into two general categories. The 13

first category uses a penalized regression model to predict the output phenotype based 14

on the collection of genetic variants [8, 9]. Popular regularizations like LASSO [10] and 15

Elastic Net [9] simultaneously perform effect size estimation while slowly shrinking the 16

smaller effect sizes to zero. The drawback of penalized regression models is that they 17

optimize phenotypic prediction and, due to the correlation structure, do not always 18

identify the true causal variants. The second category relies on Bayesian modeling. 19

Here, the phenotype is modeled as a linear combination of the genetic variants, with 20

sparsity incorporated into the prior distribution for the model weights. Approximate 21

inference techniques, such as Markov Chain Monte Carlo (MCMC) [11] and variational 22

methods [12] have been used to infer the effect sizes, PIPs, and credible sets. While 23

these approaches represent valuable contributions to the field, they require the raw 24

genotype and phenotype information, which raises privacy and regulatory concerns, 25

particularly in the cases of publicly shared datasets. MCMC sampling also requires a 26

burn-in period, which adds a substantial (100X) runtime overhead. 27

In response to these concerns, fine-mapping approaches have moved towards using 28

summary statistics, which can be easily shared across sites. For example, the works 29

of [13–15] use a stochastic or exhaustive search to identify the posterior probabilities of 30

the causal configurations. However, exhaustive search based methods are restricted by 31

the number of assumed causal variants, as this leads to an exponential increase in the 32

dimensionality of the approximate posterior distribution. Stochastic search 33

approaches [13] are computationally less expensive, but, by construction, they cannot 34

handle nontrivial effects from spurious non-causal variants. The most recent 35

contribution to fine-mapping is SuSiE [16,17], which estimates the variant effect sizes as 36

a sum of “single effects”. These “single effect” vectors contain one non-zero element 37

representing a causal variant and are estimated using a Bayesian step-wise selection 38

approach. SuSiE provides a simple framework to robustly estimate PIPs and credible 39

sets; however, there is limited evidence for its performance given the presence of 40

spurious genetic effects. Such scenarios can appear due to polygenicity of the trait, 41

trans-interactions of variants, or varying correlation structure of the genomic region. 42

In this paper, we introduce BEATRICE, a novel framework for Bayesian 43

finE-mapping from summAry daTa using deep vaRiational InferenCE. In contrast to 44

sampling methods, we approximate the posterior distribution of the causal variants 45

given the GWAS summary statistics as a binary concrete distribution [18,19], whose 46

parameters are estimated using a deep neural network. This unique formulation allows 47
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BEATRICE to use computationally efficient gradient-based optimization to minimize 48

the KL divergence between the proposal binary concrete distribution and the posterior 49

distribution of the causal variants. In addition, our unique optimization strategy 50

samples a representative set of causal configurations in the process of minimizing the 51

empirical KL divergence; these configurations can be used to obtain the PIPs and the 52

credible sets. We compare our model with two state-of-the-art fine-mapping approaches, 53

SuSiE [16] and FINEMAP [13]. We perform an extensive simulation study and quantify 54

the performance of each model across increasing numbers of causal variants and 55

increasing noise, as determined by the degree to which non-causal variants explain the 56

phenotype variance. The runtimes of both SuSiE and BEATRICE are less than one 57

minute, in contrast FINEMAP requires significantly longer to converge. On average 58

BEATRICE achieves 2.2 fold increase in coverage, 0.1 fold increase in AUPRC, and 59

similar power in comparison to SuSiE and FINEMAP. 60

2 Generative Assumptions of Fine-mapping 61

BEATRICE is based on a generative additive effect model. Formally, let y ∈ Rn×1
62

denote a vector of (scalar) quantitative traits across n subjects. The corresponding 63

genotype data X ∈ Rn×m is a matrix, where m represents the number of genetic 64

variants in the analysis. Without loss of generality, we assume that the the columns of 65

X have been normalized to have mean 0 and variance 1, i.e., 1
n

∑
i Xij = 0 and 66

1
n

∑
i X

2
ij = 1 for j = 1, . . . ,m. The quantitative trait is generated as follows: 67

y = Xβ + η η ∼ N

(
0,

1

τ
In

)
, (1)

where β ∈ Rm×1 is the effect size, η ∈ Rn×1 is additive white Gaussian noise with 68

variance τ , and In is the n× n identity matrix. 69

2.1 Genome Wide Association Studies (GWAS) 70

GWAS uses a collection of element-wise linear regression models to estimate the effect
of each genetic variant. Mathematically, the GWAS effect sizes are computed as
β̂ = 1

nX
Ty, with the corresponding vector of normalized z-scores equal to

z = 1√
nτ

XTy [1, 14]. The main drawback of GWAS is that non-causal genetic variants

can have large effect sizes due to polygenicity of the quantitative trait [20], varying
degrees of linkage disequilibrium (LD) with causal variants [3], and/or interactions of
the variant with enriched genes [20]. One popular strategy to mitigate this drawback is
to impose a sparse prior over β given the set of causal variants:

