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Abstract

Probing memory of a complex visual image within a few hundred milliseconds after its disappearance
reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second.
Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or “iconic”
memory (IM), while the latter relies on capacity-limited but comparatively stable visual working
memory (VWM). While iconic decay and VWM capacity have been extensively studied independently,
currently no single framework quantitatively accounts for the dynamics of memory fidelity over these
timescales. Here we extend a stationary neural population model of VWM with a temporal dimension,
incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory,
and a slower accumulation of internal error that causes memorized features to randomly drift over
time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall
by lifting the effective limit on VWM signal strength imposed when multiple items compete for
representation, allowing memory for the cued item to be supplemented with information from the
decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions
while excluding alternative model architectures.

Keywords: short-term memory, population coding, temporal dynamics, delay, encoding, decod-
ing

Significance

The need to make sense of and interact with the world often requires us to keep information from
our senses in mind for short periods of time. This ability is constrained by how quickly the brain can
incorporate new sensory information into short-term memory, the limited capacity of that memory
and the rate at which memories deteriorate. Here we propose a new mechanistic account, based
on principles of neural coding, that unifies processes of encoding, sensory and working memory in a
comprehensive framework that captures temporal dynamics in the fidelity of human short-term recall.
A key conclusion is that sensory information cannot contribute directly to a cognitive judgment, but
must first be integrated into resource-limited working memory.
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. Introduction

> Keeping relevant information in an easily accessible state is vital for adaptive behavior in dynamic en-
s vironments. In the primate visual system, this requirement is met by visual working memory (VWM),
« the capacity to actively maintain visual information from milliseconds to seconds after a stimulus dis-
s appears from view [1-4]. While the contents of VWM are frequently updated to reflect changes in the
s environment and in behavioral priorities, the visual processing hierarchy itself introduces additional
z layers of dynamism [5, 6]. The fidelity of representations therefore evolves from the moment VWM
s starts accumulating evidence [7, 8] throughout the maintenance period until the information is used
» for action [9-11].

10

1 Nonetheless, within most theoretical frameworks, VWM is treated as a stationary process whereby
12 representations are measured and modeled as fixed states of the system. One such model of working
1z memory is based on principles of neural population coding [12, 13]. In the Neural Resource model,
12 visual information is encoded in the activity of a population of noisy feature-selective neurons [14, 15].
15 The spiking activity of the neural population is constrained by normalization [16], such that the total
16 activity is fixed but flexibly distributed between memoranda, implementing a form of limited mem-
17 ory resource. At retrieval, encoded stimulus values are reconstructed from the noisy spiking activity.
1s  This model has provided a quantitative account of patterns of recall error across a range of tasks and
1o stimulus dimensions [17-20]. However, despite its grounding in principles of neural coding, the basic
20 architecture of the model lacks a temporal dimension to describe the dynamics of memory represen-
21 tations during encoding and maintenance.

22

23 Research on prolonged memory maintenance has demonstrated that the precision of stored rep-
2a  resentations gradually deteriorates over time (e.g., 21, 22). Computational models attempting to
2s account for these dynamics have often relied on principles of diffusion within an attractor network.
26 In such a network, information is maintained in a sustained pattern of activity, which can be visu-
27 alized as a “bump” of activity centered on the stored value. Over time, the bump diffuses along the
2s feature dimension due to random fluctuations in neural activity, leading to stochastic changes in the
20 encoded feature value and a gradual loss of information [23, 24]. Critically, the neural code diffuses
30 without decay in signal strength. A growing body of empirical support, both at the behavioral [9]
a1 and neural level [25, 26|, identifies diffusion as a key mechanism of memory deterioration.

32

33 In contrast to such gradual deterioration over longer retention intervals, studies that probed mem-
sa ory within a few hundred milliseconds of stimulus offset revealed a precipitous decrease in memory
s fidelity immediately after a stimulus disappears [27-30]. This early superior recall was attributed
ss to a high-capacity but short-lived form of storage termed iconic memory (IM) [31]. The behavioral
sz advantage of early cues has been ascribed to reading out information directly from IM and circum-
s venting capacity limitations imposed by VWM, however, this idea has not been formally modelled
3o or tested. At the neural level, IM is thought to be supported by a brief period of decaying neural
s activity in early visual areas following the response elicited by the visible stimulus [32-34]. In contrast
a1 to later memory dynamics arising due to noise accumulation, early changes in memory fidelity were
a2 supported by modulation of the neural signal strength. However, little is known about the read-out
a3 of this sensory memory buffer.

a4

a5 Finally, memory fidelity changes during encoding while the evidence is extracted from the visible
s stimulus. Previous studies revealed that longer stimulus exposures have a favorable effect on the
a7 subsequent recall, but that this effect is modulated by the number of simultaneously encoded objects
as  [35-37], providing evidence for a processing or encoding limitation of VWM. As stimulus presen-
s tation duration increases, more information may be extracted from the sensory signal into VWM,
so increasing the fidelity of the representation. Critically, with prolonged exposure, VWM fidelity ap-
51 proaches a stable level that depends on the number of encoded items, suggesting that a ceiling is
s2  imposed on evidence accumulation by a shared limit on VWM resources. However, a computational
53 framework describing information accumulation from sensory areas into VWM is lacking, and the
sa observed encoding limit may reflect dynamics in sensory areas registering visible objects as well as
s VWM accumulating this sensory evidence.

56

57 Here, we investigated the temporal dynamics in the fidelity of VWM from information encoding
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ss until its recall. To map human recall fidelity to the time domain, we conducted psychophysical exper-
se iments in which we probed memory representations at different time points relative to stimulus onset
eo and offset while simultaneously manipulating set size. To isolate memory dynamics due to changes in
e1 the representational signal, we advanced an analogue reproduction task with a novel response method
e specifically adapted to minimize the time cost of motor (i.e., response) processes and capture the mo-
es mentary state of memory representations. This allowed us to precisely measure the time course of
es fidelity dynamics during representation formation (i.e., encoding) and retention (i.e., maintenance).
es A major conclusion is that the enhanced precision seen at very brief retention intervals depends on
e integration of information from the sensory store into VWM following the cue, with direct read-out
6z from IM unable to account for the empirical patterns of results.

68
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Figure 1: Proposed neural population dynamics for encoding a single orientation into VWM and
maintaining it over a delay. Top: Stimulus onset is followed by a ramping increase in activity
(indicated by color) of sensory neurons whose tuning (indicated on y axis) matches the stimulus
orientation. Following stimulus offset, this sensory signal rapidly decays. The sensory signal, including
its decaying post-stimulus component, provides input into VWM. Bottom: At stimulus onset, the
VWM population begins to accumulate activity from the sensory population. This accumulation
saturates at a maximum amplitude determined by global normalization. As the sensory activity
decays, the activity in the VWM population is maintained at a constant amplitude, but accumulation
of random errors causes the activity bump to diffuse along the feature dimension (y axis) over time,
changing the orientation represented by the population. At recall, when the VWM population activity
is decoded, accuracy of the recall estimate depends on both the orientation represented (centre of the
activity bump) and the fidelity with which it can be retrieved (determined by activity amplitude).

