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Abstract

Conformational sampling of complex biomolecules
is an emerging frontier in drug discovery. Ad-
vances in lab-based structural biology and re-
lated computational approaches like AlphaFold
have made great strides in obtaining static pro-
tein structures for biologically relevant targets.
However, biology is in constant motion and
many important biological processes rely on
conformationally-driven events. Conventional
molecular dynamics (MD) simulations run on
standard hardware, are impractical for many
drug design projects, where conformationally-
driven biological events can take microseconds
to milliseconds or longer. An alternative ap-
proach is to focus the search on a limited region
of conformational space defined by a putative
reaction coordinate (i.e. path collective vari-
able). The search space is typically limited
by applying restraints, which can be guided
by insights about the underlying biological
process of interest. The challenge is striking
a balance between the degree to which the
system is constrained while still allowing for
natural motions along the path. A plethora
of restraints exist to limit the size of con-
formational search space, although each has
drawbacks when simulating complex biological
motions. In this work, we present a three-stage
procedure to construct realistic path collective
variables (PCV), and introduce a new kind of

barrier restraint that is particularly well suited
for complex conformationally-driven biologi-
cal events, such as allosteric modulations and
conformational signalling. The PCV presented
here is all-atom (as opposed to C-alpha or
backbone only) and is derived from all-atom
MD trajectory frames . The new restraint
relies on a barrier function (specifically, the
scaled reciprocal function), which we show is
particularly beneficial in the context of molec-
ular dynamics, where near-hard-wall restraints
are needed with zero tolerance to restraint
violation. We have implemented our PCV
and barrier restraint within a hybrid sampling
framework that combines well-tempered meta-
dynamics and extended-Lagrangian adaptive
biasing force (meta-eABF). We use three par-
ticular examples of high pharmaceutical inter-
est to demonstrate the value of this approach:
(1) sampling the distance from ubiquitin to a
protein of interest within the supramolecular
Cullin-RING ligase complex, (2) stabilizing the
wild-type conformation of the oncogenic mu-
tant JAK2-V617F pseudokinase domain, and
(3) inducing an activated state of the stimu-
lator of interferon genes (STING) protein ob-
served upon ligand binding. For (2) and (3),
we present statistical analysis of meta-eABF
free energy estimates and for each case, code
for reproducing this work.
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1 Introduction

Utilization and impact of molecular dynamics
(MD) simulations in drug discovery continues
to grow due to the insights that can be gained
from understanding the motion of biomolecules
at atomic resolution.1–3 However, traditional
unbiased MD simulations are often insufficient
to achieve the requisite level of sampling and
accuracy fast enough to make an impact in
drug discovery projects. As such, the use of
enhanced sampling methods coupled with re-
straints in MD has become commonplace to im-
prove conformational sampling and convergence
of the free energy surface (FES). Restraining
atomic positions or interatomic distances rep-
resents the most frequently used restraints, but
many biologically relevant motions involve com-
plex atomic transformations that cannot be
treated effectively with such simple restraints
and therefore require more sophisticated collec-
tive variables (CV) utilized in advanced sam-
pling methods,4,5 which often require more so-
phisticated restraints.
One of the primary challenges faced when

studying complex conformational transitions in
proteins is elucidating a CV (e.g. some combi-
nation of distances, angles, torsions, contacts,
accessible surface area, etc.) that captures
the full complexity of the geometric perturba-
tion. A particularly useful class of CVs, termed
path CV (PCV), provides a flexible approach
to model such transitions. Most PCVs employ
a reduced representation model, such as a C-
alpha (CA) trace, to generate a minimum po-
tential energy path (MPEP), as introduced by
Elber and Karplus.6–9 The objective (and chal-
lenge) of PCV elucidation is to guide an all-
atom simulation based on the MPEP in order
to obtain a free energy surface (FES) in the re-
gion around the MPEP. In other words, the sim-
ulation evolves subject to certain restraints to
keep it close to the MPEP while still sampling
enough of the conformational space to obtain
free energy estimates in the regions proximate
to the MPEP.
The PCV often consists of an ordered set

of equally spaced intermediate conformations
called nodes. We extensively experimented

with a number of different normal modes based
PCVs and developed our own MPEP algorithm
that extends Roux’s anisotropic network model
(ANM).10 Details of our path algorithm are
provided in Section 2, but it is instructive to
note here that the main difference as shown
on Figure 1 is that the ANM model presented
in this work is smooth and differentiable ev-
erywhere, whereas the aforementioned path is
based on a dual ANM model represented by
two independent harmonic energy wells (one
for each endpoint conformation) separated by
a non-differentiable border where the two mod-
els intersect (see white border in the lower part
of Figure 1. Our smooth-ANM (SANM) path
is based on a unified ANM model, which fea-
tures a genuine saddle point connecting the two
energy wells as shown in the upper part of Fig-
ure 1.

Figure 1: Smooth ANM minimum energy path
The potential energy surface represents a hy-
pothetical molecule with two distinct confor-
mations corresponding to two different pairs of
bond angles. The upper part shows our smooth
ANM model with a genuine saddle point con-
necting the two energy wells, and the lower part
shows the original ANM model10 with its char-
acteristic singularity across the cusp (see text
for details).

In addition to the path itself, the definition of
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the PCV also includes the mathematical formu-
lae to measure progression along the path and
the orthogonal distance from the path. There
are two common types of PCVs in use in this re-
spect, one by Branduardi and Parrinello11 (BP)
and one by Leines and Ensing12,13 (LE). We
have experimented with both extensively and
we primarily use the BP path, although the
work presented here with the SANM path can
also be applied to LE PCVs. However, the LE
path requires that (1) the 3 closest path-nodes
with respect to the current simulation point
must be consecutive nodes, and (2) the clos-
est node must be the middle node. In our ex-
periences with complex biological systems, the
second condition fails quite frequently, causing
simulations to crash due to a discontinuity in
computing the path progression. As we dis-
cuss below in Section 2 in more detail, the BP
path can also exhibit discontinuities, but the
barrier restraint described and implemented in
this work was able to overcome those situations.
The PCV simulations in this work start with

a path obtained with only C-alpha (CA) atoms.
However, we found that CA-based PCV can be
misleading in conformational transitions where
certain side-chain perturbations are biologi-
cally relevant (e.g. the methionine flip in our
STING work14). This shortcoming of the CA-
PCV prompted us to develop a 3-stage strategy
whereby we first build an approximate back-
bone plus C-beta (CB) chain from the CA-
PCV. We then build an all-atom model on each
node via a cascading minimization method out-
lined in Section 2.3 below. Finally, in order to
refine the all-atom PCV, we run multiple sim-
ulations using this PCV, then reconstruct the
PCV using selected snapshots from these sim-
ulations. This adaptive approach produces a
new PCV consisting of more realistic nodes rep-
resenting conformations from high-quality MD
simulations. This iterative refinement proce-
dure can be repeated to further optimize the
path.
A crucial aspect of the meta-eABF proce-

dure that we describe here is ensuring that the
simulation stays close to the path (see details
in the ReBaCon Section 2.4 below). In other
words, the simulation should be restrained to

stay within a thin tube around the path, al-
lowing for a limited amount of sampling in or-
thogonal directions to the PCV. The most com-
mon restraining algorithm used in MD today
is a simple quadratic penalty function such as
Fc(x − x0)

