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ABSTRACT

One of the most fundamental laws of physics is the principle of least action. Motivated by its
predictive power, we introduce a neural least-action principle that we apply to motor control. The
central notion is the somato-dendritic mismatch error within individual neurons. The principle
postulates that the somato-dendritic mismatch errors across all neurons in a cortical network are
minimized by the voltage dynamics. Ongoing synaptic plasticity reduces the somato-dendritic
mismatch error within each neuron and performs gradient descent on the output cost in real time. The
neuronal activity is prospective, ensuring that dendritic errors deep in the network are prospectively
corrected to eventually reduce motor errors. The neuron-specific errors are represented in the apical
dendrites of pyramidal neurons, and are extracted by a cortical microcircuit that ‘explains away’ the
feedback from the periphery. The principle offers a general theoretical framework to functionally
describe real-time neuronal and synaptic processing.
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Introduction

Wigner’s remark about the *unreasonable effectiveness’ of mathematics in allowing us to understand physical phenomena
(Wigner, |1959) is famously contrasted by Gelfand’s quip about its ‘unreasonable ineffectiveness’ in doing the same for
biology (Borovik, 2021). Considering the component of randomness that is inherent to evolution, this may not be all
that surprising. However, while this argument holds just as well for the brain at the cellular level, ultimately brains
are computing devices. At the level of computation, machine learning and neuroscience have revealed near-optimal
strategies for information processing and storage, and evolution is likely to have found similar principles through trial
and error (Hassabis et al.,2017). Thus, we have reason to hope for the existence of fundamental principles of cortical
computation that are similar to those we have found in the physical sciences. Eventually, it is important for such
approaches to relate these principles back to brain phenomenology and connect function to structure and dynamics.

In physics, a fundamental measure of ‘effort’ is the action of a system, which nature seeks to ‘minimize’. Given an
appropriate description of interactions between the systems constituents, the least-action principle can be used to derive
the equations of motion of any phys1cal system (Feynman et al., [2011; Coopersmith, 2017). Here, we suggest that in
biological information processing, a similar principle holds for predlctlon errors, which are of obvious relevance for
cognition and behavior. Based on such errors, we formulate a neuronal least-action (NLA) principle which can be
used to derive neuronal dynamics and map them to observed dendritic morphologies and cortical microcircuits. Within
this framework, local synaptic plasticity at basal and apical dendrites can be derived by stochastic gradient descent on
errors. The errors that are minimized refer to the errors in output neurons that are typically thought to represent motor
trajectories planed and encoded in cortical motor areas and ultimately in the spinal cord and muscles.
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The theory considers the minimization of a mismatch between the effective output trajectory and an internally or
externally imposed target trajectory. The strength by which the output trajectory is pushed towards the target trajectory
is referred to as ‘nudging strength’. For weak nudging, the feedback slightly adapts the internal network states so that
the output activities closer follow their targets. For a target that is fixed in time, the dynamics reduces to the Equilibrium
Propagation (Scellier & Bengio,2017). For strong nudging, the output neurons are clamped to tightly follow the target
trajectory (Song et al., 2022; Meulemans, Zucchet, et al., 2022)). Each network neuron performs gradient descent on its
own dendritic prediction error (Urbanczik & Senn, [2014]), and with this eventually also contributes to a reduction of
the output errors. For both versions, weak and strong nudging, synaptic plasticity in an interneuron feedback circuitry
supports the extraction of neuron-specific dendritic errors (Sacramento et al., |2018)), providing a cortical implementation
of the suggested ‘real-time dendritic error propagation (rt-DeEP)’.

The NLA principle can be put into the history of energy-based models used to understand neuronal processing and
learning in recurrent neural networks (Hopfield, [1982)), artificial intelligence (LeCun et al., |2006), and biological
versions of deep learning (Scellier & Bengio,[2017}; Richards ez al., 2019} Song et al., [2022)). As a continuous-time
theory of cortical processing that instantaneously corrects neuronal activities throughout the network, it makes a link to
optimal feedback control (Todorov & Jordan, 2002)) that has recently been considered in terms of energy-based models
at equilibria (Meulemans, Zucchet, et al., 2022)). It can further be seen in the tradition of predictive coding (Rao &
Ballard, |1999; Bastos et al., 2012)), where cortical feedback connections try to explain away lower-level activities. Yet,
our prospective coding extrapolates from current quantities to predict activity in the future, not the activity at the current
point in time, as in classical predictive coding. The NLA principle combines energy-based models with prospective
coding in which neuronal integration delays are compensated on the fly (as also done in Haider et al., [2021)). The
prospective coding within each neuron may overcome putative delays that extend across the whole cortex and would
allow for a real-time processing of stimuli while instantaneously correcting for ongoing errors. In this sense, the NLA
represents an alternative to the recently suggested forward-forward algorithm which circumvents the delay problem by
avoiding error propagation altogether (Hinton, [2022).

The paper is organized as follows: we first define the prospective somato-dendritic mismatch error, construct out of
this the mismatch energy of a network, and ‘minimise’ this energy to obtain the error-corrected, prospective voltage
dynamics of the network neurons. We then show that the prospective error coding leads to an instantaneous and joint
processing of low-pass filtered input signals and backpropagated errors. Applied to motor control, the instantaneous
processing is interpreted as a moving equilibrium hypothesis according to which sensory inputs, network state, motor
commands and muscle feedback are in a self-consistent equilibrium at any point of the movement. We then derive a
local learning rule that globally minimizes the somato-dendritic mismatch errors across the network, and show how this
learning can be implemented through error-extracting cortical microcircuits and dendritic predictive plasticity.

Results

Somato-dendritic mismatch errors and the Lagrangian of cortical circuits

We consider a network of neurons — identified as pyramidal cells — with firing rates r;(¢) in continuous time ¢. The
somatic voltage u; of pyramidal neuron i is driven by the close-by basal input current, ; Wijrj, with presynaptic
rates r; and synaptic weights W;;, and an additional distal apical input e; that will be learned to represent a prospective
prediction error at any moment in time (Fig. [Th). While in classical rate-based neuron models the firing rate r; of a
neuron is a function of the somatic voltage, p(u;), we postulate that the firing rate is prospective and extrapolates from
p(u;) into the future with the temporal derivative, r; = p(u;) + 7p(u;), with p(u;) representing the temporal derivative
of p(u;(t)). There is experimental evidence for such prospective coding in cortical pyramidal neurons to which we
return later (Fig. [Zp).

The second central notion of the theory is the prospective somato-dendritic mismatch error in the individual network
neurons, e;(t). It is defined as a mismatch between the prospective voltage, u; + 71,;, and the weighted prospective
input rates, e; = (u; + 71;) — Y ; Wijr;. If the prospective error is low-pass filtered with time constant 7, it takes
the form e; = u; — > ; Wi;T;, where 7; is the corresponding low-pass filtered firing rate of the presynaptic neuron j
(Methods). We refer to é; as somato-dendritic mismatch error of neuron <.

We next interpret the mismatch error €; in terms of the morphology of pyramidal neurons with basal and apical dendrites.
While the error is formed in the apical dendrite, this error is added to the somatic voltage and, from the perspective of
the basal inputs, it becomes a somato-dendritic mismatch error. The mismatch error tells the difference between ‘what a
neuron does’, which is based on the somatic voltage u;, and ‘what the basal inputs think it should do’, which is based
on its own input ) W;,;7; (Fig. 2). The two quantities may deviate because the neuron gets the apical input e; that
integrates in the soma, u; = j W;;7; + e;, but not in the basal dendrite. What cannot be predicted from the somatic
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Figure 1: Somato-dendritic mismatch energies and the neuronal least-action (NLA) principle. (al) Sketch of
a cross-cortical network of pyramidal neurons described by NLA. (a2) Correspondence between elements of NLA
and biological observables such as membrane voltages and synaptic weights. (b1) The NLA principle postulates that
small variations du (dashed) of the trajectories u (solid) leave the action invariant, § A = 0. It is formulated in the
look-ahead coordinates u (symbolized by the spyglass) in which ‘hills’ of the Lagrangian (shaded grey zones) are
foreseen by the prospective voltage so that the trajectory can turn by early enough to surround them. (b2) In the absence
of output nudging (5 = 0), the trajectory u(t) is solely driven by the sensory input, and prediction errors and energies
vanish (L = 0, outer blue trajectory at bottom). When nudging the output neurons towards a target voltage (5 > 0),
somato-dendritic prediction errors appear, the energy increases (red dashed arrows symbolising the growing ‘volcano’)
and the trajectory u(t) moves out of the . = 0 hyperplane, riding on top of the ‘volcano’ (red trajectory). Synaptic
plasticity T/ reduces the somato-dendritic mismatch along the trajectory by optimally ‘shoveling down the volcano’
(blue dashed arrows) while the trajectory settles in a new place on the L = 0 hyperplane (inner blue trajectory at
bottom).

voltage u; by the basal input remains as ‘somato-basal’ mismatch error, u; — ; Wi;Tj, and this is just the apical error
€;.

Associated with this mismatch error is the somato-dendritic mismatch energy defined for each network neuron ¢ € N’
as the squared mismatch error,

2
Eiv[ = %ég = % (’U,l — Zj Wijfj) . (D

On a subset of output neurons of the whole network, © C N, a cost is defined as a function of the somatic voltage and
some instructive reference signal such as a targets or a reward. When a target trajectory w(t) is available, the cost is
defined at each time point as a squared target error

Co=3é; =73 (us — uo)2 . )
Much more general cost functions and mismatch energies are conceivable, encompassing e.g. conductance-based
neurons or including further dynamic variables (see SI). The cost represents a performance measure for the entire
network that produces the output voltages u,(t) in response to some input rates i, (t). The cost directly relates to
behavioral or cognitive measures such as the ability of an animal or human to perform a particular task in real time. The
target could be provided by explicit external supervision, for example target movements in time encoded by w}(t), it

could represent an expected reward signal, or it could arise via self-supervision from other internal prediction errors.

We define the Lagrangian (or total ‘energy’) of the network as a sum across all mismatch energies and costs, weighted
by the nudging strength 3 of the output neurons,

L:ZE?‘JrﬁZCo:%Z(ui—ZjWijfijrgZ(uj;—uo)Q. 3)
ieN 0cO ieN o€

The low-pass filtered presynaptic rates, 7, also encompass the external input neurons. Due to the prospective coding,
the Lagrangian can be minimal at any moment in time while the network dynamics evolves. This is different from
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the classical predictive coding (Rao & Ballard, |1999) and energy-based approaches (Scellier & Bengio,|[2017; Song
et al.,2022), where a stimulus needs to be fixed in time while the network relaxes to a steady state, and only there the
prediction error is minimized. Since we postulated that the firing rates are prospective and linearly extrapolate into
the future, r; = p(u;) + 7p(u;), and because any quantity can be reconstructed from its low-pass filtering at any point
in time, r; = 7; + 77;, we conclude that the low-pass filtered rate is a function of the instantaneous somatic voltage,
7(t) = p(u(t)), see SL. As a consequence, also the Lagrangian becomes a function of the instantaneous voltage u(t)

and does not depend on past voltage values, although it depends on past firing rates.

The previous mathematical operation of extrapolating from the voltage to future rates, and going back to the current
voltage via low-pass filtering, is the key ingredient for the magically sounding instantaneous processing, see Fig. 2.

To get the instantaneity it is not really necessary to precisely look into the future. It is only necessary to undo the temporal
operation of the postsynaptic neuron, and this is achieved by encoding the presynaptic voltage in the prospective rate.
We come back to this instantaneity, including its practical limitations, in the overnext section.

The least-action principle expressed for prospective voltages

Motivated by the prospective firing in pyramidal neurons, we postulate that cortical networks strive to look into the
future to prevent instantaneous errors. Each neuron tries to move along a trajectory that minimizes its own mismatch
error €; across time (Fig.[Tb1). The ‘neuronal currency’ with which each neuron ‘trades’ with others to choose its own
error-minimizing trajectory is the future discounted membrane potential,

_ | Ny
u(t) = = u(t'e dt’. 4)
T Jt
These prospective voltages u are the ‘canonical coordinates’ entering the NLA principle, and in these prospective
coordinates the overall network searches for a ‘least action trajectory’. Since from u we can recover the instantaneous
voltage via u = @ — 7u (see SI), we can replace v in the Lagrangian and obtain L as a function of our new canonical

coordinates & and the ‘velocities’ ﬁ, ie.L =1L {'&, i , where bold fonts represent vectors. Inspired by the least-action

principle from physics, we can now define the neuronal action A as a time integral of the Lagrangian,

ta

A= / L [ﬁ(t), ﬁ(t)} dt . )
t1

The NLA principle postulates that the trajectory @ (t) keeps the action A stationary with respect to small variations 0@

(Fig.[Tp1). In other words, nature chooses a trajectory such that, when deviating a little bit from it, say by du, the value

of A will not change (or at most up to second order in the variation), formally § A = 0. The equations of motion that

keep the action stationary are known to satisfy the Euler-Lagrange equations

oL d OL
et ©

Applying these equations to our Lagrangian yields a prospective version of the classical leaky integrator voltage
dynamics, with rates r and errors e that are looking into the future (Methods),

T4=—-u+Wr+e, (7a)
e=r.,Wle+pe*. (7b)

The °-> denotes the component-wise product, and the weight matrix splits into weights from input neurons and weights
from network neurons, W = (Wj,, W,(). While for output neurons a target error can be defined, € = u’ — w,,
for non-output neurons 7 no target exist and we hence set €; = 0. In a control theoretic framework, the neuronal
dynamics (Eq. represents the state trajectory, and the adjoint error dynamics (Eq. represents the integrated
costate trajectory (Todorov, [2006).

Formally, the voltage dynamics in Eq. [7al specifies an implicit differential equation since %(t) also appears on the
right-hand side. This is because the prospective rates 7 = p(u) + 7p(w) imply % through p(u) = p’(u)- . Likewise,
the prospective errors e = € + e, with € given in Eq. and plugged into Eq. [7al imply 4 through é(u) = &’ (u)-.
Nevertheless, the voltage dynamics can be run by replacing % (t) on the right-hand side of Eq. [7a|by the temporal
derivative @(t — dt) from the previous time step (technically, the Hessian (1 — W p’ — €’) is required to be strictly
positive definite, see Methods and SI). This ensures that the voltage dynamics of Eq.[/|can be implemented in cortical
neurons with a prospective firing and a prospective dendritic error (see Fig.[2).
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Figure 2: Prospective coding in cortical pyramidal neurons enables instantaneous voltage-to-voltage transfer.
(al) The instantaneous spike rate of cortical pyramidal neurons (top) in response to sinusoidally modulated noisy input
current (bottom) is phase-advanced with respect to the input (adapted from Kondgen et al., |2008)). (a2) Similiarly, in
NLA, the instantaneous firing rate of a model neuron (r = p(u) + 7p(u), black) is phase-advanced with respect to
the underlying voltage (u, red, postulating that the low-pass filtered rate is a function of the voltage, 7 = p(u)). (b)
Dendritic input in the apical tree (here called €) is instantaneously causing a somatic voltage modulation (u, (modeling
data from Ulrich, 2002)). The low-pass filtering with 7 along the dendritic shaft is compensated by a lookahead
mechanism in the dendrite (e = & + 7¢€). In Ulrich (2002)) a phase advance is observed even with respect to the dendritic
input current, not only the dendritic voltage, although only for slow modulations (as here). (¢) While the voltage of the
first neuron (u;) integrates the input rates rj, from the past (bottom black upward arrows), the output rate r; of that
first neuron looks ahead in time, 7y = p(u1) + 7p(u1) (red dashed arrows pointing into the future). The voltage of the
second neuron (us) integrates the prospective rates r; (top black upwards arrows). By doing so, it inverts the lookahead
operation, resulting in an instantaneous transfer from w1 (¢) to us(¢) (blue arrow and circles).

The error expression in Eq. [/b|is reminiscent of error backpropagation (Rumelhart et al., [1986)) and can in fact be
mathematically linked to this (Methods). Formally, the errors are backpropagated via transposed network matrix,
W,I, modulated by 7, the derivative of 7; = p(u;) with respect to the underlying voltage. While the transpose can
be constructed with various local methods (see Akrout et al., [2019; Max et al., [2022)) in our simulations we mainly
adhere to the phenomenon of feedback alignment (Lillicrap, Cownden, et al., [2016) and consider fixed and randomized
feedback weights B (unless stated differently). Recent control theoretical work is exploiting the same prospective
coding technique as expressed in Eq. [/]to tackle general time-varying optimization problems (see Simonetto et al., 2020

for a review and the SI for the detailed connection).