60 To explain the neural computations underlying the observed time courses, we devised a compre-
7o hensive neural model of memory dynamics whose core architecture is rooted in the Neural Resource
7 model of VWM [12, 13]. The Dynamic Neural Resource (DyNR) model assumes that changes in
72 memory fidelity reflect temporal dynamics in the sensory population registering the stimuli and from
73 signal and noise accumulation processes of resource-limited VWM (Fig. 1). In particular, the model
7a  prescribes how time-dependent gain control mechanisms in sensory areas produce a smooth neural
7s response following abrupt changes in stimulus presence. As this sensory signal provides feed-forward
ze input to VWM, the dynamics in VWM activity in the temporal vicinity of stimulus presentation
7z (i.e., onset and offset) strongly reflect not only limits in VWM, but also the dynamics of the sensory

4
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z¢ signal. Finally, once accumulated into VWM, the neural signal is subject to perturbations due to
7o noise accumulation, resulting in degradation of internal representations with time. The DyNR model
so accurately reproduced the detailed empirical patterns of human recall errors in the psychophysical
s1 experiments. Based on these results, we argue that changes in memory fidelity on short time scales
sz reflect dynamics in the gain or signal strength in neural populations representing the stimulus, while
ss changes on longer time scales are dominated by corruption of the representation by accumulated
sa 1101S€.

« Dynamic Neural Resource (DyNR) Model

ss The Dynamic Neural Resource model generalizes an established neural population account of VWM,
sz originally proposed by Bays [12] and inspired by similar models of attention and perceptual decision-
ss  making [38, 39]. In the original model, memorization and recall of visual stimuli is achieved by
so encoding and decoding of spiking activity in idealized feature-tuned neurons. The limited capacity of
9o VWM to hold multiple object features simultaneously is reproduced by a global divisive normaliza-
o1 tion that constrains total spiking activity, implementing a continuous memory resource [16, 12]. The
o2 DyNR model (illustrated in Fig. 1) extends this stationary encoding-decoding model with a temporal
o3 dimension. First, to capture encoding dynamics, stimulus information enters the VWM population
oa (Fig. 1, bottom) indirectly, by accumulation of neural signal from a separate sensory population (top),
os which receives the visual input. The signal strength in the VWM population at any point in time
s jointly depends on the history of the signal in the sensory population and the number of features com-
oz peting for representation in VWM. Once the sensory signal is gone, the VWM signal is maintained
os at its maximum attained amplitude, but the stimulus value encoded by the signal gradually diffuses
oe due to accumulation of random noise. Recall error depends on both the stimulus value represented
100 at the time of retrieval (what is encoded) and the signal amplitude at that time, read out in the form
101 of spikes (how precisely it can be decoded).

102

1s  Dynamics of sensory signal strength

10 To model the temporal dynamics of human memory fidelity, we begin by defining computations of the
105 sensory system registering the incoming signal. A particularly important computation is temporal
106 filtering — a property of neurons to respond more sensitively to specific temporal patterns in stimuli.
10z 'To model the signal represented in the cortical sensory level, we assume that the sensory response
108 to a stimulus presentation of fixed duration (described as a step function in visual input amplitude,
10 Fig. 2A & B, left) is controlled by a monophasic temporal filter having a low-pass frequency response
10 [40]. This choice is a natural one since it is consistent with electrophysiological studies demonstrating
11 that a large range of temporal frequencies registered by the retina and LGN [41, 42] is attenuated
12 at higher frequencies before the signal enters the primary visual cortex [43]. Passing the stimulus
13 through such a temporal filter attenuates the neural response to fast transients in the signal, and
14 thereby produces a smooth rise and decay of neural activity in response to a uniform input signal
us  (Fig. 2C). In particular, we assume that the activity of the sensory population after stimuli onset and
16 offset changes exponentially towards the maximum sensory activity and baseline activity, respectively.

118 The choice of the filter’s temporal response characteristics (i.e., its time constant) fully defines
1o dynamics in the sensory population activity and controls the signal projected towards higher areas.
120 The available physiological evidence suggests the temporal properties of the rising and decaying neural
121 response are not symmetric [44, 45]. In particular, the neural response typically reaches the maximum
122 activity after the onset faster than it reaches the baseline activity after the offset. Consistent with
123 this, we allowed the sensory signal to decay at a different rate than the rising rate. The temporal
12« dynamics in sensory population firing activity in response to a fixed input signal of duration #,gses is
125 then given by:

_— ) <

'Yg(t) _ (_'Ys t’ys(t))/Trlse ior i = ioffset (1)
'Ys( )/Tdecay or > loffset

126 where 75 is the maximum sensory signal, Tyise and Tqecay are rising and decaying time constants of

127 the temporal filter, respectively.
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120 The temporal properties of the sensory response have been shown to depend on the physical char-
130 acteristics of stimuli, such as contrast and location [44, 46]. Similarly, previous work has demonstrated
131 that the decaying component of the sensory response is strongly influenced by the engagement of the
132 sensory population after stimuli offset (e.g., 32). In particular, a new input signal, e.g. a backward
133 noise mask, curtails ongoing activity related to the previous stimulus, resulting in a faster decay of
13¢  activity compared to the unmasked post-stimulus period [47]. Consistent with this, here we assume
135 that the backward mask operates by interrupting ongoing sensory processing of stimuli, limiting the
136 access to the sensory signal (cf. integration mask) [48].

1z Dynamics of VWM signal strength

138 The information registered by the sensory system is subsequently accumulated into a VWM pop-
130 ulation capable of maintaining activity in the absence of further input (e.g. by self-excitation, see
10 49, 50, 24; although only the resulting dynamics are modelled here). The total activity of the VWM
11 neural population is normalized, implementing a limited resource shared out between memory items
12 [12, 13]. Consequently, if the stimuli are presented for long enough, the evidence accumulated from the
13 sensory signal into VWM will saturate at a level that reflects the total number of stimuli represented
1as  (Fig. 2D). The dynamics in VWM population activity are given by:

Fwem (1) = Y5 () G /M (t) — Yom (1)) /Twm (2)
15 where yp, is the maximum VWM signal amplitude, M (t) is the number of items represented in
s VWM at time ¢, Ty, is the time constant of accumulation into VWM.

148 A common assumption of VWM models is that the strength of the representational signal remains
149 stable after encoding from a visible stimulus. This stationary view has been reinforced by typically
10 measuring VWM sufficiently long after the stimulus disappears (~1 second) and at a single time-
151 point. In contrast, work on IM demonstrated that recall fidelity in a brief period after stimulus offset
152 typically surpasses and then precipitously decays towards VWM fidelity level [51]. Consistent with
153 that, we consider how the normalized representational signal in VWM formed during encoding can be
15 boosted in the absence of the physical stimulus. In particular, we assume a representation stored in
155 VWM can be strengthened as long as the sensory population provides feed-forward input and VWM
156 activity is not saturated at the normalized level. Such a scenario can be achieved by cueing an item
157 for recall in the temporal vicinity of stimulus offset, i.e. before sensory activity decays to zero. By
158 cueing an item for recall, the remaining contents of VWM becomes obsolete and can be removed from
1 memory [52]. In the model,
N for t<teper
M(t) = { 1 for ¢ > teper (3)

160 where tcye+ is the time when the item is identified for a recall and the readout of stimulus value begins.
162 This “demounting” of resource from uncued items makes it available for storing additional informa-
12 tion about the cued item, which is extracted from the residual sensory representation, increasing
163 the representation fidelity beyond that granted by equal distribution of neural signal between items.
1ea  Critically, as sensory information quickly decays, there will be less signal remaining to supplement
165 the VWM representation of a cued item if the cue is delivered later, and at the longest cue intervals
166 the cue will confer no advantage over the fidelity attained when all items compete equally for VWM
167 representation (Fig. 2D).

