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Abstract
Probing memory of a complex visual image within a few hundred milliseconds after its disappearance
reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second.
Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or “iconic”
memory (IM), while the latter relies on capacity-limited but comparatively stable visual working
memory (VWM). While iconic decay and VWM capacity have been extensively studied independently,
currently no single framework quantitatively accounts for the dynamics of memory fidelity over these
timescales. Here we extend a stationary neural population model of VWM with a temporal dimension,
incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory,
and a slower accumulation of internal error that causes memorized features to randomly drift over
time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall
by lifting the effective limit on VWM signal strength imposed when multiple items compete for
representation, allowing memory for the cued item to be supplemented with information from the
decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions
while excluding alternative model architectures.

Keywords: short-term memory, population coding, temporal dynamics, delay, encoding, decod-
ing

Significance
The need to make sense of and interact with the world often requires us to keep information from
our senses in mind for short periods of time. This ability is constrained by how quickly the brain can
incorporate new sensory information into short-term memory, the limited capacity of that memory
and the rate at which memories deteriorate. Here we propose a new mechanistic account, based
on principles of neural coding, that unifies processes of encoding, sensory and working memory in a
comprehensive framework that captures temporal dynamics in the fidelity of human short-term recall.
A key conclusion is that sensory information cannot contribute directly to a cognitive judgment, but
must first be integrated into resource-limited working memory.
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Introduction1

Keeping relevant information in an easily accessible state is vital for adaptive behavior in dynamic en-2

vironments. In the primate visual system, this requirement is met by visual working memory (VWM),3

the capacity to actively maintain visual information from milliseconds to seconds after a stimulus dis-4

appears from view [1–4]. While the contents of VWM are frequently updated to reflect changes in the5

environment and in behavioral priorities, the visual processing hierarchy itself introduces additional6

layers of dynamism [5, 6]. The fidelity of representations therefore evolves from the moment VWM7

starts accumulating evidence [7, 8] throughout the maintenance period until the information is used8

for action [9–11].9

10

Nonetheless, within most theoretical frameworks, VWM is treated as a stationary process whereby11

representations are measured and modeled as fixed states of the system. One such model of working12

memory is based on principles of neural population coding [12, 13]. In the Neural Resource model,13

visual information is encoded in the activity of a population of noisy feature-selective neurons [14, 15].14

The spiking activity of the neural population is constrained by normalization [16], such that the total15

activity is fixed but flexibly distributed between memoranda, implementing a form of limited mem-16

ory resource. At retrieval, encoded stimulus values are reconstructed from the noisy spiking activity.17

This model has provided a quantitative account of patterns of recall error across a range of tasks and18

stimulus dimensions [17–20]. However, despite its grounding in principles of neural coding, the basic19

architecture of the model lacks a temporal dimension to describe the dynamics of memory represen-20

tations during encoding and maintenance.21

22

Research on prolonged memory maintenance has demonstrated that the precision of stored rep-23

resentations gradually deteriorates over time (e.g., 21, 22). Computational models attempting to24

account for these dynamics have often relied on principles of diffusion within an attractor network.25

In such a network, information is maintained in a sustained pattern of activity, which can be visu-26

alized as a “bump” of activity centered on the stored value. Over time, the bump diffuses along the27

feature dimension due to random fluctuations in neural activity, leading to stochastic changes in the28

encoded feature value and a gradual loss of information [23, 24]. Critically, the neural code diffuses29

without decay in signal strength. A growing body of empirical support, both at the behavioral [9]30

and neural level [25, 26], identifies diffusion as a key mechanism of memory deterioration.31

32

In contrast to such gradual deterioration over longer retention intervals, studies that probed mem-33

ory within a few hundred milliseconds of stimulus offset revealed a precipitous decrease in memory34

fidelity immediately after a stimulus disappears [27–30]. This early superior recall was attributed35

to a high-capacity but short-lived form of storage termed iconic memory (IM) [31]. The behavioral36

advantage of early cues has been ascribed to reading out information directly from IM and circum-37

venting capacity limitations imposed by VWM, however, this idea has not been formally modelled38

or tested. At the neural level, IM is thought to be supported by a brief period of decaying neural39

activity in early visual areas following the response elicited by the visible stimulus [32–34]. In contrast40

to later memory dynamics arising due to noise accumulation, early changes in memory fidelity were41

supported by modulation of the neural signal strength. However, little is known about the read-out42

of this sensory memory buffer.43

44

Finally, memory fidelity changes during encoding while the evidence is extracted from the visible45

stimulus. Previous studies revealed that longer stimulus exposures have a favorable effect on the46

subsequent recall, but that this effect is modulated by the number of simultaneously encoded objects47

[35–37], providing evidence for a processing or encoding limitation of VWM. As stimulus presen-48

tation duration increases, more information may be extracted from the sensory signal into VWM,49

increasing the fidelity of the representation. Critically, with prolonged exposure, VWM fidelity ap-50

proaches a stable level that depends on the number of encoded items, suggesting that a ceiling is51

imposed on evidence accumulation by a shared limit on VWM resources. However, a computational52

framework describing information accumulation from sensory areas into VWM is lacking, and the53

observed encoding limit may reflect dynamics in sensory areas registering visible objects as well as54

VWM accumulating this sensory evidence.55

56

Here, we investigated the temporal dynamics in the fidelity of VWM from information encoding57
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until its recall. To map human recall fidelity to the time domain, we conducted psychophysical exper-58

iments in which we probed memory representations at different time points relative to stimulus onset59

and offset while simultaneously manipulating set size. To isolate memory dynamics due to changes in60

the representational signal, we advanced an analogue reproduction task with a novel response method61

specifically adapted to minimize the time cost of motor (i.e., response) processes and capture the mo-62

mentary state of memory representations. This allowed us to precisely measure the time course of63

fidelity dynamics during representation formation (i.e., encoding) and retention (i.e., maintenance).64

A major conclusion is that the enhanced precision seen at very brief retention intervals depends on65

integration of information from the sensory store into VWM following the cue, with direct read-out66

from IM unable to account for the empirical patterns of results.67

68

Accumulation of sensory signal into WM
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Figure 1: Proposed neural population dynamics for encoding a single orientation into VWM and
maintaining it over a delay. Top: Stimulus onset is followed by a ramping increase in activity
(indicated by color) of sensory neurons whose tuning (indicated on y axis) matches the stimulus
orientation. Following stimulus offset, this sensory signal rapidly decays. The sensory signal, including
its decaying post-stimulus component, provides input into VWM. Bottom: At stimulus onset, the
VWM population begins to accumulate activity from the sensory population. This accumulation
saturates at a maximum amplitude determined by global normalization. As the sensory activity
decays, the activity in the VWM population is maintained at a constant amplitude, but accumulation
of random errors causes the activity bump to diffuse along the feature dimension (y axis) over time,
changing the orientation represented by the population. At recall, when the VWM population activity
is decoded, accuracy of the recall estimate depends on both the orientation represented (centre of the
activity bump) and the fidelity with which it can be retrieved (determined by activity amplitude).

To explain the neural computations underlying the observed time courses, we devised a compre-69

hensive neural model of memory dynamics whose core architecture is rooted in the Neural Resource70

model of VWM [12, 13]. The Dynamic Neural Resource (DyNR) model assumes that changes in71

memory fidelity reflect temporal dynamics in the sensory population registering the stimuli and from72

signal and noise accumulation processes of resource-limited VWM (Fig. 1). In particular, the model73

prescribes how time-dependent gain control mechanisms in sensory areas produce a smooth neural74

response following abrupt changes in stimulus presence. As this sensory signal provides feed-forward75

input to VWM, the dynamics in VWM activity in the temporal vicinity of stimulus presentation76

(i.e., onset and offset) strongly reflect not only limits in VWM, but also the dynamics of the sensory77
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signal. Finally, once accumulated into VWM, the neural signal is subject to perturbations due to78

noise accumulation, resulting in degradation of internal representations with time. The DyNR model79

accurately reproduced the detailed empirical patterns of human recall errors in the psychophysical80

experiments. Based on these results, we argue that changes in memory fidelity on short time scales81

reflect dynamics in the gain or signal strength in neural populations representing the stimulus, while82

changes on longer time scales are dominated by corruption of the representation by accumulated83

noise.84

Dynamic Neural Resource (DyNR) Model85

The Dynamic Neural Resource model generalizes an established neural population account of VWM,86

originally proposed by Bays [12] and inspired by similar models of attention and perceptual decision-87

making [38, 39]. In the original model, memorization and recall of visual stimuli is achieved by88

encoding and decoding of spiking activity in idealized feature-tuned neurons. The limited capacity of89

VWM to hold multiple object features simultaneously is reproduced by a global divisive normaliza-90

tion that constrains total spiking activity, implementing a continuous memory resource [16, 12]. The91

DyNR model (illustrated in Fig. 1) extends this stationary encoding-decoding model with a temporal92

dimension. First, to capture encoding dynamics, stimulus information enters the VWM population93

(Fig. 1, bottom) indirectly, by accumulation of neural signal from a separate sensory population (top),94

which receives the visual input. The signal strength in the VWM population at any point in time95

jointly depends on the history of the signal in the sensory population and the number of features com-96

peting for representation in VWM. Once the sensory signal is gone, the VWM signal is maintained97

at its maximum attained amplitude, but the stimulus value encoded by the signal gradually diffuses98

due to accumulation of random noise. Recall error depends on both the stimulus value represented99

at the time of retrieval (what is encoded) and the signal amplitude at that time, read out in the form100

of spikes (how precisely it can be decoded).101

102

Dynamics of sensory signal strength103

To model the temporal dynamics of human memory fidelity, we begin by defining computations of the104

sensory system registering the incoming signal. A particularly important computation is temporal105

filtering – a property of neurons to respond more sensitively to specific temporal patterns in stimuli.106

To model the signal represented in the cortical sensory level, we assume that the sensory response107

to a stimulus presentation of fixed duration (described as a step function in visual input amplitude,108