2, where x is the variable to be re-
strained, x0 is its desired value, and Fc is a force
constant. In this form the restraint penalty gets
applied for all non-zero values (i.e. x < x0 or
x > x0) and the restraint force is proportional
to |x − x0|. Often we want to restrain a vari-
able not to a particular value, but just want
to make sure that the value does not exceed
an upper limit and/or fall below a lower limit.
For example, we want to apply an upper limit
to the radius of the tube that imposes mini-
mal bias to the simulation when close to the
PCV while still limiting the search space. His-
torically, limits like this have been achieved by
zeroing out the left hand side of the restraint
parabola located at the upper limit and/or ze-
roing out the right hand side of the restraint
parabola placed at the lower limit, resulting in
the ubiquitous “flat bottom” restraint that pe-
nalizes values under the lower limit and above
the upper limit whereas no penalty is applied
between the limits. Mathematically, “zeroing
out” means multiplying the penalty function
with a unit step function centered at the up-
per/lower limit, respectively. While the flat-
bottom potential achieves the goal of minimal
bias while close to the PCV, the nature of the
quadradic function has limitations, as described
below.
Simple quadratic penalties as well as com-

plex penalty functions involving higher pow-
ers, scaling, and offsets are used routinely in
MD simulations. Most penalty-based restraints
(e.g. polynomials) do not provide hard limits,
which can allow systems to deviate from the
desired region. For many situations this ap-
proach is acceptable, but not in all cases, i.e., if
we want a restraint that cannot tolerate any vi-
olation. One well-known example is restraining
covalent bonds involving H atoms to stay com-
pletely rigid in MD simulations to extend the
time step beyond 1 fs without using multiple
time step integration techniques.15,16 Software
tool kits like Colvars5 and PLUMED17–19 al-
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low users to define non-polynomial restraints of
virtually any mathematical form. However, we
are not familiar with previous publications that
describe the implementation and use of barrier
restraints as described in this work.
Barrier functions such as −log(x0 − x) or

1/(x0−x) are staples of the so-called “interior-
point methods” in constrained nonlinear opti-
mization.20 The benefit of a barrier potential
in the context of MD is that the system can-
not escape because the barrier is infinite at the
specified limit, a desired consequence of the
asymptotic behavior. Unfortunately, interior-
point methods have two significant drawbacks
that makes them difficult to use in optimization
problems. First, it can be nontrivial to move
the constrained variable inside the allowed do-
main while maintaining reasonable energetics
for complex biological motions. Second, and of
more practical importance, is that general pur-
pose line search methods can probe the exterior
of the allowed domain where the barrier func-
tion either does not exist (logarithmic) or mani-
fests a numerical “black hole” (reciprocal). The
latter happens when the value of the escaped
x gets infinitesimally close to the barrier wall
from the outside where the barrier function goes
to minus infinity. Modified line search methods
do exist, but they only work efficiently with lin-
early constrained problems.21,22 Therefore, in
most cases constrained nonlinear optimization
problems are solved with penalty functions uti-
lizing a series of successively increasing force
constants,20 but that would be impractical in
MD. The basic tenet of the work presented here
is to demonstrate that reciprocal barrier meth-
ods can be implemented in a way that over-
comes the aforementioned issues in path-based
enhanced sampling MD simulations of complex
biological motions.

2 Methods

We ran our simulations on Nvidia RTX 2080Ti
and A40 GPU-equipped, Ubuntu 20.04 work-
stations, using the OpenMM-PLUMED soft-
ware,17–19,23 versions 7.7.0 and 2.8.1, respec-
tively. The barrier function was defined in

PLUMED as a custom bias. System prepa-
ration was completed with AmberTools,24,25

ff14sb26 force field was used with proteins and
gaff27 force field with organic ligands. All
simulation job files for the work presented
here have been deposited to the PLUMED-
NEST repository28–30 and the path generator
software to GitHub.31 In addition, we posted
and included in the Supplementary Informa-
tion high-resolution trajectory movies of one of
our Cullin-RING simulations32 (see Section 3.1)
and stimulator of interferon genes (STING)
simulations33 (see Section 3.3).

2.1 Well-tempered meta-eABF

For reasons that we explain below, we employ
a combination of well-tempered metadynam-
ics and extended-Lagrangian adaptive biasing
force (meta-eABF) method34–36 for biasing the
simulation along the path and estimating the
potential of mean force (PMF). Consistent with
the family of ABF methods, meta-eABF simu-
lations utilize adaptive free energy biasing force
to enhance sampling along one or more collec-
tive variables (CV). Meta-eABF evokes the ex-
tended Lagrangian formalism of ABF whereby
an auxiliary simulation is introduced with a
small number of degrees of freedom equal to the
number of CVs, and each real CV is associated
with its so-called fictitious counterpart in the
low-dimensional auxiliary simulation. The real
CV is tethered to its fictitious CV via a spring
(typically with a large force constant) and the
adaptive biasing force is equal to the running
average of the negative of the spring force. The
biasing force is only applied to the fictitious
CV, which in turn “drags” the real simulation
along the real CV via the spring by periodically
injecting the instantaneous spring force back
into the real simulation. Moreover, the main
tenet of the meta-eABF method is that meta-
dynamics (MtD) or well-tempered metadynam-
ics (WTM) is employed to enhance sampling of
the fictitious CV itself. The combined approach
provides advantages over either MtD/WTM or
eABF37 alone. We also demonstrate the util-
ity of running multiple independent simulations
and provide rigorous error estimates for our free
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energy predictions based on a boot strapping
procedure.
In terms of path CV calculations described

below, a path is represented by two degrees of
freedom. One CV is the S variable representing
the progress along the path and the other CV
Z represents the orthogonal distance from the
path. If we put an upper limit to Z, the path
can be visualized as a tube with length S and
width Z. The essence of modeling the transi-
tion along the path with meta-eABF is biasing
either S (1D bias) or both S and Z (2D bias)
to produce a simulation that follows the path
back and forth along S while staying inside the
tube, or actively exploring the the Z dimension
as well in case of a 2D simulation.