169 We note that removal of uncued items cannot occur until the cue has been processed to the point
170 of identifying one of the N items in the memory array. We follow Hick [53] in modelling this cue
171 processing time as logarithmic in the number of alternatives:

teuer = teue + Dlogs(N) (4)

172 where b is a scaling parameter. Previous work demonstrated that estimation of temporal dynamics
173 in attention and memory could be confounded with the time needed to interpret the cue and start
17a acting on it [54]. This is especially significant when trying to accurately capture quickly changing
175 processes, such as decay of the sensory residual. Although the cue processing time likely fluctuates
176 on a trial-by-trial basis due to changes in, e.g. attention, arousal, or motivation, here we focus on the
177 influence of set size arising from a limited information processing capacity.
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1o Diffusion of VWM encoded values

So far we have described only changes in the strength of the neural signal encoding features in memory.
However, feature representations maintained over time in neural activity will accumulate noise in the
absence of external input. We model this process of noise-driven diffusion as Brownian motion in
feature space throughout the retention interval (Fig. 1), contributing to variability in the decoded
feature value [23, 9]. The resulting variability is described by a wrapped normal distribution with
variance o2 that increases linearly with time from stimulus offset, so that at time ¢ the encoded
feature corresponding to a true stimulus feature 6 is

0(t) ~ WN(0,5°(t)) (5)
o? (t) = (t - toﬁset)d?{iff (6)

180 where ¢34 specifies the base diffusion rate. While the fast decay of sensory activity after stimuli
11 offset accounts for early dynamics in VWM fidelity, diffusion becomes prominent over longer delays,
1.2 accounting for more gradual deterioration of precision with time.

184 Such a diffusion account has support in the available neural evidence as well as in theoretical work.
1ss At the neural level, an electrophysiological study in monkeys performing a spatial working memory
186 task demonstrated that shifts of neural tuning curves during a memory delay predicted behavioral
187 response errors [24]. A similar finding was observed in humans where drift in the fMRI activity pat-
188 terns relative to the target predicted errors in an orientation discrimination task [25]. At a theoretical
180 level, continuous attractor models explain diffusion as a consequence of neural variability in networks
100 where excitatory and inhibitory connections constrain population activity to a sub-space or manifold
101 corresponding to the encoded feature space [23, 55, 50].

103 Retrieval

10a  To model the process that leads to a response we first consider that in some trials observers may
15 erroneously identify a non-target item as being cued. Previous work indicates these “swap” errors
106 occur due to uncertainty in memory for the cue features of the stimuli, in this case their locations
17 [19, 56]. We assume that changes in variability in the cue features mirror those of the memory
108 features, leading swap frequency to decrease exponentially as a function of presentation duration and
100 increase linearly with retention interval (Fig. S3):

“toffset

1
Dswap = (N - 1) |:<N - Tspatialtcue*> € Tspatial Tspatialtcue* (7)

200 where Typatial is the time constant related to presentation duration, and 7spatial is the rate constant
201 related to the retention interval.

203 If 6 is the true feature value of the item identified as the target (i.e. the cued item with probability
206 1 — Pswap, @ randomly selected non-cued item with probability pswap), then due to diffusion (Eq. 5)
205 the value encoded in the VWM population at the time of retrieval is given by

0" ~ WN (0,02 (teyer)) (8)

206 We model retrieval as estimation of 8* based on spiking activity in the VWM population that encodes
207 the selected item. For this purpose we assume an idealized set of tuning functions, where the mean
208 response of neuron ¢ encoding orientation # with population gain + is described by

1:(0.7) = T exp(s(cos(0 — i) — 1) ©)

200 where n is the number of neurons, and x determines the tuning width. The preferred orientations of
210 the neurons, ¢;, are evenly distributed throughout the circular space to provide uniform coverage.
211 The spike count produced by each neuron is drawn from a Poisson distribution,

r; ~ Poisson(f; (0", Ywm*)) (10)

212 and the decoded orientation estimate is obtained by maximum likelihood estimation based on the
213 spike counts: .
0 = arg max p(r|6). (11)
0

7
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Additional assumptions

To

fit the model to behavioral data, we make several further simplifying assumptions. We assume that

the exponential decay of the sensory signal is rapid enough that there is effectively no information
remaining by the time the VWM population is decoded to generate a response. This allows us to
approximate the VWM activity at the time of decoding by the asymptotic VWM activity were the
sensory decay to continue indefinitely:

of

Ywm* A Ywm(00) (12)

Next, we identify diffusion in the encoded value at the time of retrieval with diffusion at the time
target item identification (justifying the use of teye+ in Eq. 8. We reason that the rate of diffusion

is slow enough relative to the rate of sensory decay, that any additional diffusion in the brief period

of

ini

post-cue sensory accumulation is negligible.

In Experiment 1 (see below), a task with a fixed 200 ms exposure period, we assume that the
tial encoding of all items into VWM is complete by the time of stimulus offset, i.e. that VWM

activity at this time can be approximated by its asymptotic level reflecting normalization:

Ywm (toffset) ~ :ern /N (13)

Finally, in the condition of Experiment 1 where memory array and cue are presented simultaneously,

we

assume that only the cued feature is encoded in VWM, reaching the maximum amplitude, Jywm,

irrespective of set size. Maximum likelihood fits were obtained via the Nelder-Mead simplex method
(function fminsearch in Matlab). All parameters and variables used to describe the DyNR model are
listed in Table 1.

Table 1: DyNR model parameters (1-9) and other variables (10-24) used in model description.

No. Parameter/variable Description

1 Ywm Maximum VWM signal amplitude

2 K Tuning curve width

3 Trise Rise constant of the sensory temporal filter
4 Tdecay Decay constant of the sensory temporal filter
5 Twm Time constant of accumulation into VWM

6 03 Base diffusion rate

7 Tspatial Time constant for spatial encoding

8 Tspatial Rate constant for spatial diffusion

9 b Scaling parameter for Hick’s law

10 ¢ Time, relative to stimulus onset (¢ = 0)

11 toffset Time of stimulus offset

12 tewe Time of cue onset

13 teuer Time an item is identified for report

14 N Number of items in stimulus array

15 M(t) Number of items in memory at time ¢

16 s Maximum sensory signal amplitude

17 (t) Sensory signal amplitude at time ¢

18  wm(t) VWM signal amplitude at time ¢

19 yum» VWM signal amplitude at the time of decoding
20 o%(t) Accumulated diffusion at time ¢

21 n Number of neurons

22 0 True stimulus feature value

23 6 Encoded stimulus feature value at the time of decoding
24 0 Decoded stimulus feature value
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Figure 2: Schematic of signal amplitudes in the DyNR model during a cued recall trial. (A) Observers
are presented with a memory array (left), followed after a blank delay (not shown) by an arrow
cue (center) indicating the location of one item (the target) whose remembered orientation should
immediately be reported (right). (B) The amplitude of the visual input associated with each item is
modelled as a step function (left). The sensory response (D) is modelled as a low-pass filtering of the
stimulus input, with different time constants for rise and decay (C). (F) Amplitude of the working
memory signal reflects a saturating accumulation of activity from the sensory population (illustrated
in E). Beginning with stimulus onset, activity associated with each item is accumulated from the
sensory population into the VWM population, approaching an upper bound (green dashed line) that
reflects a total activity limit shared between the N items in memory. Once the cue has been presented
(solid orange line) and processed (dashed orange line), uncued items can be dropped from VWM,
raising the ceiling on activity available to represent the cued item (green arrow). This allows more
information about the cued item to be accumulated from the decaying sensory trace (equivalent to
the red shaded area in D). Response variability depends on the asymptotic VWM signal amplitude
available for decoding (red circle) combined with the accumulated effects of diffusion (see text).