Fig. 2A & B, left) is controlled by a monophasic temporal filter having a low-pass frequency response109

[40]. This choice is a natural one since it is consistent with electrophysiological studies demonstrating110

that a large range of temporal frequencies registered by the retina and LGN [41, 42] is attenuated111

at higher frequencies before the signal enters the primary visual cortex [43]. Passing the stimulus112

through such a temporal filter attenuates the neural response to fast transients in the signal, and113

thereby produces a smooth rise and decay of neural activity in response to a uniform input signal114

(Fig. 2C). In particular, we assume that the activity of the sensory population after stimuli onset and115

offset changes exponentially towards the maximum sensory activity and baseline activity, respectively.116

117

The choice of the filter’s temporal response characteristics (i.e., its time constant) fully defines118

dynamics in the sensory population activity and controls the signal projected towards higher areas.119

The available physiological evidence suggests the temporal properties of the rising and decaying neural120

response are not symmetric [44, 45]. In particular, the neural response typically reaches the maximum121

activity after the onset faster than it reaches the baseline activity after the offset. Consistent with122

this, we allowed the sensory signal to decay at a different rate than the rising rate. The temporal123

dynamics in sensory population firing activity in response to a fixed input signal of duration toffset is124

then given by:125

γ̇s(t) =

{
(γ̌s − γs(t))/τrise for t ≤ toffset
−γs(t)/τdecay for t > toffset

(1)

where γ̌s is the maximum sensory signal, τrise and τdecay are rising and decaying time constants of126

the temporal filter, respectively.127

128
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The temporal properties of the sensory response have been shown to depend on the physical char-129

acteristics of stimuli, such as contrast and location [44, 46]. Similarly, previous work has demonstrated130

that the decaying component of the sensory response is strongly influenced by the engagement of the131

sensory population after stimuli offset (e.g., 32). In particular, a new input signal, e.g. a backward132

noise mask, curtails ongoing activity related to the previous stimulus, resulting in a faster decay of133

activity compared to the unmasked post-stimulus period [47]. Consistent with this, here we assume134

that the backward mask operates by interrupting ongoing sensory processing of stimuli, limiting the135

access to the sensory signal (cf. integration mask) [48].136

Dynamics of VWM signal strength137

The information registered by the sensory system is subsequently accumulated into a VWM pop-138

ulation capable of maintaining activity in the absence of further input (e.g. by self-excitation, see139

49, 50, 24; although only the resulting dynamics are modelled here). The total activity of the VWM140

neural population is normalized, implementing a limited resource shared out between memory items141

[12, 13]. Consequently, if the stimuli are presented for long enough, the evidence accumulated from the142

sensory signal into VWM will saturate at a level that reflects the total number of stimuli represented143

(Fig. 2D). The dynamics in VWM population activity are given by:144

γ̇wm(t) = γs(t)(γ̌wm/M(t)− γwm(t))/τwm (2)
where γ̌wm is the maximum VWM signal amplitude, M (t) is the number of items represented in145

VWM at time t, τwm is the time constant of accumulation into VWM.146

147

A common assumption of VWM models is that the strength of the representational signal remains148

stable after encoding from a visible stimulus. This stationary view has been reinforced by typically149

measuring VWM sufficiently long after the stimulus disappears (∼1 second) and at a single time-150

point. In contrast, work on IM demonstrated that recall fidelity in a brief period after stimulus offset151

typically surpasses and then precipitously decays towards VWM fidelity level [51]. Consistent with152

that, we consider how the normalized representational signal in VWM formed during encoding can be153

boosted in the absence of the physical stimulus. In particular, we assume a representation stored in154

VWM can be strengthened as long as the sensory population provides feed-forward input and VWM155

activity is not saturated at the normalized level. Such a scenario can be achieved by cueing an item156

for recall in the temporal vicinity of stimulus offset, i.e. before sensory activity decays to zero. By157

cueing an item for recall, the remaining contents of VWM becomes obsolete and can be removed from158

memory [52]. In the model,159

M(t) =

{
N for t ≤ tcue∗

1 for t > tcue∗
(3)

where tcue∗ is the time when the item is identified for a recall and the readout of stimulus value begins.160

This “demounting” of resource from uncued items makes it available for storing additional informa-161

tion about the cued item, which is extracted from the residual sensory representation, increasing162

the representation fidelity beyond that granted by equal distribution of neural signal between items.163

Critically, as sensory information quickly decays, there will be less signal remaining to supplement164

the VWM representation of a cued item if the cue is delivered later, and at the longest cue intervals165

the cue will confer no advantage over the fidelity attained when all items compete equally for VWM166

representation (Fig. 2D).167

168

We note that removal of uncued items cannot occur until the cue has been processed to the point169

of identifying one of the N items in the memory array. We follow Hick [53] in modelling this cue170

processing time as logarithmic in the number of alternatives:171

tcue∗ = tcue + b log2(N) (4)
where b is a scaling parameter. Previous work demonstrated that estimation of temporal dynamics172

in attention and memory could be confounded with the time needed to interpret the cue and start173

acting on it [54]. This is especially significant when trying to accurately capture quickly changing174

processes, such as decay of the sensory residual. Although the cue processing time likely fluctuates175

on a trial-by-trial basis due to changes in, e.g. attention, arousal, or motivation, here we focus on the176

influence of set size arising from a limited information processing capacity.177

178
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Diffusion of VWM encoded values179

So far we have described only changes in the strength of the neural signal encoding features in memory.
However, feature representations maintained over time in neural activity will accumulate noise in the
absence of external input. We model this process of noise-driven diffusion as Brownian motion in
feature space throughout the retention interval (Fig. 1), contributing to variability in the decoded
feature value [23, 9]. The resulting variability is described by a wrapped normal distribution with
variance σ2 that increases linearly with time from stimulus offset, so that at time t the encoded
feature corresponding to a true stimulus feature θ is

θ(t) ∼ WN (θ, σ2(t)) (5)

σ2(t) = (t− toffset)σ̇
2
diff (6)

where σ̇2
diff specifies the base diffusion rate. While the fast decay of sensory activity after stimuli180

offset accounts for early dynamics in VWM fidelity, diffusion becomes prominent over longer delays,181

accounting for more gradual deterioration of precision with time.182

183

Such a diffusion account has support in the available neural evidence as well as in theoretical work.184

At the neural level, an electrophysiological study in monkeys performing a spatial working memory185

task demonstrated that shifts of neural tuning curves during a memory delay predicted behavioral186

response errors [24]. A similar finding was observed in humans where drift in the fMRI activity pat-187

terns relative to the target predicted errors in an orientation discrimination task [25]. At a theoretical188

level, continuous attractor models explain diffusion as a consequence of neural variability in networks189

where excitatory and inhibitory connections constrain population activity to a sub-space or manifold190

corresponding to the encoded feature space [23, 55, 50].191

192

Retrieval193

To model the process that leads to a response we first consider that in some trials observers may194

erroneously identify a non-target item as being cued. Previous work indicates these “swap” errors195

occur due to uncertainty in memory for the cue features of the stimuli, in this case their locations196

[19, 56]. We assume that changes in variability in the cue features mirror those of the memory197

features, leading swap frequency to decrease exponentially as a function of presentation duration and198

increase linearly with retention interval (Fig. S3):199

pswap = (N − 1)

[(
1

N
− rspatialtcue∗

)
e

−toffset
τspatial + rspatialtcue∗

]
(7)

where τspatial is the time constant related to presentation duration, and rspatial is the rate constant200

related to the retention interval.201

202

If θ is the true feature value of the item identified as the target (i.e. the cued item with probability203

1 − pswap, a randomly selected non-cued item with probability pswap), then due to diffusion (Eq. 5)204

the value encoded in the VWM population at the time of retrieval is given by205

θ∗ ∼ WN (θ, σ2(tcue∗)) (8)

We model retrieval as estimation of θ∗ based on spiking activity in the VWM population that encodes206

the selected item. For this purpose we assume an idealized set of tuning functions, where the mean207

response of neuron i encoding orientation θ with population gain γ is described by208

fi(θ, γ) =
γ

n
exp(κ(cos(θ − φi)− 1) (9)

where n is the number of neurons, and κ determines the tuning width. The preferred orientations of209

the neurons, φi, are evenly distributed throughout the circular space to provide uniform coverage.210

The spike count produced by each neuron is drawn from a Poisson distribution,211

ri ∼ Poisson(fi(θ
∗, γwm∗)) (10)

and the decoded orientation estimate is obtained by maximum likelihood estimation based on the212

spike counts:213

θ̂ = argmax
θ

p(r|θ). (11)
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Additional assumptions214

To fit the model to behavioral data, we make several further simplifying assumptions. We assume that
the exponential decay of the sensory signal is rapid enough that there is effectively no information
remaining by the time the VWM population is decoded to generate a response. This allows us to
approximate the VWM activity at the time of decoding by the asymptotic VWM activity were the
sensory decay to continue indefinitely:

γwm∗ ≈ γwm(∞) (12)

Next, we identify diffusion in the encoded value at the time of retrieval with diffusion at the time215

of target item identification (justifying the use of tcue∗ in Eq. 8. We reason that the rate of diffusion216

is slow enough relative to the rate of sensory decay, that any additional diffusion in the brief period217

of post-cue sensory accumulation is negligible.218

219

In Experiment 1 (see below), a task with a fixed 200 ms exposure period, we assume that the220

initial encoding of all items into VWM is complete by the time of stimulus offset, i.e. that VWM221

activity at this time can be approximated by its asymptotic level reflecting normalization:222

γwm(toffset) ≈ γ̌wm/N (13)

Finally, in the condition of Experiment 1 where memory array and cue are presented simultaneously,223

we assume that only the cued feature is encoded in VWM, reaching the maximum amplitude, γ̌wm,224

irrespective of set size. Maximum likelihood fits were obtained via the Nelder-Mead simplex method225

(function fminsearch in Matlab). All parameters and variables used to describe the DyNR model are226

listed in Table 1.227

Table 1: DyNR model parameters (1–9) and other variables (10–24) used in model description.