Prospective coding in neurons and instantaneous propagation

The prospective rates and errors entering via r and e in the NLA (Eq.[/) are consistent with the prospective coding
observed in cortical pyramidal neurons in vitro (Kéndgen et al., [2008). Upon sinusoidal current injection into the soma,
the somatic firing rate is advanced with respect to its voltage (Fig. [2p), effectively compensating for the delay caused by
the current integration. Likewise, sinusoidal current injection in the apical tree causes a lag-less voltage response in the
soma (Fig.[2b, Ulrich,[2002). While the rates and errors in general can be reconstructed from their low-pass filterings via
r =7+ 77 and e = € + Té, they become prospective in time because  and € are themselves instantaneous functions
of the voltage u, and hence r and e depend on u. The derivative of the membrane potential implicitly also appears in
the firing mechanism of Hodgkin-Huxley-type conductances, with a quick depolarization leading to a stronger sodium
influx due to the dynamics of the gating variables (Hodgkin & Huxley, 1952). This advances the action potential as
compared to a firing that would only depend on u, not 4, giving an intuition of how such a prospective coding may
arise. A similar prospective coding has been observed for retinal ganglion cells (Palmer et al., [2015) and cerebellar
Purkinje cells (Ostojic et al., 2015)), making a link from the visual input to the motor control.

To understand the instantaneous propagation through the network, we low-pass filter the dynamic equation u + 74 =
W + e (obtained by rearranging Eq.[7d), with € given by Eq.[7b] to obtain the somatic voltage u = W #(u) + é(u).
At any point in time, the voltage is in a moving equilibrium between forward and backpropagating inputs. Independently
of the network architecture, whether recurrent or not, the output is an instantaneous function of the low-pass filtered
input and a putative correction towards the target, u, () = Fyw (Fin(t), €5(¢)), see Fig. [2k and Methods. The mapping
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Figure 3: Moving equilibrium hypothesis for motor control and real-time learning of cortical activity. (a) A
voluntary movement trajectory can be specified by the target length of the muscles in time, u},, encoded through the
~-innervation of muscle spindles, and the deviation of the effective muscle lengths from the target, u, — u;, = —e;,.
The I,-afferents emerging from the spindles prospectively encode the error, so that their low-pass filtering is roughly

proportional to the length deviation, truncated at zero (red). The moving equilibrium hypothesis states that low-

pass filtered inputs encoding the movement plan, rl(n ), the sensory inputs, r(2) and the condition of the plant, rl(n ),

instantaneously generate the muscle lengths, u, = Fy (Tin, €)), and are at any point in time in an instantaneous
equilibrium with the error feedback from the spindles (such that Eq. [7]is satisfied). (b1) Intracortical iEEG activity
recorded from 56 deep electrodes and projected to the brain surface. Red nodes symbolize the 56 iEEG recording sites
modeled alternately as input or output neurons, and blue nodes symbolize the 40 ‘hidden’ neurons for which no data is
available, but used to reproduce the iEEG activity. (b2) Corresponding NLA network. During training, the voltages of
the output neurons were nudged by the iEEG targets (black input arrows, but for all red output neurons). During testing,
nudging was removed for 14 out of these 56 neurons (here, represented by neurons 1, 2, 3). (c1) Voltage traces for the 3
example neurons in a2, before (blue) and after (red) training, overlaid with their iEEG target traces (grey). (c2) Total
cost, integrated over a window of 8 s of the 56 output nodes during training with sequences of the same duration. The
cost for the test sequences was evaluated on a 8 s window not used during training.

again expresses an instantaneous propagation of voltages throughout the network in response to both, the low-pass
filtered input 7, and feedback error €. This instantaneity is independent of the network size, and in a feed-forward
network is independent of its depths (see also Haider et al., 2021}, where the instantaneity is on the rates, not the
voltages). In the absence of the look-ahead activity, each additional layer slows down the network relaxation time.

Notice that an algorithmic implementation of the time-continuous dynamics of a N-layer feedforward network would
still need IV calculation steps until information from layer 1 reaches layer N. However, this does not imply that an
analog implementation of the prospective dynamics will encounter delays. To see why, consider a finite step-change
Awy in the voltage of layer 1. In the absence of the look-ahead, Awu; were mapped within the infinitesimal time interval
dt to an infinitesimal change dus in the voltages of layer 2. But with a prospective firing rate, ry = p(u1)+7p'(u1) U1,
a step-change Aw,; translates to a delta-function in 71, this in turn to a step-change in the low-pass filtered rates A7y,
and therefore within d¢ to a step-change Aws in the voltages u, of the postsynaptic neurons (Fig. [2b). Iterating this
argument, a step-change Awu; propagates ‘instantaneously’ through N layers within the ‘infinitesimal’ time interval
N dt to a step-change Awuy in the last layer. When run in a biophysical device in continuous time that exactly
implements the dynamical equations (Eq.[7), the implementation becomes an instantaneous computation. Yet, in a
biophysical device information has to be moved across space. This typically introduces further propagation delays
that may not be captured in our formalism where low-pass filtering and prospective coding cancel each other exactly.
Nevertheless, analog computation in continuous time, as formalized here, offers an idea to ‘instantaneously’ realize an
otherwise time consuming numerical recipe run on time-discrete computing systems that operate with a finite clock
cycle.
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Prospective control and the moving equilibrium hypothesis

Crucially, at the level of the voltage dynamics (Eq. the correction is based on the prospective error e. This links our
framework to optimal control theory and motor control where delays are also taken into account, so that a movement
can be corrected early enough (Wolpert & Ghahramani, [2000; Todorov & Jordan, [2002; Todorov, |2004). The link
between energy-based models and optimal control was recently drawn for strong nudging (5 — o0) to learn individual
equilibrium states (Meulemans, Zucchet, ef al., 2022)). Our prospective error e(t) appears as a ‘controller’ that, when
looking at the output neurons, pushes the voltage trajectories towards the target trajectories. Depending on the nudging
strength (3, the control is tighter or weaker. For infinitely large (3, the voltages of the output neurons are clamped to the
time-dependent target voltages, u, = u’ (implying e = 0), while their errors, €, = u, — (W),, instantaneously
correct all network neurons. For small 3, the output voltages are only weakly controlled, and they are dominated by the
forward input, u, ~ (W),.

In the context of motor control, our network mapping u, = Fyy (Fin, €5) can be seen as a forward internal model that
quickly calculates an estimate of the future muscle length u,, based on some motor plans, sensory inputs, and the
current proprioceptive feedback (Fig.[Bh). Forward models help to overcome delays in the execution of the motor plan
by predicting the outcome, so that the intended motor plans and commands can be corrected on the fly (Kawato, 1999;
Wolpert & Ghahramani, 2000).

The observation that muscle spindles prospectively encode the muscle length and velocity (Dimitriou & Edin, 2010))
suggests that the prospective coding in the internal forward model mirrors the prospective coding in the effective
forward pathway. This forward pathway leads from motor plan to spindle feedback, integrating also cerebellar and
brainstem feedback (Kawato, [1999). Based on the motor plans, the intended spindle lengths and the effective muscle
innervation are communicated via descending pathway to activate the - and a-motoneurons, respectively (Li ef al.,
2015)). The transform from the intended arm trajectory to the intended spindle lengths via ~y-innervation is mainly
determined by the joint geometry. The transform from the intended arm trajectory to the force generating c-innervation,
however, needs to also take account of the internal and external forces, and this is engaging our network W.

When we prepare an arm movement, spindles in antagonistic muscles pairs that measure the muscle length are tightened
or relaxed before the movement starts (Papaioannou & Dimitriou, 2021)). According to the classical equilibrium-point
hypothesis (Feldman & Levin, [2009} Latash, 2018)), top-down input adjusts the activation threshold of the spindles
through (v-)innervation from the spinal cord so that slight deviations from the equilibrium position can be signaled
(Fig. ). We postulate that this y-innervation acts also during the movement, setting an instantaneous target u;(¢) for
the spindle lengths. The effective lengths of the muscle spindles is u,, and the spindles are prospectively signaling
back the deviation from the target through the I, -afferents (Dimitriou & Edin, 2010; Dimitriou, [2022). The low-pass
filtered I,-afferents may be approximated by a threshold-nonlinearity, I, = 3|u, — u}|", with 3 being interpreted as
spindle gain (Latash, |2018)). Combining the feedback from agonistic and antagonistic muscle pairs allows for extracting
the scaled target error 5 €5 = [B(u’ — u,). Taking account of the prospective feedback, we postulate the moving
equilibrium hypothesis according to which the instructional inputs, #i,, the spindle feedback, 3 &}, and the muscle
lengths, u,, are at any point of the movement in a dynamic equilibrium. The moving equilibrium hypothesis extends
the classical equilibrium-point hypothesis from the spatial to the temporal domain.

With regard to the interpretation of the prospective feedback error e, as spindle activity, it is worth noticing that in
humans the spindle activity is not only ahead of the muscle activation (Dimitriou & Edin, 2010), but also shares the
property of a motor error (Dimitriou, 2016). The experiments show that during the learning of a gated hand movement,
spindle activity is initially stronger when making movement errors, and it returns back to baseline with the success of
learning. We next address how the synaptic strengths W specifying the forward model can be optimally adapted to
capture this learning.

Local plasticity at basal synapses minimizes the global cost in real time

The general learning paradigm starts with input time series 7j,(¢),; and target time series u;(t), while assuming that
the target series are an instantaneous function of the low-pass filtered input series, u (t) = F*(7},(t)). The low-pass
filtering in the individual inputs could be with respect to any time constant 7,7 ; (that may also be learned, see S),
but for the network neurons we assume the same time constants for the voltage integration and the prospective rate.
The goal of learning is to adapt the synaptic strengths W in the student network so that this approximates the target
mapping, Fyy =~ F*. This will also reduce the cost C' defined on the output neurons in terms of the deviation of the
voltage from the target, u} — u, (Eq.[2).

The problem of changing synaptic weights to correct the behavior of downstream neurons, potentially multiple synapses
away, is typically referred to as the credit assignment problem and is notoriously challenging in physical or biological
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substrates operating in continuous time. A core aspect of the NLA principle is how it relates the cost C' to the Lagrangian

L and eventually to somato-dendritic prediction errors € that can be reduced through synaptic plasticity W. We define
this synaptic plasticity as partial derivative of the Lagrangian with respect to the weights, W _aaTLV =ér". Since
the somato-dendritic mismatch error is € = u — W, this leads to the local learning rule of the form ‘postsynaptic

error times low-pass filtered presynaptic rate’,
W =n(u—-Wr)7'. (8)

This plasticity rule runs simultaneously to the neuronal dynamics in the presence of a given nudging strength [ that
tells how strongly the voltage of an output neurons is pushed towards the target, u, — w;. The learning rule is local
in space since Wr is represented as voltage of the basal dendrites, and the somatic voltage u may be read out at the
synaptic site on the basal dendrite from the backpropagating action potentials that sample u at a given time (Urbanczik
& Senn, 2014). The basal voltage W7 becomes the dendritic prediction of the somatic activity w, interpreting Eq. 8 as
‘dendritic predictive plasticity’.

We have derived the neuronal dynamics as a path that keeps the action stationary. Without external teaching signal, the
voltage trajectory wriggles on the bottom of the energy landscape (L = 0, Fig.[Tp1). If the external nudging is turned
on, 8 > 0, errors emerge and hills grow out of the landscape. The trajectory still tries to locally minimize the action,
but it is lifted upwards on the hills (L > 0, Fig.[Ip2). Synaptic plasticity reshapes the landscape so that, while keeping
[ fixed, the errors are reduced and the landscape again flattens. The transformed trajectory settles anew in another place
(inside the ‘volcano’ in Fig.[Tp2). Formally, the local plasticity rule (Eq.[8) is shown to perform gradient descent on the
Lagrangian. In the energy landscape picture, plasticity ‘shovels off” earth along the voltage path so that this is lowered
most efficiently. The error that is back-propagated through the network tells at any point on the voltage trajectory how
much to ‘dig’ in each direction, i.e. how to adapt the basal input in each neuron in order to optimally lower the local
error.

The following theorem tells that synaptic plasticity wW pushes the network mapping u, = Fyy (7i,) towards the target
mapping u, = F*(7,) at any moment in time. The convergence of the mapping is a consequence of the fact the
plasticity reduces the Lagrangian L = EM + 3C along its gradient.

Theorem 1 (real-time Dendritic Error Propagation, rt-DeEP) Consider an arbitrary network W with voltage and

error dynamics following Eq. [71 Then the local plasticity rule W x er’ (Eq. ES’I), acting at each moment along the
voltage trajectories, is gradient descent

(i) on the Lagrangian L for any nudging strength 3>0, i.e. €7 = —%, with 51LH010 er’ = —% x W.
(ii) on the cost C for small nudging, 8— 0, while up-scaling the error to %é, ie. éiinoéé 7l = —% x W.

The gradient statements hold at any point in time (long enough after initialization), even if the input trajectories 7, (t)
contain delta-functions and the target trajectories u}(t) contain step-functions.

Loosely speaking, the NLA enables the network to localize an otherwise global problem: what is good for a single
neuron becomes good for the entire network. In the limit of strong nudging (8 — 00), the learning rule performs
gradient descent on the mismatch energies EM in the individual neurons in the network. If the network architecture
is powerful enough so that after learning all the mismatch energies vanish, EM = 0, then the cost will also vanish,
C = $]lu} — uo||? = 0. This is because for the output neurons the mismatch error includes the target error. In the limit
of weak nudging (5 — 0), the learning rule performs gradient descent on C', and with this also finds a local minimum

of the mismatch energies.

In the case of weak nudging and a single equilibrium state, the NLA algorithm reduces to the Equilibrium Propagation
algorithm (Scellier & Bengio,[2017) that minimizes the cost C' for a constant input and a constant target. In the case of
strong nudging and a single equilibrium state, the NLA principle reduces to the Least Control Principle (Meulemans,
Zucchet, et al., 2022) that minimizes the mismatch energy E™ for a constant input and a constant target. While in
the Least Control Principle the inputs and outputs are clamped to fixed values, the output errors are backpropagated
and the network equilibrates in a steady state where the corrected network activities reproduce the clamped output
activities. This state is called the ‘prospective configuration’ in (Song et al., 2022) because neurons deep in the network
are informed about the distal target and are correspondingly adapted to be consistent with this distal target. In the NLA
principle, after an initial transient, this relaxation process occurs on the fly while inputs and targets dynamically change,
and hence the network moves along a continuous sequence of prospective configurations.

In the motor control example, the theorem tells that a given target motor trajectory u (¢) is learned to be re-produced
by the forward model u,(t) = Fy (¥in(t)) through the dendritic predictive plasticity (Eq.[8), applied in the various
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layers of the forward model. We give an example below for such a learning that involves different sensory modalities to
train the forward model.

Reproducing intracortical EEG recordings and recognizing handwritten digits. To illustrate the framework, we
consider a recurrently connected network that learns to represent intracortical electroencephalogram (iIEEG) data from
epileptic patients (Fig.[3p). For each electrode, we assign a neuron within this network to represent the activity of the
cell cluster recorded in the corresponding iEEG signal via its membrane potential. During learning, a randomly selected
subset of electrode neurons are nudged towards the target activity from recorded data while learned to be reproduced by
the other neurons. After learning, we can present only a subset of electrode neurons with previously unseen recordings
and observe how the activity of the other neurons closely matches the recordings of their respective electrodes (Fig. [3c).
The network derived from NLA is thus able to learn complex correlations between signals evolving in real time by
encoding them into its connectivity structure.

As an example of visual processing in the NLA framework, we next consider a well-studied image recognition task,
here reformulated in a challenging time-continuous setting, and interpreted as motor task where 1 out of 10 fingers
has to be bent upon seeing a corresponding visual stimulus (see Fig. 3p). In the context of our moving equilibrium
hypothesis, we postulate that during the learning phase, but not the testing phase, an auditory signal identifying the
correct finger sets the target spindle lengths of the 10 finger flexors, u}(t), i.e. a desired contraction for the correct
finger in response to the visual input 7;,(¢), and a desired relaxation for the 9 incorrect fingers.