= Overview of Experiments

220 We tested predictions of the Dynamic Neural Resource model against empirical data collected in
230 continuous report tasks. In Experiment 1 (Fig. SIA & B), observers were presented with an array
231 of oriented stimuli for a fixed duration followed after a variable delay by a visual cue identifying
232 one of the preceding stimuli whose orientation should be reported. This experiment was designed
233 to investigate the contribution of decaying sensory representations following stimulus offset to the
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23 dynamics of recall fidelity. Experiment 2 (Fig. S1C) was aimed at expanding the results of the first
235 experiment to now also assess the accumulation of information during the time the stimuli were
236 visible. In this case, the exposure duration was varied while the delay before the visual cue was
237 held constant. In both experiments we varied the number of stimuli in the array (set size) to assess
238 capacity limitations affecting encoding and maintenance.

2e0 T0 provide additional validation of the DyNR model, we also tested its predictions against data from
2a1  a previously published continuous report experiment (Experiment 1 in 12) and one additional dataset
22 collected as part of a separate study [57]. A detailed description of all experiments is provided in
2a3  Supplementary Information.

. Results

2s  Experiment 1: Delay duration

2e6  In Experiment 1, we evaluated the time course of VWM fidelity over brief memory intervals. Previous
2a7  work has demonstrated that immediately after a stimulus physically disappears, its representation
2as  briefly persists in the sensory system in the form of residual neural activity [33]. Accumulation of
a0 this lingering sensory activity into VWM could enable superior recall of information [51] within the
20 constraints of a finite VWM resource that strongly limits representational fidelity [3]. To describe
21 these dynamics, we examined human recall of orientation stimuli presented in arrays of varying sizes
22 and probed after a variable delay ranging from 0 ms to 1000 ms. Here we focus on an experimental
263 condition in which retinal afterimages were suppressed by a phase shift towards the end of stimuli
2sa  presentation. Validation of this method and results from the condition without a phase shift are
255 provided in the Supplementary Information.

27 Experimental data. Recall error distributions and mean performance in Experiment 1 are
2ss  plotted in Figs. 3A and B. Response error (measured as RMSE) increased with both set size
260 and delay duration. A repeated measures ANOVA revealed a significant effect of set size
200 (Flo18) = 117.8,p < 001,7? = .44), delay time (Fis5) = 52,p < 001,17 = .23), and their
261 interaction (Fjg90) = 26.7,p < 001,72 = .13) on response error. We further explored this
262 interaction, first finding response error in the 1 item condition (red in Fig. 3) did not change with
263 delay (Fl545) = 1.32,p = .27, n? = .07). This was supported by Bayesian analysis (BFjo = 0.34)
26 which found weak to moderate evidence against modulation of 1 item recall by memory delay. In
265 contrast, response error increased with delay for the remaining two set sizes (4 items, green; 10
2s items, blue; main effect: Fi5 45y = 55,p < .001, n? = .48). This increase in response error consisted of
267 an initial rapid rise (over the first 200 ms), followed by a more gradual increase as the delay between
268 stimulus and cue increased. Next, we found a modulating effect of delay on recall for the remaining
260 two set sizes (interaction: Fi545 = 10.1,p < .001,7? = .05). The direct comparison revealed that
a0 the increase in response error with delay (ARMSE = RMSE1900ms — RMSEgimuit) was greater when
211 observers memorized more items (fgy = 9.1,p < .001,d = 2.88).

27z One surprising result was the observed set size effect in the 0 ms delay condition
ara (Flo18) = 23.7,p < .001,7?> = .53) consistent with a stepwise increase in recall error with set
275 size (pairwise comparison, tgy > 2.88,p < .036,d > 0.91, Bonferroni correction applied). Im-
276 portantly, this effect was a consequence of responding based on a memory of the stimulus, since
277 orientation reproduction was comparable across set sizes in the perceptual condition (simultaneous
278 presentation; Fo 18y = 1.26,p = 3,m? = .04, BFyp = 0.47). Previous studies have characterized
270 iconic memory as an effectively unlimited store, capable of holding any number of items without a
2s0  consequent loss of fidelity [58, 28]. While our modelling ultimately affirmed this conception of IM,
2s1 we nonetheless show that recall of information is contingent on the number of objects concurrently
282 in memory from the moment stimuli physically disappear (see below).

20 Taken together, these results provide evidence that the fidelity of stored representations changes
285 dramatically over the first few moments after stimuli offset. We next aimed to explain the neural
286 computations supporting these dynamics. In summary, behavioral data displayed three key charac-
287 teristics we aimed to explain, all visible in Fig. 3B. First, recall fidelity for a single item remained
2ss  relatively stable across changes in delay, and was the same as perceptual fidelity. Second, recall
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Figure 3: Experiment 1 data and model fits show the consequences of varying set size and delay
duration on WM reproduction error. (A) Empirical recall error distributions (black circles) and the
DyNR model fits (colored curves). Different panels correspond to different set sizes (rows) and delays
(columns). (B) Corresponding RMS errors from experimental data (circles and errorbars) and the
DyNR model fits (curves and error patches). Error bars and patches indicate = 1 SEM.

280 fidelity for higher set sizes showed substantial, non-linear temporal dynamics. Lastly, recall fidelity
200 was contingent on the number of stored items from the moment stimuli disappeared.

202 Dynamic Neural Resource model. Curves in Figs. 3A and B show fits of the model with
203 maximum likelihood (ML) parameters (mean + SE: population gain v = 59.8 £ 3.3, tuning width
24 Kk = 3.21 £ 0.2, sensory decay time constant Tgecay = 0.21 £ 0.052, VWM accumulation time
205 constant Twy = 0.096 £ 0.045, cue processing constant b = 0.171 s + .055 s, base diffusion J?iiff
206 = 0.03 £+ 0.017, swap probability p = 0.027 £ 0.009). The model provided a close fit to response
207 error distributions (Fig. 3A) and summary statistics (Fig. 3B; see also Fig. S3 for reproduction of
208 swap error frequencies), successfully reproducing the pattern of changes with set size and delay. In
200 particular, the model accounted for the three key observations identified above.

so1  First, the model predicted the near-constant recall fidelity observed for a single item across these
302 short retention intervals. The neural signal associated with the target object at recall depends on
303 the normalized signal in VWM at offset supplemented by the available sensory signal post-cue. The
s0a  sensory signal is integrated into VWM after the cue to fill any unallocated neural resource that arose
s0s by discarding uncued items. In the case of a single item, the entirety of VWM resources are allocated
306 t0 one object during encoding, so no resource is freed by the cue that would allow the signal to be
3oz further strengthened based on the decaying sensory representation.