No. Parameter/variable Description
1 γ̌wm Maximum VWM signal amplitude
2 κ Tuning curve width
3 τrise Rise constant of the sensory temporal filter
4 τdecay Decay constant of the sensory temporal filter
5 τwm Time constant of accumulation into VWM
6 σ̇2

diff Base diffusion rate
7 τspatial Time constant for spatial encoding
8 rspatial Rate constant for spatial diffusion
9 b Scaling parameter for Hick’s law
10 t Time, relative to stimulus onset (t = 0)
11 toffset Time of stimulus offset
12 tcue Time of cue onset
13 tcue∗ Time an item is identified for report
14 N Number of items in stimulus array
15 M(t) Number of items in memory at time t
16 γ̌s Maximum sensory signal amplitude
17 γs(t) Sensory signal amplitude at time t
18 γwm(t) VWM signal amplitude at time t
19 γwm∗ VWM signal amplitude at the time of decoding
20 σ2(t) Accumulated diffusion at time t
21 n Number of neurons
22 θ True stimulus feature value
23 θ∗ Encoded stimulus feature value at the time of decoding
24 θ̂ Decoded stimulus feature value

8
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Figure 2: Schematic of signal amplitudes in the DyNR model during a cued recall trial. (A) Observers
are presented with a memory array (left), followed after a blank delay (not shown) by an arrow
cue (center) indicating the location of one item (the target) whose remembered orientation should
immediately be reported (right). (B) The amplitude of the visual input associated with each item is
modelled as a step function (left). The sensory response (D) is modelled as a low-pass filtering of the
stimulus input, with different time constants for rise and decay (C). (F) Amplitude of the working
memory signal reflects a saturating accumulation of activity from the sensory population (illustrated
in E). Beginning with stimulus onset, activity associated with each item is accumulated from the
sensory population into the VWM population, approaching an upper bound (green dashed line) that
reflects a total activity limit shared between the N items in memory. Once the cue has been presented
(solid orange line) and processed (dashed orange line), uncued items can be dropped from VWM,
raising the ceiling on activity available to represent the cued item (green arrow). This allows more
information about the cued item to be accumulated from the decaying sensory trace (equivalent to
the red shaded area in D). Response variability depends on the asymptotic VWM signal amplitude
available for decoding (red circle) combined with the accumulated effects of diffusion (see text).

Overview of Experiments228

We tested predictions of the Dynamic Neural Resource model against empirical data collected in229

continuous report tasks. In Experiment 1 (Fig. S1A & B), observers were presented with an array230

of oriented stimuli for a fixed duration followed after a variable delay by a visual cue identifying231

one of the preceding stimuli whose orientation should be reported. This experiment was designed232

to investigate the contribution of decaying sensory representations following stimulus offset to the233
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dynamics of recall fidelity. Experiment 2 (Fig. S1C) was aimed at expanding the results of the first234

experiment to now also assess the accumulation of information during the time the stimuli were235

visible. In this case, the exposure duration was varied while the delay before the visual cue was236

held constant. In both experiments we varied the number of stimuli in the array (set size) to assess237

capacity limitations affecting encoding and maintenance.238

239

To provide additional validation of the DyNR model, we also tested its predictions against data from240

a previously published continuous report experiment (Experiment 1 in 12) and one additional dataset241

collected as part of a separate study [57]. A detailed description of all experiments is provided in242

Supplementary Information.243

Results244

Experiment 1: Delay duration245

In Experiment 1, we evaluated the time course of VWM fidelity over brief memory intervals. Previous246

work has demonstrated that immediately after a stimulus physically disappears, its representation247

briefly persists in the sensory system in the form of residual neural activity [33]. Accumulation of248

this lingering sensory activity into VWM could enable superior recall of information [51] within the249

constraints of a finite VWM resource that strongly limits representational fidelity [3]. To describe250

these dynamics, we examined human recall of orientation stimuli presented in arrays of varying sizes251

and probed after a variable delay ranging from 0 ms to 1000 ms. Here we focus on an experimental252

condition in which retinal afterimages were suppressed by a phase shift towards the end of stimuli253

presentation. Validation of this method and results from the condition without a phase shift are254

provided in the Supplementary Information.255

256

Experimental data. Recall error distributions and mean performance in Experiment 1 are257

plotted in Figs. 3A and B. Response error (measured as RMSE) increased with both set size258

and delay duration. A repeated measures ANOVA revealed a significant effect of set size259

(F(2,18) = 117.8, p < .001, η2 = .44), delay time (F(5,45) = 52, p < .001, η2 = .23), and their260

interaction (F(10,90) = 26.7, p < .001, η2 = .13) on response error. We further explored this261

interaction, first finding response error in the 1 item condition (red in Fig. 3) did not change with262

delay (F(5,45) = 1.32, p = .27, η2 = .07). This was supported by Bayesian analysis (BF10 = 0.34)263

which found weak to moderate evidence against modulation of 1 item recall by memory delay. In264

contrast, response error increased with delay for the remaining two set sizes (4 items, green; 10265

items, blue; main effect: F(5,45) = 55, p < .001, η2 = .48). This increase in response error consisted of266

an initial rapid rise (over the first 200 ms), followed by a more gradual increase as the delay between267

stimulus and cue increased. Next, we found a modulating effect of delay on recall for the remaining268

two set sizes (interaction: F(5,45) = 10.1, p < .001, η2 = .05). The direct comparison revealed that269

the increase in response error with delay (∆RMSE = RMSE1000ms − RMSESimult) was greater when270

observers memorized more items (t(9) = 9.1, p < .001, d = 2.88).271

272

One surprising result was the observed set size effect in the 0 ms delay condition273

(F(2,18) = 23.7, p < .001, η2 = .53) consistent with a stepwise increase in recall error with set274

size (pairwise comparison, t(9) ≥ 2.88, p ≤ .036, d ≥ 0.91, Bonferroni correction applied). Im-275

portantly, this effect was a consequence of responding based on a memory of the stimulus, since276

orientation reproduction was comparable across set sizes in the perceptual condition (simultaneous277

presentation; F(2,18) = 1.26, p = .3, η2 = .04, BF10 = 0.47). Previous studies have characterized278

iconic memory as an effectively unlimited store, capable of holding any number of items without a279

consequent loss of fidelity [58, 28]. While our modelling ultimately affirmed this conception of IM,280

we nonetheless show that recall of information is contingent on the number of objects concurrently281

in memory from the moment stimuli physically disappear (see below).282

283

Taken together, these results provide evidence that the fidelity of stored representations changes284

dramatically over the first few moments after stimuli offset. We next aimed to explain the neural285

computations supporting these dynamics. In summary, behavioral data displayed three key charac-286

teristics we aimed to explain, all visible in Fig. 3B. First, recall fidelity for a single item remained287

relatively stable across changes in delay, and was the same as perceptual fidelity. Second, recall288
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Figure 3: Experiment 1 data and model fits show the consequences of varying set size and delay
duration on WM reproduction error. (A) Empirical recall error distributions (black circles) and the
DyNR model fits (colored curves). Different panels correspond to different set sizes (rows) and delays
(columns). (B) Corresponding RMS errors from experimental data (circles and errorbars) and the
DyNR model fits (curves and error patches). Error bars and patches indicate ± 1 SEM.

fidelity for higher set sizes showed substantial, non-linear temporal dynamics. Lastly, recall fidelity289

was contingent on the number of stored items from the moment stimuli disappeared.290

291

Dynamic Neural Resource model. Curves in Figs. 3A and B show fits of the model with292

maximum likelihood (ML) parameters (mean ± SE: population gain γ = 59.8 ± 3.3, tuning width293

κ = 3.21 ± 0.2, sensory decay time constant τdecay = 0.21 ± 0.052, VWM accumulation time294

constant τWM = 0.096 ± 0.045, cue processing constant b = 0.171 s ± .055 s, base diffusion σ2
diff295

= 0.03 ± 0.017, swap probability p = 0.027 ± 0.009). The model provided a close fit to response296

error distributions (Fig. 3A) and summary statistics (Fig. 3B; see also Fig. S3 for reproduction of297

swap error frequencies), successfully reproducing the pattern of changes with set size and delay. In298

particular, the model accounted for the three key observations identified above.299

300

First, the model predicted the near-constant recall fidelity observed for a single item across these301

short retention intervals. The neural signal associated with the target object at recall depends on302

the normalized signal in VWM at offset supplemented by the available sensory signal post-cue. The303

sensory signal is integrated into VWM after the cue to fill any unallocated neural resource that arose304

by discarding uncued items. In the case of a single item, the entirety of VWM resources are allocated305

to one object during encoding, so no resource is freed by the cue that would allow the signal to be306

further strengthened based on the decaying sensory representation.307

308

Importantly, this prediction contradicts the classical view of direct read-out from IM, according309

to which representational fidelity should be enhanced with very short delays irrespective of VWM310

limitations (see Alternative accounts below for a formal test of such a model). Note that the DyNR311

model nonetheless predicts some deterioration in fidelity over time even for a single item, due to312

noise-driven diffusion of the stored value. However, based on previous reports, we expected this313

process to be substantially slower and the impact on single item precision relatively small on this314

(≤1 s) timescale. The fitted diffusion parameters and resulting shallow slope of fitted RMS error315

(red curve in Fig. 3B) confirmed this.316

317

Second, the neural model predicts the specific pattern of dynamics observed in trials with multiple318

items (set sizes 4, green, and 10, blue curves). Once the cue is presented, resources encoding uncued319

items are freed and the decaying sensory signal representing the target item is further integrated into320

VWM, still subject to limited total VWM resources but now without competition from other items.321