β ∼ N(0,
1

τ
σ2ΣC) (2)

ΣC(i, j) =


0, i ̸= j

1, i = j and i is causal

ϵ, i = j and i is non-causal with non-zero effect

0, otherwise

(3)

Notice from Eq. (3) that the variance of β(i) for a causal variant is σ2

τ and the 71

variance of β(i) for a non-causal variant with non-zero effect is ϵσ
2

τ , where ϵ is assumed 72

to be small. This formulation handles residual influences from the non-causal variants, 73
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Fig 1. Overview of BEATRICE. The inputs to our framework are the LD matrix ΣX

and the summary statistics z. The inference module uses a neural network to estimate
the underlying probability map p. The random process generates random samples cl for
the Monte Carlo integration in Eq. (12). Finally, the generative module calculates the
likelihood of the summary statistics from the sample causal vectors cl.

which are often observed in real-world data. Under this assumed prior, we can 74

show [14,21] that the normalized GWAS effect sizes z are distributed as: 75

p (z|ΣX ,ΣC) = N
(
z; 0,ΣX +ΣX

(
nσ2 ΣC

)
ΣX

)
(4)

where ΣX = 1
nX

TX is the empirical correlation matrix of the genotype data, also 76

known as the LD matrix. Broadly, the goal of fine-mapping is to identify the causal 77

variants i, i.e., non-zero elements of ΣC given the effect sizes z and the LD matrix ΣX . 78

The derivation is provided in Section S1 of the Supplement. 79

3 Materials and Methods 80

BEATRICE uses a variational inference framework for fine-mapping. For convenience, 81

we represent the diagonal elements of ΣC by the vector c ∈ Rm×1, and by construction, 82

c encodes the causal variant locations. Figure 1 provides an overview of BEATRICE. 83

Our framework consists of three main components: an inference module, a random 84

sampler, and a generative module. The inputs to BEATRICE are the summary 85

statistics z and the LD matrix ΣX . The inference module estimates the parameters p of 86

our proposal distribution q (·;p, λ) using a neural network. The random process sampler 87

uses the parameters p to randomly sample potential causal vectors c according to the 88

given proposal distribution. Finally, the generative module calculates the likelihood of 89

the observed summary statistics z according to Eq. (4). 90

3.1 Proposal Distribution 91

The goal of fine-mapping is to infer the posterior distribution p(c|{z,ΣX}), where c 92

corresponds to the diagonal elements of ΣC . Due to the prior formulation in Eqs. (2-3), 93

solving for the true posterior distribution is computationally intractable, as it requires a 94

combinatorial search over the possible causal configurations. Thus, we approximate the 95

posterior distribution p(c|{z,ΣX}) with a binary concrete distribution q(c;p, λ) [18], 96

where the parameters p of the distribution are functions of the inputs {z,ΣX}. 97

Samples c generated under a binary concrete distribution can be viewed as continuous 98

relaxations of independent Bernoulli random variables. This reparametrization [19] 99

allows us to learn p from the data using standard gradient descent. 100
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Formally, let ci and pi denote the ith element of the vectors c and p, respectively. 101

Each entry of c is independent and is distributed as follows: 102

q(ci;pi, λ) =
λpic

−λ−1
i (1− pi)(1− ci)

−λ−1(
pic

−λ
i + (1− pi)(1− c)−λ

)2 , (5)

where the parameter λ controls the extent of relaxation from a Bernoulli distribution. 103

We can easily sample from the binary concrete distribution in Eq. (5) via 104

ci = ξ

 log
(

U
1−U

)
+ log

(
pi

1−pi

)
λ

 , (6)

where ξ(·) is the sigmoid function, and the random variable U is sampled from a 105

uniform distribution over the interval [0, 1]. As seen, pi specifies the underlying 106

probability map and U provides stochasticity for the sampling procedure in Eq. (6). We 107

note that the gradient of Eq. (6) with respect to pi tends to have a low variance in 108

practice, which helps to stabilize the optimization. 109

The two unique properties of binary concrete random variable are P (ci >
1
2 ) = pi 110

and limλ→0 P (ci = 1) = pi. The first property indicates that pi controls the degree to 111

which ci assumes low values close to 0 and high values close to 1. This property also 112

give BEATRICE flexibility to handle genetic variants with different levels of association, 113

thus aligning with our generative process that assumes some non-causal variants may 114

have small non-zero effects. The second property implies that a high probability pi at 115

location i is highly indicative of a causal variant. Taken together, the binary concrete 116

distribution has an easily-optimized parameterization with desirable properties. 117