2.2 C-alpha path generation

We employ a 3-stage minimum-energy path
generation strategy that extends Roux’s
anisotropic network model (ANM).10 The
stage 1 C-alpha path-CV (CA-PCV) works
for many biological systems, but we discovered
that CA-PCV can be misleading in confor-
mational transitions where, e.g., certain side
chain conformational changes are biologically
relevant but have barriers such that they are
not sampled sufficiently without enhanced sam-
pling. Simulations using a CA-PCV can read-
ily transform the CA trace between two protein
conformations, but the critical side-chain trans-
formations may not follow, which can prevent
the simulations from reaching the true biologi-
cal endpoints. For systems like this, it is helpful
to include certain side chain atoms in the path
to provide more biasing leverage. Our strategy
continues with stage 2 where we first build a
backbone plus C-beta (BB+CB) path based
on simple geometric considerations, followed
by stage 3 where we build an all-atom (AA)
path employing a cascading implicit-solvent
minimization method (see below).
The ANM model consists of two separate

Gaussian network models centered at confor-
mation A and conformation B, respectively. A
harmonic potential with Fc = 1 is applied to
all pairs of CA atoms at a distance <= 8 Å,
and Fc = 0 for all other pairs. The pair-

wise potentials are summed up separately, for
conformation A (ANM-A) and conformation B
(NMA-B), respectively, and the potential en-
ergy function of the combined ANM model
is MIN(ANM-A, ANM-B).10 This can be vi-
sualized in 2D as shown in the lower part
of Figure 1 with the white gap representing
the non-differentiable singularity where ANM-
A = ANM-B. Roux’s algorithm locates the ap-
proximate minimum along the singularity and
from there initiates two separate minimization
paths toward minimum A and minimum B, re-
spectively. The minimum potential energy path
(MPEP) is constructed by concatenating the A
and B paths.
While the above ANM model has utility, it

suffers from a discontinuity at the cusp, where
the two Gaussians intersect. To overcome this,
we propose a smooth ANM (SANM) model that
has no singularity and is based on the combi-
nation of two network-like models such that the
potential energy function is a “sum” instead of
“min”—SUM(SANM-A, SANM-B). The upper
part of Figure 1 shows an example of SANM
model, which contains no singularity—indeed,
the SANM produces a genuine saddle point con-
necting the two minima. Note that the corre-
sponding ANM and SANM minima do not co-
incide exactly, but the difference is small in our
experience, typically less than 0.5 Å C-alpha
root-mean-square distance (CA-RMSD), which
is well within thermal fluctuations at room tem-
perature. The functional form of SANM can
be virtually anything that approximates the
quadratic at the minimum, but is flattened out
further away from the minimum. We use the
following function in Equation (1), where dij is
the pairwise CA-CA distance in any conforma-
tion while dAij and dBij are the same in the refer-
ence conformations A and B, respectively. Only
a subset of atom pairs i and j are included in the
sums for which the arithmetic mean of dAij and

dBij < 8 Å. We refer to the left sum as SANM-A
and the right sum as SANM-B. In the vicinity
of conformation A SANM-A is near quadratic
while SANM-B is approximately flat (equal to
the number of i, j pairs included in the sum),
and vice versa in the vicinity of conformation B.
Figure 1 (top) gives a good visual representa-
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tion of Equation (1) in two dimensions.

ESANM =
∑
i<j

(dij − dAij)
2

1 + (dij − dAij)
2
+
∑
i<j

(dij − dBij)
2

1 + (dij − dBij)
2

(1)
In principle we could generate a CA-path

on the SANM potential energy surface (PES)
by locating one or more saddle points about
halfway between the two minima. Although
this approach seems viable, finding saddle
points on a multidimensional PES is very ineffi-
cient compared to minimization. Given our ob-
jective to have a method that can be applied in
real-world drug discovery projects fast enough
to make an impact on decisions, we favored a
practical approach that involves only minimiza-
tion. We start by minimizing the SANM energy
of one of the endpoint structures, which is usu-
ally an X-ray structure, and arrive at one of
the minima on the SANM-PES, say A. This is
the first short segment of the CA-path. As we
stated above, the minima on the SANM surface
are within 0.5 Å RMSD from their correspond-
ing physical structure in our experience. A sim-
ilar terminal segment is then added to the path
by minimizing the other endpoint structure and
finding the other minimum B. The significant
middle segment of the CA-path is generated by
restrained minimization. Starting from mini-
mum A ESANM is minimized subject to position
restraints (POSRE) representing minimum B.
The key for this algorithm to work is to use a
weak restraining force constant. We found that
FPOSRE
c = 0.1 kcal/mol2 was particularly effi-

cient in gently pulling the minimization from
one minimum to the other, passing a low en-
ergy barrier on the ESANM PES. This barrier is
generally not a true saddle point, but works well
for all practical purposes. As a consequence of
the above procedure, the algorithm generates
two different CA-paths for a given pair of ter-
minal segments, depending on whether we start
in minimum A or minimum B. Unless the exact
nature of the transition state is important, ei-
ther path can be used to estimate the PMF, but
using both independently can further enhance
sampling and provide a better estimate.
The SANM model presented here extends the

ANM model in another aspect as well. Specifi-
cally, we noticed that the standard ANM model
without additional restraints exhibits an un-
desirable artifact that manifests in strongly
curved, tight transition paths, as is often the
case in highly coupled condensed phase systems
such as proteins in water. The ANM model
works well in the vicinity of the reference con-
formation but long amplitude excursions (as is
often needed to simulate biologically relevant
motions) can result in nonphysical distortions
in the geometry. For example, using solely
the ANM model can produce a CA-path where
consecutive node structures in a flexible loop
fold on top of each other and some CA atoms
nearly overlap. Therefore, we included three
additional restraint terms in the SANM model.
(1) CA-CA virtual bonds are kept at approx-
imately 3.8 Å distance, (2) CA-CA-CA angles
are restrained to 75−145o, and (3) non-adjacent
CA-CA pairs are also kept apart at least 3.8 Å.
With these restraints even the tightest turns in
the CA-path maintained physical geometries.

2.3 Backbone and all-atom path

For systems where side-chain packing is an in-
tegral part of a conformational transition, the
CA-path itself is often inadequate because the
side chains do not properly reorient during the
transition. It is possible to build an all-atom
(AA) path but it would be inefficient from a
computational perspective to use all the side-
chain atoms—usually a small subset will suffice.
The bottleneck in path calculations is twofold,
(1) passing the atomic coordinates between the
MD engine and the advanced sampling module
at every time step, plus (2) computing RMSD
to multiple path nodes. Theoretically, these
operations scale as O(Nat) and O(Natlog(Nat)),
respectively, at best and O(N2

at) at worst, with
the number of atoms Nat included in the calcu-
lation. Moreover, state-of-the-art MD engines
are all GPU based, but the path-CV/meta-
eABF modules5,17–19 run on multiple CPUs
and, therefore, even a modest reduction in
Nat can result in significant overall simulation
speed-up, so it is highly beneficial to minimize
Nat.
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The first step towards the AA-path is the
construction of the backbone and CB atoms
on top of the CA trace (BB+CB-path). The
BB+CB-path need not be highly accurate be-
cause it is not used here directly for free energy
estimations—we just utilized the lever effect of
the CB atoms to achieve the correct side-chain
transitions when it was necessary. We employed
a simple algorithm based on geometric consid-
erations.31 Assuming that all-atom models of
both path endpoint conformations are avail-
able, constructing the AA-path continues as fol-
lows. The number of nodes N is the same in the
CA, BB+CB, and AA paths, respectively. (1)
First, we replace the CA and CB atom coor-
dinates of conformation A, which is AA-path1