We train a hierarchical three-layer network on images of handwritten digits (MNIST, LeCun, [1998)), with image
presentation times between 0.57 (=5ms, with 7 the membrane time constant) and 207 (=200 ms). Fig. fp-c1 depict
the most challenging scenario with the shortest presentation time. Synaptic plasticity is continuously active, despite the
network never reaching a steady state (Fig. E})l). Due to the lookahead firing rates in NLA, the mismatch errors &; (t)
propagate without lag throughout the network, as explained above. As a consequence, our mismatch errors are equal to
the errors obtained from classical error backpropagation applied at each time step to the purely forward network, without
error-correcting the voltage, and instead, at each layer [/ considering only the forward voltage updates u; = Wj p(w—1),
see Fig. E})Z. After learning, the network learned to implement the mapping u, = Fy (7in) ~ u;, with a performance
comparable to classical error-backpropagation, despite the short presentation time of only 5ms (Fig. k). The limiting
presentation time of 5 ms is due to the low-pass filtering of the input rates r;, entering in Fyy (7, ), which we choose
to be 10 ms. We also chose the membrane time constant of the other network neurons to be 10 ms, but these could
have been much longer, without violating the instantaneous voltage propagation (as long as the look-ahead rates again
compensate these longer time constants).

The instantaneous voltage propagation reduces an essential constraint of previous models of bio-plausible error
backpropagation (e.g., Scellier & Bengio (2017), Whittington & Bogacz (2017), and Sacramento et al. (2018)), with
reviews Richards et al. (2019), Whittington & Bogacz (2019), and Lillicrap, Santoro, et al. (2020)): without lookahead
firing rates, networks need much longer to correctly propagate errors across layers, with each layer roughly adding
another membrane time constant of 10 ms, and thus cannot cope with realistic input presentation times. In fact, in
networks without lookahead output, learning is only successful if plasticity is switched off while the network dynamics
is not stationary (Fig. fc2). As a comparison, neuronal response latency in the primary visual cortex (V1) of rats to
flashing stimuli are in the order of 50 ms if the cortex is in a synchronized state, shortens to roughly 40 ms if in a
desynchronized state (Wang et al., 2014), and potentially shortens further if the area is preactivated through expectations
(Blom et al., 2020).

Implementation in cortical microcircuits

So far, we did not specify how errors e appearing in the differential equation for the voltage (Eq. are transmitted
across the network in a biologically plausible manner. Building on Sacramento et al., 2018, we propose a cortical
microcircuit to enable this error transport, with all neuron dynamics evolving according to the NLA principle. Although
the idea applies for arbitrarily connected networks, we use the simpler case of functionally feedforward networks to
illustrate the flow of information in these microcircuits (Fig. E}a).

For such an architecture, pyramidal neurons in area [ (that is a ‘layer’ of the feedforward network) are accompanied
by a pool of interneurons in the same layer (area). The dendrites of the interneurons integrate in time (with time
constant 7) lateral input from pyramidal neurons of the same layer (r;) through plastic weights W/*. Additionally,
interneurons receive ‘top-down nudging’ from pyramidal neurons in the next layer through randomly initialized and
fixed backprojecting synapses BJ targeting the somatic region, and interneuron nudging strength 3'. The notion of
‘top-down’ originates from the functionally feed-forward architecture leading from sensory to ‘higher cortical areas’. In
the context of motor control, the highest ‘area’ is last stage controlling the muscle lengths, being at the same time the
first stage for the proprioceptive input (Fig. [3p).
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Figure 4: On-the-fly learning of finger responses to visual input with real-time Dendritic Error Propagation

(rt-DeEP). (a) Functionally feedforward network with handwritten digits as visual input (7'1(112 ) (t) in Fig. , here from
the MNIST data set, 5 ms presentation time per image), backprojections enabling credit assignment, and activity of
the 10 output neurons interpreted as commands for the 10 fingers (forward architecture: 784 x 500 x 10 neurons). (b)
Example voltage trace (b1) and local error (b2) of a hidden neuron in NLA (red) compared to an equivalent network
without lookahead rates (orange). Note that neither network achieves a steady state due to the extremely short input
presentation times. Errors calculated via exact backpropagation, i.e. by using the error backpropagation algorithm on a
purely feedforward NLA network at every simulation time step (with output errors scaled by (), shown for comparison
(blue). (¢) Comparison of network models during and after learning. Color scheme as in (b). (¢1) The test error under
NLA evolves during learning on par with classical error backpropagation. In contrast, networks without lookahead rates
are incapable of learning such rapidly changing stimuli. (c2) With increasing presentation time, the performance under
NLA further improves, while networks without lookahead rates stagnate at high error rates. This is caused by transient,
but long-lasting misrepresentation of errors following stimulus switches: when plasticity is turned off during transients
and is only active in the steady state, comparably good performance can be achieved (dashed orange). (d) Receptive
fields of 6 hidden-layer neurons after training, demonstrating that even for very brief image presentation times (Sms),
the combined neuronal and synaptic dynamics are capable of learning useful feature extractors such as edge filters.

According to the biophysics of the interneuron, the somatic membrane potential becomes a convex combination of the
two types of afferent input (Urbanczik & Senn, 2014)),

up = (1 - BYW/'Pr + 8'Blfuyy . 9)

In the biological implementation, the feedback input is mediated by the low-pass filtered firing rates 713 = p(uy),
not by w1 as expressed in the above equation. Yet, we argue that for a threshold-linear p the ‘top-down nudging’ by
the rate 7y, is effectively reduced to a nudging by the voltage u;;. This is because errors are only backpropagated
when the slope of the transfer function is positive, r;,; > 0, and hence when the upper-layer voltage is in the linear
regime. For more general transfer functions, we argue that short-term synaptic depression may invert the low-pass
filtered presynaptic rate back to the presynaptic membrane potential, 7,3 — w1, provided that the recovery time
constant 7 matches the membrane time constant (see end of the section and Methods).

Apical dendrites of pyramidal neurons in each layer receive top-down input from the pyramidal population in the upper
layer through synaptic weights B;. These top-down weights could be learned to predict the lower-layer activity (Rao
& Ballard, |1999) or to become the transposed of the forward weight matrix (Max et al., [2022), but for simplicity we
randomly initialized them and keep them fixed (Lillicrap, Santoro, et al., [2020). Beside the top-down projections the
apical dendrites also receive lateral input via an interneuron population in the same layer through synaptic weights
—W}/ that are plastic and will be learned to obtain suitable dendritic errors. The ‘-> sign is suggestive for these
interneurons to subtract away the top-down input entering through B; (while the weights can still be positive or
negative). Assuming again a conversion of rates to voltages, also for the inhibitory neurons that may operate in a linear
regime, the overall apical voltage becomes

&l = Biuy, — WHa) . (10)

What cannot be explained away from the top-down input B;u; 1 by the lateral feedback, — W ul, remains as dendritic

prediction error élA in the apical tree (Fig. ). If the top-down and lateral feedback weights are learned as outlined
next, these apical prediction errors take the role of the backpropagated errors in the classical backprop algorithm.
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To adjust the interneuron circuit in each layer (‘area’), the synaptic strengths from pyramidal-to-interneurons, W}F,
are learned to minimize the interneuron mismatch energy, E/* = 1||uj — W/®7|2. The interneurons, while being
driven by the lateral inputs W}F7;, learn to reproduce the upper-layer activity that also nudges the interneuron voltage.
Learning is accomplished if the upper-layer activity, in the absence of an additional error on the upper layer, is fully
reproduced in the interneurons by the lateral input.

Once the interneurons learned to represent the ‘error-free’ upper-layer activity, they can be used to explain away the
top-down activities that also project to the apical trees. The synaptic strengths from the inter-to-pyramidal neurons,
WL, are learned to minimize the apical mismatch energy, Ef' = 1|2 = 1| Byu;11 — W/'u}||2. While in the
absence of an upper-layer error, the top- down activity Bju;4; can be fully cancelled by the 1nterneuron activity W}flu),
a neuron-specific error will remain in the apical dendrites of the lower-level pyramidal neurons if there was an error
endowed in the upper-layer neurons. Gradient descent learning on these two energies results in the learning rules for the
P-to-I and I-to-P synapses,

. o . T
WP =" (ul = W) 7T and W' = o (Brug — Wituh) ul] an

The following theorem on dendritic error learning tells that the plasticity in the lateral feedback loop leads to an
appropriate error representation in the apical dendrites of pyramidal neurons.

Theorem 2 (real-time Dendritic Error Learning, rt-DeEL) Consider a cortical microcircuit composed of pyramidal
and interneurons, as illustrated in Fig. B (with dimensionality constraints specified in Methods, and fixed or dynamic
weights VVZIP to the interneurons). Then the inter-to-pyramidal synapses evolve at each layer [ (‘cortical area’) such
that the lateral feedback circuit aligns with the top-down feedback circuit,

WIW = BW, . (12)

In the presence of an output nudging, the apical voltages of the layer-l pyramidal neurons (Eq. .) [/0) then represent the
‘B-backpropagated’ error el = By é1.1. When modulated by the postsynaptic rate derivative, 7, = p'(w;), this apical
error ensures the correct representation of errors €, for the real-time dendritic error propagation (rt-DeEP, Theorem 1),

_ _ A = -
ee=u—Wir,=r€ =7,-Béey . (13)

Simultaneously learning apical errors and basal signals.  Microcircuits following these neuronal and synaptic
dynamics are able to learn the classification of hand-written digits from the MNIST dataset while learning the apical
signal representation (Fig.[Sp1-2). In this case, feedforward weights W; and lateral weights W/ and Wi are all

adapted simultaneously. Including the W P_plasticity (by turning on the interneuron nudging from the upper layer,
B'>0in Eq. @) greatly speeds up the learning.

With and without W/P-plasticity, the lateral feedback via interneurons (with effective weight WP W) learns to align
with the forward-backward feedback via upper layer pyramidal neurons (with effective weight B; Wy, Fig.[5b3). The
microcircuit extracts the gradient-based errors (Eq. [I3]), while the forward weights use these errors to reduce these
errors to first minimize the neuron-specific mismatch errors, and eventually the output cost.

Since the apical voltage éf‘ appears as a postsynaptic factor in the plasticity rule for the interneurons (V'lel), this I-to-P
plasticity can be interpreted as Hebbian plasticity of inhbitory neurons, consistent with earlier suggestions (Vogels et al.,

2012; Bannon et al., 2020). The plasticity W of the P-to-I synapses, in the same way as the plasticity for the forward
synapses W, can be interpreted as learning from the dendritic prediction of somatic activity (Urbanczik & Senn, |2014).

Crucially, choosing a large enough interneuron population, the simultaneous learning of the lateral microcircuit and the
forward network can be accomplished without fine-tuning of parameters. As an instance in case, all weights shared the
same learning rate. Such stability bolsters the biophysical plausibility of our NLA framework and improves over the
previous, more heuristic approach (Sacramento et al., 2018; Mesnard et al., |2019). The stability may be related to the
nested gradient descent learning according to which somatic and apical mismatch errors in pyramidal neurons, and
somatic mismatch errors in inhibitory neurons are minimized.
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Figure 5: Hierarchical plastic microcircuits implement real-time Dendritic Error Learning (rt-DeEL). (a)
Microcircuit with ‘top-down’ input (originating from peripheral motor activity, blue line) that is explained away by the
lateral input via interneurons (dark red), with the remaining activity representing the error e;. Plastic connections are
denoted with a small red arrow and nudging with a dashed line. (b1) Simulated network with 784-300-10 pyramidal-
neurons and a population of 40 interneurons in the hidden layer used for the MNIST learning task where the handwritten
digits have to be associated to the 10 fingers. (b2) Test errors for rt-DeEL with joint tabula rasa learning of the forward
and lateral weights of the microcircuit. A similar performance is reached as with classical error backpropagation. For
comparability, we also show the performance of a shallow network (dashed line). (b3) Angle derived from the Frobenius
norm between the lateral pathway W,PW ! and the feedback pathway B; W, ;. During training, both pathways align
to allow correct credit assignment throughout the network. Indices are dropped in the axis label for readability.

Finally, since errors are defined at the level of membrane voltages (Eq. [T T)), synapses need a mechanism by which they
can recover the presynaptic voltage errors from their afferent firing rates. While for threshold-linear transfer functions
this is not too involved (Methods), more general neuronal nonlinearities must be matched by corresponding synaptic
nonlinearities. Pfister ef al. (2010) have previously illustrated how spiking neurons can leverage short-term synaptic
depression to estimate the membrane potential of their presynaptic partners. Here, we assume a similar mechanism in
the context of our rate-based neurons. The monotonically increasing neuronal activation function, ¥1;3 = p(uyq ), can
be approximately compensated by a vesicle release probability that monotonically decreases with the low-pass filtered
presynaptic rate 7,41 (see SI and Fig. [] therein). If properly matched, this leads to a linear relationship between the
presynaptic membrane potential u; and the postsynaptic voltage contribution.

Discussion

We introduced a least-action principle for neuronal networks from which we derived the membrane potential dynamics
of the involved neurons, together with gradient descent plasticity of the synapses in the network. The central notion of
the theory is the somato-dendritic mismatch error in each individual neuron. Given the various findings on the dendritic
integration of top-down signals (Larkum, 2013} Takahashi et al., 2020), we suggest that the error is formed in the apical
dendrite of pyramidal neurons. Active dendritic and somatic processes compensate for delays caused by the dendritic
error propagation and the somatic integration. This leads to the prospective firing of pyramidal neurons that are jointly
driven by the forward input on the basal dendrites and the error on the apical dendrite. We derived a local plasticity rule
for synapses on the basal tree that, by extracting the apical feedback error, reduces the prospective somato-dendritic
mismatch error in an individual neuron. This plasticity is shown to also globally reduce the instantaneous cost at output
neurons (defined by deviations from target voltages) at any moment in time while stimuli and targets may continuously
change. Motor control offers an intuitive context where self-correcting prospective networks may enter. We put forward
the moving equilibrium hypothesis, according to which sensory input, motor commands and muscle spindle feedback
are in a recurrent equilibrium at any moment during the movement.

We further showed how a local microcircuit can serve to calculate a neuron-specific error in the apical tree of each
individual pyramidal neuron. The apical tree of pyramidal neurons receives feedback from higher-level neurons in the
network, while local inhibitory neurons try on the fly to ‘explain away’ the top-down expectations. What cannot be
explained away remains as apical prediction error. This prediction error eventually induces error-correcting plasticity
at the sensory-driven input on the basal tree. To find the correct error representation in the apical tree, plasticity of
the inter-to-pyramidal neurons seeks to homeostatically drive the apical de- or hyperpolarized voltage back to rest.
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While the network synapses targetting the basal tree are performing gradient descent on the global cost, the microcircuit
synapses involved in the lateral feedback are gradient descent on local error functions, both at any moment in time.

Our work builds on three general lines of research on formalizing the learning capabilities of cortical networks. The
first line refers to the use of an energy function to jointly infer the neuronal dynamics and synaptic plasticity, originally
formulated for discrete-time networks (Hopfield, |1982; Ackley et al., |1985), and recently extended to continuous-time
networks (Scellier & Bengio, |2017). The second line refers to understanding error-backpropagation in the brain
(Rumelhart et al., |1986; Xie & Seung, [2003; Whittington & Bogacz,[2017; Whittington & Bogacz, |2019; Lillicrap,
Santoro, et al., 2020). The third line refers to the use of dendritic compartmentalization in various kinds of computation
(Schiess et al., 2016} Poirazi & Papoutsi, |2020), recently linked to deep learning (Guerguiev et al., [2017; Sacramento
et al., 2018 Haider et al., [2021)).