3.2 Variational Inference 118

We select the variational parameters {p, λ} to minimize the Kullback–Leibler (KL) 119

divergence between the proposal distribution and the posterior distribution of the causal 120

vector c given the input data {z,ΣX}, that is 121

{p∗, λ∗} = arg min
{p,λ}

KL (q(c;p, λ) || p(c|{z,ΣX})) (7)

Using Bayes’ Rule, we can show that the optimization in Eq. (7) can be rewritten 122

{p∗, λ∗} = arg min
{p,λ}

KL (q(c;p, λ) || p(c;p0, λ0)))− Eq(·;p,λ) [log (p(z|ΣX, c))] , (8)

where we have assumed an element-wise binary concrete prior p(c;p0, λ0) over the 123

vector c. We fix the relaxation parameter to be small (λ = 0.01) and the probability 124

map to be uniform p0 =
[
1
m , . . . , 1

m

]T
. Thus, the first term of Eq. (8) can be viewed as 125

a regularizer that encourages sparsity in causal vectors c. The second term of Eq. (8) 126

can be interpreted as the likelihood of the observed test statistics. The works of [22, 23] 127

have demonstrated that under certain assumptions, the likelihood term of the summary 128

statistics is the same as the original data likelihood p (y|X, c) derived from Eq. (1). 129

During optimization, the relaxation parameter λ is annealed [18,19] to a small 130

non-zero value (0.01) with fixed constant rate, and the underlying probability map p is 131

optimized using gradient descent. Specifically, we use a neural network to generate the 132

vector p = F(z;ϕ). The details of the neural network architechture are provided in 133

Section S3 of the Supplement. Optimizing p∗ now amounts to optimizing the 134

learnable parameters of the neural network ϕ. Given a fixed value of λ, the neural 135

network loss function follows from Eq. (8) according to 136

L(ϕ) = KL (q(c;p(ϕ), λ) || p(c;p0, λ0)))− Eq(·;p(ϕ),λ) [log (p(z|ΣX, c))] , (9)

where we have defined p(ϕ) ≜ F(z;ϕ) for notational convenience. 137
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3.3 Optimization Strategy 138

The expectations in Eq. (9) do not have closed-form expressions. Therefore, we use 139

Monte Carlo integration to accurately approximate L(ϕ) in the regime of small λ, i.e., 140

when the binary concrete distribution behaves similar to a Bernoulli distribution. 141

Let c1(ϕ), . . . , cL(ϕ) be a collection of causal vectors sampled independently from 142

q(·|p(ϕ), λ) according to Eq. (6). The likelihood term of Eq. (9) is computed as 143

Eq(·;p(ϕ),λ) [log (p(z|ΣX, c))] =
1

L

L∑
l=1

log
(
p
(
z|ΣX, c

l
(ϕ)

))
, (10)

where the right-hand side probability is computed according to Eq. (4) by substituting 144

cl(ϕ) for the diagonal entries of ΣC in each term of the summation. Once again, the 145

continuous relaxation used to generate cl(ϕ) in Eq. (6) allows us to directly optimize ϕ. 146

We approximate the first term of Eq. (9) under the assumption of small {λ, λ0} on
the order of 0.01. In this case, the binary concrete distribution behaves like a {0, 1}
Bernoulli distribution. Under these conditions, we can write the first term of Eq. (9) as

KL (q(c;p(ϕ), λ) || p(c;p0, λ0)))

≈
m∑
i=1

[
pi(ϕ) log

(
pi(ϕ)

p0

)
+ (1− pi(ϕ)) log

(
1− pi(ϕ)

1− p0

)]
, (11)

where p0 is a fixed scalar parameter used to construct the (constant) prior vector p0. 147

We note that the criteria {λ → 0.01, λ0 = 0.01} is satisfied in practice, as λ is annealed 148

during the optimization to progressively smaller values and λ0 is fixed a priori. 149

The above approximations allow us to rewrite the neural network loss as

L(ϕ) ≈ − 1

L

L∑
l=1

logN
(
z; 0,ΣX +ΣX

(
nσ2 Σl

C(ϕ)
)
ΣX

)
+

m∑
i=1

pi(ϕ) log

(
pi(ϕ)

p0

)
+ (1− pi(ϕ)) log

(
1− pi(ϕ)

1− p0

)
, (12)

where Σl
C(ϕ) corresponds to the diagonal matrix using the vector cl(ϕ) as the diagonal 150

entries. We use a stochastic gradient descent optimizer [24] to minimize the loss L(ϕ) 151

with respect to the neural network weights ϕ. This process is detailed in Algorithm 1. 152

Algorithm 1 Optimization scheme to minimize Eq. (12)