Due to exponential decay of the sensory signal, the increase in fidelity thus accrued changes rapidly322

with retention interval over the first few hundred milliseconds. At longer delays, the cue identifies323
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the target only after the sensory signal has effectively disappeared, so the VWM signal representing324

the target item remains at the normalized level reflecting equal distribution between all items in the325

memory array, and memory dynamics consist only of the more gradual deterioration of fidelity due326

to accumulated noise in the encoded value.327

328

Finally, the DyNR model predicts the presence of a set size effect on fidelity throughout the entire329

memory period, including the no delay (0 ms) condition in which the cue onset was coincident330

with stimulus offset. In the model, this behavior emerges as a consequence of two independent331

processes. First, at the end of stimulus presentation, items within smaller (lower set size) arrays332

are encoded in VWM with higher signal amplitude, reflecting normalization. This signal strength333

represents a baseline that can be supplemented by further integration of the sensory signal after334

an early cue. However, if the sensory decay is sufficiently rapid, then even if the cue is presented335

immediately the target representation will not attain the maximum amplitude (equivalent to set336

size of one) starting from a lower baseline. Second, as described by Hick’s Law [53] it takes337

longer to identify the target item based on the cue as the number of alternatives increases (see338

Alternative models below for a formal test of this assumption). As a result, for higher set sizes, less339

sensory signal encoding the target item remains to be integrated into VWM once it has been identified.340

341

Model variants. We next focused on alternative explanations for the temporal dynamics observed342

in Experiment 1. Specifically, we examined whether the observed dynamics could be accounted for343

either solely by post-stimulus changes in neural signal amplitude or solely by noise-driven diffusion344

of stored values. To pre-empt our conclusions, we demonstrate that both components are needed345

to explain the observed dynamics in memory fidelity. Moreover, to more closely examine the role346

of diffusion in WM dynamics, we fit our neural model to an additional dataset collected in our347

lab ([57]; see Additional dataset 1 in Supplementary Information). This experiment used longer348

delays compared to those used in Experiment 1, and therefore precluded any beneficial effect of349

post-stimulus sensory information, while at the same time allowing the diffusion to operate over350

a longer period. This experiment allowed us to test whether diffusion is sufficient to account for351

human recall errors with longer memory delays.352

353

Fixed neural signal. A recent computational study on forgetting in VWM proposed that diffusion is354

sufficient to explain memory dynamics over delay [10]. To test for this, we developed two reduced355

versions of the DyNR model in which the diffusion process was solely responsible for memory fidelity356

dynamics. In both variants, the sensory signal terminated abruptly with stimuli offset, so the VWM357

signal encoding the stimuli was independent of the delay duration and equal to the limit imposed by358

normalization (γ̌wm/N). In the first variant, the diffusion rate was constant across set sizes, as in359

the full model. The formal model comparison demonstrated that the full DyNR model performed360

better than this simplified alternative (∆AIC = 609.5).361

362

In the second variant, we allowed the diffusion rate to increase proportionally with set size (for a363

similar proposal see [59]). This model was again outperformed by the full DyNR model (∆AIC =364

666.4). Critically, both models tested here failed to qualitatively reproduce the observed non-linear365

pattern of changes in recall error with time, notably overestimating recall error at the shortest delays366

by assuming no modulation in the representational signal (Fig. S4).367

368

Diffusion. We developed two variants of the proposed neural model to test the role of diffusion. In369

the first variant, we completely omitted the diffusion process from the model to test whether the370

sensory signal modulation during the retention period is sufficient to explain temporal dynamics in371

recall fidelity. It could be argued that diffusion accounts for only minor changes in precision over372

brief delays as used here, and therefore adds unnecessary complexity to the proposed model without373

improving the fit substantially. However, the formal model comparison revealed that the full DyNR374

model provides a better fit to human recall error compared to the matching model without diffusion375

(∆AIC = 17.9).376

377

The second variant was identical to the proposed model, except that we replaced the constant378

diffusion rate with a set size scaled diffusion rate (see Eq 10). The model comparison showed that the379

full DyNR model also outperformed this variant (∆AIC = 29.8). While both model variants quali-380

tatively reproduced the increase in memory error with delay and set size, the pattern of variability381
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was better explained by the model with a constant diffusion rate across set sizes. Although a more382

substantial diffusion effect could become apparent with longer delays than those used here, previous383

work demonstrated that noise-driven diffusion causes representations to deteriorate throughout the384

entire retention period [55].385

386

Finally, we examined the role of diffusion with longer memory intervals in a separate experiment using387

variable set sizes and memory intervals (1 and 7 seconds) (for full details see Additional dataset 1 in388

Supplementary Information). We demonstrated that, once sensory information decayed completely,389

an accumulation of error during retention interval accounted for continuing memory deterioration.390

Together, the results presented here corroborate findings on the role of diffusion in temporal dynamics391

of recall fidelity [9].392
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Figure 4: Time course of sensory and WM gain with variable exposure duration.
(A, B) The signal amplitude in the sensory population increases from stimulus onset, exponentially
approaching the maximum sensory activity (γ̌s). For shorter presentation durations (A) the attained
amplitude at stimulus offset is only a fraction of the maximum (compare B, late offset). Following
offset, sensory areas produce a decaying neural response, that is curtailed (faster decay) but not
abolished by a backward mask.
(C, D) Information about the stimulus is accumulated in WM from sensory activity. A shorter
presentation (C) provides less sensory evidence for the initial accumulation of all items into VWM
(compare D, late offset), and subsequently less decaying sensory activity that can supplement VWM
activity for the target item following the cue.

Experiment 2: Exposure duration393

In Experiment 2, we evaluated the encoding phase of VWM, by testing recall of orientation stimuli394

displayed in arrays of variable size presented for variable durations. In the DyNR model, increasing395

the sensory evidence by prolonging stimulus presentation has a favorable effect on later recall of396

stimulus, as more of that evidence can be accumulated into VWM. Importantly, this accumulation397

is also capped by the VWM resources available to store it.398

399

Experimental data. Figure 5 shows the response error for different presentation durations400

and set sizes. Consistent with previous findings, response error can be seen to decrease with401

prolonged presentation duration, but increase as the number of items in memory increases. This was402

confirmed with a significant effect of display duration (F(6,72) = 29.01, p < .001, η2 = .21), set size403

(F(2,24) = 112.51, p < .001, η2 = .54), and their interaction (F(12,144) = 2.58, p = .004, η2 = .019).404
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We further explored this interaction by first confirming that response error decreased with display405

duration within each set size (F(6,72) ≥ 10.24, p < .001, η2 ≥ .26). A consistent pattern was observed406

across set sizes, comprising an initial rapid decrease in response error over the briefest presentation407

times (first 200 ms), followed by saturation at prolonged exposure durations. Next, we calculated408

the change in recall error between the longest and the shortest display exposure within each set409

size, revealing that response error decreased more rapidly with display time as the number of items410

in memory decreased (ANOVA: F(2,24) = 7.79, p = .002, η2 = .21; corrected pairwise comparisons:411

t1−4 = 3.65, p = .016, d = 0.87, t4−10 = 0.96, p = .72, d = .27).412

413
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Figure 5: Experiment 2 results and modelling data show the consequences of varying set size and
stimulus exposure time on VWM reproduction error. (A) Empirical recall error distributions (black
circles) and the DyNR model fits (colored curves). Different panels correspond to different set sizes
(rows) and exposure durations (columns). (B) Corresponding RMS errors from experimental data
(circles and errorbars) and the DyNR model fits (curves and error patches). Error bars and patches
indicate ± 1 SEM.

These results reveal the time course of information accumulation into VWM and forming of stable414

representations. We again identified several key characteristics of the dynamics of recall fidelity415

in the data (Fig. 5B) to test agaist the DyNR model. Consistent with previous studies, we found416

recall fidelity changed with both presentation duration and the number of presented stimuli [35–37].417

Specifically, as display duration increased from the shortest exposure, recall error showed an initial418

rapid decrease followed by a gradual levelling-off. As set size increased, the initial slope became419

shallower and the plateau occurred at a higher level of error.420

421

Dynamic Neural Resource model. Curves in Figs. 5A & B show fits of the model with maximum422

likelihood (ML) parameters (mean ± SE: population gain γ = 188.5 ± 109.6, tuning width κ = 10.2423

± 6.08, sensory rise time constant τrise = 0.33 ± 0.18, sensory decay time constant τdecay = 0.61424

± 0.19, VWM accumulation time constant τWM = 0.8 ± 0.34, cue processing constant b = 0.2 s ±425

.09 s, base diffusion σ2
diff = 0.28 ± 0.08, spatial uncertainty time constant τspatial = 0.013 ± 0.004,426

swap probability p = 0.053 ± 0.01). The model provided an excellent quantitative fit to response427

distributions (Fig. 5A) and RMSE (Fig. 5B), successfully reproducing the pattern of changes with428

set size and presentation duration.429

430

The model predicted that information from a visible stimulus accrues at a high rate immediately after431

the stimulus onset, consistent with observed changes in human recall error over stimulus durations432

up to 200 ms (Fig. 5). This initial high encoding rate emerges naturally in the model due to the433

joint dynamics of sensory and VWM populations. In the sensory population, a low-pass temporal434

filter serves as a neural gain control mechanism, attenuating neural response to transient changes435

in stimuli [40, 43]. As a consequence, the neural response to stimulus onset increases exponentially436

(Fig. 4). The information from sensory areas is accumulated into VWM, such that the accumulation437

rate is directly proportional to the difference between the current and saturating state (i.e. the rate438

is faster when accumulated information is far from the saturating state). Therefore, dynamics in the439

sensory and VWM population jointly account for the initial high rate of information extraction from440

stimuli, and its dependence on set size.441
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442

After the initial steep change, the model predicts that recall fidelity will asymptote. This was again443

observed in human behavior (Fig. 5). Extending stimulus presentation beyond 200 ms had negligible444

impact on recall precision, consistent with previous studies [35]. The model explains this behavior by445

describing how sensory signal and VWM accumulation independently saturate with time. Since the446

temporal filtering in the sensory population attenuates only high-frequency stimuli (i.e. very short447

presentations), with sufficient exposure, the sensory signal plateaus, resulting in a stable feed-forward448

input to VWM. Similarly, VWM signal strength is subject to limits determined by normalization.449