300 Importantly, this prediction contradicts the classical view of direct read-out from IM, according
s10  to which representational fidelity should be enhanced with very short delays irrespective of VWM
su  limitations (see Alternative accounts below for a formal test of such a model). Note that the DyNR
s12 model nonetheless predicts some deterioration in fidelity over time even for a single item, due to
s13 noise-driven diffusion of the stored value. However, based on previous reports, we expected this
s1a  process to be substantially slower and the impact on single item precision relatively small on this
sis (<1 s) timescale. The fitted diffusion parameters and resulting shallow slope of fitted RMS error
a6 (red curve in Fig. 3B) confirmed this.

s1s  Second, the neural model predicts the specific pattern of dynamics observed in trials with multiple
;10 items (set sizes 4, green, and 10, blue curves). Once the cue is presented, resources encoding uncued
320 items are freed and the decaying sensory signal representing the target item is further integrated into
22 VWM, still subject to limited total VWM resources but now without competition from other items.
22 Due to exponential decay of the sensory signal, the increase in fidelity thus accrued changes rapidly
323 with retention interval over the first few hundred milliseconds. At longer delays, the cue identifies
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24 the target only after the sensory signal has effectively disappeared, so the VWM signal representing
325 the target item remains at the normalized level reflecting equal distribution between all items in the
326 memory array, and memory dynamics consist only of the more gradual deterioration of fidelity due
327 to accumulated noise in the encoded value.

320 Finally, the DyNR model predicts the presence of a set size effect on fidelity throughout the entire
;.0 memory period, including the no delay (0 ms) condition in which the cue onset was coincident
;1 with stimulus offset. In the model, this behavior emerges as a consequence of two independent
sz processes. First, at the end of stimulus presentation, items within smaller (lower set size) arrays
;33 are encoded in VWM with higher signal amplitude, reflecting normalization. This signal strength
s3a  represents a baseline that can be supplemented by further integration of the sensory signal after
s3s  an early cue. However, if the sensory decay is sufficiently rapid, then even if the cue is presented
s3s  immediately the target representation will not attain the maximum amplitude (equivalent to set
;37 size of one) starting from a lower baseline. Second, as described by Hick’s Law [53] it takes
;s longer to identify the target item based on the cue as the number of alternatives increases (see
330 Alternative models below for a formal test of this assumption). As a result, for higher set sizes, less
sa0  sensory signal encoding the target item remains to be integrated into VWM once it has been identified.

.2 Model variants. We next focused on alternative explanations for the temporal dynamics observed
sa3  in Experiment 1. Specifically, we examined whether the observed dynamics could be accounted for
saa  either solely by post-stimulus changes in neural signal amplitude or solely by noise-driven diffusion
sas of stored values. To pre-empt our conclusions, we demonstrate that both components are needed
a6 to explain the observed dynamics in memory fidelity. Moreover, to more closely examine the role
sz of diffusion in WM dynamics, we fit our neural model to an additional dataset collected in our
s lab ([57]; see Additional dataset 1 in Supplementary Information). This experiment used longer
a0 delays compared to those used in Experiment 1, and therefore precluded any beneficial effect of
ss0  post-stimulus sensory information, while at the same time allowing the diffusion to operate over
ss1 a longer period. This experiment allowed us to test whether diffusion is sufficient to account for
52 human recall errors with longer memory delays.

ssa Fized neural signal. A recent computational study on forgetting in VWM proposed that diffusion is
a5 sufficient to explain memory dynamics over delay [10]. To test for this, we developed two reduced
356 versions of the DyNR model in which the diffusion process was solely responsible for memory fidelity
57 dynamics. In both variants, the sensory signal terminated abruptly with stimuli offset, so the VWM
s signal encoding the stimuli was independent of the delay duration and equal to the limit imposed by
3o normalization (Jwm/N). In the first variant, the diffusion rate was constant across set sizes, as in
se0 the full model. The formal model comparison demonstrated that the full DyNR model performed
s better than this simplified alternative (AAIC = 609.5).

ses  In the second variant, we allowed the diffusion rate to increase proportionally with set size (for a
sse  similar proposal see [59]). This model was again outperformed by the full DyNR model (AAIC =
ses  666.4). Critically, both models tested here failed to qualitatively reproduce the observed non-linear
ses  pattern of changes in recall error with time, notably overestimating recall error at the shortest delays
se7 by assuming no modulation in the representational signal (Fig. S4).

se0  Diffusion. We developed two variants of the proposed neural model to test the role of diffusion. In
s70  the first variant, we completely omitted the diffusion process from the model to test whether the
sin sensory signal modulation during the retention period is sufficient to explain temporal dynamics in
sz recall fidelity. It could be argued that diffusion accounts for only minor changes in precision over
s7zs brief delays as used here, and therefore adds unnecessary complexity to the proposed model without
s7a improving the fit substantially. However, the formal model comparison revealed that the full DyNR
szs  model provides a better fit to human recall error compared to the matching model without diffusion
e (AAIC = 17.9).

sz The second variant was identical to the proposed model, except that we replaced the constant
are  diffusion rate with a set size scaled diffusion rate (see Eq 10). The model comparison showed that the
a0 full DyNR model also outperformed this variant (AAIC = 29.8). While both model variants quali-
ss1  tatively reproduced the increase in memory error with delay and set size, the pattern of variability
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sz was better explained by the model with a constant diffusion rate across set sizes. Although a more
sss  substantial diffusion effect could become apparent with longer delays than those used here, previous
ssa  work demonstrated that noise-driven diffusion causes representations to deteriorate throughout the
sss  entire retention period [55].

ss7  Finally, we examined the role of diffusion with longer memory intervals in a separate experiment using
sss  variable set sizes and memory intervals (1 and 7 seconds) (for full details see Additional dataset 1 in
sse  Supplementary Information). We demonstrated that, once sensory information decayed completely,
s00 an accumulation of error during retention interval accounted for continuing memory deterioration.
se1  Together, the results presented here corroborate findings on the role of diffusion in temporal dynamics
sz of recall fidelity [9].
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Figure 4: Time course of sensory and WM gain with variable exposure duration.

(A, B) The signal amplitude in the sensory population increases from stimulus onset, exponentially
approaching the maximum sensory activity (s). For shorter presentation durations (A) the attained
amplitude at stimulus offset is only a fraction of the maximum (compare B, late offset). Following
offset, sensory areas produce a decaying neural response, that is curtailed (faster decay) but not
abolished by a backward mask.

(C, D) Information about the stimulus is accumulated in WM from sensory activity. A shorter
presentation (C) provides less sensory evidence for the initial accumulation of all items into VWM
(compare D, late offset), and subsequently less decaying sensory activity that can supplement VWM
activity for the target item following the cue.

s Experiment 2: Exposure duration

sea  In Experiment 2, we evaluated the encoding phase of VWM, by testing recall of orientation stimuli
ses  displayed in arrays of variable size presented for variable durations. In the DyNR model, increasing
e the sensory evidence by prolonging stimulus presentation has a favorable effect on later recall of
37 stimulus, as more of that evidence can be accumulated into VWM. Importantly, this accumulation
38 15 also capped by the VWM resources available to store it.

w0 Experimental data. Figure 5 shows the response error for different presentation durations
w1 and set sizes. Consistent with previous findings, response error can be seen to decrease with
w02 prolonged presentation duration, but increase as the number of items in memory increases. This was
a3 confirmed with a significant effect of display duration (Fis72) = 29.01,p < .001,7m% = .21), set size
as  (F(04) = 112.51,p < .001,7? = .54), and their interaction (F12,144) = 2.58,p = .004, n? = .019).
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a5 We further explored this interaction by first confirming that response error decreased with display
as duration within each set size (F(g72) > 10.24,p < .001, n? > .26). A consistent pattern was observed
a7 across set sizes, comprising an initial rapid decrease in response error over the briefest presentation
s0s times (first 200 ms), followed by saturation at prolonged exposure durations. Next, we calculated
wo the change in recall error between the longest and the shortest display exposure within each set
a0 size, revealing that response error decreased more rapidly with display time as the number of items
a1 in memory decreased (ANOVA: Fo04) = 7.79,p = .002,7?> = .21; corrected pairwise comparisons:
a2 t1_y4 = 3.65,]) = .016, d= 0.87, t4_10 = 0.96,]) = .72, d= 27)
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Figure 5: Experiment 2 results and modelling data show the consequences of varying set size and
stimulus exposure time on VWM reproduction error. (A) Empirical recall error distributions (black
circles) and the DyNR model fits (colored curves). Different panels correspond to different set sizes
(rows) and exposure durations (columns). (B) Corresponding RMS errors from experimental data
(circles and errorbars) and the DyNR model fits (curves and error patches). Error bars and patches
indicate £+ 1 SEM.