BR = {}
Initialize ϕ0

for t = [1 . . . T ] do
Generate p(ϕt) = F(z;ϕt)
Randomly sample clt according to Eq. (6)
Binarize clt to bl

t and add to BR

Sl
t = {i} s.t. clt(i) > 0.01

Prune set Sl
t such that it consists of 50 indices.

clt(i) = 0 if i /∈ Sl
t

Generate L(ϕt) according to Eq. (12)
ϕt+1 = ϕt − StepSize∇L(ϕt)

end for
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3.4 Computational Complexity 153

Each iteration of stochastic gradient descent requires us to compute the likelihood 154

term
[
logN

(
z; 0,ΣX +ΣX

(
nσ2 Σl

C(ϕ)
)
ΣX

)]
. This computation is expensive due 155

to the covariance matrix inversion, whose run-time is on the order of O(m3), where m is 156

the total number of variants. To mitigate this issue, the works of [25] show that 157

if Σl
C(ϕ) is sparse, then the matrix inversion can be done with order O(k3) +O(mk2) 158

run-time, where k is the number of non-zero diagonal elements of Σl
C(ϕ). We leverage 159

this result in the optimization by thresholding the elements of cl(ϕ) to set small values 160

exactly to zero. We specify this threshold such that at most 50 elements of cl(ϕ) are 161

non-zero at each iteration. This choice allows us to run BEATRICE in fixed time for all 162

scenarios for a fixed m. We also regularize ΣX with a small diagonal load to ensure 163

invertibility of the covarance matrix at each iteration. Finally, we run stochastic 164

gradient descent with a batch size of one to further speed up BEATRICE. Effectively, 165

this means that we sample a single cl(ϕ) at each epoch rather than perform a true 166

Monte Carlo integration. The authors of [26] have previously shown that a single 167

random sample (L = 1) is sufficient to guarantee convergence to a local minimum of 168

Eq. (12). Algorithm 1 provides a detailed description of these optimization steps. 169

3.5 Causal Configurations and Posterior Inclusion Probabilities 170

The desired outputs of each fine-mapping method are Posterior Inclusion 171

Probabilities (PIPs) and credible sets. PIPs estimate how likely each variant is causal as 172

a measure of its importance. Credible sets identify the subset of variants that are likely 173

to contain a causal variant, which captures the uncertainty of finding the true variant. 174

The main challenge to estimating the posterior probability of a given causal 175

configuration (i.e., set of causal variant locations) is the exponentially large search space. 176

Let b denote a binary vector with a value of 1 at causal locations and a value of 0 at 177

non-causal locations. At a high level, b can be viewed as a binarized version of the 178

causal vector c in the previous sections. Using Bayes’ Rule, the posterior probability of 179

b given the input data {z,ΣX} can be written as follows: 180

p (b|z,ΣX) =
p (z|ΣX ,b) p (b)∑

b′∈B p (z|ΣX ,b′) p (b′)
(13)

where B is the set of all 2m possible causal configurations. Once again, z captures the 181

summary statistics and ΣX is the LD matrix. Even though B is exponentially large, it 182

has been argued [27] that the majority of these configurations have negligible 183

probability and do not contribute to the denominator of Eq. (13). 184

Our stochastic optimization provides a natural means to track causal configurations
with non-negligible probability to compute p (b|z,ΣX). Namely, at each iteration of
stochastic gradient descent, we randomly generate a sample causal vector cl to minimize
Eq. (12). In parallel, we binarize the vector cl via

bl
i =

{
1, cli > γ,

0, otherwise

and add the resulting vector bl to a reduced set of causal configurations BR. The 185

variational objective ensures that our proposal distribution converges to the true 186

posterior distribution of the causal vectors. Thus, the samples cl lie near modes of the 187

posterior distribution which is the neighborhood of non-negligible probability. 188

In this work, we use a threshold γ = 0.1 to binarize the vectors cl. Empirically, we 189

find that this threshold value preserves the main interactions between variants. 190

However, the user of BEATRICE can adjust this threshold as needed. 191
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After obtaining the sampled vectors, we replace the exhaustive set B in Eq. (13)
with the reduced set BR for tractable computation of p (b|z,ΣX). We then compute the
posterior inclusion probability (PIP) of each variant by summing the probabilities over
the subset of BR with a value of 1 at that variant location. Mathematically,

P (bi = 1|z,ΣX) ≈
∑
b∈S

p (b|z,ΣX) (14)

s.t. S ⊂ BR and S = {b |bi = 1} (15)

where S is a subset of BR that contains binary configurations with 1 at location i. 192