Once the accumulated information reaches the normalized maximum set by the number of objects in450

memory, further accumulation of sensory evidence is not possible. Following the cue, a portion of the451

resource is freed, allowing the target representation to be further strengthened. However, because452

the sensory signal plateaus at longer exposures, the information available for integration after the453

cue remains constant across the longer exposures, supplementing normalized VWM signal by the454

same amount. The result is a plateau in fidelity that varies with set size.455

456

Model variants. We investigated whether post-stimulus sensory persistence contributed to the457

model fits in Experiment 2. We assumed that the signal persisting after stimulus offset would be458

impaired but not eliminated by the subsequent presentation of a noise mask in this experiment [47].459

An alternative account suggests that the mask immediately terminates any stimulus-related signal.460

To test for this, we fit a variant of the DyNR model in which the sensory signal was terminated by461

the onset of the mask, providing a feed-forward signal to VWM only for the period of the stimulus462

presentation. We found that the proposed DyNR model, in which some sensory signal persists463

after the mask onset, gave a better account of the data than this model variant (∆AIC = 446.67).464

Although the alternative model captured the general pattern of changes in memory fidelity with465

exposure duration, it mispredicted fidelity at shorter exposures, in particular the effect of set size466

(Fig. S5A).467

468

A testable prediction of this alternative model is that the memory fidelity at recall should obey the469

neural normalization principle because there was no additional signal to supplement the presentation470

after initial encoding. To test for this, we additionally fitted each exposure condition separately471

using the original Neural Resource model with only three parameters (i.e., neural gain, tuning472

width, and swap probability). This model failed to predict actual fidelity levels at recall (Fig. S5B),473

corroborating the findings of the model comparison.474

475

Finally, to investigate the role of the post-stimulus sensory persistence on encoding dynamics, we476

fit the DyNR model to an additional dataset from Bays et al. [35] (for full details see Additional477

dataset 2 in Supplementary Information). This experiment aimed to investigate VWM dynamics478

during encoding, like our Experiment 2. In contrast to our Experiment 2, Bays et al. [35] used a479

much longer delay interval (1100 ms vs 100 ms), precluding the possibility of further accumulation480

of sensory evidence following the cue. We expected that the DyNR model could account for memory481

dynamics in this study without any post-stimulus sensory activity. This was confirmed by accurately482

reproducing memory dynamics with a model in which encoding into VWM relied only on sensory483

evidence during stimulus presentation (detailed results in Supplementary Information).484

485

Alternative accounts486

Having demonstrated the need for both post-stimulus sensory persistence and diffusion to account487

for empirical data, we next considered alternatives to our account of VWM accumulation and488

information read-out.489

490

Direct read-out of sensory information. In the DyNR model, recall fidelity is enhanced following491

the cue by integrating remaining sensory activity into capacity-limited VWM. As a consequence,492

response precision is bounded from above by the memory limit irrespective of the available sensory493

signal. An alternative possibility is that the decaying sensory representation can be directly read494

out following the cue to inform a response, bypassing working memory limitations. To formalize495

this alternative model, we assumed that independent sensory and VWM representations would be496
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optimally combined via summation of neural activity to yield population gain497

γ∗
sum = γwm(tcue∗) + γs(tcue∗) (14)

The model is otherwise identical to the proposed DyNR model. A distinctive prediction of this498

model is that the precision of recall changes exponentially with delay for every set size, including499

1 item (Fig. S8). This prediction is qualitatively inconsistent with the pattern of results observed500

in Experiment 1, in contrast with the DyNR model which does not predict any beneficial effect of501

earlier cues with set size 1. This alternative model provided a worse fit to data from Experiment 1502

(∆AIC = 164) and Experiment 2 (∆AIC = 84.6), for combined evidence favouring the DyNR model503

of ∆AIC = 248.6.504

505

Cue processing. In the DyNR model, we assumed that identifying the target stimulus based on the506

cue is time-consuming, and becomes more so as the number of alternatives increases. Cue processing507

time encompasses perceptual, attentional, and decision components needed to interpret and act on508

the cue. We tested the necessity of this component by fitting a model variant in which VWM started509

accumulating evidence about the cued item at the moment of cue presentation. This model provided510

a worse fit to empirical data from both Experiment 1 (∆AIC = 84.5) and Experiment 2 (∆AIC =511

107.5), for total evidence in favor of the DyNR model of ∆AIC = 192 (Fig. S6). We fit another512

variant in which cue processing time was constant across set sizes. This alternative provided a worse513

fit to the data in Experiment 1 (∆AIC = 191.6) and Experiment 2 (∆AIC = 105), for combined514

evidence ∆AIC = 296.6 in favor of the full DyNR model that assumes cue processing time increases515

with set size. These results corroborate previous findings on the important role of cue processing516

time in models of attention [54] and IM [60].517

518

Constant accumulation rate. In the DyNR model, the rate of accumulation into VWM is propor-519

tional to the difference between the present VWM amplitude and the maximum normalized amplitude520

(Eq. 2). An arguably simpler assumption is that the neural signal approaches saturation at a constant521

rate [61, 62]. In particular, the rate at which the signal representing an item is transferred to VWM522

is constant and depends only on the number of encoded items, i.e.523

γ̇wm(t) =

{
γs(t)/(M(t)τwm) if γwm(t) < γ̌wm/M(t)
0 otherwise.

(15)

The dependence on M(t) satisfies the constraint that the neural resources in VWM are allocated at524

a constant rate, irrespective of the number of items. We applied this model to psychophysical data525

from both experiments (Fig. S7) and found it provides a worse fit to the data from Experiment 1526

(∆AIC = 11.5) and Experiment 2 (∆AIC = 36.2), for combined evidence favouring the DyNR model527

with exponential saturation (∆AIC = 47.7).528

529

Discussion530

In the present study, we investigated the temporal dynamics of short-term recall fidelity. We con-531

ducted two new human psychophysical experiments and analyzed two existing datasets in order to532

characterize how recall errors are influenced by set size, stimulus duration and retention interval. We533

developed a Dynamic Neural Resource (DyNR) model to provide a mechanistic explanation of the534

observed behavior, capturing not only changes in overall fidelity but also the distribution of errors535

in the stimulus space and frequencies of swaps (intrusion errors). A key finding is that the benefit536

to recall precision observed at very short delays is due to additional post-cue integration of sensory537

information into working memory, and that direct retrieval from sensory memory is unable to account538

for the empirical patterns of error.539

Sensory and WM dynamics during delay540

In the first experiment we investigated the effects of brief unfilled delays on recall fidelity. With541

multi-item arrays, we observed that memory performance deteriorates precipitously over the first542

few hundred milliseconds after stimuli disappear, followed by a gradual levelling-off of error with543

longer delays (Fig. 3). These results are consistent with previously reported patterns of memory544
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dynamics [27–29, 31], and estimates of sensory decay ranging between 100 ms and 400 ms [63, 64].545

Here, we shed new light on these results by taking a computational approach in explaining observed546

temporal dynamics, and asking what this superior recall’s neural origin is and its relation with VWM.547

To answer these questions, we adapted the Neural Resource model of Bays [12] with a temporal548

component. The new DyNR model considers dynamics in a sensory neural population registering549

the stimuli and in a VWM population that stores the stimuli for later recall. Critically, our model550

assumes that objects encoded with limited precision into VWM can be flexibly supplemented with551

sensory activity following a recall cue, within a brief temporal window while the sensory population552

provides a feed-forward input post-stimulus. The boost in the representational VWM signal predicts553

a behavioral benefit of early cues that is consistent with our data and a large corpus of previous554

experiments [51].555

556

A common assumption in studies of visual short-term memory is that recall over brief delays is557

exclusively supported by one of two memory stores, IM or VWM [29, 30]. In this account, a558

cue presented within the first few hundred milliseconds after stimulus offset allows observers to559

access high resolution but rapidly deteriorating representations in IM; once the information in560

IM has decayed, objects must be retrieved from the capacity-limited VWM store. Two pieces561

of evidence from the current study contradict this view and strongly suggest that recall depends562

on VWM from the moment objects disappear. First, the recall benefit of short delays was not563

observed for one item arrays. We propose that this behavior reflects the fact that, during encoding,564

the entirety of the VWM resource is allocated to a single object, leaving no free capacity for565

further enhancement based on the available sensory signal post-cue. Second, we found clear566

evidence that recall fidelity varied with set size even with no delay between stimulus offset and567

cue (0 ms condition). We argue that this arises from the set-size dependence of representational568

fidelity in VWM, which is only incompletely compensated by integration of the decaying sensory569

signal post-cue, resulting in lower fidelity for higher set sizes. The DyNR model provides a success-570

ful quantitative account for these findings, which are in clear contrast with the traditional view of IM.571

572

The rapid changes in fidelity over short delays can be distinguished from dynamics over longer573

retention intervals. A number of recent studies have observed a slow deterioration of VWM precision574

over the course of prolonged retention [9, 21, 22, 65–67]. The causes of this deterioration are still575

contested, but growing evidence links this behavior to noise-driven diffusion. At a mechanistic576

level, diffusion is considered a fundamental property of continuous attractor networks of the kind577

commonly associated with models of working memory [68, 69]. In such networks, memorized features578

are represented as persistent activity “bumps” in the network’s representational feature space. Over579

a memory delay, the activity bump is sustained by balanced excitatory and inhibitory connections,580

while stochasticity in neural activity causes shifts of the bump along the feature dimension, taking581

the form of a random walk. Although we did not model the network processes governing stability582

and diffusion within neural populations, our implementation is consistent with random (Brownian)583

perturbation, as assumed by attractor models (see also 9).584

585

Our theoretical account of memory dynamics during delay differs from several existing models of586

forgetting, which emphasize diffusion as the dominant source of error in short-term memory (e.g.,587

10, 59). To solely account for the observed data in Experiment 1, diffusion would need to be588

strongest early in the retention period, followed by a much weaker diffusion with longer delays.589