with those of the adjacent node in the BB+CB-
path BB+CB-path2, and minimize the energy
using an implicit solvent model while restrain-
ing the CA and CB coordinates to their new val-
ues. The resulting minimum energy structure
has approximately the same CA and CB co-
ordinates (depending on the POSRE force con-
stant, namely how much relaxation we allow) as
in the corresponding BB+CB-path2 node and
the side chains will be slightly different from
their original configuration in AA-path1. This
structure is now AA-path2 and serves as the
basis for generating AA-path3. (2) Then, we
replace the CA and CB coordinates in AA-
path2 with those in BB+CB-path3 and apply
the same POSRE minimization protocol to con-
struct AA-path3. (3) Next, we continue the
cascading procedure until we reach AA-pathN/2

and then start over from the other end. (4) Fi-
nally, starting with conformation B, i.e., AA-
pathN we continue the cascade backwards un-
til we reach AA-pathN/2+1 and at that point
the full AA-path is completed. After prun-
ing the AA-path to include only relevant side-
chain atoms, this path-CV can be readily used
for simulating complex protein conformational
transitions.
The final contribution that we present in

this work is an improvement in the struc-
ture of the nodes used along the path. The
nodes of the path described above consist of
minimized structures in implicit solvent, but
it would be more accurate if the nodes rep-

resented snapshots (saved trajectory frames)
from a high-quality simulation with explicit
solvent. First, we run multiple independent
meta-eABF (or any other kind of enhanced
sampling) simulations using the pruned AA-
path for a few hundred ns, saving trajectory
frames quite frequently (approximately every
50-100 ps). Then, from the combined pool of
trajectory frames we select a subset such that
it best resembles the original path, but now
the nodes are replaced by frames from an all-
atom explicit solvent molecular dynamics (MD)
simulation. We used the following simple algo-
rithm for reconstructing the AA-path. (1) Each
original node is assigned a set of frames from
the combined trajectory for which the RMSD
from that node is less than a user-defined cut-
off value, typically < 0.5 Å. Note that there will
be significant overlap among the S1-SN sets, but
that is not a problem. (2) The first node of the
new trajectory-frame based path can be ran-
domly selected from any of the S1-SN sets. Here
we select a frame from S1 to initiate the new
path with AA-traj-path1. (3) AA-traj-path2 is
selected from S2 but the selection is no longer
random, instead the frame in S2, which is the
closest in RMSD to AA-traj-path1, is the one
selected. (4) AA-traj-path3 and so on are added
to the new path in a similar fashion, AA-traj-
pathi is selected from Si adding the shortest
segment to the path in terms of RMSD mea-
sured from AA-traj-pathi−1. Adding the short-
est segment instead of random selection helps
maintain fairly evenly distributed nodes along
the new path, which is an important require-
ment in both BP11 and LE12,13 paths, especially
the latter. We note, however, that enforcing
strictly evenly spaced nodes can introduce arti-
facts in terms of non-physical geometry and this
is another reason we prefer the BP path, which
is tolerant to slight variations in node spacing,
while the LE path is very strict about keeping
even spacing. Also note that each node in AA-
traj-path must be unique (already selected tra-
jectory frames are removed from the pool dur-
ing path reconstruction) to assure monotonic
RMSD change along the path with respect to
the endpoint conformations A and B. (5) This
procedure can be iterated to further improve
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the path by running additional simulations with
the new path and collecting more trajectory
frames.

2.4 Reciprocal barrier restraint
(ReBaCon)

In order to introduce the new barrier restraint
we first provide a closer look at the traditional
approach. As an example, we show an upper
wall restraint located at 1 (i.e. we do not want
variable x to go above 1). This upper wall is
represented as a black vertical line in Figure 2.
On the top right we show four different penalty
functions using powers 2 to 5 (blue, orange, red,
and green, respectively), and for simplicity we
choose Fc = 1. Θ is the unit step function. The
traditional quadratic penalty is represented by
the blue curve. There are two features to note:
(1) the penalty function only couples with the
system for x > 1, and (2) these kind of penalty
functions have very slow acceleration and there-
fore grow very slowly. In fact, the faster, higher
powered functions start making a significant
difference only for x > 2. Penalty functions
such as this are only good for weak restraints
in MD simulations. The negative derivative of
the penalty function/potential is the restrain-
ing force and its magnitude is proportional to
the restraint violation. Figure 2 (bottom right)
shows the forces associated with the penalty po-
tentials. The forces are negative, pulling x back
toward 1.
From a practical perspective, it would be

preferable for the restraint potential/force to
engage inside the wall and not outside. In that
spirit, barrier functions are designed to never let
the restrained variable escape from its allowed
domain by applying an infinite wall. Figure 2
(top left) shows a series of such barrier func-
tions that are actually related to the penalty
functions, but instead of using positive powers,
they use negative powers. In general, we ap-
ply a simple and robust barrier function of the
form 1/(x0−x), which is used in all of the path
simulations presented in this work, although for
visual purposes the barrier functions are scaled
by 0.1 in Figure 2.
Barrier functions are never zero in the allowed

Figure 2: Traditional polynomial penalty ver-
sus reciprocal barrier constraint. The upper
part shows the restraint potential of a series
of barrier restraints (left) and penalties (right),
and the lower part shows the corresponding re-
straint forces. The upper wall is represented by
the vertical black line located at 1.0, see text
for details.
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domain, but their values are very small up until
they get close to the wall, where they grow ex-
ponentially fast and go to infinity in the limit.
Higher negative powers present a steeper wall
and allow x to get closer to the wall. Similar
effect can be achieved with the lower powers by
multiplying them with a small constant k << 1.
However, in MD simulations there is a limit
to this, in our hands k < 0.008 kcal/mol2 re-
sulted in occasional breaks through the barrier
wall due to the finite MD time steps. Figure 2
(bottom left) shows the barrier forces. Again,
the forces are negative, pulling x away from the
wall, keeping it inside. Also note how much
larger the magnitudes of the barrier forces are
in the vicinity of the wall with respect to the
penalty forces on the bottom right. In the Re-
sults we provide specific reasons why barrier re-
straints are superior to penalties for specific ex-
amples.

3 Results and Discussion

In this work, we describe a novel method for en-
hanced sampling MD that combines a smooth
ANM (SANM) path collective variable (PCV)
with a barrier restraint to efficiently simu-
late complex conformational events in biolog-
ical systems. Specifically, we study three di-
verse systems with different structural compo-
sitions and conformational mechanisms. In the
first example, we simulate the motions in the
Cullin-RING ligase (CRL), which is responsible
for ubiquitination for many E3 ligases involved
in targeted protein degradation (TPD), with
von Hippel-Lindau (VHL) as the E3 ligase and
SMARCA2 as the protein of interest. Next, we
study the active/inactive transition involved in
oncogeneic JAK2, where the V617F mutation
in a non-ATP pocket of the pseudokinase do-
main results in hyperactivity of the kinase. Fi-
nally, we explore the conformational landscape
of a particular loop in STING (Stimulator of
Interferon Genes) that we found to be impor-
tant during our discovery and development of
SNX281, a novel small molecule STING ago-
nist in the clinic. The breadth and complexity
of these systems offers a good case study for

conformational free energy simulations and the
results demonstrate the robustness of the novel
approach presented in this work.