Finally, we identify the credible sets in two steps. First, in a conditional step-wise 193

fashion, we identify the variants with the highest conditional probability given the 194

previously selected variants. This strategy identifies the set of “key” variants with a high 195

probability of being causal. Second, we determine the credible set for each key variant, 196

by computing the conditional inclusion probabilities of each variant given the key 197

variants and adding variants to the credible set. A detailed description of this process 198

can be found in the Supplementary Methods document (Section S2 in S1 text). 199

3.6 Baselines 200

We compare our approach with the state-of-the-art methods, FINEMAP and SuSiE. 201

FINEMAP: This approach uses a stochastic shotgun search to identify causal 202

configurations with non-negligible posterior probability. FINEMAP defines the 203

neighborhood of a configuration at every step by deleting, changing or adding a causal 204

variant from the current configuration. The next iteration samples from this 205

neighborhood, thus reducing the exponential search space to a smaller high-probability 206

region. Finally, the identified causal configurations are used to determine the posterior 207

inclusion probabilities for each variant. The computationally efficient shotgun approach 208

makes FINEMAP a viable tool for finemapping from multiple GWAS summary data 209

in [28,29]. However, the FINEMAP algorithm [13] does not provide definitive credible 210

sets, thus we rely on the same approach used in [16] for this task. Details of this 211

procedure are provided in Section S4 of the Supplement. 212

SuSiE: The recent works of [16,17] introduced an iterative Bayesian selection 213

approach for fine-mapping that represents the variant effect sizes as a sum of 214

“single-effect” vectors. Each vector contains only one non-zero element, which represents 215

the causal signal. In addition to finding causal variants, SuSiE provides a way to 216

quantify the uncertainty of the causal variants locations via credible sets. SuSiE has also 217

been used widely to find putative causal variants GWAS summary statistics [30,31]. 218

3.7 Evaluation Strategy 219

We evaluate several metrics of performance in our simulation study. 220

Area Under Precision Recall Curve (AUPRC): We threshold the PIPs and 221

compute the precision and recall for identifying the ground-truth causal configuration. 222

High precision indicates a low false positive rate, while high recall relates to a low false 223

negative rate. Thus, the AUPRC, which is computed by sweeping the PIP threshold, 224

can be viewed as a holistic measure of performance across both classes. AUPRC is also 225

robust to severe class imbalance [32], which is the case in fine-mapping. 226
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Coverage, Power and Size of the Credible Sets: We assess the quality of the 227

credible sets using three metrics [16,17]. Coverage is the percentage of credible sets that 228

contain at least one true causal variant, and power is the percentage of ground-truth 229

causal variants that appear in at least one credible set. Higher coverage indicates that 230

the method is more confident about its prediction of causal variants, whereas higher 231

power indicates the method can accurately identify all the causal variants. 232

One caveat is that we can generally achieve both higher coverage and higher power 233

simply by adding variants to the credible sets. To counter this trend, we report the 234

average size of the credible sets identified by each method. Ideally, we would like the 235

credible sets to be as small as possible while retaining high coverage and high power. 236

4 Experimental Setup 237

Genotype Simulations: We use the method of [33] to simulate genotypes X based 238

on data from the 1000 Genomes Project. We select an arbitrary sub-region 239

(39.9Mb− 40.9Mb) from Chromosome 2 as the base. After filtering for rare variants 240

(MAF < 0.02), the remaining 3.5K variants are used to simulate pairs of haplotypes to 241

generate 10,000 unrelated individuals. In each experiment below, we randomly 242

select m = 1k variants and n = 5000 individuals to generate the phenotype data. 243

Phenotype Generation: We generate the phenotype y from a standard mixed linear 244

model [22], where the influences of the causal variants are modeled as fixed effects, and 245

the influences of other non-causal variants are modeled as random effects. In this case, 246

the genetic risk for a trait is spread over the entire dataset, with each variant having 247

small individual effects, as per the polygenicity assumption of a complex trait. 248

Given a set of d causal variants C, let XC ∈ Rn×d denote the corresponding subset
of the genotype data and XNC ∈ Rn×m−d denote the remaining non-causal variants.
From here, we generate the phenotype data y as follows:

y = XC β + gNC + ϵ ≜ gC + gNC + ϵ

gNC ∼ N

(
0,

1

m− d
XNC XT

NC

)
β ∼ N (0, Id)

ϵ ∼ N
(
0, α2In

)
where β is the d-dimensional effect sizes sampled from a Gaussian, and ϵ is an 249

zero-mean Gaussian noise with variance α2. The random variable gNC models the effect 250

of the non-causal variants as a multivariate Gaussian vector with mean 0 and covariance 251

1
m−dXNCX

T
NC . Likewise, gC = XC β captures the effect of the causal variants. 252

In our experiments, we define ω2 as the total phenotypic variance attributed to the
genotype (e.g., both gC and gNC) and p as the proportion of this variance associated
with the causal variants in gC . Using the strategy described in [34], we enforce these
conditions by normalizing the phenotype y as follows:

ỹ =

√
pω2

var(gC)
gC +

√
(1− p)ω2

var(gNC)
gNC + ϵ̃ (16)

ϵ̃ ∼ N(0, (1− ω2)1n)

where var(gC) and var(gNC) are the empirical variances of gC and gNC , respectively. 253
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After generating the genotype X and the normalized phenotype ỹ, we run a GWAS 254

to estimate the effect size β̂i of each variant i. From here, we convert the estimated 255

effect sizes to z-scores via zi =
β̂i

se(β̂i)
, where se(·) denotes the standard error. The LD 256

matrix is computed from the genotype data as ΣX = 1
nX

T X. The z-scores and LD 257

matrix are input to each of the fine-mapping methods above. 258

Noise Configurations: We evaluate the performance of each method while varying 259

the number of causal variants d, the total genotype variance ω2, and the proportion of 260

this variance associated with the causal variants p. Formally, we sweep over one order of 261

magnitude for d = [1, 4, 8, 12], ω2 = [0.1, 0.2, 0.4, 0.5, 0.7, 0.8], and 262

p = [0.1, 0.3, 0.5, 0.7, 0.9]. For each noise setting, we randomly generate 20 datasets by 263

independently re-sampling the causal variant locations, the effect sizes {βi}, the 264

non-causal component gNC , and the noise ϵ̃. We run all three fine-mapping methods 265

over a total of 4× 6× 5× 20 = 2400 configurations for a comphrehensive evaluation. 266

5 Results 267

Varying the Number of Causal Variants Figure 2 illustrates the performance of 268

each method (BEATRICE, FINEMAP, and SuSiE) while increasing the number of 269

causal variants from d = 1 to d = 12. The points denote the mean performance across 270

all noise configurations (ω2, p) for fixed d, and the error bars represent the 95% 271

confidence interval across these configurations. We note that BEATRICE achieves a 272

uniformly higher AUPRC than both baseline method, which suggests that BEATRICE 273

can better estimate the PIPs than FINEMAP or SuSiE. BEATRICE also provides 274

0.9− 1.4 fold increase in coverage than the baselines with similar power, which indicates 275

that the credible sets generated by BEATRICE are more likely to contain a causal 276

variant as compared to SuSiE and FINEMAP. Finally, we note that although FINEMAP 277

and SuSiE identify smaller credible sets, the difference in set size between them and 278

BEATRICE is < 2 variants. Taken together, as the number of causal variants increases, 279

BEATRICE gives us a better estimate of the PIPs and arguably better credible sets. 280

Compared to the baselines BEATRICE does not impose any prior assumptions over the 281

total number of causal variants, which may lead to its improved performance. 282

Increasing the Genotype Contribution: Figure 3 shows the performance of each 283

method while increasing the genetically-explained variance from ω2 = 0.1 to ω2 = 0.8. 284

Similar to above, the points denote the mean performance across all configurations (d, p) 285

for fixed ω2, and the error bars represent the 95% confidence interval across these 286

configurations. We note that BEATRICE achieves a significantly higher AUPRC than 287

FINEMAP and a slightly higher AUPRC than SuSiE. When evaluating the credible sets, 288

we observe similar trends in coverage (BEATRICE is 0.25− 2.34 folds higher) and power 289

(similar performance across methods). While the FINEMAP and SuSiE identify slightly 290

smaller credible, the difference to BEATRICE is only a few variants. Taken together, we 291

submit that BEATRICE achieves the best trade-off across the four performance metrics. 292

Varying the Contributions of Causal and Non-Causal Variants: Figure 4 293

illustrates the performance of each method while increasing the contribution of the 294

causal variants from p = 0.1 to p = 0.9. Once again, the points denote the mean 295

performance across all configurations configurations (d, ω2) for fixed p, and the error 296

bars represent the 95% confidence interval across these configurations. From an 297

application standpoint, the presence of non-causal variants with small non-zero effects 298

makes it difficult to detect the true causal variants. Accordingly, we observe a 299
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Fig 2. The performance metrics for the three methods across varying numbers of causal
variants. Along the x-axis, we plot the number of causal variants, and across the y-axis,
we plot the mean and confidence interval (95%) of each metric. We calculate the mean
by fixing d to a specific value d = d∗ and sweep over all the noise settings where d = d∗.

performance boost across all methods when p is larger. Similar to our previous 300

experiments, BEATRICE provides the best AUPRC, with converging performance as 301

p → 1. In addition, BEATRICE identifies better credible sets with significantly higher 302

coverage while maintaining power. Thus, we conclude that BEATRICE is the most 303

robust of the three methods to the presence of noise from non-causal variants. This 304

performance gain may arise from our binary concrete proposal distribution for the causal 305

vector c, which provides flexibility to accommodate varying degrees of association. 306