a1a These results reveal the time course of information accumulation into VWM and forming of stable
a5 representations. We again identified several key characteristics of the dynamics of recall fidelity
a6 in the data (Fig. 5B) to test agaist the DyNR model. Consistent with previous studies, we found
a7 recall fidelity changed with both presentation duration and the number of presented stimuli [35-37].
ais Specifically, as display duration increased from the shortest exposure, recall error showed an initial
a0 rapid decrease followed by a gradual levelling-off. As set size increased, the initial slope became
a20 shallower and the plateau occurred at a higher level of error.

422 Dynamic Neural Resource model. Curves in Figs. 5A & B show fits of the model with maximum
423 likelihood (ML) parameters (mean + SE: population gain v = 188.5 + 109.6, tuning width x = 10.2
s22 £ 6.08, sensory rise time constant Ty = 0.33 £ 0.18, sensory decay time constant Tqecay — 0.61
a2s £ 0.19, VWM accumulation time constant 7wy = 0.8 £ 0.34, cue processing constant b = 0.2 s &+
s26 .09 s, base diffusion afhff = 0.28 £ 0.08, spatial uncertainty time constant Typatia1 = 0.013 £ 0.004,
427 swap probability p = 0.053 + 0.01). The model provided an excellent quantitative fit to response
«2s  distributions (Fig. 5A) and RMSE (Fig. 5B), successfully reproducing the pattern of changes with
a20  Set size and presentation duration.

431 The model predicted that information from a visible stimulus accrues at a high rate immediately after
432 the stimulus onset, consistent with observed changes in human recall error over stimulus durations
sz up to 200 ms (Fig. 5). This initial high encoding rate emerges naturally in the model due to the
a3a  joint dynamics of sensory and VWM populations. In the sensory population, a low-pass temporal
.35 filter serves as a neural gain control mechanism, attenuating neural response to transient changes
43¢ in stimuli [40, 43]. As a consequence, the neural response to stimulus onset increases exponentially
a3z (Fig. 4). The information from sensory areas is accumulated into VWM, such that the accumulation
a8 rate is directly proportional to the difference between the current and saturating state (i.e. the rate
430 is faster when accumulated information is far from the saturating state). Therefore, dynamics in the
a0 sensory and VWM population jointly account for the initial high rate of information extraction from
a1 stimuli, and its dependence on set size.
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a3 After the initial steep change, the model predicts that recall fidelity will asymptote. This was again
aaa  observed in human behavior (Fig. 5). Extending stimulus presentation beyond 200 ms had negligible
a5 impact on recall precision, consistent with previous studies [35]. The model explains this behavior by
aas  describing how sensory signal and VWM accumulation independently saturate with time. Since the
27 temporal filtering in the sensory population attenuates only high-frequency stimuli (i.e. very short
ws  presentations), with sufficient exposure, the sensory signal plateaus, resulting in a stable feed-forward
aao  input to VWM. Similarly, VWM signal strength is subject to limits determined by normalization.
a0 Once the accumulated information reaches the normalized maximum set by the number of objects in
a1 memory, further accumulation of sensory evidence is not possible. Following the cue, a portion of the
a2 resource is freed, allowing the target representation to be further strengthened. However, because
43 the sensory signal plateaus at longer exposures, the information available for integration after the
44 Cue remains constant across the longer exposures, supplementing normalized VWM signal by the
a5 same amount. The result is a plateau in fidelity that varies with set size.

7 Model variants. We investigated whether post-stimulus sensory persistence contributed to the
w8 model fits in Experiment 2. We assumed that the signal persisting after stimulus offset would be
a0 impaired but not eliminated by the subsequent presentation of a noise mask in this experiment [47].
a0 An alternative account suggests that the mask immediately terminates any stimulus-related signal.
w1 To test for this, we fit a variant of the DyNR model in which the sensory signal was terminated by
a2 the onset of the mask, providing a feed-forward signal to VWM only for the period of the stimulus
a3 presentation. We found that the proposed DyNR model, in which some sensory signal persists
s after the mask onset, gave a better account of the data than this model variant (AAIC = 446.67).
ss  Although the alternative model captured the general pattern of changes in memory fidelity with
w6 exposure duration, it mispredicted fidelity at shorter exposures, in particular the effect of set size
467 (Flg S5A)

w0 A testable prediction of this alternative model is that the memory fidelity at recall should obey the
470 neural normalization principle because there was no additional signal to supplement the presentation
a1 after initial encoding. To test for this, we additionally fitted each exposure condition separately
a2 using the original Neural Resource model with only three parameters (i.e., neural gain, tuning
a7z width, and swap probability). This model failed to predict actual fidelity levels at recall (Fig. S5B),
474 corroborating the findings of the model comparison.

a7¢  Finally, to investigate the role of the post-stimulus sensory persistence on encoding dynamics, we
a7z fit the DyNR model to an additional dataset from Bays et al. [35] (for full details see Additional
as dataset 2 in Supplementary Information). This experiment aimed to investigate VWM dynamics
a7e  during encoding, like our Experiment 2. In contrast to our Experiment 2, Bays et al. [35] used a
w0 much longer delay interval (1100 ms vs 100 ms), precluding the possibility of further accumulation
a1 of sensory evidence following the cue. We expected that the DyNR model could account for memory
42 dynamics in this study without any post-stimulus sensory activity. This was confirmed by accurately
a3 reproducing memory dynamics with a model in which encoding into VWM relied only on sensory
ssa  evidence during stimulus presentation (detailed results in Supplementary Information).

s  Alternative accounts

as7  Having demonstrated the need for both post-stimulus sensory persistence and diffusion to account
a8 for empirical data, we next considered alternatives to our account of VWM accumulation and
aso information read-out.

w01 Direct read-out of sensory information. In the DyNR model, recall fidelity is enhanced following
w2 the cue by integrating remaining sensory activity into capacity-limited VWM. As a consequence,
a3 Tesponse precision is bounded from above by the memory limit irrespective of the available sensory
wa signal. An alternative possibility is that the decaying sensory representation can be directly read
a5 out following the cue to inform a response, bypassing working memory limitations. To formalize
w6 this alternative model, we assumed that independent sensory and VWM representations would be
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407 optimally combined via summation of neural activity to yield population gain

Youm = Ywm (tcuer) + Vs (teue) (14)

a8 The model is otherwise identical to the proposed DyNR model. A distinctive prediction of this
a0 model is that the precision of recall changes exponentially with delay for every set size, including
soo 1 item (Fig. S8). This prediction is qualitatively inconsistent with the pattern of results observed
so1  in Experiment 1, in contrast with the DyNR model which does not predict any beneficial effect of
so2 earlier cues with set size 1. This alternative model provided a worse fit to data from Experiment 1
sos  (AAIC = 164) and Experiment 2 (AAIC = 84.6), for combined evidence favouring the DyNR model
soa  of AAIC = 248.6.