However, it is unclear why the diffusion rate would change, and particularly slow down, with time.590

Assuming a constant neural signal encoding the stimulus, this would predict greater variability591

in neural activity initially compared to the later period after stimuli offset. This is inconsistent592

with electrophysiological data showing relatively stable levels of spiking variability throughout the593

memory delay period [70, 71]. The results observed here are consistent with the proposal that594

modulation of neural signal over short memory intervals accounts for an abrupt change in response595

fidelity, while diffusion accounts for a slower change that grows with time.596

597

In the present study, a model assuming a constant diffusion rate, independent of the stored number of598

items, was preferred to one in which diffusion rate increases linearly with set size. This is consistent599

with results of Shin et al. [66] who did not find a significant effect of set size on the rate of memory600

deterioration. In contrast to that, Koyluoglu et al. [59] recently proposed that the rate of diffusion601

scales with set size. However, this study did not account for the presence of swap errors, which we602
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found to increase with retention interval as well as set size. To draw strong conclusions about the603

dependence of diffusion on set size would require a future study to disentangle the different sources604

of error that could, in principle, increase with delay.605

Sensory and WM dynamics during encoding606

Having investigated memory degradation during the retention interval, in Experiment 2 we focused607

on the dynamics arising from accumulation of information during stimulus presentation. Using608

new psychophysical data, we showed that encoding of information into VWM is contingent on609

both presentation duration and the number of memorized stimuli. The observed patterns of data610

indicate that VWM encoding of elementary stimuli is mostly completed within the first 200 ms611

of presentation even at the largest set sizes, with minimal benefit of longer exposures, extending612

previous work [35–37]. This fast encoding process may have an adaptive role: with a key function613

of VWM to store and accumulate information across saccadic eye movements, an efficient system614

should deploy its resources within the duration of a typical gaze fixation [72].615

616

Our aim was again to move beyond the description of the encoding dynamics and to provide a617

biologically plausible neurocomputational account of these dynamics. To achieve that, we applied618

the same VWM accumulation process that operates post-cue to the sensory information during619

stimulus presentation. Using previously published and newly collected data, we show that a model in620

which VWM accumulates dynamical sensory input up to a fidelity limit can successfully account for621

patterns of human recall errors with variable set size and stimulus presentation. An important result622

of our modelling is that the accumulated information in VWM increases with a rate proportional to623

unfilled capacity. In particular, the model with such exponential accumulation provided a better fit624

than a model assuming a constant encoding rate. This parallels previous observations that models625

based on exponential-like extraction of information successfully characterize attention [73, 74],626

working memory encoding [35, 75], memory updating [76], and broader cognitive processes [77]. We627

hypothesize that this pattern represents an approach to an equilibrium state of balanced excitation628

from the sensory input and lateral inhibition within the VWM population, which is the basis for629

capacity of the memory system.630

631

Our computational account of VWM encoding dynamics differs from several existing modelling frame-632

works aiming to explain similar data. For example, the Theory of Visual Attention (TVA; 73) assumes633

that visual stimuli participate in a parallel exponential race towards limited VWM. Like the DyNR634

model, TVA assumes a form of normalization in the sense that the speed with which items race to-635

wards VWM depends on the number of items in the visual field. Unlike our dynamic model, TVA is636

not a theory of VWM, and it considers VWM only as a storage for categorizations of visual objects.637

In particular, TVA takes into account the limits of VWM but does not specify why or how these638

limitations arise. Finally, TVA considers whether an object was selected for entry into VWM in an639

all-or-none fashion; our dynamic model is mostly concerned with the fidelity of representations. A640

somewhat alternative account of VWM encoding is provided by the Competitive Interaction Theory641

(CIT; 78), which is similarly based on the Signal Detection theory and principles of normalization642

[39]. Like TVA, CIT is mostly focused on item selection and merely incorporates a concept of VWM643

capacity derived from object-based models of VWM. Although CIT had success in accounting for644

behavioral data from a two-alternative orthogonal discrimination task using up to four items and a645

limited range of encoding times, it remains an open question whether this model can account for error646

distributions as measured in a continuous report task, and a larger range of set sizes and stimulus647

exposures. Importantly, compared to both TVA and CIT, the DyNR model is strongly rooted in and648

inspired by findings from neuroscience. This not only adds to the biological plausibility of our model649

but also allows future studies to test the model’s predictions using physiological methods.650

Neural mechanisms651

The theory presented here generalizes the Neural Resource model of Bays [12], a simple encoding-652

decoding model in which visual features are represented in the noisy spiking activity of neural653

populations [15], and where the activity representing each feature scales inversely with the total654

number of representations, consistent with the prevalence of normalization mechanisms in the655

brain and observations from single-neuron recording [79] and fMRI decoding [80] studies. The656
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population coding in the model is based on an abstract idealization of neural response func-657

tions. Nevertheless, it has recently been shown that more realistic population coding schemes658

that allow for heterogeneity in neural tuning curves and correlated spiking activity as observed659

in visual cortex, maintain the key predictions of the idealized model [81, 13]. This may be seen660

as a consequence of the different population codes inducing a common representational geometry [82].661

662

We adapted the stationary VWM model by first incorporating a sensory population that provides663

an input drive to the VWM population. In parallel with neurophysiological observations, a common664

approach is to model these dynamics with a low-pass filter which acts like a neural gain modulation665

mechanism [43]. As a consequence, the sensory response to stimulus onset and offset is an exponential666

rise and decay in activity, respectively. The decaying component of the response has been recognized667

as a neural substrate of visual persistence and IM [34, 33]. Here, we modelled sensory decay with an668

exponential function [83], although other forms of decay have been proposed. For example, Loftus669

et al. [63] showed that iconic decay could be better captured using a gamma survival function,670

a generalization of exponential decay that could simply be implemented in our neural model by671

replacing a single filter with a cascade of exponential low-pass filters.672

673

In addition to the dynamics in the sensory population, two features of VWM introduce additional674

dynamics in representation fidelity: the accumulation of information (discussed above) and the675

diffusion of representations owing to accumulated noise. Although we did not aim to model the676

neural processes behind diffusion, our implementation is consistent with the consequences of neural677

variability in attractor networks [23, 69]. Converging neural evidence demonstrating such diffusion678

has been observed using single-unit neural recording in monkeys [24], as well as EEG [26] and fMRI679

[25, 84] studies in humans.680

681

Our model makes a clear distinction between dynamics in sensory and VWM populations, however,682

it remains agnostic as to whether the populations have the same or different anatomical locus [85].683

Albeit inspired by the properties of orientation-selective neurons in area V1, population tuning of684

this kind is a common coding motif across the brain [15]. While it could be considered efficient to685

use already specialized circuits to maintain as well as process visual information, it is still debated686

whether sensory areas are a feasible candidate for memory storage [86, 87]. While some studies have687

focused on prefrontal [88], parietal [89] or occipital [90] cortices as the primary locus of VWM, others688

argue for distributed storage by demonstrating that VWM contents can be decoded from imaging689

signals originating in multiple brain areas [91].690

Representational dynamics of cue-dimension features691

Memory retrieval failures in which a non-cued item is reported in place of the intended target represent692

an important source of error in VWM recall. These swap errors occur more often at higher set sizes and693

when spatial confusability is high [92, 93], as predicted by models in which they arise from uncertainty694

in the recall of cue-dimension features leading to incorrect selection of an item in memory [19, 56].695

In the current study, we assumed memory for spatial location (the cue feature) undergoes similar696

dynamics to memory for orientation (the report feature), and in particular that spatial information697

degrades with retention time [9], leading to changes in swap error frequency with delay interval.698

Similarly, during encoding the fidelity of spatial representation increases with the accumulation of699

sensory evidence [94], reducing the uncertainty at retrieval and consequently swap errors at longer700

stimulus exposure. Although we did not explicitly model the neural signals representing location,701

the modelled dynamics in the probability of swap errors were consistent with those of the primary702

memory feature. Future studies might develop and test more detailed models of the cue identification703

process based on how swap frequency changes with time.704

Removal of information from WM705

In the DyNR model, taking advantage of early cues requires rapid removal of the VWM signal706

associated with uncued items, to admit further accumulation of activity encoding the cued item. To707

achieve this, an active process of selective content elimination may be required [52], as opposed to708

a passive decay of uncued representations during the post-cue interval. Mounting evidence for such709

active removal has been provided at the behavioral [95] and neural [96] level. Importantly, studies710
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show that a functional role of such active removal is to release resources allocated to the uncued711

representations, facilitating the encoding of new information [97]. The fast reallocation of neural712

resources assumed by the DyNR model is consistent with such a description of active removal.713

Data Availability714

Data and code related to this study will be made available at https://doi.org/10.17863/CAM.95223.715
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Supplementary information1010

Methods1011

Participants1012

A total of twenty-three naive observers (12 females, 11 males; aged 18–34) took part in the study after1013

giving informed consent in accordance with the Declaration of Helsinki. Ten observers participated in1014

Experiment 1 and thirteen observers participated in Experiment 2. Volunteers were recruited through1015

the Cambridge Psychology research sign-up system. All observers reported normal color vision and1016

normal or corrected-to-normal visual acuity, and were remunerated £10/hr for their participation.1017

General methods1018

Experimental setup. Stimuli were presented on a 69 cm gamma-corrected LCD monitor with a1019

refresh rate of 144 Hz. Participants were seated in a dark room and viewed the monitor at a distance1020

of 60 cm, with their head supported by a forehead and chin rest. Responses were collected using1021

Magic Trackpad 2, a pointing device (16 x 11.5 cm) with a tactile sensor operating at ∼90 Hz (Apple1022

Inc.). Eye position was monitored online at 1000 Hz using an infrared eye tracker (SR Research).1023

Stimulus presentation and response registration were controlled by a script written in Psychtoolbox1024

and run using Matlab (The Mathworks Inc.).1025

1026

Stimuli. Memory stimuli consisted of randomly oriented Gabor patches (wavelength of the sinusoid,1027