3.1 Cullin-RING Ligase with a
VHL-degrader-SMARCA2
Ternary Complex

Heterobifunctional degraders, which consist of
two separate protein binding moieties (the war-
head and the E3-ligand) joined by a linker, are a
class of molecules that “induce proximity” be-
tween a target protein of interest (POI) and
an E3 ubiquitin ligase. This induced proximity
can lead to ubiquitination of the POI and its
subsequent proteosomal degradation. Targeted
protein degradation (TPD) presents a novel ap-
proach to drug protein targets, since a single
degrader molecule can induce catalytic degra-
dation of the POI and potentially offer an av-
enue to eliminate targets traditionally labeled
as undruggable by classical therapeutic strate-
gies. In the work presented here, we assem-
ble the entire eight-protein Cullin-RING lig-
ase (CRL) supramolecular complex to explore
structural and dynamic factors associated with
ubiquitination. Specifically, we probe the con-
formational landscape associated with differ-
ent solvent-exposed POI lysine residues com-
ing into proximity with the E2-loaded ubiquitin
of the CRL, specifically focusing on the proba-
bility of POI lysine residue density within this
“ubiquitination zone”. We recently published
a broad study on atomic-resolution predictions
of degrader-mediated ternary complex struc-
tures,38 which included a preliminary study of
the dynamic nature of the full CRL complex
via meta-eABF. However, in that work we en-
countered a problem with traditional penalty
restraints, which prompted research into a bet-
ter solution and resulted in the barrier restraint
described in this work.
Figure 3 shows the individual nodes repre-

senting discrete conformations along the path.
The fully open and closed conformations of the
CRL complex were constructed based on par-
tial experimental structures (PDB IDs 1LQB,
5N4W, and 6TTU) as we described in detail
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elsewhere.38 The gradually morphing conforma-
tions are shown as smooth CA-traces colored
by a red-to-white-to-blue palette, red represent-
ing the closed conformation and blue represent-
ing the open conformation. For reference, we
show each of the biological units comprising
the supramolecular complex as colored patches
on the composite surface representation that
includes both open and closed conformations.
One can visualize the path CV as “morphing”
between the two endpoints, but the minimum
potential energy path (MPEP) is significantly
more realistic than a direct geometric morph.10

Figure 3: Frame stack representing the path
collective variable (PCV) for the open-to-closed
transition in the full CRL-VHL-degrader-
SMARCA2 complex. The individual conforma-
tions along the path are shown as CA-traces
colored by a red-to-white-to-blue palette, red
representing the closed conformation and blue
representing the open conformation. The bi-
ological units that comprise the CRL complex
are shown as colored patches behind the stacked
frames. A movie of one of our open/closed tran-
sition simulations is provided in the Supporting
Information.

Computation of the PCV in a system of this
size undergoing a non-linear conformational
motion is quite complex11 even when it is rep-
resented by only two degrees of freedom. One
CV is the S variable, representing the progress
along the path (e.g., if we have 50 nodes then

S goes from 1 to 50). The other CV (Z) rep-
resents the orthogonal distance from the path.
When we apply an upper limit to Z, the path
can be visualized as a tube with length S and
width Z. The essence of modeling the open
and closed transition, then, is running a meta-
eABF simulation such that the S collective vari-
able follows the path back and forth and the Z
variable keeps the system within a specified dis-
tance of the path, allowing sampling with mini-
mal bias within the tube. This scenario is where
the new kind of restraint presented in this work
shows its strength.
It is instructive to note that the maximum

radius of the path tube (Zmax) should be small
enough to constrain the conformational space
while being large enough to allow unbiased sam-
pling orthogonal to the path. In our experi-
ence with protein systems, this varies between
as thin a tube as Zmax = 0.2 Å radius to about
3.0 Å, depending on the system and the path.
There are two independent reasons why this
limit exists. (1) The BP path algorithm is exact
only for thin tubes11—beyond that the compu-
tation of S and Z becomes indeterminate and
causes jumps in the S and Z variables from one
MD time step to the next. (2) In case of highly
curved paths associated with complex confor-
mational transition patterns, a simulation that
strays too far from the center of the path can
jump from one part of the S path to another in
a non-continuous way. To visualize this, con-
sider a PCV shaped as the letter Ω. As the
orthogonal distance Z increases (i.e. the thick-
ness of the line), the bottom-left and bottom-
right of the Ω will eventually overlap. As such,
a simulation with a large Z can inadvertently
jump from the left base to the right base, com-
pletely bypassing the entire curved part of the
path (the original intention of the PCV). With
a smaller Z the simulation can stay on the path
throughout its full length.
The problem with jumps in CV values is

that they cause discontinuities in the spring
force coupling the real CV and the fictitious
CV, which will ultimately result in the sim-
ulation crashing. To avoid these discontinu-
ities, we found (by trial and error) that the
tube radius should be 3.0 Å for the CRL-VHL-
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degrader-SMARCA2 complex. While we could
use a penalty restraint to achieve this, we show
that using a reciprocal barrier restraint has
benefits. For example, the standard harmonic
penalty applied at 3.0 Å distance would require
an offset (explained in section 2.4) with the
penalty starting at Z = 0. Using this offset we
would need a fairly large force constant Fc ≈
1, 000 kcal/mol/Å2 to keep the simulation in-
side the 3.0 Å tube, which is large but still prac-
tical. However, if we set the maximum radius
to 0.5 Å we need a Fc ≈ 100, 000 kcal/mol/Å2,
which can be prohibitive in MD simulations.
Regardless of whether or not it is feasible to
use a particular large force constant, the prob-
lem with a penalty is that the concrete value
of the required Fc depends on the nature of the
free energy surface and the tube radius, which
can only be determined empirically based on
numerous test simulations on a particular sys-
tem. Conversely, the exact same reciprocal bar-
rier function 1/(Rmax − Z) can be used for any
tube radius. It takes exactly the same amount
of barrier restraint force to enforce a 3.0 Å tube
radius as it takes to enforce a 0.5 Å tube radius.
In order to demonstrate the adverse effects

of using inadequate harmonic restraint and
show the benefits of the reciprocal restraint,
we ran meta-eABF simulations using the har-
monic restraint FcZ