With regard to energy functions, the NLA principle adds a variational approach to characterize continuous-time neuronal
trajectories and plasticity. Variational approaches are studied in the context of optimal control theory where a cost
integral is minimized across time, constrained to some network dynamics (Todorov & Jordan, 2002; Meulemans,
Farinha, et al.,|2021). The NLA represents a unifying notion that allows to infer both, the network dynamics and its
optimal control from a single Lagrangian. The error we derive represents prospective control variables that are applied
to the voltages of each network neurons so that they push the output neurons towards their target trajectory. The full
expression power of this control theoretic framework has yet to be proven when it is extended to genuine temporal
processing that includes longer time constants, for instance inherent in a slow threshold adaptation (Bellec et al., [2020).
The NLA principle can also treat the case of strong feedback studied so far in relaxation networks only (Meulemans,
Zucchet, et al., 2022 Song et al., 2022). Our rt-DeEP Theorem makes a statement for real-time gradient descent
learning while the network is in a moving equilibrium, linking to motor learning in the presence of perturbing force
fields (Herzfeld et al., |2014) or perturbing visual inputs (Dimitriou, [2016).

With regard to error-backpropagation, the NLA principle relies on feedback alignment (Lillicrap, Cownden, et al., [2016)
to correctly interpret the apical errors. Other works have explored learning of feedback weights (Akrout et al., 2019
Kunin et al., 2020; Max et al., [2022)). Since these are complementary to the principles suggested here, a promising
direction would be to explore how feedback weights can be learned in NLA microcircuits to improve credit assignment
in deeper networks.

With regard to dendritic and neuronal processing, we emphasize the prospective nature of apical voltages and somatic
firing (Fig. [2). The prospective coding of errors and signals overcomes the various delays inherent in our previous
approach (Sacramento et al., [2018; Mesnard et al., 2019). Each neuron of the network instantaneously corrects its
voltage so that the output neurons are pushed towards the target trajectories. Ongoing synaptic plasticity adjusts the
synaptic strengths so that the errors in each neuron are reduced at any moment in time, without needing to wait for
network relaxations (Scellier & Bengio, 2017; Song et al., [2022). Yet, because in the present framework the input rates
are still low-pass filtered, step inputs cannot be instantaneously propagated, only their low-pass filterings. Haider et al.,
2021|offers a framework that is also suited instantaneously process step inputs.

Motivated by the predictive power of the least-action principle in physics, we ask about experimental confirmation and
predictions of the NLA in biology. Given its axiomatic approach, it appears astonishing to find various preliminary
matches at the dendritic, somatic, interneuron, synaptic and even behavioural level. Some of these are: (1) the
prospective coding of pyramidal neuron firing (K6ndgen et al., [2008); (2) the prospective processing of apical signals
while propagating to the soma (Ulrich, [2002); (3) the basal synaptic plasticity on pyramidal neurons and synaptic
plasticity on interneurons, driven by the postsynaptic activity that is ‘unexplained’ by the distal dendritic voltage
(Urbanczik & Senn, 2014)); (4) the Hebbian homeostatic plasticity of interneurons targeting the apical dendritic tree
of pyramidal neurons (Bannon et al., [2020); (5) the short-term synaptic depression at top-down synapses targetting
inhibitory neurons and apical dendrites (akin to Abbott et al., |1997| but with a faster recovery time constant) that invert
the presynaptic activation function (see also Pfister et al., [2010); (6) the modulation of the apical contribution to the
somatic voltage by the slope of the somatic activation function (for instance by downregulating apical NMDA receptors
with increasing rate of backpropagating action potentials, Theis et al., 2018)); and (7) the role of muscle spindles in the
prospective encoding of motor errors during motor learning (Dimitriou, 2016; Papaioannou & Dimitriou, 2021). More
theoretical and experimental work is required to explore these various links.

Overall, our approach introduces a method from theoretical physics to computational neuroscience and couples it with a
normative perspective on the dynamical processing of neurons and synapses within global cortical networks and local
microcircuits. Given its physical underpinnings, the approach may inspire the rebuilding of computational principles of
cortical neurons and circuits in neuromorphic hardware (Bartolozzi et al., [2022). A step in this direction, building on
the instantaneous computational capabilities with slowly integrating neurons, has been done (Haider et al., |[2021)) and a
next challenge is to generalize the NLA principle to spiking neurons (Zenke & Ganguli, 2018} Goltz et al., |2021) and
longer temporal processing.
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Methods

Euler-Lagrange equations as inverse low-pass filters

The theory is based on the lookahead of neuronal quantities. In general, the lookahead of a trajectory x(t) is defined as
Zx = x + Ti, with lookahead operator

d
Z =1 —. 14
+ Tdt (14)
The lookahead operator is the inverse of the low-pass filter operator denoted by a bar,
1 ¢ t—t’
() = f/ 2= e (15)
T J-c

This low-pass filtering can also be characterized by the differential equation 72 (t) = —Z(t) + z(t), see SI. Hence,

applying the low-pass filtering to « and then the lookahead operator . to Z(t), and using the Leibnitz rule for
differentiating an integral, we calculate éf:?:(it) = x(t). In turn, applying first the lookahead, and then the low-pass
filtering, also yields the original trace back, Zx = x (see SI).

We consider an arbitrary network architecture with network neurons that are recurrently connected and that receive
external input through an overall weight matrix W = (W;,, W,), aggregated column-wise. The instantaneous
presnyaptic firing rates are © = (i, Thet), interpreted as a single column vector. A subset of network neurons are
output neurons, O C N, for which target voltages u* may be imposed. Rates and voltages may change in time t.
Network neurons are assigned a voltage u, generating the low-pass filtered rate 7, = p(u), and a low-pass filtered
error € = u — Wr. We further define output errors €} = u’ — u, for o € O, and €} = 0 for non-output neurons
i € N'\ O. With this, the Lagrangian from Eq.[3]takes the form

gllé*ll? (16)

1
L=_|e|*+
el
We next use that w = @ — 71, with the operator defined in Eq. |4} to write out the Lagrangian L in the canonical
coordinates (@, u) as (see also Eq.

L=2>" [u — iy — Y, Wigp(ity — nij)r + g > up = (i — Tﬂo)]2 } (17)

2 iEN o€

The neuronal dynamics is derived from requiring a stationary action (see Eq. [5), which is generally solved by the
Euler-Lagrange equations % — 49L _ () (see Eq. |§I) Because « only arises in L in the compound % — 74, the

dt pa, ;
derivative of L with respect to u is identical to the derivative with respect to 7,
L L
8. =—7 (9~ . (18)
ou; o1,
Using the lookahead operator Eq. [14] the Euler-Lagrange equations can then be rewritten as
oL d oL oL
=2 =0. (19)

ou, Tdton,  “ou,
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Since L(i, @) = L(u) and w = @ — 7, the derivative of L with respect to 4 is the same as the derivative of L with

respect to u, gf = % . Plugging this into Eq. |19} the Euler-Lagrange equations become a function of w and 1,

oL

=0. (20)
t—t .

The solution of this differential equation is g L — ¢ e~ =", and hence any trajectory (i;,u;) which satisfy the

Euler-Lagrange equations will hence cause 5.= to converge to zero with a characteristic time scale of 7. Since we

require that the initialisation is at tg = —oo, we conclude that g uL = 0, as required in the rt-DeEP Theorem.

Deriving the network dynamics from the Euler-Lagrange equations
We now derive the equations of motion from the Euler-Lagrange equations. Noticing that u enters in e = u—W'r twice,

directly and through 7, = p(u), and once in the output error €*, we calculate from Eq. |16} using 7#(u) = (¥, p(u))
and W = (“/ina vvnet),

oL
a—u:é—é—ﬁé* , with e =7/, -Wle. (21)
Next, we apply the lookahead operator to this expresswn as required by the Euler-Lag range equations Eq.[I9] In
general £ = & + 72 = x, and we set for & the expression on the right-hand side of E , T = € — € — fe*, which
at the same time is & = %' Hence, the Euler-Lagrange equations in the form of Eq ,2” z = 0, translate into
oL
$6—_0<:>e—e—ﬁe =0 << u=—-u+Wr+e. (22)
u

To move from the middle to the last equality we replaced e by e = .Z€é = u + 7t — Wr. In the last equality we
interpret e as the sum of the two errors, e = € + fe*, again using the middle equality. This proves Eq.

Notice that the differential equation 7t = ... in Eq. 22]represents an implicit ordinary differential equation as on the
right-hand side not only u, but also 7 appears (in 7 and e). The uniqueness of the solution w(t) for a given initial
condition is only guaranteed if it can be converted into an explicit ordinary differential equation (see Sect. [C).

In taking the temporal derivative we assumed small learning rates such that terms including W; ; can be neglected. The
derived dynamics for the membrane potential of a neuron u; in Eq.[22]show the usual leaky behavior of biological
neurons. However, both presynaptic rates 7; and prediction errors €; enter the equation of motion with lookaheads, i.e.,
they are advanced (r; = 7; + 77; and e; = €; + T€;), cancelling the low-pass filtering. Since 7; = p’(u;) ;, the rate
and error, r; and e;, can also be seen as nonlinear extrapolations from the voltage and its derivative into the future.

The instantaneous transmission of information throughout the network at the level of the voltages can now be seen by
low-pass filtering Eq. [22] with initialization far back in the past,

u=u+Ti=Wr+e=Wr(u)+e, (23)

with #(u) = (i, p(u)) interpreted as column vector, and & = 7, WT + Be*. Hence, solving the voltage dynamics
for w (Eq. [7a), with apical voltage e = & + 7€ derived from Eq.[7b| yields the somatic voltage u satisfying the
self-consistency equation (Eq.[23) at any time. In other words, u and € ‘propagate instantaneously’.

Deriving the error backpropagation formula

For clarity, we derive the error backpropagation algorithm for layered networks here. These can be seen as a special
case of a general network with membrane potentials u and all-to-all weight matrix W (as introduced in appendix [H),
where the membrane potentials decompose into layerwise membrane potential vectors u; and the weight matrix into
according block diagonal matrices W; (with W, being the weights that project into layer 1).

Assuming a network with IV layers, by low-pass filtering the equations of motion we get
u = Wir+e, (24

Vi € [1, N], with the output error ey = €* = S (ul, —uy). The error e = € + Je* we obtain from the general

dynamics with € = 7/,.- W, , see Eq. . 21|and Eq. |22} translates to an iterative formula for the error at the current layer

[ given the error at the downstream layer [+1, inherited from the drive 7 = p(u;) of that downstream layer via Wiy,

e =7 -Wién for I<N. (25)
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and e = [ e* for the output layer. The learning rule that reduces €; by gradient descent is proportional to this error
and the presynaptic rate, as stated by Theorem 1, is

Wi (w — Wir) 7y = e rly (26)

for ! = 1...N. Eq.[25|and Eq. [26|together take the form of the error backpropagation algorithm, where an output error
is iteratively propagated through the network and used to adjust the weights in order to reduce the output cost C'. From
this, it is easy to see that without output nudging (i.e., 5 = 0), the output error vanishes and consequently all other
prediction errors vanish as well, &, = u; — W;r; = 0 for all [ < N. This also means that in the absence of nudging, no
weight updates are performed by the plasticity rule.

The learning rule for arbitrary connectivities is obtained in the same way by dropping the layer-wise notation. In this
case, low-pass filtering the equations of motion yields u = W + €, as calculated in Eq. and the low-pass filtered
error € = € + 3e* = 1/ -W.Lé + pé*, as inferred from Eqs and Hence, the plasticity rule in general reads

net” "Vnet

W (u-Wr)rl =er’, withe =7, -WLe+ fe". 27)
Proving Theorem 1 (rt-DeEP)

The implicit assumption in Theorem 1 is that w exists in the distributional sense for ¢ > —oo, which is the case for
delta-functions in ry, and step-functions in «*. Both parts (¢) and (¢7) of the Theorem are based on the requirement of
stationary action § A = 0, and hence on wu satisfying the Euler-Lagrange equations in the form of Eq. < g—ﬁ =0.

From the solution % = ce_@ we conclude that for initialization at {5 = —oo we have g—ﬁ = (O forall ¢t. Itis
the latter stronger condition that we require in the proof. With this, the main ingredient of the proof follows is the
mathematical argument of Scellier & Bengio, 2017, according to which the total and partial derivative of L with respect
to W are identical, and this in our case is true for any time ¢,

dL  OL" du L oL _ oL

dW — ou dW =~ OW  OW’
For convenience we considered g—ﬁ to be a column vector, deviating from the standard notations (see tutorial end of SI).
Analogously to Eq. we infer % = g—é. Reading Eq. from the right to the left, we conclude that the learning

rule W _aaTLV = er 7! forall 3 > 0 is gradient descent on L, i.e. W x —%. This total derivative of L can be
analyzed for large and small S.

(28)

(i) We show that in the limit of large 3, W becomes gradient descent on the mismatch energy EM = 1||&||2. For this
we first show that there is a solution of the self-consistency equation u = F(u) = W + 7-W,l e + 3 e&* that is
uniformly bounded for all ¢ and /3. For this we assume that the transfer function p(u) is non-negative, monotonically
increasing and bounded, that its derivative p’(u) is bounded too, and that the input rates 7, and the target potentials w*
are also uniformly bounded. To show that under these conditions we always find an uniformly bounded solution w(t),
we first consider the case where the output voltages are clamped to the target, u, = u, such that € = 0. For simplicity
we assume that p’(u) = 0 for |u| > ¢o. For voltages u with u; < ¢ the recurrent input current W# is bounded, say
|(W);| < c; for some ¢; > ¢o. When including the error term 7;),,- W, €, the total current still remains uniformly
bounded, say |F'(u) j\ < ¢o for all u with u; < ¢g. Because for larger voltages w; > cg the error term vanishes due to
a vanishing derivative p’(u;) = 0, the mapping F'(u) maps the ca-box u (for which |u;| < ¢2) onto itself. Brouwer’s
fixed point theorem then tells us that there is a fixed point w = F'(u) within the co-box. The theorem requires the
continuity of F', and this is assured if the neuronal transfer function 7 = p(u) is continuous.

We next relax the voltages of the output neurons from their clamped stage, u, = u,. Remember that these voltages
satisfy u, = (W7 + 7. -W.Le + B€*), = F(u), at any time . We determine the correction term 3 €}, such that
in the limit 8 — oo we get u, = F(u), = u}. The correction remains finite, and in the limit must be equal to
limg_, o B €5 = ul — (W + 7l - W,L€),. For arbitrary large nudging strength £3, the output voltage u,, deviates
arbitrary little from the target voltage, u, = u’+o0(1/4), with target error €}, = % (u— W7 — 1 W, é)o shrinking

net net
like ¢o /3. Likewise, also for non-output neurons 4, the self-consistency solution u; = F'(u); deviates arbitrarily little
from the solution of the clamped state. To ensure the smooth drift of the fixed point while 1/ deviates from 0 we
require that the Jacobian of F' at the fixed point is invertible.

Because the output €% shrinks with 1/, the cost shrinks quadratically with increasing nudging strength, C' = %Hé* | =
0(3z ), and hence the cost term B)|&*||? that enters in L = EM + £2||&*||? vanishes in the limit 3 — oco. In this large 3
limit, where e}, = 0 and hence the outputs are clamped, u, = u,, the Lagrangian reduces to the mismatch energy,

. M
L = EM. Along the least-action trajectories we therefore get W o< —;—VLV = —j—VLV = —‘iLW . The first equality uses
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Eq.[28] and the second uses L = EM just derived for 3 = occ. This is statement (i) of Theorem 1. In the case of
successful learning, EM = 0, we also conclude that the cost vanishes, C' = 0. This is the case because EM = 0 implies

EM = 0 for all output neurons o. Since EN = 1e2 = (v, -W,Le + B &*)2, we conclude that &, = 0, and if the

output neurons do not feed back to the network (which we can assume without loss of generality), we conclude that
e;=0.
(i7) To consider the case of small 3, we use that the cost C' can be expressed as C' = % This is a direct consequence

of how C' enters in L i ||é||2 g 5C, see Eq.|1 and Scellier & Bengio, [2017. We now put this together with Eq.
and the finding that d B Slnce for the Lipschitz continuous function L in w, W and 3 (L is even smooth in these

arguments), the total derlvatlves interchange (which is a consequence of the Moore-Osgood theorem applied to the
limits of the difference quotients), we then get at any ¢,

dcC d oL ddi_idL_i@L__iéfT
dW dW@B deB_dﬁdW_dﬁﬁw_ dg '
The last expression is calculated from the specific form of the Lagrangian (Eq.[I7)), using that by definition € = u— Wr.