sos Cue processing. In the DyNR model, we assumed that identifying the target stimulus based on the
so7 cue is time-consuming, and becomes more so as the number of alternatives increases. Cue processing
sos time encompasses perceptual, attentional, and decision components needed to interpret and act on
soo  the cue. We tested the necessity of this component by fitting a model variant in which VWM started
s10  accumulating evidence about the cued item at the moment of cue presentation. This model provided
s11 a worse fit to empirical data from both Experiment 1 (AAIC = 84.5) and Experiment 2 (AAIC =
sz 107.5), for total evidence in favor of the DyNR model of AAIC = 192 (Fig. S6). We fit another
s13  variant in which cue processing time was constant across set sizes. This alternative provided a worse
s1.e  fit to the data in Experiment 1 (AAIC = 191.6) and Experiment 2 (AAIC = 105), for combined
s15 evidence AAIC = 296.6 in favor of the full DyNR model that assumes cue processing time increases
s1.6  with set size. These results corroborate previous findings on the important role of cue processing
si7 time in models of attention [54] and IM [60].

s10  Constant accumulation rate. In the DyNR model, the rate of accumulation into VWM is propor-
s20  tional to the difference between the present VWM amplitude and the maximum normalized amplitude
s (Eq. 2). An arguably simpler assumption is that the neural signal approaches saturation at a constant
s22 rate [61, 62]. In particular, the rate at which the signal representing an item is transferred to VWM
s23  is constant and depends only on the number of encoded items, i.e.

o (1) = { gS(t)/(M(t)Twm) iOfthervvise. om0 < G M (1) (15)

s2«  'The dependence on M (t) satisfies the constraint that the neural resources in VWM are allocated at
s2s  a constant rate, irrespective of the number of items. We applied this model to psychophysical data
s26  from both experiments (Fig. S7) and found it provides a worse fit to the data from Experiment 1
sz (AAIC = 11.5) and Experiment 2 (AAIC = 36.2), for combined evidence favouring the DyNR model
s22  with exponential saturation (AAIC = 47.7).

50 1D1iScussion

ss1 In the present study, we investigated the temporal dynamics of short-term recall fidelity. We con-
s32  ducted two new human psychophysical experiments and analyzed two existing datasets in order to
s33  characterize how recall errors are influenced by set size, stimulus duration and retention interval. We
s3a  developed a Dynamic Neural Resource (DyNR) model to provide a mechanistic explanation of the
s3s  observed behavior, capturing not only changes in overall fidelity but also the distribution of errors
s3e  in the stimulus space and frequencies of swaps (intrusion errors). A key finding is that the benefit
s37  to recall precision observed at very short delays is due to additional post-cue integration of sensory
s3s  information into working memory, and that direct retrieval from sensory memory is unable to account
s30  for the empirical patterns of error.

so0o Sensory and WM dynamics during delay

sax In the first experiment we investigated the effects of brief unfilled delays on recall fidelity. With
se2  multi-item arrays, we observed that memory performance deteriorates precipitously over the first
sa3 few hundred milliseconds after stimuli disappear, followed by a gradual levelling-off of error with
saa  longer delays (Fig. 3). These results are consistent with previously reported patterns of memory
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sas  dynamics [27-29, 31|, and estimates of sensory decay ranging between 100 ms and 400 ms [63, 64].
sas Here, we shed new light on these results by taking a computational approach in explaining observed
saz  temporal dynamics, and asking what this superior recall’s neural origin is and its relation with VWM.
sas Lo answer these questions, we adapted the Neural Resource model of Bays [12] with a temporal
sao component. The new DyNR model considers dynamics in a sensory neural population registering
sso  the stimuli and in a VWM population that stores the stimuli for later recall. Critically, our model
ss1 assumes that objects encoded with limited precision into VWM can be flexibly supplemented with
ss2  sensory activity following a recall cue, within a brief temporal window while the sensory population
sss  provides a feed-forward input post-stimulus. The boost in the representational VWM signal predicts
ssa a behavioral benefit of early cues that is consistent with our data and a large corpus of previous
sss experiments [51].

ss7 A common assumption in studies of visual short-term memory is that recall over brief delays is
sss - exclusively supported by one of two memory stores, IM or VWM [29, 30]. In this account, a
sso cue presented within the first few hundred milliseconds after stimulus offset allows observers to
se0o access high resolution but rapidly deteriorating representations in IM; once the information in
sei  IM has decayed, objects must be retrieved from the capacity-limited VWM store. Two pieces
se2  Of evidence from the current study contradict this view and strongly suggest that recall depends
ses on VWM from the moment objects disappear. First, the recall benefit of short delays was not
sea Observed for one item arrays. We propose that this behavior reflects the fact that, during encoding,
ses the entirety of the VWM resource is allocated to a single object, leaving no free capacity for
ses further enhancement based on the available sensory signal post-cue. Second, we found clear
sez evidence that recall fidelity varied with set size even with no delay between stimulus offset and
ses cue (0 ms condition). We argue that this arises from the set-size dependence of representational
seo  fidelity in VWM, which is only incompletely compensated by integration of the decaying sensory
s7o  signal post-cue, resulting in lower fidelity for higher set sizes. The DyNR model provides a success-
s71 ful quantitative account for these findings, which are in clear contrast with the traditional view of IM.

sz The rapid changes in fidelity over short delays can be distinguished from dynamics over longer
s7a retention intervals. A number of recent studies have observed a slow deterioration of VWM precision
s7s  over the course of prolonged retention [9, 21, 22, 65-67]. The causes of this deterioration are still
s76 contested, but growing evidence links this behavior to noise-driven diffusion. At a mechanistic
s77 level, diffusion is considered a fundamental property of continuous attractor networks of the kind
s7s  commonly associated with models of working memory [68, 69]. In such networks, memorized features
s7o  are represented as persistent activity “bumps” in the network’s representational feature space. Over
sso a memory delay, the activity bump is sustained by balanced excitatory and inhibitory connections,
ss1  while stochasticity in neural activity causes shifts of the bump along the feature dimension, taking
ss2  the form of a random walk. Although we did not model the network processes governing stability
ss3  and diffusion within neural populations, our implementation is consistent with random (Brownian)
sse  perturbation, as assumed by attractor models (see also 9).

sss  Our theoretical account of memory dynamics during delay differs from several existing models of
ss7  forgetting, which emphasize diffusion as the dominant source of error in short-term memory (e.g.,
sss 10, 59). To solely account for the observed data in Experiment 1, diffusion would need to be
sso  strongest early in the retention period, followed by a much weaker diffusion with longer delays.
seo  However, it is unclear why the diffusion rate would change, and particularly slow down, with time.
se1  Assuming a constant neural signal encoding the stimulus, this would predict greater variability
se2 in neural activity initially compared to the later period after stimuli offset. This is inconsistent
ses  with electrophysiological data showing relatively stable levels of spiking variability throughout the
soa  memory delay period [70, 71]. The results observed here are consistent with the proposal that
ses  modulation of neural signal over short memory intervals accounts for an abrupt change in response
sos  fidelity, while diffusion accounts for a slower change that grows with time.

ses  In the present study, a model assuming a constant diffusion rate, independent of the stored number of
seo  items, was preferred to one in which diffusion rate increases linearly with set size. This is consistent
eo with results of Shin et al. [66] who did not find a significant effect of set size on the rate of memory
sox deterioration. In contrast to that, Koyluoglu et al. [59] recently proposed that the rate of diffusion
s02 scales with set size. However, this study did not account for the presence of swap errors, which we
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eos found to increase with retention interval as well as set size. To draw strong conclusions about the
s0a dependence of diffusion on set size would require a future study to disentangle the different sources
eos Of error that could, in principle, increase with delay.