0.65◦ of visual angle; s.d. of Gaussian envelope, 0.5◦) presented on a uniform mid-grey background.1028

The contrast of Gabor patches varied between experiments (see below). Memory stimulus positions1029

were randomly chosen from a set of ten equidistant locations on the perimeter of an invisible circle1030

with radius 6◦ centered at fixation. At the start of each trial, a black fixation annulus was shown1031

(r = 0.15◦ and R = 0.25◦) in the display center. Once steady fixation was registered, the size of1032

the inner radius increased (r = 0.2◦). Observers perceived this change as the annulus becoming1033

thinner. The fixation annulus then stayed visible throughout the trial. Items were cued for recall by1034

displaying a black arrow (2◦ length) extending from the center of the display and pointing to one of1035

the previously occupied locations without overlapping with it.1036

1037

Procedure. Each trial started with presentation of the central fixation annulus. Observers were1038

required to maintain gaze fixation for 500 ms within a radius of 2◦ around the central annulus1039

in order for a trial to proceed. Following stable fixation, the appearance of the fixation annulus1040

changed, indicating that the memory array would appear in 500 ms. The memory sample array1041

consisting of 1, 4, or 10 randomly oriented Gabor patches was then presented. This was followed by1042

a delay period and finally a cue display, indicating to observers to report the memorized orientation1043

of an item previously displayed at the indicated location.1044

1045

Observers were instructed to reproduce the remembered orientation as accurately and as quickly as1046

possible by executing a single movement of their index fingertip over the surface of the touchpad1047

located centrally in front of them. Simultaneously with the observer’s movement, a blue line appeared1048

on the screen, extending from the center of the screen and mimicking the observer’s response in1049

real-time. The response was terminated if one of the following conditions was satisfied: the observer1050

stopped movement for 500 ms; the observer lifted their finger from the touchpad; or the response1051

line reached the edge of the display. This was followed by a feedback display, consisting of the actual1052

orientation (shown with a white line) and reported orientation (shown with a blue line) overlaid1053

at the location of the cued item. The recalled orientation was calculated as the angle of the line1054

connecting a starting point and an endpoint of hand movement on the touchpad.1055

1056

Observers were required to maintain central fixation during the stimulus presentation and delay1057

phase. If gaze position deviated by more than 2◦ a message appeared on the screen, and the trial1058

was aborted and restarted with newly randomized orientations. Participants completed the task in1059

blocks of 50 trials, and each block corresponded to one experimental condition. The order of blocks1060

was randomized for every observer. At the beginning of the testing session observers familiarized1061

themselves with the task and experimental setup by doing at most 50 practice trials.1062

1063
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Experiment 11064

In Experiment 1 we investigated the temporal dynamics of VWM fidelity over short delays by1065

presenting observers with sets of stimuli of variable size and then cueing one of them for recall1066

after a variable delay relative to the stimuli offset. A typical trial sequence is shown in Figure1067

S1A. The memory sample array (Michelson contrast = 0.5) was presented for 200 ms. In 50% of1068

trials, the stimuli changed phase (by 180◦) and contrast (Michelson contrast = 1) for the last 501069

ms of presentation, while remaining at the same orientation. This manipulation was intended to1070

minimize retinal after-effects (see e.g. 98 for similar techniques). The stimuli offset was followed by a1071

variable blank delay of 0, 100, 200, 400, or 1000 ms, after which one item was cued for recall. In one1072

additional condition, the cue was instead presented simultaneously with the memory sample array,1073

indicating an item while it was still visible on the screen (Fig. S1B).1074

1075

Fixation

Fixation

Stimulus
150ms

Stimulus
and cue

A

B

C

Phase
shift
50ms

Delay
0–1000 ms

Cue

Response

Feedback

Fixation
Stimulus
30–500 ms

Mask
100 ms

Cue

Response

Feedback

Phase
shift and cue

Cue

Response

Feedback

Figure S1: Experimental procedure. (A) Experiment 1. On each trial, a memory array was presented
consisting of 1, 4, or 10 randomly oriented Gabor stimuli. In 50% of all trials, the stimuli underwent
a change of phase and contrast towards the end of the exposure period intended to minimize retinal
aftereffects. After a variable delay, an arrow cue was shown pointing towards the location of one
stimulus from the preceding array. Observers reported the remembered orientation of the cued stim-
ulus by swiping their index finger on the touchpad. The response was followed by feedback showing
the true orientation. (B) In a proportion of trials, the cue was presented simultaneously with the
stimuli. (C) Experiment 2. On each trial a memory array consisting of 1, 4, or 10 randomly oriented
Gabors was presented for a variable duration, and followed by a white noise flickering mask. The
mask was replaced by an arrow cue pointing towards the location of one stimulus from the preceding
array. Observers reported its remembered its orientation and received feedback as in Experiment 1.
Stimuli are not drawn to scale.

Each observer completed a total of 1800 trials, split into 36 blocks. The experiment was organized1076

such that half of the observers first completed 18 blocks with phase shift (see above), and the1077

other half first completed blocks without phase shift. Except for this constraint, block order was1078
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randomized for every observer. The testing was divided into four equal testing sessions, each lasting1079

approximately 1.5 hours, with a separation of at least one day between sessions.1080

1081

Experiment 21082

In Experiment 2 we investigated the temporal dynamics of VWM fidelity during encoding. To this1083

end, we displayed oriented stimuli for a variable duration and in sets of variable size. The experiment1084

was similar to the previous experiment with a few exceptions (Fig. S1C). Each trial started with1085

a presentation of a fixation annulus, followed by a memory array (Michelson contrast = 0.3). The1086

stimuli stayed on the screen for a variable duration of 30, 48, 77, 122, 196, 313, or 500 ms, and1087

were then replaced by noise masks (100 ms). Mask stimuli consisted of white noise at full contrast,1088

windowed with a Gaussian envelope (0.5◦ s.d.) and flickering at 35 Hz. At the offset of the masking1089

stimuli, one memory item was cued for recall. Each observer completed 21 blocks, for a total of 10501090

trials. Blocks were spread over two testing sessions, each lasting approximately 1.5 hours, and taking1091

place on different days. Observers completed 10 blocks in the first, and the remaining 11 blocks in1092

the second session.1093

1094
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Minimizing retinal after-effects1095

We assessed the method of minimizing retinal afterimages by repeating all measurements, with the1096

exception of not using phase shift of stimuli (Fig S1A). We predicted retinal afterimages could serve1097

as an additional source of information, but only for a brief period after stimuli offset. Therefore,1098

here we expected to see better performance for brief delays compared to conditions with phase shift.1099

Figure S2A shows recall error increased with both set size and delay. Both of these effects were1100

statistically significant, as well as their interaction (set size: F(2,18) = 47.3, p < .001, η2 = .31; delay1101

time: F(5,45) = 48.4, p < .001, η2 = .26; interaction: F(10,90) = 21.3, p < .001, η2 = .14), reminiscent1102

of findings for data with phase shift.1103

1104

Next, we focused on the comparison of conditions with and without phase shift of stimuli (Fig S2B).1105

We illustrate the difference in performance by subtracting RMSE obtained in the condition without1106

phase shift (Fig 3B) from RMSE shown in Figure S2A. Negative values indicate better performance1107

in a condition without phase shift. As predicted, the overall pattern of data suggested performance1108

was comparable for 1 item across all delays, and for all set sizes for extreme delays (simultaneous1109

presentation and 1000 ms), indicated by the difference values around 0. We confirmed the difference1110

in recall error for 1 item across all delays did not differ consistently with and without phase shift, as1111

neither phase shift (F(1,9) = 0.03, p = .86, η2 < .001, BFincl = 0.143) nor the interaction of phase shift1112

and delay (F(5,45) = 0.41, p = .89, η2 = .00, BFincl = 0.042) reached significance. Based on this result,1113

we conducted all remaining analyses using only the remaining two set sizes. We ran separate repeated1114

measures ANOVAs for each delay using phase shift and set size as factors. The pattern of results we1115

observed was clear: performance was comparable with and without phase shift with the simultaneous1116

presentation and 1000 ms delay (phase shift, F(1,9) ≤ 1.08, p ≥ .33, η2 ≤ .002, BFexcl ≥ 3.62; interac-1117

tion, F(2,18) ≤ 0.8, p ≥ .44, η2 ≤ .02, BFexcl ≥ 3.39), while for the remaining intermediate delays recall1118

error was consistently lower when phase shift was omitted (phase shift, F(1,9) ≥ 5.8, p ≤ .039, η2 ≥ .06;1119

interaction, F(1,9) ≤ 2.8, p ≥ .13, η2 ≤ .001).1120
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Figure S2: (A) Experiment 1 RMSE for trials without phase shift. (B) Differences in RMSE between
trials with and without phase shift across set size and delay conditions. Negative values indicate
better performance in the condition without phase shift.