(29)

Finally, in the absence of output nudging, 8 = 0, we can assume vanishing errors, € = 0, as they solve the self-

consistency equation, € = 7..- W.L & for all ¢, see Eq. For these solutions we have e 7" g = 0. Writing
out the total derivative of the function g(3) = &+ with respect to 3 at 3 = 0 as limit of the difference quotient,
di—(ﬁﬁ) 50 limg_.o % (g(B) — g(0)) = limg_y %g(,@), using that g(0) =0, we calculate at any ¢,
der” T o 1_ 1
5 ﬁzo—éli%g(er —ér ‘ﬁ 0) éli%ﬂe’r (30)

Here we assume that €77 is evaluated at 3 > 0 (that itself approaches 0), while &+ is evaluated at § = 0.

Combining Eq.[29]and [30] yields the cost gradient at any ¢,

1
_de lim—éew’. (31)

T|/3 0

This justifies the gradient learning rule W in Eq. Learning is stochastic gradient descent on the expected cost,
where stochasticity enters in the randomization of the stimulus and target sequences 7;,(¢) and w*(¢). For the regularity
statement, see ‘From implicit to explicit differential equations in the SI. Notice that this proof works for a very general
form of the Lagrang1an L, until the specific expression for . For a proof in terms of partial derivatives only, see SI,
where also a primer on partial and total derivatives is found

Instantaneous gradient descent on C(uj,, Tin ). The cost C' = $|luj; — u,||? at each time ¢ is a function of the voltage
u, of the output neurons and the corresponding targets. In a feedforward network, due to the instantaneity of the
voltage propagation (Eq. [23)), u, is in the absence of output nudging (8 = 0) an instantaneous function of the voltage

at the first layer, uy (t) = Wi,Fin(t) + w1 (to) e_%. For initialisation at ¢, = —oo, the second term vanishes for all
t and hence w1 (t) = Wi, Tin(t). The output voltage u,(t) therefore becomes a function Fyy of the low-pass filtered
input rate 7, (¢) that captures the instantaneous network mapping, u,(t) = Fyy (Tin(t)), and with this the cost also
becomes an instantaneous function of 7, and u},, namely C (¢) = 3 [|uj(t) — uo(t)||* = 3|lus(t) — Fw (T (1))

For a general network, again assuming ¢y = —oo, the voltage is determined by the vanishing gradient g oL _ f (u,t) =
u — Wr(u) — e(u) = 0 with e = € — ge*, see Eq. . For the inclusive treatment of the initial tran51ent see SI,
Sects|C|and [D| Remember that 7 = (7, Thet(1))T and € = u}, — u,. For a given 7, and u}, at time ¢, the equation

f(u,t) = 0 can be locally solved for w if the Hessian H = g L _ 21{ = 1— Wjep' — € isinvertible, u = F(rm, uk).
This mapping can be restricted to the output voltages U, on the left-hand side, while replacing u}, = u, + €, in the
argument on the right-hand side (even if this again introduces u,, there). With this we obtain the 1nstantaneous mapping
uo(t) = Fy (Tin(t), €5(t)) from the low-pass filtered input and the output error to the output itself. Notice that for
functional feedforward network, the network weight matrix W}, is lower triangular, and for small enough 3 the Hessian
H is therefore always positive definite.

Proving Theorem 2 (rt-DeEL)

Here we restrict ourselves to layered network architectures. To prove Theorem 2 first assume that interneurons receive
no nudging (8" = 0) and only the lateral interneuron-to-pyramidal weights W are plastic. This is already sufficient to
prove the rt-DeEL theorem. Yet, simulations showed that shaping the lateral pyramidal-to-interneuron weights W}* so
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that it mimics the upper layer activity helps tremendously in learning a correct error representation. We consider this
case of learning W, later.

If the microcircuits is ought to correctly implement error backpropagation, all local prediction errors €; must vanish in
the absence of output nudging (8 = 0) as there is no target error. Consequently, any remaining errors in the network are
caused by a misalignment of the lateral microcircuit, and we show how learning the interneuron-to-pyramidal weights
W/ corrects for such misalignments.

To define the gradient descent plasticity of the weights W/ from the interneurons to the pyramidal neurons, we consider
the apical error formed by the difference of top-down input and interneuron input, é;“ = Biu;+1 — W/}, and define
the apical mismatch energy as Ef'" = 1||&;*||. Gradient descent along this energy with respect to W} yields

. T T
WP = et ul) = o (Biurss — Wul)ul] (32)

evaluated online while presenting input patterns from the data distribution to the network. We assume that the apical
contribution to the somatic voltage is further modulated by the somatic spike rate, 'Fl’-élA. After successful learning, the
top-down input Bju;, 1 is fully subtracted away by the lateral input in the apical compartment, and we have

Biuj = Wil (33)

Once this condition is reached, the network achieves a state where, over the activity space spanned by the data, top-down
prediction errors throughout the network vanish,

e =7 =7 (Bug — W/'u]) =0. (34)

We show that this top-down prediction error, after the successful learning of the microcircuit, shares the properties of
error-backpropagation for a suitable backprojection weights B.

Due to the vanishing prediction errors, pyramidal cells only receive bottom-up input uy; = Wiy 7. Using this
expression as well as the expression for interneuron membrane potentials without top-down nudging (4" = 0 in Eq. E]),
u} = WP, and plugging both into Eq.[33] we get

BWir = WIW . (35)

Assuming that W}F has full rank and the low-pass filtered rates 7; span the full n; dimension of layer [ when sampled
across the data set we conclude that

BiWy1 = WHWP. (36)
In other words, the loop via upper layer and back is learned to be matched by a lateral loop through the interneurons.

Eq.[36/imposes a restriction on the minimal number of interneurons n} at layer [. In fact, the matrix product B;W,y
maps a n;-dimensional space onto itself via nyy; -dimensional space. The maximal rank of the this matrix product is
limited by the smallest dimension, i.e. rank(B; W) < min(n;, ny1). Analogously, rank(WFTW/P) < min(n;, n}).
But since the two ranks are the same according to Eq. we conclude that in general n} > min(n;, 7,3 ) must hold,
i.e. there should be at least as many interneurons at layer [ as the lowest number of pyramidal neurons at either layer
or [+ 1. Note that by choosing n} = ny as in (Sacramento et al., 2018) (or n} > nyy as in this work), the conditions
is fulfilled.

With u] = VVll_Pﬁ and Eq. |36} the top-down prediction error from Eq. {34} in the presence of output nudging (8 > 0),
can be written in the backpropagation form

e = 'Fl/'(Bl U1 — VVZPI u} ) = Fl/'(Bl U1 — WZPI VVIIPFZ ) (37a)
=7 (Byuy — BiWyw) = 7,- By (us — W) (37b)
=7,-B ey =7, BT, -€; . (37¢)

Finally, the simulations showed that learning the lateral weights in the microcircuit greatly benefits from also adapting
the pyramidal-to-interneuron weights W' by gradient descent on E™" = 237 [Ju} — W/F#||%, using top-down

nudging of the inhibitory neurons (3! > 0),
WP =0 (u; — WPF)r/ . (38)

After learning we have u} = W/P7;, and plugging in u} = (1 — YW /7, + ' BPu.y (Eq.[9), we obtain WP, =
BPuyy. Since upyy = Wy, we conclude as before,

W/ = B W, . (39)
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The top-down weights Bj that nudge the lower-layer interneurons has randomized entries and may be considered as full
rank. If there are less pyramidal neurons in the upper layer than interneurons in the lower layer, BI* selects a subspace
in the interneuron space of dimension ny; < n} This seems to simplify the learning of the interneuron-to-pyramidal
cell connections WL, In fact, this learning now has only to match the n;y; -dimensional interneuron subspace embedded
in nj dimensions to an equal (n41-)dimensional pyramidal cell subspace emedded in n; dimensions.

Learning of the interneuron-to-pyramidal cell connections works with the interneuron nudging as before, and combining
Eqs[36] with [39]yields the ‘loop consistency’

BWi = WP'BP W, . (40)

The learning of the microcircuit was described in the absence of output nudging. Conceptually, this is not a problem as
one could introduce a pre-learning phase where the lateral connections are first correctly aligned before learning of the
feedforward weights begins. In simulations we find that both the lateral connections as well as the forward connections
can be trained simultaneously, without the need for such a pre-learning phase. We conjecture that this is due to the fact
that our plasticity rules are gradient descent on the energy functions L, E¥! and E'" respectively.

Simulation details

The voltage dynamics is solved by a forward-Euler scheme w(t+dt) = w(t) +(t) dt. The derivative @(t) is calculated
either through (7) the implicit differential equation (Eq.[7) yielding 74(t) = h(u(t), @(t — dt)), or (i) by isolating
4(t) and solving for the explicit differential equation 7 u(t) = g(u(t)), as explained after Eq. [49|in the SI.

(7) The implicit differential equation, 74 (t) = —u(t) + Wr(t) + e(t), see Eq.[22] is iteratively solved by assigning
r(t) = p(u(t)) + p'(u(t)) @t — dt) and calculating the error e(t) = &(t) + Te(t) with &(u) = p'(u) W, (u —
Woep(u) — WinTin) + €* and e(t) = &' (u(t))-a(t — dt).

This iteration exponentially converges to a fixed point 7(t) on a time scale ;%, where 1 — k > 0 is the smallest
Eigenvalue of the Hessian H = au2 =1— Wyp' — €, see S, Sect.

(¢7) The explicit differential equation is obtained by eliminating the w from the right hand side of the implicit differential
equation. Since u enters linearly we get TH © = — f — 79 5t £ with f(u, t) 5= =u— Wr — € — fe*. The explicit

form is obtained by matrix inversion, & = g(u,t) = ( f + rof ) as the Hessian is invertible if it is strictly

positive definite. The external input and the target enter through W = Wi + ), where the derivative of the
target voltage is only added for the output neurons o. This explicit differential equation is shown to be contractive in
the sense that for each input trajectory 7;,(¢) and target trajectory w*(¢), the voltage trajectory w(t) is locally attracting
for neighbouring trajectories. This local attracting trajectory is the vanishing-gradient trajectory f(u,t) = 0, and the
gradient remains 0 even if the input contains delta-functions, see SI Sect.

Solving the explicit differential equation seems to be more robust when the learning rate for W gets larger. The explicit
form is also less sensitive to large Euler steps dt, see SI Sect. [C} By this reason, the ordinary differential equations
(ODE) were solved in the explicit form when including plasticity W. The algorithms are summarized as follows, once
without interneurons (Algo 1), and once with interneurons (Algo 2):

Details for Fig.[3b Color coded snapshot of cortical local field potentials (LFPs) in a human brain from 56 deep
iEEG electrodes at various locations, converted with the sigmoidal voltage-to-rate function 7(u) = == +e - and plotted
onto a standard Talairach Brain (Talairach & Tournoux, |1988)). The iEEG data is from a patient with pharmacoresistant
epilepsy and electrodes implanted during presurgical evaluation, extracted from the data release of Burrello et al., 2019,
The locations of the electrodes are chosen in accordance with plausibilty, as the original positions of the electrodes
were omitted due to ethical standards to prevent patient identification.

Details for Fig. Ek Simulations of the voltage dynamics (Eq.[7a)) and weight dynamics (Eq. @) with learning rate
n = 1073, step size dt = 1ms for the forward Euler 1ntegrat10n membrane time constant 7 = 10ms and logistic
activation function Weights were initialized randomly from a normal distribution A/(0, 0.12) with a cut-off at £0.3.
The number of neurons in the network " was n = 96, among them 56 output neurons @ C A that were simultaneously
nudged, and 40 hidden neurons. During training, all output neurons were nudged simultaneously (with 8 = 0.1),
whereas during testing, only 42 out of 56 neurons were nudged, the remaining 14 left to reproduce the traces. Data
points of the iEEG signal were sampled with a frequency of 512Hz. For simplicity, we therefore assumed that successive
data points are separated by 2ms, and up-sampled the signal via simple interpolation to 1ms resolution as required by
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Algorithm 1 with projection neurons only, for Figs 3] & [] (using the explicit ODE, i.e. Step 12 instead of 11)

1: current state: u(t), W (t)

2: # conmsider full vectors and matrices (padded with 0’s for feedforward networks)
3: # drop time argument (t) for convenience

4 et P(U) , T 4 ('Fim":net)T , W+ (‘/‘/ina th)

5: calculate weight derivatives
6
7
8

: W n(u — W77t
. calculate low-pass-filtered errors
© €5 <+ u) — U, , € = 0 for non-output neurons
9: & ¢ Tt Wgt( - Wr) + per
10: calculate temporal voltage derivatives either implicitly (11) or explicitly (12)
11: Implicit: 74 < —u + W (7 + 77) + (€ + Té€)
12: Explicit: f<+u—Wr —é&,H « gf: , <+ solve TH(u)u = —f — = Bt via Cholesky decomposition
13: update voltage and weights
14w utad, W W+ W-dt

Algorithm 2 including plastic interneurons, for Fig. 5| (using the explicit ODE, i.e. Step 13 instead of 12)

1: current state: u(t), W (t),u!(t), WF(t), WP (¢)

2. # consider full vectors and matrices and drop time argument as in Algorithm 1
30 7 ¢ (Fin, p(u)) "

4: calculate weight derivatives

5: W« n(u — W#)rt
6
7
8

- WP n"(Bu — WPu)u!
. WIP « nIP(uI _ WIP,F)fT
. calculate low-pass filtered errors
9: e, < u; —u, (e = 0 for non-output neurons 7)
10: € < Bu— W"u! + ge* (B,.= W} = 0 for output neurons o)
11: calculate temporal voltage derivatives elther implicitly (12) or explicitly (13)
12: Implicit: 74 < —u + W (¥ + 77) + (€ + 7€)
13: Explicit: f+ u—-Wr—e, H < 37’2 , <+ solve TH(u)u=—f — rof 5t £ via Cholesky decomposition
14: update network state
15: for X € {u, W, WP, WP} do
16: X« X+ Xdt
17: ul + (1 - pHYWPr + gIBPy

our integration scheme. Furthermore, the raw values were normalized by dividing them by a factor of 200 to ensure
that they are approximately in a range of +1 — 2. Training and testing was done on two separate 8s traces of the iEEG
recording. Same data as in Fig.[3p1.

Details for Fig.[d Simulation of the neuronal and synaptic dynamics as given by Eq.[7a] Eq.[7b|and Eq.[8] For 5ms,
10ms and 50 ms presentation time, we used an integration step size of dt = 0.05ms, dt = 0.1ms and dt = 0.5 ms,
respectively (and dt = 1 ms otherwise). As an activation function, we used the step-linear function (hard sigmoidal)
with 7#(u) = 0 foru < 0, 7(u) = 1 for u > 1 and 7(u) = u in between. The learning rate was initially set to = 103
and then reduced to n = 10~4 after 22000s. The nudging strength was 3 = 0.1 and the membrane time constant
7 = 10ms. In these simulations (and only for these) we assumed that at each presynaptic layer [ = 0,1, ..,n — 1 there
is a first neuron indexed by O that fires with constant rate 7 o = 1, effectively allowing the postsynaptic neurons 741 to
learn a bias through the first column of the weight matrix W, ;. Weights were initialized randomly from a normal
distribution A/(0,0.01%) with a cut-off at +-0.03. For an algorithmic conversion see the scheme below.

Details for Fig. Simulation of neuronal and synaptic dynamics with plastic microcircuit, i.e., the pyramidal-to-
interneuron and lateral weights of the microcircuit learned during training.

For the results shown in Fig. [5k2, the following parameters were used. As an activation function, we used a hard
sigmoid function and the membrane time constant was set to 7 = 10ms. Image presentation time is 100 ms. Forward,
pyramidal-to-interneuron and interneuron-to-pyramidal weights were initialized randomly from a normal distribution
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N(0,0.01%) with a cut-off at +-0.03. All learning rates were chosen equal 7 = 10~3 and were subsequently reduced
to n = 10~* after 22000s training time. The nudging parameters were set to 3 = 0.1 and 8' = (1)—1 The feedback
connections B; and the nudging matrices BlIP were initialized randomly from a normal distribution 5-A/(0, 0.012)
with a cut-off at £0.15. The used integration step size was dt = 0.25ms. All weights were trained simultaneously. For
an algorithmic conversion see the scheme below. The interneuron membrane potential was calculated by Eq.[9 with a
linear transfer function.