2 set at Z = 0 with
Fc = 250 kcal/mol/Å2 and the barrier restraint
k/(3 − Z) where k = 1 kcal/mol*Å and the
outer surface of the tube is set to be at Z = 3Å
distance from the path. In Figure 4 we com-
pared the restraint potentials and forces for
barrier vs. penalty at two levels of magnifica-
tion, wide range (top) and in the close vicin-
ity of the tube surface (bottom). The hori-
zontal axis represents the tube radius Z. The
positive domain of the vertical axis shows the
restraint potential in kcal/mol and the nega-
tive domain represents the restraint force in
kcal/mol/Å. The restraint force is the manifes-
tation of the wall and as Figure 4 shows, the
barrier force approximates a hard wall whereas
the penalty force represents a soft wall. The
orange curve is the harmonic penalty potential

with Fc = 250 kcal/mol/Å
2
with its value equal

to 2,250 kcal/mol at Z = 3 Å, and the green

curve is the corresponding linear penalty force.
The harmonic potential grows slowly, making
it ineffective at keeping the system within the
desired region. This is vividly demonstrated at
high magnification shown in the bottom part of
Figure 4.
Figure 5 shows the evolution of the S vari-

able in a slice of the meta-eABF simulation
of the CRL-VHL-degrader-SMARCA2 system
from 30-60 ns. The vertical axis shows the index
of the path CV nodes as units, which roughly
corresponds to Angstroms in this case. Val-
ues close to 1 represent the closed conformation
and close to 40 representing the open confor-
mation. First, consider the purple plot, which
corresponds to using a traditional harmonic re-
straint on Z. It exhibits several spikes where S
jumps several units, showing evidence of discon-
tinuity. The simulation survives for a while but
eventually crashes at about 55 ns. The insert in
Figure 5 displays a magnification of the middle
part to show the spikes more vividly between
43 ns and 47 ns.
Figure 6 shows the same issue in the Z dimen-

sion. The purple spikes are problematic—as
mentioned above, the S and Z spikes originate
from a mathematical formula11 that breaks
down at about Z = 3.0 Å with this system.
While the spikes are clear visual cues, the crit-
ical data in Figure 6 are the values of Z where
there are no spikes, between 34 and 43 ns, as
shown in the insert where the “normal” purple
Z values hover between 3-4 Å, which is beyond
the desired tube radius of 3 Å.
Now, consider the green plots representing the

exact same simulation except for using the bar-
rier restraint in place of the harmonic penalty.
Here, both S and Z are smooth (the plots show
data points at 1,000 MD time step intervals),
Z stays below 3.0 Å, and the simulation runs
without incident for the specified time of 100 ns.
Since the penalty starts at Z = 0, the harmonic
penalty has a substantial value even when rel-
atively close to the wall, but as the insert in
Figure 6 (purple curve) shows, the simulation
still proceeds outside the wall (up to 4.0 Å
from the path. In contrast, the barrier restraint
(blue curve potential, red curve force in Fig-
ure 4) has negligible value all the way up to
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Figure 4: Path tube restraint: barrier vs.
penalty
Comparison of a traditional harmonic penalty
with the reciprocal barrier restraint presented
in this work. Two levels of magnification are
shown, wide range (top) and in the close vicin-
ity of the tube surface (bottom). The horizon-
tal axis represents the distance Z from the cen-
ter of the tube. The positive domain of the
vertical axis shows the restraint potential in
kcal/mol, and the negative domain represents
the restraint force in kcal/mol/Å. The orange
curve is the harmonic penalty potential and the
green curve is the corresponding force. The
penalty starts at Z = 0 and therefore has a
substantial value close to the wall, but as the
insert in Figure 6 (purple curve) shows, the sim-
ulation still proceeds outside the wall. In stark
contrast, the barrier restraint (blue curve po-
tential, red curve force) is negligible all the way
up to the immediate vicinity of the wall where it
provides an infinite barrier preventing the sim-
ulation from ever leaving the tube.

Figure 5: Time evolution of the S path variable
using a harmonic penalty restraint on the Z
variable (purple) shows significant jumps along
the path shown by the spikes along the verti-
cal S coordinate, and crashes at about 55 ns.
However, using the reciprocal barrier restraint
(green), the simulation is smooth and runs in-
definitely, see text for details. The insert shows
a magnified view between 43 ns and 47 ns.

Figure 6: Time evolution of the Z path vari-
able. The jumps in the S variable shown in Fig-
ure 5 are coupled with enormous jumps in the Z
variable (purple spikes) whereas the reciprocal
barrier restraint keeps the Z value safely below
3Å (green curve; see text for details). The in-
sert shows a magnified view between 34 ns and
43 ns.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.26.534298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.26.534298
http://creativecommons.org/licenses/by-nc-nd/4.0/


the immediate vicinity of the wall where it pro-
vides an infinite barrier preventing the simula-
tion from ever leaving the tube. In fact, with
k = 1 kcal/mol*Å the barrier restraint kicks in
much earlier and as shown in the insert in Fig-
ure 6 (green curve), the simulation stays within
∼2.8Å of the path. From the above example,
the benefits of the SANM path coupled with the
novel barrier restraint allow for efficient and ro-
bust sampling along the path, which was not
possible with the traditional ANM path and
harmonic restraint.

3.2 JAK2-V617F pseudokinase
domain

The oncogenic JAK2 V617F mutation lies in
the pseudokinase domain of JAK2, which is
distal from the pseudokinase ATP binding site
and the kinase catalytic site.39 This suggests
that the impact of the V617F mutation might
involve a conformational mechanism. Crystal
structures of the V617F domain in complex
with two compounds that binding in the ATP
site of the pseudokinase reveal a conformation
that is characteristic of the wild-type domain,
rather than that previously observed for the apo
V617F mutant. These structures suggest that
certain ligands in the ATP site of the pseudok-
inase can modulate the V617F mutant and re-
store a wild-type conformation, thereby provid-
ing a rationale for the allosteric mechanism.
Here, we aim to rationalize the McNally39

finding that Compound 2 in complex with the
V617F domain (PDB code 6G3C) favors the
wild-type (WT) domain conformation (PDB
code 4fVQ) rather than the mutated oncogenic
form (PDB code 4FVR). As shown in Figure 7
the two structures are virtually identical except
for the small but crucial differences around the
site of mutation. The conformational differ-
ences include a displacement of the helix and
change in loop conformation connecting the he-
lix to the beta-strand. Figure 8 shows a magni-
fied view of the region around the V617F mu-
tation.
Since the conformational differences between

WT and V617F away from the site of muta-
tion are relatively small, the CA-path was cho-

Figure 7: Superposed X-ray structures of the
wild-type and the V617F mutant form of the
JAK2 pseudokinase domain in complex with
Compound 239

The two structures are virtually identical ex-
cept for the small but crucial differences around
the V617F mutation. The wild-type (WT) con-
formation is red and V617F is blue. The con-
formational differences are highlighted in red,
which include a displaced helix and loop move-
ment. Residue F617 is shown in CPK. Com-
pound 2 in the ATP binding site is also shown
in CPK. The insert in Figure 8 shows a more
detailed view of the allosteric site.
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sen to only include residues near the site of
mutation. We applied two-dimensional meta-
eABF bias using both path parameters S and
Z with a tube radius of 0.5 Å. We found that
60 ns of meta-eABF simulation produced mul-
tiple full sweeps of the path. To provide a sta-
tistical error estimate for the prediction of the
conformational free energy barrier between WT
and V617F, we ran 50 independent simulations
starting with the same structure but assigning
different random velocities from a Maxwell dis-
tribution on a per atom basis.