6 Discussion 307

BEATRICE is a novel, robust, and general purpose tool for fine-mapping that can be 308

used across a variety of studies. One key contribution of BEATRICE over methods like 309

FINEMAP and SuSiE is its ability to discern spurious effects from non-causal variants, 310

including non-causal variants in high LD with true causal variants. Our simulated 311

experiments capture this improved performance by sweeping the proportion of the 312

observed variance attributed to causal (fixed effects) and non-causal (random effects) 313

genetic variants. This parameter p ∈ [0, 1] is swept over its natural domain, such that 314

p = 1 implies that the only link between the genotype and phenotype comes from the 315

causal variants. At this extreme, Figure 4 shows that all methods achieve comparable 316

performance. However, as p decreases, meaning that the effects of non-causal variants 317

increase, BEATRICE outperforms both baselines. 318
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Fig 3. The performance metric for increasing phenotype variance explained by genetics.
Along the x-axis, we plot the variance explained by genetics (ω2), and across the y-axis,
we plot each metric’s mean and confidence interval (95%). We calculate the mean by
fixing ω2 to a specific value ω = ω∗ and sweep over all the noise settings where ω = ω∗.

We further probe this behavior by illustrating the element-wise PIPs and the 319

credible sets identified by all three methods under two simulation settings: 320

{d = 1, ω2 = 0.2, p = 0.9} (Figure 5) and {d = 1, ω2 = 0.2, p = 0.1} (Figure 6). As seen 321

in Figure 5, the variance explained by the non-causal variants is small, so the causal 322

variant is easy to distinguish and has been correctly identified by all three approaches. 323

In contrast, we see in Figure 6 that when the non-causal variants play a larger role, the 324

causal variant no longer has the maximum GWAS z-score. Here, only BEATRICE 325

correctly identifies the causal variant and assigns it the highest PIP. Both FINEMAP 326

and SuSiE give uncertain predictions, as captured by the large credible sets and 327

multiple high PIPs. We conjecture that BEATRICE takes advantage of the binary 328

concrete distribution to model non-causal variants with non-zero effects, while using the 329

sparsity term of L(·) to prioritize potentially causal variants. 330

A second contribution of BEATRICE is our strategic integration of neural networks 331

within a larger statistical framework. Specifically, we use the neural network in Figure 1 332

as an inference engine to estimate the parameters p of our proposal distribution. In this 333

case, the standard over-parameterization in the neural network helps BEATRICE to 334

manage the complexity of the data while providing a buffer against overfitting. 335

BEATRICE leverage the continuous representation of the causal vectors cl to 336

backpropagate the gradients through the random sampler and train the network. 337

Additionally, the continuous representation of cl results in low-variance gradients with 338

respect to the underlying probability map, thus leading to a stable optimization. 339
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Fig 4. The performance metric for multiple levels of noise introduced by non-causal
variants. The noise level (p) is explained by the variance ratio of non-causal variants vs.
causal variants. Along the x-axis, we plot the noise level (p); across the y-axis, we plot
each metric’s mean and confidence interval (95%). We calculate the mean by fixing p to
a specific value p = p∗ and sweep over all the noise settings where p = p∗.

Related to the above point, a third contribution of BEATRICE is its ability to 340

efficiently build and evaluate a representative set of causal configurations during the 341

optimization process. This set identifies key regions of the exponential search space to 342

compute the PIPs and credible sets. In particular, we keep track of the sampled vectors 343

at every iteration of the optimization, as described in Section 3.5. By minimizing the 344

KL divergence between the proposal distribution and the true posterior distribution, we 345

ensure that the randomly sampled causal vectors slowly converge to the causal 346

configurations that have non-negligible posterior probability. Our strategy lies is in 347

stark contrast with traditional mean-field approaches, where independence assumptions 348

between elements of the proposal distribution do not allow for joint inference of the 349

causal configurations. Furthermore, this strategy allows us to efficiently estimate the 350

PIPs in finite run-time. Figure 7 compares the average run-time of each method across 351

all parameter settings. We observe that the run-time of BEATRICE and SuSiE are less 352

than one minute. In contrast, FINEMAP requires significantly more time to converge. 353