Author contributions WS, MAP and DD designed the conceptual approach. WS, DD, MAP, AFK, JJ, JS and YB
contributed to different aspects of the framework and model. WS, DD, MAP and AFK derived different components of
the theory. DD, BE and AFK performed the simulations. MAP, DD, JJ and BE wrote the first draft of the manuscript.
WS wrote the final draft.
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Supplementary information

A Extracting the presynaptic voltage error

Threshold-linear transfer functions There is an important special case where the presynaptic voltage error can
directly be extracted from presynaptic firing rates, without need to invert the transfer function via synaptic depression as
shown below. This is the case when voltage errors in the upper layers are small, and the voltage-to-rate transfer function
has derivatives p’ = 0 or 1, so that 7, = (7] H)z. The condition is satisfied, for instance, for a doubly threshold-linear
function (a ‘doubly rectified linear unit’, ReLu) defined by p(%) = 0 for @& < 0 and p(it) = @ for 0 < % < ryax, While
p(1) = rmax for larger voltages. In this case we calculate

e = Ty €y = (Fia)? ey = Ty € = i (wim — Win ) (41a)
~ p(uyr) — p(Wiamr) = rys — p(Wiar) . (41b)

The approximation uses the Taylor expansion in w1 and assumes that €y, is small. The crucial point of Eq. [1]is that
the mismatch error defined on the voltage, €1 = uyy — Wi 7, can be factorized into a product of the postsynaptic
rate derivative, 7, and the apical error, and hence it can be expressed as an error defined on the rate. Restricted to
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the segment 0 < uyyy < ryax Where the transfer function is linear and errors do not vanish, the same microcircuit
delivers the feedback B to the apical tree through the top-down projections, and —B; p(Wyy;7;) through the
lateral connections from the interneurons. While the plasticity rules for W' and W/ stay the same, the top-down
nudging of the interneurons, see Eq.[9] can then be formulated based on the rate instead of the upper layer voltage,
ul = (1 - BYW/Pr, + B BIPry,,, with transfer function of the interneuron again the (doubly) threshold-linear p(u}).
Since voltages and rates are identical in the segment 0 < Uy < 7pax for each component, Eqs @] with @] can still be
inferred.

Rate-to-voltage inversion by short-term synaptic depression We wish to readout the voltage error also for other
nonlinear transfer functions than clipped ReLu’s. To do so, we take inspiration from the classical short-term synaptic
depression model (Tsodyks & Markram, [1997; Abbott et al., 1997} Varela et al.,|1997), see also Fig. @l. ‘We consider
a dynamic vesicle release probability that is proportional to the pool size of available vesicles, v(7), and this pool size is
postulated to depend on past presynaptic rates,

a

[ 42
1+d7’ (42)

p(release | 7) o« v(F) =1+

where 7 is the low-pass filtered presynaptic rate, a and d are constants. The proportionality factor is p%a’ making a
probability out of the vesicle pools size. The effective synaptic strength B of a ‘backprojecting top-down’ connection is
the product of the absolute synaptic strength B, and the vesicle pool size v, i.e. B = B, v(7). The contribution to the
postsynaptic current of the synapse is Wr, and the contribution to the postsynaptic voltage is Wr.

We search for an activation function 7(u) such that the postsynaptic voltage contribution is the scaled presynaptic
potential, B 7(u) = Bou . Plugging in the above expression for B yields B 7(u) = Bov(F) 7(u) = Bou, and dividing
B, out, v(F) 7(u) = u, see Fig.[6h2. With the expression for v(7) in Eq.[42] we obtain a quadratic equation in 7 that is
solved by the non-negative and monotonically increasing function

1
F:§(u—9+ \/(u—6)2+4u/d> >0, foru>0, (43)

with ‘smooth’ threshold = (1+a)/d and asymptote 7 = v — . This gives us a transfer function 7(u) that qualitatively
matches those observed for pyramidal neurons recorded in the steady state (Anderson et al., 2000; Rauch et al., [2003),

see Fig.[6h3.

The approach generalizes to other pairs of strictly monotonic neuronal activation and depression functions {7(u), v(7)},
as long as w is not driven below some minimal value, here u,.s¢ = 0, corresponding to 7 = 0. The last requirement can,
for instance, be accomplished by offsetting the activation function into a regime that guarantees that u stays positive.

In our simulations for Fig. 5] we did not explicitly implement a dynamic vesicle pool, i.e. the right-hand side of
v(F) ¥ = u, but instead directly used the recovered membrane potentials .

al a2 a3
— . () 4
= 1 30 fm\()()
&2 ~
2 g
= 20 1 <
& a,
= ° =z
g 0.5 ©
= 10 A ©
@ ©
=) -
0 T —— —r— 0 T r . 0+
0 50 100 0 10 20 30 -84 -70

rate [Hz] membrane potential mean potential [mV]

Figure 6: Recovering presynaptic potentials through short term depression. (al) Relative voltage response of a
depressing cortical synapse (recreated from Abbott et al., |1997), identified as synaptic release probability p. (a2) The
product of the low-pass filtered presynaptic firing rate 7(u) times the synaptic release probability p(7) is proportional
to the presynaptic membrane potential, p(7) 7 < u. (a3) Average in vivo firing rate of a neuron in the visual cortex
as a function of the somatic membrane potential (recreated from Anderson et al., [2000), which can be qualitatively
identified as the stationary rate 7(u) derived in Eq.
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B Looking back and forward in time with derivatives

Since dealing with extrapolations into the future is a crucial notion of the paper we present here some of the calculations.
The discounted future voltage was introduced in Eq. ] as

1 [ /
a(t) = = / u(t e =/Tar
t

T

To show that @ satisfies u = @ — 71, we need to apply the Leibniz integral rule in calculating the derivative . This
leads to

da 1 1 [ 1 /
iy = —Zult) + f/ u(t)=e=/Tat
T Ji T
Multiplying this equation by 7 and using the definition of @ yields 7i(t) = —u(t) + @(t), or u = @ — Ti.
By applying the Leibniz integral rule one also shows that z, defined in Eq. [I3]
1 ¢ t—t/
z(t) == f/ x(t)e” 7 dt’,

— 00

solves TZ(t) = *( ) + x(t). This differential equation can be written as .Z% = x, with lookahead operator .Z
defined in Eq. |14 To show that Zx = T + 7@ = x, one applies partial integration to m( ). Note that the equality

Z + T7& = T + 72 = x only holds if we integrate from —oo, and hence if the initialization of the trajectory is far back
in the past as compared to the time constant 7.

Uniqueness of the rate function In the main text we concluded from the postulate r = p(u) + 7p(u) and the general
relation r = 7 + 77 that 7(¢) = p(u(t)). This conclusion is a consequence of the uniqueness of a solution of an
ordinary differential equation for a given initial condition (that may include delta-functions on the right-hand side,
see e.g. Nedeljkov & Oberguggenberger, 2012, In fact, we may consider both variables p and 7 as solutions of the
differential equation 7& = —x + r. Because the solution is unique, we conclude that p = 7.

Learning the input time constants In our applications we assumed that the input rates in the original mapping
ul(t) = F*(7iy(t)) are low-pass filtered by a common time constant Tm( #),; = T that is also shared as membrane time
constant of the neurons. The general setting of learning to map time series is that input time series, 7, () are low-pass
filtered with given time constants 7%, and the target output time series u);(¢) are a function of these low-pass filtered

inputs, u}(t) = Fi (7, "'( ))-

To learn to reproduce the input time constants 7;; in the student network by Tin, We assume that the inputs converge to
", the gradient rule for the input time constant

ll’l’

neurons u, that only receive external inputs. Because 7" = 7i, — Tin T
is

in »

. oL oL 877!'" 7o \T —Tin
™ T n, | OF Omm ~Wa (w1 = W) 7y

(44)

This local learning rule also globally reduces the Lagrangian, and in the limits of 8 — oo it is gradient descent on the
mismatch energy, while in the limit 5 — 0 it is gradient descent on the cost. The proof works as in Theorem 1. To learn
a more complex mapping of time series that includes more complex temporal processing beyond a function of merely

w}(t) = F; (7. (t)), additional variables need to be introduced that form memories (see ‘Generalizations:...” below).

C From implicit to explicit differential equations

The original Euler-Lagrange equation is (1 -‘ert ) 2= =0, Eq. . w1th the Jacoblan = f(u,t) =u—Wr—e—pe*.
We have shown that . gﬁ =f+7 f =0is equ1valent to the voltage dynamics g1ven in Eq.

Implicit differential equation. The implicit differential equation can be written as

== ot o (W e+ fe7) i = K (rin, ug,u, ). “5)
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The partial derivative of f(u,t) with respect to time, %—’:, captures the external drive from the inputs and output targets

that do not depend on w, but may directly depend on time. In fact, instead of the argument ¢ of f, we could consider the
two arguments 7, and ©,, and we can then write

ofi  Ofi . ofi .. N .
GJ; = 6';;, Tin + 31{2‘, Upy = Wi inTin + 8 0i0Ty, - (46)
where J;, is the Kronecker delta and equal to 1 if ¢ is an output neuron, and 0 else. The partial derivatives of f with
2
respect to u represents the (symmetric) Hessian of the Lagrangian, H;; = gj; = 63 aLuj = 0j; — % (Wr+e+pe*);,

with d;; being the Kronecker-delta, € defined in Eq. and €* defined above Eq. Remember that W = (Wi, W)
and 7 = (Pin, Taet) = (Tin, p(w)). In vectorial notation the Hessian of the Lagrangian is

_of oL
 Ou  Oudu

H(u) 1 — W' (u) — (€ + pe*) (u), 47)

where 1 is the identity matrix.

Fixing the arguments (74, u’, u) of K in Eq. 45| we need to find a fixed point of the mapping w(*t1) = K (u(?). In
the argument <, the mapping is affine, (i +1) = —{ — % + L4, with matrix L = % (W + €+ fe*). The Banach
fixed point theorem asserts that if K (1) is strictly contracting with &, i.e. if || K (u(?) — K (4™)||? < k[ju® —a™)||
for all pairs of inputs and 0 < k£ < 1, then the iteration (here with iteration time step dt) e locally converges to a fixed
point @ = K (). Because K (1u(?) — K (")) = L(u® — w()), the mapping is k-contractive if the eigenvalues of
L have absolute value smaller than k. This is the case if the Hessian H (u) =1 — L(u) =1 — Wp/(u) — € (u), with
é = € — fe*, is strictly positive definite. Crucially, because the mapping is affine in w, the convergence is global.

For strict positive definiteness of the Hession, the Banach fixed point theorem asserts that during (global) convergence
the distance to the fixed point is bounded by a constant times e‘ild;tk, with iteration index ¢ and ‘virtual” Euler step dt.
In an analogue physical device that implements exactly this feedback circuit in continuous time, the dt becomes truly
infinitesimal and in this sense the convergence is instantaneous. If dt remains finite, (") converges to a moving target
because the mapping (1) = K (u@)) changes with time. The target should not change quicker than the time scale
144 of the u(") convergence. Given a time course of the input rate 7, (t) and target u,*(t) that has bounded variation,
the dt can be chosen so that convergence becomes arbitrary quick, and in the limit instantaneous.

If 7, (¢) contains well-separated delta-functions, while otherwise still having bounded variations, the reasoning still
applies since at any time point in time, except at the time point of the singularity, f(w,¢) = 0. This is shown in
Appendix [D|below.

There is a caveat for the strictly positive definiteness of the Hessian, when the learning rate becomes too big and wW
starts to change the neuronal dynamics. In this case, the Hessian becomes H = 1 — (Wp' + Wp) — €/, and the

Eigenvalues may become negative due to the W term. Simulations can in fact become unstable with a big learning
rate, and this is more pronounced if also the Euler dt is large. The explicit differential equation avoids the fast iteration
towards a moving target and hence allows for larger dt. This in particular pays out in the presence of a high learning rate
(although the Cholesky decomposition also requires positive definiteness). By this reason, the large-scale simulations
involving plasticity are performed with the explicit form described next.

Explicit differential equation. To isolate « in the implicit differential equation, we rewrite .2 f = 0 again as

. _(of, 0N _ a0k, o),
Tf-T(auu+at>— f, or T =T j 8ujuj+5't =—fi. (48)

Plugging the Hessian H(u) = % from Eq. into Eq. we obtain the voltage dynamics from Eq. [22|in the
equivalent form
of

ot
In our applications, the Hessian H appears to be invertible (although this may not be the case for arbitrary networks),
and Eq.[49| can be solved for the unique % using the Cholesky decompositions. In fact, if H is invertible, the system
implicit ordinary differential equations from Eq. 49| can be converted into a system of explicit ordinary differential
equations (with f(u,t) = 2L = 4 — W+ — € — 3&* and H given in Eq.,

ou
w=gu,t) = —%H‘l(u) (f(u) + T%{) , (50)

THuwuw=—-f—1 (49)

26


https://doi.org/10.1101/2023.03.25.534198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.25.534198; this version posted March 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and as such it has a unique solution for any given initial condition. Because %ft = Wi,inﬁn + B dioul, see Eq. the
regularity requirement for 7 u to be integrable is satisfied even if 7;,(¢) and u};(¢) contain step functions (and i, (¢)

delta-functions), see Sect. [D]for details.

Even in the presence of such step-functions, the Euler-Lagrange equations .Z f = 0 lead to an f that is a decaying
t—t

exponential, f;(u(t),t) = ¢;e~ = . For initialization at ty = —oco we have f = 9L — 0 at any time. In fact, Eq.

is equivalent to .Z f = 0, and hence any solution of Eq. |50} even if %{ contains a delta-function, is also a solution

of Zf = 0. Possible jumps in 7, or u} are compensated by the jumps they induce in u (see below for the full
mathematical description with a simple example). To give an intuition, we assume that a recurrent network of our

(n) (2) " This network still
shows an overall relaxation time of 73, (but not longer!) when the input rates instantaneously sw1tch from r(l) to r(z).

Nevertheless, at any moment during this relaxation process, gradient learning of the mapping u,(t) = F (rm(t))
towards u} (t) = Fx(7in(t)) is still guaranteed (Theorem 1).

prospevtive neurons has separate fixed points for the two constant input currents and 7,

In the case of a functional feedforward network, the network weight matrix W, is lower triangular. This is itself a
lower triangular matrix, but now with unit diagonal, and as such it is invertible. For feedforward netowrks, H remains
invertible also for small 5 > 0, since then the emerging upper diagonal entries remain small compared to the diagonal
entries 1. It also remains invertible for growing nudging strengths, 3 — oo, provided that the weighted target errors
fe* remain small, see (¢) in the proof of Theorem 1.

Link to time-varying optimal control The explicit differential equation, Eq. [50] is a special case of the one in
Simonetto, Dall’ Anese, ef al., 2020, (Eq. 20), where the function to be minimized (their f) can take a general (Lipschitz
continuous) form (hence their f is our Lagrangian, f = L). To avoid inverting the Hessian, an iteration algorithm
can be applied similar to our implicit form form, although more involved to deal with the more general form of L
(Simonetto & Dall’ Anese, |2017). The idea of tracking the solution of a time-varying optimization problem with a linear
look-ahead in time has been introduced introduced in Zhao & Swamy, |1998|

D Contraction analysis and delta-function inputs

Stability We show that the voltage dynamics obtained from . g—z = ( is always stable, provided that the Hessian
H is invertible. For this we rewrite Eq. @ in the form G(z, 1) = £ g—{; = f +7f = 0, where the explicit time
dependence of E and f is a short-cut to express the dependence on & = (74, 7in, w’, w5, )T, Stated in this generality,
the stability analysis also applies to the voltage dynamics derived in the Latent Equilibrium (Haider et al., [2021).

According to the implicit function theorem, at any point in time when % is invertible, we can locally write & = g(x).