Figure 8: Average PMF of 1,000 boot strapped
samples at 99% confidence interval. The hori-
zontal axis represents the transition coordinate
of the conformational transformation between
WT (left) and V617F (right) forms of the JAK2
pseudokinase domain. The vertical axis shows
the free energy in kcal/mol. The PMF plot in-
cludes the average and the associated 99% con-
fidence interval computed from 10 (green) and
all 50 (purple) independent meta-eABF simu-
lations. The insert shows a detailed view of the
conformational transition. WT conformation is
red and V617F mutant is blue.

Our aim was to compute the free energy sur-
face along the transition path between the WT
and V617F conformations, and provide rigor-
ous statistical error estimate. In meta-eABF
the PMF is computed by numerically integrat-
ing the biasing force. In a one-dimensional
simulation where only S is biased, the bias-
ing force is binned along the path. Each bin

contains two pieces of data, one is a counter
that is incremented every time the simulation
point has an S coordinate inside that bin, and
the other is the running average of the negative
spring force −F spring

c (Sfict − S) where the cur-
rent value of S falls within the bin. This näıve
estimate is biased, though, and only works well
for fully converged simulations. In most cases,
as here too, we used the corrected z-score av-
eraged restraint (CZAR) estimate.35 In a two-
dimensional meta-eABF simulation both S and
Z are binned in a two-dimensional lattice, in
which case the numerical integral provides a
two-dimensional PMF. In this study we were
only interested in the PMF along the path, so
we marginalized the 2D PMF to get the 1D
PMF along S.
The 50 independent simulations afforded 50

different PMFs, which were combined into a
single PMF using boot strapping to compute
a confidence interval along the entire PMF.
To do this we first normalized the arbitrary
integration constant Ci associated with every
PMFi. Computing the Ci constants requires
a boundary condition—we used Steiner’s the-
orem40 originally stated in classical mechan-
ics (“Trägheits-Momente) but also furnishing
a least square estimator in a conditional set-
ting. In our setting, we seek a set of verti-
cal shifts such that that overall vertical vari-
ance along the shifted PMF curves is mini-
mized.41 We computed the 99% confidence in-
terval around the mean of the optimally shifted
PMF curves using 1,000 boot strapped sam-
ples of 10, 20, 30, 40, and all 50 PMFs. On
Figure 8 we plotted the average PMF from
10 and from 50 simulations. The PMF indi-
cates a fairly converged simulation with not
much difference in the mean, although running
50 independent simulations significantly nar-
rowed the confidence interval. The meta-eABF
simulations are consistent with the experimen-
tal observation39 that Compound 2 in complex
with the V617F domain shifts the conforma-
tional landscape toward the the WT conforma-
tion and away from the oncogenic form. Fig-
ure 8 also shows the highly localized confor-
mational change between WT (left, red) and
V617F (right, blue), indicating that the binding
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of Compound 2 in the ATP site has a significant
effect in the allosteric site.

3.3 Stimulator of Interferon
Genes (STING)

STING (stimulator of interferon genes) is a ho-
modimer protein involved in regulation of the
innate immune system and plays a role in an-
titumor immunity by inducing the production
of cytokines. Activation of STING results from
the binding of endogenous cyclic dinucleotides
(CDNs) that induce a conformational change
to initiate signaling. We previously published
the design of a systemically available small
molecule STING agonist (SNX281) that is cur-
rently in clinical trials for a variety of tumors.14

Here, we provide details of conformational free
energy simulations, which provide insights into
the structural and dynamic basis of a specific
transition observed in our drug discovery ef-
forts.
We simulated the Met-loop conformational

change to gain insight into the complex multi-
step mechanism and better understand the bi-
ology related to ligand binding. The STING
activation process involves multiple conforma-
tions, and in particular we were interested in
the specific transition shown on Figure 9 where
the large loop movements are coupled with the
180o flip of M267 from the “in” to the “out”
orientation in the so-called Met-loop (residues
262-272) transition that we first noticed in our
in-house X-ray structures14 . This computa-
tional study presented challenges with a tra-
ditional ANM path and harmonic restraints,
spurring us to employ the SANM path with a
barrier potential. We followed our 3-stage strat-
egy presented in sections 2.2 and 2.3. The CA-
path was not suitable to model the Met-flip, so
we generated the AA-path and pruned it to in-
clude the methionine sulfur atom of M267 in
both units of the STING dimer. This small
but significant change in the path afforded the
first simulations where we observed the Met-flip
(see trajectory in the Supplementary Informa-
tion). For this simulation we used a thin path-
tube with Z = 0.2 Å radius to avoid the sim-
ulations crashing for reasons described in sec-

Figure 9: Superposition of two conformations of
the STING dimer, highlighting a large change
in a methionine-containing (Met) loop. The
Met-in and Met-out conformations have numer-
ous distinct differences. The Met-in conforma-
tion is shown in blue and the Met-out confor-
mation in red. The sulfur atoms of the M267
side chains are shown as spheres (enlarged for
clarity), with the blue spheres pointing inward
while the red spheres are pointing outward rel-
ative to the buried binding site. The bind-
ing site undergoes an associated conformational
change, which is evident from the differences
in the surface representation. A movie of the
meta-eABF transition is provided in the Sup-
porting Information.
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tion 3.1. We could not have achieved this using
traditional penalty restraints, but as we pointed
out in 3.1, when using the reciprocal barrier re-
straint presented here, it takes the same amount
of restraint force independent of the tube ra-
dius. However, with very thin tubes the bias-
ing force in meta-eABF tends to be very large
because there is no room to relax in the orthog-
onal Z dimension and, therefore, the free energy
surface tends to be inaccurate.
Ideally, a thicker tube would be preferred to

generate more sampling along the orthogonal
directions to the path and therefore more rea-
sonable free energy estimates. Here, we found
that trajectory-based paths could help. We
took the trajectory from the 200 ns meta-eABF
simulation that used the aforementioned path
and analyzed the ≈4,000 frames using the pro-
cedure described in Section 2.3. From that we
picked a new path, which included all its nodes
from a real simulation and utilized it in subse-
quent meta-eABF simulations. The major ben-
efit we saw in these simulations was that we
could relax the tube restraint from 0.2 to 0.8 Å
radius (we tried even thicker tubes but they
crashed the simulation), and as shown in Fig-
ure 10 the PMF barrier between the Met-in and
Met-out conformations was lowered markedly
using this stage-3 path compared to the barrier
computed with the stage-2 path that needed the
ultra-thin tube. We note that this procedure is
inherently iterative and work is underway to ap-
ply further iterations to bring down the PMF
to thermodynamically relevant heights.
We conclude with a noteworthy observation

that was not clear a priori. The STING dimer
is symmetrical in both Met-in and Met-out con-
formations. Therefore, the AA-path algorithm
in 2.3 will generate a symmetrical path where
the Met267 flip will happen simultaneously in
both units. However, there is no physical or
biological evidence to assume that the in-out
transition should be symmetrical and, in fact,
we did observe that the meta-eABF trajectory
displayed asynchronous flips as shown in our
movie in the SI.33 So, besides the trajectory-
frame based path being smoother, it can also
capture certain aspects of physical reality that
cannot be considered by any path method solely

Figure 10: Average PMF of 10,000 boot
strapped samples at 95% confidence interval.
The horizontal axis represents the transition
coordinate of the conformational transforma-
tion between the Met-in (left) and Met-out
(right) conformations of STING. The vertical
axis shows the free energy in kcal/mol. The
PMF plot includes the average and the asso-
ciated 95% confidence interval computed with
two different paths. Both paths include the CA
atoms and the sulphur atom of Met267, but the
stage-2 path is comprised of energy-minimized
structures whereas the stage-3 path is con-
structed from trajectory frames of the very
same meta-eABF simulation that employed the
stage-2 path.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.26.534298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.26.534298
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on two endpoint structures.