The final contribution of BEATRICE is its simple and flexible design. Importantly,
BEATRICE can easily incorporate priors based on the functional annotations of the
variants. Formally, in the current setup, the prior over c is effectively constant, as
captured by p0 = 1

m . We can integrate prior knowledge simply by modifying the
distribution of p0 across the variants. Thus, BEATRICE is a general-purpose tool for
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Fig 5. The fine-mapping performance of BEATRICE , SuSiE, and FINEMAP at a
noise setting of {d = 1, ω2 = 0.2, p = 0.9}. (a) The absolute z-score of each variant as
obtained from GWAS. (b) Pairwise correlation between the variants. (c), (d), and (e)
are the posterior inclusion probabilities of each variant as identified by BEATRICE ,
SuSiE, and FINEMAP, respectively. The red circle marked by an arrow shows the
location of the causal variant. We have further color-coded the variants based on their
assignment to credible sets. The non-black markers represent the variants assigned to a
credible set. Additionally, the variants in a credible set are marked by the same color.

fine-mapping. Going one step further, a recent direction in fine-mapping is to aggregate
data across multiple studies to identify causal variants [25]. Here, different LD matrices
across studies helps to refine the fine-mapping results. BEATRICE can be applied in
this context as well simply by modifying Eq. (12) as follows:

L (ϕ) = − 1

S L

S∑
s=1

L∑
l=1

log
(
N

(
zs; 0,ΣXs +ΣXs

(
nσ2Σl

C(ϕ)
)
ΣXs

))
+
∑
i

pi log

(
pi

p0

)
+ (1− pi) log

(
1− pi

1− p0

)
(17)

where s denotes each separate study, S is the total number of studies in the analysis, 354

and zs,ΣXs
are the summary statistics for each study. 355

7 Code Availability 356

We have compiled the code for BEATRICE and its dependencies into a docker image, 357

which can be found at https://github.com/sayangsep/Beatrice-Finemapping. We have 358

also provided installation instructions and a detailed description of the usage. The 359

compact packaging will allow any user to directly download and run BEATRICE on 360

their data. Namely, all the user must specify are a directory path to the summary 361

statistics (i.e., z-scores), the LD matrix, and the number of subjects. Fig. 8 shows the 362

outputs generated by BEATRICE. The results are output in (1) a PDF document that 363

displays the PIPs and corresponding credible sets, (2) a table with PIPs, (3) a text file 364

with credible sets, and (4) a text file with the conditional inclusion probability of the 365
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Fig 6. The fine-mapping performance of BEATRICE , SuSiE, and FINEMAP at a
noise setting of {d = 1, ω2 = 0.2, p = 0.1}. (a) The absolute z-score of each variant as
obtained from GWAS. (b) Pairwise correlation between the variants. (c), (d), and (e)
are the posterior inclusion probabilities of each variant as identified by BEATRICE ,
SuSiE, and FINEMAP, respectively. The red circle marked by an arrow shows the
location of the causal variant. We have further color-coded the variants based on their
assignment to credible sets. The non-black markers represent the variants assigned to a
credible set. Additionally, the variants in a credible set are marked by the same color.

variants within the credible sets. The user can also generate the neural network losses 366

describe in Eq. (12) by adding a flag to the run command. 367

8 Conclusion 368

We present BEATRICE, a novel Bayesian framework for fine-mapping that identifies 369

potentially causal variants within GWAS risk loci through the shared LD structure. 370

Using a variational approach, we approximate the posterior probability of the causal 371

location(s) via a binary concrete distribution. We leverage the unique properties of 372

binary concrete random variables to build an optimization algorithm that can 373

successfully model variants with differing levels of association. Moreover, we introduce a 374

new strategy to build a reduced set of causal configurations within the exponential 375

search space that can be neatly folded into our optimization routine. This reduced set is 376

used to approximate the PIPs and identify credible sets. In a detailed simulation study, 377

we compared BEATRICE with two state-of-the-art baselines and demonstrated the 378

advantages of BEATRICE under different noise settings. Finally, our model does not 379

have any prior on the causal variants and is agnostic to the original GWAS study. 380

Hence, BEATRICE is a powerful tool to refine the results of a GWAS or eQTL analysis. 381

It is also flexible enough to accommodate a variety of experimental settings. 382

Acknowledgments 383

This work was supported by the National Science Foundation CAREER Award 1845430 384

(PI: Venkataraman), the National Institutes of Health Awards R01-HD108790 (PI: 385

March 24, 2023 15/19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.24.534116doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.534116
http://creativecommons.org/licenses/by/4.0/


Fig 7. The runtime comparison of BEATRICE , SuSiE, and FINEMAP across all the
simulation settings.

Fig 8. Overview of the outputs generated by BEATRICE. (a) The PIPs are displayed
and color coded by their assignment to credible sets. (b) A table with the PIPs and the
corresponding name of the variants. (c) A text file with the credible sets. Here each row
represent a credible set and the entries are indices of the variants present in the credible
set. The first column of each row represents the key index. (d) The conditional
inclusion probability of each of the credible variants given the key variant. The
calculations can be found in Section S2 of the Supplements.
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