When absorbing the dependence of @ on (7, 7, ul, 4}) into a time dependence, we can rewrite this differential
equation as & = g(u, t), see Eq. This differential equation is contractive and thus stable if the Jacobian of g with
respect to u is uniformly negative definite (Lohmiller & Slotine, |1998)). The contraction analysis tells that locally,

where dG is invertible, we can express « as a function @ = g(x) that has derivative 2 3 = (gﬁ) ‘g—f. For the

u-component we get the Jacobian

(D

o9 _ (9G\ oG
ou ou ou

According to Eq. 49| we have G(x, @) = f+7-H(u)u + T%{ = 0 and calculate 2¢ = 7H, with H;; = gf
specified above. Since according to Eq @] the partial derivative with respect to ¢ does not depend on u, we also
calculate ?9 =H + TWu =H +7' . Hence, gg = f%Hfl (H + Tdd—lf) = 7%1 - %. The term dl(ﬁH
may cause a violation of the positive deﬁmteness However, this appears only transiently after initialization since the
gradient f exponentially quickly converges to 0 after initialization. If ¢y = —o0, the term f vanishes, and with it also
dl‘:ftH This asserts local contraction property of the fixed point trajectory as then 69 = —71 Hence, around a point
u, on the trajectory, the linear approximation of the dynamics is %( —Uy) = W(u —Uy) = —%(u - Uo),
showing an exponential local contraction to u..

Global convergence The above stability analysis yields only the strict contraction property after the convergence of
the gradient to f = 0. We have shown that the iteration of K (1) globally converges to a fixed point & = K (1), see
Eq. Let us therefore assume that u satisfies this fixed point equation. This defines a trajectory w(t) that globally
converges to the fixed points u(t) = W (u(t)) + €(u(t)) + Se*(u(t)). In fact, these fixed points are characterized
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by the vanishing gradients, f = 0, and these vanishing gradients are globally reached. This is because f(u(t),t), as a
function of time, exponentially decays to 0 in each component, as noticed above. To restate this in a compound version,
we consider an arbitrary initialization w(to) for which in general f(u(tg),t9) # 0. Because at any time we have

Z g—i’ = f 4 7f =0, the length of f(w(t),) exponentially converges to 0, as expressed by its temporal derivative,

dtQIIf( (). t)* = f1f = —f11f = - 2If|* < 0. (52)

Hence, starting at any initial point, the voltage dynamics finds a self-consistency solution of f(wu(t),t) = 0, or
equivalently of u = Wp(u) + é(u), with &€ = € + fée*.

Delta-function inputs keep = 0. We next explain in more details why delta-function in the input rates ri,(t)
for the NLA the stationarity ( equlhbrlum ) condition 2 a = 0 is always satisfied (the delta-function in 7, for the
NLA corresponding to step -function in 7, for the Latent Equilibrium). We reconsider the explicit differential equation
u = g(u,t) = 1 <f+78t)g1ven1nEqEW1thf(u t) = %—ufWFféfﬁé* and H given in

Eq.

To simplify matters, we consider a single delta-function at ¢ = 0 as input in the absence of output nudging. In this case
we get % af Fm + = Windin(t), where the input matrix W/, is typically sparse (not all network neurons
receive external 1nput) and 6m (t) is a vector of delta-functions restricted to the input neurons. Following Nedeljkov &
Oberguggenberger, 2012} Proposition 2.1, we can then write the explicit differential equation, Eq.[49] in the form

w=g(u,t)=g(u,t) + H(u) ' Widu(t), (53)

where g(u, t) is globally Lipschitz continuous. Due to the Lipschitz continuity the change in u evoked by g(u, t) during
a small time interval [—¢, ] around ¢ = 0 vanishes when this interval shrinks, ¢ — 0. To quantifies the change in u
during these intervals it is therefore enough to consider @ = H (u) ™t W;,8;,(t), or equivalently H (u)1i = W, iy (t).
To estimate the jump induced by the delta-functions, we consider some mollifier ¢.(t) = e~ 1¢(t/e), where ¢(t) is a
smooth function on the interval [—1, 1] with integral 1. By ¢, - (t) we denote the vector of mollifiers centered at the
delta-functions of the input neurons. We now consider the two differential equations, with the second approximating
the first on the interval [—¢, €], but without regular term §(u, t),

TH(u:) e = 7H (u.)g(u, t) + Windin () (54a)
TH () ﬁs = mn¢in,5(t) ;U (—€) = u(—¢). (54b)

We assume that for all ¢ € [—¢, €] the matrices H (u.(t)) and H (w.(t)) are invertible, so that the two Eqs [54p,b can be
turned into an explicit differential equations. Analogously to the 1-dimensional case (Nedeljkov & Oberguggenberger,
2012), we conclude that the solution of Eqs|[S4p,b on the interval [—¢, €] converge to each other, sup,¢[_. . [ue(t) —

u.(t)| — 0 for e — 0. As a consequence, the jump of 4. at ¢ = 0 converges to the corresponding jump of u. in the
various dimensions.

To calculate the jump of 1z, we have to integrate 7 H (1. ) 1. across the time interval [—¢, ¢]. Instead of integrating 4.,
we first integrate 7 H (%, ) . given in Eq. Moving from right to left yields

€ Uc(e)

H(u.(t) v.(t)dt = T / H(u.) di. , (55)

"15(_5)

€
Waln = [ Widn (it =1
—E& —€&
where I, is the index vector of the input neurons having a delta-function, i.e. [;, ; = 1 if there is a delta-input, and else

0. Note that v, ; dt = dv, ;. Because H is itself a derivative, H = af we can explicitly calculate the latter integral
(also for 3 > 0, but for clarity here only done for § = 0). The last integral in Eq.[53]is defined as a vector with i-th
component being

e () N o pici(e) N
( / H(u.) dﬁa> -y / Hij () duy = 3 (s — Wigplu)| () = (v2(e) = va(<)),
U (—¢) i =1 Ue,j(—€) =1
(56)

where in the second last equality we used that H,;(u) = 6;; — Wi;p'(u; )) does only depend on the component u;,
see Eq. . In the last equality we introduced the ‘network voltage error’ ¥, = @, — Wy p(te). Following the
1-dimensional case treated in Nedeljkov & Oberguggenberger, |2012, Proposition 1.2 we introduce the ‘jump function’
(called G(y) in the cited work)

J(ﬂe) = T('be - 1}0) ) (57)
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with 9, thought to represent ¥.(t,) at some time ¢, before the delta-kick sets in. With this setting, Eq. turns into
Wil = J(ﬁ’E(e)) - J(ﬁ,&.(—&‘)) : (58)

In the limit € — 0 we get a relation between w(t) immediately before and after the jump, u(—0) and w(4-0), using that
in this limit the boundary points of the trajectories also converge, . (+¢) — w(+0),

We now assume that the function J(u) = 7(v — v,) is invertible around the jump. This is the case if the Jacobian
8‘1( ) is invertible, and because v = u — Wep(u), we require invertability of 6575:‘) = 7H (u), with Hessian defined

in Eq @7

In the case of invertability we get the voltage after the jump as

u(+0) = J 1 (J (u(=0)) + WinTiy) - (60)

We next calculate the jump in v. This is easy since v = u — Wi p(w) linearly enters in the function J (u) = 7(v — v,).
Plugging the explicit expression for J into Eq.[59) we get 7 (v(+0) — vo) = 7 (v(—0) — vo) + Wiy Iy, or

v(+0) = v(-0) + %VVinIin ) (61)

Knowing the jump in v helps to show that the equilibrium condition 2 a = 0 is always satisfied, even immediately after
the delta-in put, provided the initialization is at ty = —oo. To show this, remember that in the absence of nudging we
have aL = f(u,t) =u—Wr =u— Wyp(u) — WyFi, = v — WiyTi,. The jump size of 7, for a delta-function at
t=0, rm( ) = in(t) is % This is because 7, satisfies the differential equations 7, () = ,L,:m( )+ %51,1 (t), provided
that {o = —oo. Hence,

Fin(‘i‘o) - 'Fin(_o) + Im (62)
With Eqsandwe conclude that g—ﬁ =v—Wyrin=0 throughout.

E Example of a single recurrently connected neuron

To get an intuition for the instantaneity in a the recurrent case we consider the example of a single, recurrently connected
neuron. We also put this into the context of the Latent Equilibrium (Haider et al., [2021). Consider the weight vector
W = (Win, Wiet) with an input an input rate 7;,(¢) driving the postsynaptic voltage u. The postsynaptic rate is
r = p(u) + 7p(u), and its low-pass filter with respect to 7 is ¥ = p(u). As always, the low-pass filtering reaches back

to an initialization at ty = —oo, see Eq.[I5] The Lagrangian has the form
1
L= 12+ 02" = L (Maanlw) + Wiri)” + S — . ©3)

The Euler- Lagrange equations . 5 BL = 0 are derived from ?)L = € — p/(u)W,e€ — f€* . Applying the look-ahead

operator . (Eq.|14), and abbrev1at1ng € = p'(u)Wye€, the Euler-Lagrange equations deliver the voltage dynamics,
70 = —u~+ Woet(p(u) + 7p(w)) + Winrin + € + Be* . (64)

To simplify matters, we consider the nudging-free case, 8 = 0. This implies that ¢ = € = 0. With p(u) = p’(u)u, we
obtain the differential equation

7 (1= Whetp' (u)) @ = —u + Wherp(u) + WinTin - (65)
Abbreviating v = u — W p(u) as ‘network voltage error’, the above differential equation reads as
70 =—v+ Wurin - (66)

Integrating the effective voltage dynamics (Eq. [66), assuming initialization infinitely far in the past, is equal to
v = WiyTin. This equation is equivalent to the Euler-Lagrange equation . g—ﬁ = 0 being integrate, and because the

solution of the Euler Lagrange equation is g—ﬁ =ce " , we have (using ty = —o0)
oL _
%:U—VVmeZO. (67)
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Voltage dynamics for a delta-function input We next apply a delta-function in the input rate, say ri,(t) = 4(¢) and
consider the dynamics at the level of the voltage, Eq.[63] As in Nedeljkov & Oberguggenberger, 2012, Proposition 1.2
we introduce the ‘jump function’ (called G(y) in the cited work)

J(u) = T/u (1 = Wt (y)) dy = T((u — Waap(u)) — vo) =7(v— 1) . (68)

Uo

As in Nedeljkov & Oberguggenberger, 2012, Proposition 1.2, we show that the voltage © makes a unique jump at the
moment of the delta function that J(u) is invertible around the jump.

We set v, = uo — Wiep(uo). Here, u, is some voltage before the jump, say u, = u(—1) evaluated at time ¢t = —1,
when the jump is at ¢ =0. When u, = u(—0) is the voltage immediately before the jump, the voltage immediately
after the jump is uj = u(+0) specified by

Jud) = J(uy) + Wi . (69)

The reason is that the Wi,-scaled delta-function triggers a step of size Wi, when integrating over it as done in Eq. [68]
The new value ug is unique if J is invertible, and looking at the defining integral in Eq. this is the case if

1- V[/;le[P%Ug) 7é 0.

The jump in u translates into a jump in v = u — Wpep(u) from vy to vy = ug — Wherp(ug ). This endpoint can also
be expressed as

Win

vy = vy + (70)

To check this, we assume without loss of generality that v, = 1o — Wperp(to) = 0. Then J(u) = 7(u— Woep(u)) = 1o
and J(ug) = J(uy) + Wi = Tvy + Wiy according to Eq. Since also J(u) = 7vg, we conclude that
Tvg = Tvy + Wi, as claimed above.

We finally show that even far away from the initialization, the stationarity condition g—ﬁ = 0 holds before and
immediately after the jump. In fact, for t) = —oo, the evolution of the ‘network voltage error’ becomes
VVin 1
v(t)=0 for t <0, and w(t)= e 7 for t>0. (71)
T

Here we used that v, = 0 and according to Eq.|70|the v jumps to v, = VZ . Remember that for initialization far in the

past, g—ﬁ = 0 is equivalent to v = Wj,Ti,, see Eq. We therefore have to calculate the jump in 7, induced by the

delta-input. Since 7, (t) is the solution of 77, (t) = —Ti,(t) + 0(t) for tg = —oo, we find that

1 ¢
Tn(t) =0 for t <0, and 7,(t) = ;e_? for t >0. (72)

Combing the two Eqgs and proves that g—ﬁ = v — WiyTin = 0 holds true any moment in time, provided the
initialization is far in the past.

One may ask why the delta-kink is different from resetting v at a new intialization off from 0. The reason is that at
t = 0 there is a cause for the jump in r(0), while at ¢, there is no cause in r(¢o). In fact, there is no jump initially, just

the start of v at some initial condition. Differently from the initialization at ¢y, where v(ty) > 0 implies ‘g—ﬁ (t) > 0 for

finite £ — ¢ > 0, the jump of v(0) at ¢ = 0 to a positive value does leave 2% (t) = 0 for all ¢ > 0, provided ty = —oc.

Linear transfer function We first consider the case of a linear transfer-function p(u) = 0 (or threshold linear, being
in the linear regime). Then the differential equation becomes

. Wi
TU = —Uu-+ 1_712/[1“7"111 . (73)
With initialization at t = —oo and low-pass filtering 7, defined in Eq.[I3]the solution is
u(t) = 2T () - (74)

T

The point is that the time constant is 7 and is not T

fact, for the ‘classical’ differential equation,

as this would be the case without prospective firing rate. In

TU=—u+ V[/;letp(u) + WiaTin (75)
an e identity, we obtain the differential equation 7ozt = —u . With 7eg = — and solution
d p the identity. btain the differential equat + T th —5— and solut

U= 1_LV‘{‘,[F?;“ that is now the low-pass filtering with respect to the effective time constant.

30


https://doi.org/10.1101/2023.03.25.534198
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.25.534198; this version posted March 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sigmoidal transfer function For a sigmoidal transfer function p(u) = lj:jg’:u , a positive feedback weight W, > 0,
and a constant external input ry,, say, the solutions u(¢) of Eq. [64]either converge to a fixed point or diverge. When

converging, the voltage satisfies the fixed point condition
u = Wieep(u) + WinTin - (76)

This fixed point equation can be numerically solved by time-discrete iteration process. But it can also be solved by a
time-continuous process that underlies a neural or neuromorphic implementation. The prospective firing rate introduced
in the NLA can be seen as a method to quickly find the fixed point in continuous time. When directly solving the
implicit differential equation (as opposed to convert this into an explicit differential equation using e.g. the Cholesky
decomposition), the fixed point is potentially found with a fewer number of steps.

To estimate the speed of convergence, we look at the initial speed when taking off at initial condition «(0) between the
unstable and stable fixed point. The initial speed for the classical differential equation, Eq.[75] and the NLA version,
Eq.[64] are, respectively,

1(0) = , (77a)
. Au(0
u(0) = — ( ,) )
7 (L = Waerp' (u(0)))
where we set Au(0) = —u(0) + Waep(u(0)) + Winrin(0). As Woep” > 0, the initial convergence speed of the NLA

solution is larger. The scheme has some resemblance to the Newton algorithm of finding zero’s of a function by using
its derivative.

(77b)

F Generalizations: NLA for conductance-based neurons and more dynamic variables

The mismatch energies and costs can be generalized in different ways. Here we focus on a biophysical version of the
mismatch energy that includes conductance-based neurons. This also relates to the least-action principle in physics. But
the NLA can also be generalized to include other dynamica variables such as adaptive thresholds or synaptic short-term
plasticity.

Equivalent somato-dentritic circuit For conductance based synapses, the excitatory and inhibitory conductances, gg
and gy, are driven by the presynaptic firing rates and have the form gg(t) = Wg r(t), and analogously g;(t) = Wi r(t).
The dynamics of a somatic voltage w and a dendritic voltage v reads as

ct = gr(Er —u)+ gsalv—u) (78)
cat = gL(EL—v)+ ge(Eg —v) + gi(Er — v) + gas(u — v) , (79

where ¢ and cq4 are the somatic and dendritic capacitances, F1, /g1 the reversal potentials for the leak, the excitatory and
inhibitory currents, gyq the transfer conductance from the dendrite to the soma, and g4 in the other direction.

We consider the case when the dendritic capacitance cq is small as compared to the sum of conductances gq on the
right-hand-side of Eq.[79] yielding a fast dendritic time constant. In this case we can solve this equation in the steady
state for v, plug this into Eq. and get

ci=g(V—u), (80)

with effective reversal potential V' = (g1, E1, + gsa o Jgr‘;ds vgr) / g, total conductance g = gr, + gsd p f;ds , feedforward

dendritic voltage v = (gLFEL + geEr + g1E1)/gi and feedforward dendritic conductance g = g1, + gg + g1
Because gg;1 = Wg/1 7 (Upre, Upre ), the conductance depends on the presynaptic voltage and its derivative. Equation
[80] describes the effective circuit that has the identical voltage time course as Eqs[78and [79| with © = 0, but with a
single time-dependent ‘battery voltage’ V' and Ohmic resistance R = 1/g.