Taken together, performance with and without phase shift of stimuli was comparable in perceptual1122

condition (simultaneous presentation) and with the longest delay, suggesting phase shift did not1123

change visibility or encoding of information into VWM. In contrast, we found strong evidence that1124

observers had access to an additional source of information over intermediate delays when phase shift1125

was not used, demonstrated by a better recall performance from 0 ms to 400 ms delay. Specifically,1126

this source of information was available immediately after stimuli offset and was short-lived, consistent1127

with the theoretical description of retinal afterimages [99].1128
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Swap error estimates1129
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Figure S3: Swap error estimates. (A&B) Probability of swap errors estimated from empirical data
using the three-component mixture model [92] in Experiment 1 (A) and Experiment 2 (B). (C&D)
Probability of swap errors in best-fitting DyNR model in Experiment 1 (C) and Experiment 2 (D).
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Alternative models’ fits1130
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Figure S4: Experiment 1 behavioral data and model fit for the DyNR model without sensory persis-
tence after stimulus offset. (A) A version of the DyNR model with equal diffusion across set sizes.
(B) A version of the DyNR model with diffusion that scales with set size.
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Figure S5: Experiment 2 behavioral data and model fit for the neural model without sensory per-
sistence after stimulus offset. (A) A version of the DyNR model without sensory persistence. (B)
Separate fits of the simplified neural model to each exposure time.
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Figure S6: Behavioral data and model fit for the DyNR model without the cue processing time for
(A) Experiment 1 and (B) Experiment 2.
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Figure S7: Behavioral data and model fit for a neural model with constant accumulation of information
into WM for (A) Experiment 1 and (B) Experiment 2.
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Figure S8: Behavioral data and model fit for a neural model with the direct read-out of information
from sensory memory for (A) Experiment 1 and (B) Experiment 2.
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Additional dataset 11131

To further investigate the role of diffusion in memory dynamics, we analysed an additional dataset1132

collected in our lab [57]. In this experiment we varied the set size and delay duration similar to1133

Experiment 1. In contrast to Experiment 1, we used longer memory delays, which allowed us to1134

examine the diffusion mechanism on a more suitable time scale. Moreover, memory delays used in1135

this study are out of reach of the decaying sensory information, enabling us to investigate the diffusion1136

without changes in the neural signal strength post-cue.1137

Methods1138

Ten observers (6 females, 4 males, aged 18-34) took part in this experiment. The data for this1139

experiment was collected using the same equipment and the testing setting as described for the main1140

experiments. A typical trial sequence is illustrated in Fig. S9. Each trial began with the presentation1141

of a central annulus which served as a fixation point. Once a stable fixation was achieved, the inner1142

annulus radius changed indicating that stimuli would appear in 500 ms. The memory sample array1143

was then presented for a duration of 500 ms. The array consisted of one or three randomly oriented1144

black bars (length 2.8◦). Each bar was positioned in one of six predetermined locations equally1145

distributed around the circle with a radius of 5◦ around center of the screen. Each bar was presented1146

along with a placeholder circle (radius 1.5◦).1147

1148

Fixation Stimulus
500ms Delay

1000–7000 ms
Cue

Response

Figure S9: Experimental procedure. Stimuli are not drawn to scale.

Memory array presentation was followed by a memory delay during which fixation circle and1149

placeholders stayed visible. The retention interval was either 1 or 7 seconds long. After that, one1150

stimulus was randomly cued for recall. The cue consisted of a second, larger circle drawn around one1151

of the placeholders. Observers were instructed to start rotating a response dial (Griffin Technology1152

PowerMate USB) once they were ready to respond. After the rotation of the response dial was1153

detected, a randomly oriented black bar was displayed within the placeholder. Observers were1154

instructed to rotate the dial until the displayed bar matched the remembered orientation of the cued1155

item. Observers confirmed their response by pressing the dial. Trials with different set sizes and1156

delay durations were randomly interleaved.1157

1158

Eye movements were monitored from the beginning of the trial until stimuli offset, and observers1159

were required to hold steady fixation during that period. If the gaze position deviated by more than1160

2◦ a message appeared on the screen and the trial was aborted and restarted with new orientations.1161

Each observer completed 700 trials, divided into two sessions and each consisting of 7 equal blocks.1162

Two sessions were separated by at least one day, and each lasted approximately 1 hour. At the1163

beginning of each session observers familiarized themselves with the task and experimental setup by1164

doing at most 50 practice trials.1165

1166

Results1167

Behavioral data. Recall performance is shown in Figure S10. As predicted, response error increased1168

with set size and memory delay. A repeated measures ANOVA revealed a significant effect of set1169

size (F(1,9) = 111.17, p < .001, η2 = .76) and memory interval (F(1,9) = 58.14, p < .001, η2 = .12),1170
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and their interaction (F(1,9) = 10.66, p = .01, η2 = .02) on response error. Moreover, conducting1171

paired t-tests within each set size revealed recall error increased with the delay with set size 11172

(t(9) = 5.83, p < .001, d = 1.84) and set size 3 (t(9) = 5.78, p < .001, d = 1.83). The interaction1173

effect was a consequence of a larger increase in error with delay for set size 3 compared to set size 11174

(∆RMSE = RMSE7000ms − RMSE1000ms; t(9) = 3.27, p = .01, d = 1.03). These results are consistent1175

with Experiment 1, corroborating our finding that increasing the set size and delay time have a1176

disadvantageous effect on memory fidelity.1177
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Figure S10: Behavioral data and model fit for Experiment 1a

Neural model. We fitted the DyNR model to the data to test whether noise-driven diffusion1179

is sufficient to account for changes in recall fidelity with longer memory intervals. We applied a1180

simplified version of the model without sensory decay and VWM accumulation components. This1181

was justified given that estimate of sensory decay from Experiment 1 was shorter (mean life τ =1182

0.21) than the shortest interval used in this experiment (1 s). Moreover, based on our findings in Ex-1183

periment 2, we argue that a display duration of 500 ms is sufficient to fully encode objects into VWM.1184

1185

Curves in Figure S10 show fits of the model with maximum likelihood (ML) parameters (mean ±1186

se: population gain γ = 385.02 ± 208.3, tuning width κ = 2.67 ± 0.43, cue processing constant b =1187

0.68 ± .67, base diffusion σ2
diff = 0.009 ± 0.001, swap probability p = 0.005 ± 0.002). The model1188

provided an excellent quantitative fit to response distributions and summary statistics (Fig. S10),1189

successfully explaining the adverse effects of set size and memory interval on recall fidelity. Critically,1190

and consistent with results from Experiment 1, the proposed DyNR model provided a better fit1191

to human response error compared to the matching model without diffusion (∆AIC = 144.75) or1192

the model in which diffusion rate increases with set size (∆AIC = 42.3). In conclusion, this result1193

shows that variability in representations over longer memory intervals can be fully accounted for by1194

noise-driven accumulation without changes in the representational signal [9, 10, 26].1195

1196
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Additional dataset 21197

To further validate predictions of the DyNR model we fitted it to an existing working memory study1198

(Experiment 1 in 35). This study focused on the role of temporal dynamics during WM encoding,1199

thereby addressing the same question as our Experiment 2. In contrast to our Experiment 2, Bays1200

et al. [35] used a longer delay period (1100 ms), precluding the strengthening influence of decaying1201

sensory information on recall. This dataset therefore isolates the initial information accumulation1202

process during stimuli presentation.1203

Methods1204

The observers (N = 32) performed a continuous report task in which a variable number of oriented1205

bars was presented for a variable duration, followed by a pattern mask (100 ms) and a 1-second1206

delay period after which one of the items was probed for recall. Set size was manipulated between1207

observers and exposure duration was manipulated within observers. Each observer performed 1001208

trials per exposure duration, for a total of 25600 trials in the study. A more detailed description of1209

the experiment is provided in Bays et al. [35].1210

Analysis1211

Considering only exposure duration in this experiment was manipulated at the observer level, we1212

decided to expand our modelling approach by employing a Bayesian hierarchical method as a com-1213

promise between fitting the data for each observer (i.e., set size) independently and pooling the data1214

across all observers. Using a Bayesian hierarchical modelling, individual-observer parameters are con-1215

sidered samples from population distributions, whose means and variances are estimated based on all1216

available data. In general, this approach has a desirable characteristic of constraining individual-level1217

parameters with the population-level distribution and producing meaningful parameter estimates1218

when a model is fitted across separate groups. The dynamic neural model fitted to the data is iden-1219

tical to the model fitted in Experiment 2, with the exception that here we assumed any existing1220

post-stimulus sensory activity completely diminished by the time of the cue (1100 ms post-stimulus1221

offset), and therefore we did not model sensory decay here. To obtain the hierarchical fit, we used the1222

Differential Evolution Markov Chain algorithm [100]. All individual-level parameters were samples1223

drawn from normal (i.e., Gaussian) distributions, with corresponding mean and standard deviation1224

being constrained by uniform hyperprior distributions. We collected 240000 post-warmup samples1225

across 12 chains and computed median and 95% equal-tailed intervals (ETI) of posterior distributions1226

to obtain the group and individual-level parameter estimates. Prior specifications and empirical data1227

for all analyses can be found along with the published code.1228

Results1229

Figure S11 and Figure S12 show empirical distributions and summary statistics across all conditions.1230

Similar to Experiment 2, increasing the exposure duration (F(7,196) = 110.9, p < .001, η2 = .188) and1231

decreasing the set size (F(3,28) = 22.83, p < .001, η2 = .53) had beneficial effect on response error.1232

Interaction of exposure duration and set size was significant (F(21,196) = 3.13, p < .001, η2 = .02).1233

Critically, the pattern of memory fidelity dynamics largely matches the pattern observed in Exper-1234

iment 2, with response errors decreasing rapidly as presentation duration was increased from the1235

minimum duration, saturating at longer durations. This pattern was consistent across all set sizes,1236

which only differed in the absolute error.1237

1238

These dynamics were accurately predicted by the DyNR model, both at the level of response1239

distributions (curves in Fig. S11) and summary statistics (curves in Fig. S12). The parameters used1240

to generate model predictions were obtained by taking the individual observer’s posterior medians.1241

We observed the following hyperparameters (median and 95% ETI of hyperposterior): population1242

gain γ = 109.47 (88.1 - 133.57), tuning width κ = 3.23 (2.6 - 4.03), sensory rise time constant τrise1243

= 0.0049 (0.0019 - 0.0091), VWM accumulation time constant τWM = 0.067 ± (0.051 - 0.087), cue1244

processing constant b = 0.423 (0.093 - 0.8436), base diffusion σ2
diff = 0.095 (0.057 - 0.149), spa-1245

tial uncertainty time constant τspatial = 0.031 (0.022 - 0.041), swap probability p = 0.02 (0.011 - 0.034).1246

1247
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Figure S11: Empirical recall error distributions (black circles) from Experiment 1 in Bays et al. [35]
and the DyNR model fits to the data (colored curves).
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Figure S12: Summary statistics (black circles) from Experiment 1 in Bays et al. [35] and the DyNR
model fits to the data (colored curves). The DyNR model was fit to the distributions of recall errors
shown in Fig. S11.
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