4 Conclusion

Accurate and efficient prediction of conforma-
tional changes in biological systems (both the
structures and the underlying free energy sur-
faces) is an important area of research with
vast applications in drug discovery. While great
strides have been made in protein structure pre-
diction (e.g. AlphaFold,42 RoseTTAFold,43 and
OpenFold44), progress on conformational sam-
pling of biologically-relevant motions has not
witnessed a comparable acceleration from ar-
tificial intelligence (AI) and machine learning
(ML), although some encouraging approaches
are beginning to arise.45–47 One reason is that
there is much less data associated with protein
motion as compared with static structures. One
of the few experimental methods that can assess
protein motion and energies is NMR,48 which is
challenging, time consuming, and limited data
is available to date. We expect AI and ML to
play an increasingly important role in confor-
mational sampling and we anticipate physics-
based simulations to play an important role for
the foreseeable future. Indeed, physics-based
simulations could provide the scale and quality
of data necessary for an AI/ML approach.
In this work we presented a new path col-

lective variable (PCV) algorithm built from a
smooth ANM (SANM) and includes the option
to build an all-atom (AA) path as opposed to
a CA-path. We also introduced the concept
of refining path CVs iteratively utilizing tra-
jectory frames extracted from a series of high-
quality explicit solvent simulations. Further-
more, we pointed out the need for a new kind
of restraint for molecular dynamics simulations,
which we formulated as a reciprocal barrier re-
straint. While this type of restraint (we term
it ReBaCon for Reciprocal Barrier Constraint)
has significant challenges in nonlinear optimiza-
tion, we showed that it is well-suited for molec-
ular dynamics simulations. In particular, we
have found it to be the best approach for path-
based enhanced sampling simulations of com-
plex biological conformational changes.

In this work we applied this new PCV
and ReBaCon within a hybrid MD sampling
method that combines well-tempered metady-
namics with extended adaptive biasing force
(meta-eABF). We applied our new methods to
three complex systems of significant pharma-
ceutical interest: (1) simulated large-scale con-
formational changes in the Cullin-RING lig-
ase supramolecular structure responsible for
ubiquitination, (2) computationally reproduced
the experimental finding that certain small
molecules in complex with the oncogenic V617F
mutant of the JAK2 pseudokinase domain can
allosterically modulate the free energy land-
scape toward the wild-type conformation, and
finally, (3) simulated the conformational change
of the STING protein upon activation with par-
ticular focus on a specific loop transition. We
encourage others in the field to try these meth-
ods and propose further improvements, with a
focus on biologically relevant problems as op-
posed to model systems. We are currently using
the methods presented here on a variety of con-
formational sampling problems in our drug dis-
covery programs, including conformational ac-
tivation and allosteric inhibition.
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Supporting Information Avail-

able

Movie files of our meta-eABF simulations of
the opening/closing of the Cullin-RING com-
plex32 (red POI, blue VHL, cyan Elongin, grey
Cul2, green Ubiquitin, orange EBE2D2, brown
NEDD8, and yellow RBX1), see Section 3.1,
and the Met-in to Met-out conformational tran-
sition of STING,33 see Section 3.3.
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(13) Pérez de Alba Ort́ız, A.; Tiwari, A.;
Puthenkalathil, R.; Ensing, B. Advances
in enhanced sampling along adaptive
paths of collective variables. J. Chem.
Phys. 2018, 149, 072320.

(14) Allen, B. K.; Kulkarni, M. M.; Chamber-
lain, B.; Dwight, T.; Koh, C.; Samant, R.;
Jernigan, F.; Rice, J.; Tan, D.; Li, S.
et al. Design of a systemic small molecule
clinical STING agonist using physics-
based simulations and artificial intelli-
gence. bioRxiv 2022,

(15) Andersen, H. C. Rattle: A ”velocity” ver-
sion of the shake algorithm for molecular
dynamics calculations. J. Comput. Phys.
1983, 52, 24–34.
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Lelièvre, T.; Pohorille, A.; Chipot, C. The
adaptive biasing force method: Every-
thing you always wanted to know but were
afraid to ask. J. Phys. Chem. B 2015,
119, 1129–1151.

(35) Lesage, A.; Lelievre, T.; Stoltz, G.;
Hénin, J. Smoothed biasing forces yield
unbiased free energies with the extended-
system adaptive biasing force method. J.
Phys. Chem. B 2017, 121, 3676–3685.

(36) Fu, H.; Zhang, H.; Chen, H.; Shao, X.;
Chipot, C.; Cai, W. Zooming across the
free-energy landscape: shaving barriers,
and flooding valleys. J. Phys. Chem. Lett.
2018, 9, 4738–4745.

(37) Fu, H.; Shao, X.; Cai, W.; Chipot, C.
Taming rugged free energy landscapes us-
ing an average force. Acc. Chem. Res.
2019, 52, 3254–3264.

(38) Dixon, T.; MacPherson, D.; Mostofian, B.;
Dauzhenka, T.; Lotz, S.; McGee, D.;
Shechter, S.; Shrestha, U. R.;
Wiewiora, R.; McDargh, Z. A. et al.
Predicting the structural basis of tar-
geted protein degradation by integrating
molecular dynamics simulations with
structural mass spectrometry. Nature
communications 2022, 13, 5884.

(39) McNally, R.; Li, Q.; Li, K.; Dekker, C.;
Vangrevelinghe, E.; Jones, M.; Chène, P.;
Machauer, R.; Radimerski, T.; Eck, M. J.
Discovery and structural characterization
of ATP-site ligands for the wild-type and
V617F mutant JAK2 pseudokinase do-
main. ACS Chemical Biology 2019, 14,
587–593.

(40) Drygas, H. On the relationship between
the method of least squares and Gram–
Schmidt orthogonalization. Acta et Com-
mentationes Universitatis Tartuensis de
Mathematica 2011, 15, 3–13.

(41) Steiner’s theorem and least squares.
https://people.maths.bris.ac.uk/

~mb13434/Steiner_thm.pdf, accessed by
03-26-2023.

(42) Jumper, J.; Evans, R.; Pritzel, A.;
Green, T.; Figurnov, M.; Ron-
neberger, O.; Tunyasuvunakool, K.;
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