Somato-dentritic mismatch power and action The synaptic inputs gg(¢) and gi(¢) are continuously driving V' (¢),
and the best what one can hope for the dynamics of w is that it traces V' with some integration delay determined by
the time constant 7 = ¢/g. In fact, if u follows the dynamics of Eq. then u becomes the low-pass filtered target
potential, u = V, where V (t) is filtered with the dynamic time constant 7(¢). The defining equations for the low-pass
filtering is

U+ T =u, (1)
and this self-consistency equation is equivalent to the explicit form
t /
t _rt v 1
at = [ a ) = g @t gty (2)
oo T()
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To capture the voltage dynamics with our NLA principle we recall that the somatic voltage u can be nudged by an
‘apical voltage’ € that causes a somatic voltage error € = u — V. The voltage error drives a current I = gé through the
conductance g. The electrical power of this current I driven by the voltage € is P = I€2. This motivates the definition
of the mismatch power in a network of N neurons by

N
i o 1 -
P = E % (wi — V;)? = §gT(u -V)%. (83)

P is a virtual power that, nevertheless, is related to some physical flow of ions. Assume we could measure all the ions
flowing in the original circuit of Eqs|78|and[79|(in the limit of small ratio Cy/gq). From this flow, delete the ion flow
that cancels at the level of electrical charge exchange due to the counter directed flow. The remaining effective ion
flow defines an effective current flowing through the conductance g with driving force (V' — u), Eq. If it were only
this effective current in the reduced circuit, the voltage u(t), starting at «(0), would converge with time-constant 7
to the low-pass filtering V. Without additional ‘hidden’ current, the voltage u would then instantaneously follow V'
that is itself given by the forward dendritic input conductances. The deviation of u from V, caused by some initial
conditions in u or by a feedback current from the network affecting wu, builds the mismatch power P. The feedback
may originate from a target imposed downstream, and the neuron is ‘free’ in how to dynamically match « and V. It is
therefore tempting to see P as a ‘free power’, and the NLA principle as minimizing the corresponding ‘free energy’. In
fact, the free-energy principle says that any self-organizing system that is in a dynamic equilibrium with its environment
(here u = V in the absence of output nudging) must minimize its free energy (that here builds up by imposing a target)
(Friston, |2010)).

The NLA principle states that the time-integral of P is minimized with respect to the look-ahead voltage u. We therefore

define the physical mismatch energy as
ta

A= [ Pdt, (84)
t1
that has the units of energy. £y takes the role of our neural action (A in the main text) for conductance-based neurons.

Euler-Lagrange equations for conductance-based neurons The NLA for conductance-based neurons seeks to
minimize A = [ P(u)dt with respect to variations of u, such that % = 0. In the simplest example of the main
text we considered prospective rates, 7 = p(u) + 7p(u), so that the low-pass filtered rates become a function of the
instantaneous voltage, 7 = p(w). These low-pass filtered presynaptic rates, 7, determine the postsynaptic voltage
u. Analogously, the low-pass filtered reversal potential, V, determines the postsynaptic voltage u, and we again
postulate that V' is an instantaneous function of the presynaptic voltage, V' = ¢(u). Here we argue that active dendritic
mechanisms advance to postsynaptic reversal potential V', so that the delayed V' again becomes instantaneous, similarly
to the advancement of the apical dendritic potential observed in cortical pyramidal neurons (Ulrich, 2002), see also
Fig.[2b. With this instantaneity, the stationarity of the action with respect to generalized (compact and non-compact)
variations, % = 0, translates to the condition ?TZ =0.

Calculating g—z = 0 with P given in Eq.and T = ¢/g for the total conductance g(u) specified after Eq. is a bit
more demanding. For a probabilistic version, where P is derived from the negative log-likelihood of a Gaussian density
of the voltage, P = —log p(u|V) = 2g"(u — V)2 — L log g + const, the calculation is done (Jordan et al., 2022). In
the probabilistic version, there is an additional normalization term that enters here as log g. In the deterministic version
considered here, this log term is not present and we calculate

P = . = = =
Sr=9-(u-V)—¢ wih e=7 W}, ((u —V)(EE V) = Lu— V)2) . (85)
Notice that the transpose WL selects the downstream network neuron to backpropagate from there the first- and
second-order errors. From g—z = 0 and T = ¢/g we conclude that
S(u-V)-e=0 or u=V+ZIe. (86)
=
We next apply the look-ahead operator to the expression in this Eq.[86] Assuming an initialization at ty = —oo, the
condition g—z = 0 becomes equivalent to .Z g—z = 0, and hence Eq. @ becomes equivalent to
cu=g-(V—-u)+e+7€. (87)
A learning rule of the form W g—P = €post 71 With an appropriate postsynaptic error €.t can again be derived

(see Jordan et al., 2022|for a single neuron in the probabilistic framework). But this, with the above sketch, needs to be
worked out yet.
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Generalizations: long memories, reinforcement learning One could also extend the NLA principle by adding
e.g. threshold adaptation that endows the dynamics with additional and longer time constants. For this, the rate function
is parametrized by an additional threshold, 7 = p(u — ¥}), an the Lagrangian is added by an error term on the threshold.
Such an error addition can take the form L = ... + 1{| — 7™ ||?, where 7™ now represents a low-pass filtering of the
rate with a long threshold adaptation time constant 7y. Neurons that show an additional threshold adaptation will still
be able to instantaneously transmit a voltage jump through a prospective firing rate, but this will now also depend on the
neuron’s history. Short-term plasticity may be included in the same way. Due to the history dependence, the stationarity
of the action 0 A = 0 cannot anymore be reduced to the stationarity of the Lagrangian at any moment in time. As a
consequence, the errors will look-ahead into to future more than only based on the local derivatives.

Generalizations are further possible for the cost function that favor voltage regions with high cost, say corresponding to
punishment, or negative cost, corresponding to punishment to reward. These extensions will be considered in future
work.

Voltage dynamics from the physical least-action principle We have shown that through the look-ahead in Hamilton’s
least-action principle, the notion of friction enters through the backdoor. In the least action formalism in physics,
friction is directly introduced by extending the Hamiltonian principle to a generalized D’ Alembert principle, where at
the level of the Euler-Lagrange equations the generalized force is equated to the dissipation force (Flannery, 2005).

The electro-chemical properties of a membrane can be captured by an equivalent circuit consisting of a battery voltage
V, a conductance C' and a resistance R, arranged in parallel. The voltage dynamics is derived from the Euler-Lagrange
equations that are added by a dissipative force. Formally, in the absence of an inductance defining the kinetic energy,
the Lagrangian £ becomes identical to the potential energy £ = U/ with

U = QV-Q*/(20), (88)
F = RGQ?)2. (89)

Here, F is the dissipative Rayleigh energy related to friction and @ represents the charge across the membrane.
According to D’ Alembert’s principle, the dynamics is characterized by the Euler-Lagrange equation with dissipative
force, 9L — di0p L + 0y F = 0, and this equation reduces to —V +Q/C + RQ = 0. Identifying the charge by means
of voltage across the capacitance, () = C'u, this equation can also be written as —V +u + RCu =0,orta =V —u
with 7 = RC, just as also derived in Eq. (87 Loosly speaking, the minimization of the energy (Ey = [P dt) by looking
ahead is equivalent to a minimization without looking ahead, but taking account of friction.

G A tutorial on total and partial derivatives as used in the paper

The proof of Theorem 1 given in the Methods makes use of partial and total derivatives and follows the notation
of Scellier & Bengio, [2017|and Meulemans et al., 2022, As there is some variability (and community-dependent
sloppiness) in the notation of partial and total derivatives, we provide some explanations on how this notation is
interpreted, and why, for instance, total derivatives commute with each other, and also partial with each other (although
not total with partial).

(¢) In a differential geometric setting, the derivative of real-valued function E(u) on a point « of a manifold
(like the flat Euclidean space) is considered as a mapping of tangent vectors at u to the real numbers. When
interpreting the derivative as mapping, the g—ﬁ is living in the dual space of u and is therefore a row vector
if is a column vector. If a function f(u) of w is a vector valued, then its derivative is a matrix with entries

(%) y = ngj_, where i is indexing the rows (i.e. running down) and j is indexing the columns (i.e. running
right). When r = p(u) is a column vector with p applied to each component of u, we consider the (partial)
derivative ' = p/(u) for convenience as column vector with components p’(u;). To strictly follow the
formalism, it should be a diagonal matrix.

(i) Because we introduced the error vector € as column vector, it is easier to write g—ﬁ = €& + ..., where now g—ﬁ is

also considered as column vector. To be consistent with the above, we should have written g—iT =ée+.... The
.T appeared us as too heavy so that we neglected it, where it did not have further mathematical consequences
(hoping it does not cause confusions). Sticking here to a column vector also renders the backpropagation
error to be a column vector in Eq. 2] This error then gets the classical form with the weight transpose,
€= ﬁ(et"’VnElé'

(#41) We typically have real-valued functions of the form E(ug, 0), with & = (W, ) being a vector of parameters,
and u being a function of 8. To get the total derivative of E with respect to @ we consider the values £/
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as a function of 6. This can be done by introducing a new function £(0) defined as £(0) = E(ug,0),
where the components 6; are considered as independent variables. The total derivative of F with respect

i ion 42 — (dE dE \ _ (dE de |\ _ 9¢ -
to @ is then defined as vector-valued function Sz = <d91 s e den) = (d01 e d9n) = 55 foran

de
dimensional 6. It can be helpful to think of the components of this total derivative as a (total) directional
derivatives in the unit directions. For the last (n-th) unit direction AQ(™ = (0,..,0, 1), for instance, we have
(?QE = lim5_>0 % (E('LL9+EA9(n) y 0 + EAO(”)) — E(ug, 0)) .

(2v) The cost gradlent, dW o (u — W) 7T has the same dimension as W . Recall that by the cost gradient we

mean (fvcv = BW’ where C is defined as C(W') = C'(uo(W), u}), with the voltage u, of the output neurons

being itself a function of W'

(v) To calculate the partial derivative %E (u, 0) with respect to 0, we fix the first argument ug, even if for u we
often plugged in the components of the trajectory u = ug(t) that now does depend on 6. In contrast, the total
derivative is <5 E(u, ) = aEgZ .) qu 4 (Z %) Here, W is a row vector, as also 2209 consistent

with the conventron (that we have broken in Eq. @] to keep vectors as columns). When w is considered as

trajectory, d0 2 does not vanish in general, but it does when w is simply considered as independent variable.

(vi) When replacing the argument w in E(u, @) by w = & — 71 we get the ‘Lagrangian’ L(@, w,0) = E(u —

7, ). The partial derivative of L with respect to 4, for instance, is then 2 L(a, w,0) = 2 E(u,0)%% =

2 E(u, 0). The partial derivative

B‘ZZL considers L as a function of independent arguments u, @ and 6.

(vii) We also used that the total derivatives can be exchanged, in the current example dW 4 E = ddﬂ dgv E. This is
generally true for derivatives of Lipschitz continuous functions, for which derivatives ex1st almost everywhere.
The total derivatives (where they exist) then commute because the difference quotients in W and  are
uniformly bounded. The Moore-Osgood theorem tells that two limits, of which at least one is uniform in the
other, can be commuted. This also applies to the double difference quotients involved in the definition of
ﬁ %. Remember that the total derivative, for instance with respect to the n-th parameter, can be written as

STE,L = lim5_>0 é (E(u9+€A0(TL) y 0 + EAO(H)) — E(ug, 0))

H Proof of Theorem 1, part (ii), using only partial derivatives

This Section proves Eqs[29H31]in terms with only partial derivatives, banning nested functions that require to deal with
total derivatives. The 3 equations are also the core for the proof for Equilibrium Propagation Scellier & Bengio, 2017,
although there only applied in the steady state after the network converged to a constant activity.
We assume a network of d neurons whose membrane potential is given by « € R? and which are connected via weights
W € R¥*4 By V,, we denote the gradient with respect to the membrane potentials, i.e., V,, = (6%1, o 6—‘3‘1)
Similarly, Vy is a matrix containing the derivatives with respect to the weights, (Vw);; = %

ij
To prove the rt-DeEP theorem (theorem , we first have to make a few definitions and observations:

1. For a given (W, 3), the dynamics yield certain membrane potentials f,, € R%. Formally, we define this as

fu :R*IXR =R, (W, B) = fu(W,5). (90)
The ith element of f, is denoted by f,, and hence V, = (%, v #).
uy uq

2. We define the following functions:
2

o the mismatch energy EM : R? x R¥*? 5 R (u, W) — EM(u, W) = %Z,‘::l w; — 3 Wil

« the cost function C : R? - R, u— C(u) =13, o lluj — wg?

s the Lagrangian L : RY x R4 xR - R, (u,W,) > L(u,W,3) = EM(u, W) + BC(u).
To make the dependency of the cost and energies on 5 and W explicit, we further introduce three auxiliary
functions Fy;, Fo and F.:

+ for the mismatch energy Fiy : R x R = R, (W,B) = Fu(W,B) = EM (fu(W,3),W) ,

« for the cost function F : R4 x R =+ R, (W,3) + Fo(W,3) = C (fu(W,B)),

» for the Lagrangian Fy, : R4 x R = R, (W,f) — F(W,B) = Fu(W, B) + BFc (W, B)
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3. The Euler-Lagrange equations can be written as T%VUL = —V, L. Hence, far enough away from initial-

ization and for smooth enough input (and targets) we have V¢, L = 0 at all times, even when changing the
network input continuously. Note that both the cost and the mismatch energies are defined on low-pass-filtered
signals, and it is with respect to the low-pass filtered external input that the low-pass-filtered output error is
minimized.

4. Without output nudging (i.e., 5 = 0), the output error vanishes and consequently all other prediction errors
vanish as well, € = u — W = 0. This can be easily shown for layered network architectures and holds true
for arbitrary connections (e.g., recurrent networks) as long as f,, uniquely exists, i.e., w = W has a unique
solution for w. From the form of the mismatch energy, we then get

VwEM|,_ = (Wi —u)it],_ =0. 91)

Since we are assuming smooth functions, this also implies that

lim Vy EM| ey =0 (92)

€5—>0

5. From the assumption of well-behaved (smooth) functions, it also follows that partial derivatives commute
Vwas = agVw.

Our goal is to find a plasticity rule that minimizes the cost C, which we do by calculating Vy Fo | 5=0" Similar to

Scellier & Bengio (2017), to achieve this, we first calculate the partial derivatives of F, with respect to the nudging
strength 3

a}7‘[/ 8FM 8FC
= F
B op 8 ] + o (93a)
d
;(afui o5 Yot ag)*c (93b)
d
9 (B + BC) 0f.,
- ; O fu, B ¢ (93c)
T
- (93d)
and the weights W
aFL _ aFM 0FC
oW OWy + ﬁaWW (94a)
d
— 8EM afuk oC 8ka BEM
d
0 (EM C M
-3 (E™ +5C) Ofu,  OF o
k=1 Ofu oWi; — OWiy;
T N—
=0
OFEM
oWy (94d)
(94e)
or in vectorized form
VWFL = VwEM . (95)
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With these identities in place, we can calculate the plasticity rule:

= lim, Vw Fo = lim, Vwaa% (96a)
= Jiny %VWFL (96)
= lim liny % (YWFLlye s~ VWL, (96¢)
- (%1_13(1) % 6}3310 (VWEM|5:6ﬁ+5 B VWEM|5:6ﬁ) (96d)

9 1 . M : M
o ;LI)% 5 e};lgo VwkE ’ﬁ:€5+5 N egQO VwkE ’BZGB (96e)
=0 from Eq.[92]
1 M
:(%13% gVWE |B:5 (96f)
1
~ SVWEM|6:6 ford < 1, (96g)

where we used that limits can be exchanged for smooth functions. Using the definition of EM, we obtain a plasticity
rule that minimizes the cost function

— lim VWC

€5 —0 ‘5:55 ~ _;VWEM = i(u - Wr) fT!ﬁ:eB fores < 1. o7

[5:6/; 66

In practice, the prefactor i is absorbed into the learning rate.
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