os Sensory and WM dynamics during encoding

sz Having investigated memory degradation during the retention interval, in Experiment 2 we focused
es on the dynamics arising from accumulation of information during stimulus presentation. Using
eoo new psychophysical data, we showed that encoding of information into VWM is contingent on
e10 both presentation duration and the number of memorized stimuli. The observed patterns of data
e11 indicate that VWM encoding of elementary stimuli is mostly completed within the first 200 ms
e12 Of presentation even at the largest set sizes, with minimal benefit of longer exposures, extending
e13  previous work [35-37|. This fast encoding process may have an adaptive role: with a key function
e1a  of VWM to store and accumulate information across saccadic eye movements, an efficient system
e1s  should deploy its resources within the duration of a typical gaze fixation [72].

sz Our aim was again to move beyond the description of the encoding dynamics and to provide a
e1s biologically plausible neurocomputational account of these dynamics. To achieve that, we applied
e1o the same VWM accumulation process that operates post-cue to the sensory information during
s20 stimulus presentation. Using previously published and newly collected data, we show that a model in
622 which VWM accumulates dynamical sensory input up to a fidelity limit can successfully account for
e22 patterns of human recall errors with variable set size and stimulus presentation. An important result
623 of our modelling is that the accumulated information in VWM increases with a rate proportional to
e2a unfilled capacity. In particular, the model with such exponential accumulation provided a better fit
e2s than a model assuming a constant encoding rate. This parallels previous observations that models
s2c based on exponential-like extraction of information successfully characterize attention [73, 74],
e2z  working memory encoding [35, 75|, memory updating [76], and broader cognitive processes [77]. We
e2s hypothesize that this pattern represents an approach to an equilibrium state of balanced excitation
e2o from the sensory input and lateral inhibition within the VWM population, which is the basis for
630 capacity of the memory system.

e32  Our computational account of VWM encoding dynamics differs from several existing modelling frame-
e33  works aiming to explain similar data. For example, the Theory of Visual Attention (TVA; 73) assumes
e3a that visual stimuli participate in a parallel exponential race towards limited VWM. Like the DyNR
e3s  model, TVA assumes a form of normalization in the sense that the speed with which items race to-
e3s  wards VWM depends on the number of items in the visual field. Unlike our dynamic model, TVA is
637 not a theory of VWM, and it considers VWM only as a storage for categorizations of visual objects.
e3s In particular, TVA takes into account the limits of VWM but does not specify why or how these
630 limitations arise. Finally, TVA considers whether an object was selected for entry into VWM in an
es0 all-or-none fashion; our dynamic model is mostly concerned with the fidelity of representations. A
sax  somewhat alternative account of VWM encoding is provided by the Competitive Interaction Theory
es2 (CIT; 78), which is similarly based on the Signal Detection theory and principles of normalization
ea3s  [39]. Like TVA, CIT is mostly focused on item selection and merely incorporates a concept of VWM
eas capacity derived from object-based models of VWM. Although CIT had success in accounting for
eas  behavioral data from a two-alternative orthogonal discrimination task using up to four items and a
ess limited range of encoding times, it remains an open question whether this model can account for error
ear distributions as measured in a continuous report task, and a larger range of set sizes and stimulus
eas exposures. Importantly, compared to both TVA and CIT, the DyNR model is strongly rooted in and
eas inspired by findings from neuroscience. This not only adds to the biological plausibility of our model
eso but also allows future studies to test the model’s predictions using physiological methods.

2 INeural mechanisms

es2  The theory presented here generalizes the Neural Resource model of Bays [12], a simple encoding-
es3  decoding model in which visual features are represented in the noisy spiking activity of neural
esa populations [15], and where the activity representing each feature scales inversely with the total
ess number of representations, consistent with the prevalence of normalization mechanisms in the
ess brain and observations from single-neuron recording [79] and fMRI decoding [80] studies. The
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es7 population coding in the model is based on an abstract idealization of neural response func-
ess tions. Nevertheless, it has recently been shown that more realistic population coding schemes
eso  that allow for heterogeneity in neural tuning curves and correlated spiking activity as observed
eso in visual cortex, maintain the key predictions of the idealized model [81, 13]. This may be seen
es1  as a consequence of the different population codes inducing a common representational geometry [82].

ees  We adapted the stationary VWM model by first incorporating a sensory population that provides
eea an input drive to the VWM population. In parallel with neurophysiological observations, a common
ees approach is to model these dynamics with a low-pass filter which acts like a neural gain modulation
ess mechanism [43]. As a consequence, the sensory response to stimulus onset and offset is an exponential
ez rise and decay in activity, respectively. The decaying component of the response has been recognized
ess as a neural substrate of visual persistence and IM [34, 33]. Here, we modelled sensory decay with an
eso exponential function [83], although other forms of decay have been proposed. For example, Loftus
oo et al. [63] showed that iconic decay could be better captured using a gamma survival function,
er1  a generalization of exponential decay that could simply be implemented in our neural model by
62 replacing a single filter with a cascade of exponential low-pass filters.

e7a In addition to the dynamics in the sensory population, two features of VWM introduce additional
ers dynamics in representation fidelity: the accumulation of information (discussed above) and the
e7e diffusion of representations owing to accumulated noise. Although we did not aim to model the
67z neural processes behind diffusion, our implementation is consistent with the consequences of neural
ers  variability in attractor networks [23, 69]. Converging neural evidence demonstrating such diffusion
e7o has been observed using single-unit neural recording in monkeys [24], as well as EEG [26] and fMRI
es0 |25, 84| studies in humans.

es2  Our model makes a clear distinction between dynamics in sensory and VWM populations, however,
es3 it remains agnostic as to whether the populations have the same or different anatomical locus [85].
esa Albeit inspired by the properties of orientation-selective neurons in area V1, population tuning of
ess this kind is a common coding motif across the brain [15]. While it could be considered efficient to
ess use already specialized circuits to maintain as well as process visual information, it is still debated
esz  whether sensory areas are a feasible candidate for memory storage [86, 87]. While some studies have
ess focused on prefrontal [88], parietal [89] or occipital [90] cortices as the primary locus of VWM, others
eso argue for distributed storage by demonstrating that VWM contents can be decoded from imaging
eo0 signals originating in multiple brain areas [91].

1 Representational dynamics of cue-dimension features

ee=  Memory retrieval failures in which a non-cued item is reported in place of the intended target represent
ee3 an important source of error in VWM recall. These swap errors occur more often at higher set sizes and
eoa when spatial confusability is high [92, 93], as predicted by models in which they arise from uncertainty
eos in the recall of cue-dimension features leading to incorrect selection of an item in memory [19, 56].
eos In the current study, we assumed memory for spatial location (the cue feature) undergoes similar
eoz dynamics to memory for orientation (the report feature), and in particular that spatial information
eos degrades with retention time [9], leading to changes in swap error frequency with delay interval.
eeo  Similarly, during encoding the fidelity of spatial representation increases with the accumulation of
700 sensory evidence [94], reducing the uncertainty at retrieval and consequently swap errors at longer
zo1  stimulus exposure. Although we did not explicitly model the neural signals representing location,
702 the modelled dynamics in the probability of swap errors were consistent with those of the primary
73 memory feature. Future studies might develop and test more detailed models of the cue identification
70 process based on how swap frequency changes with time.

s Removal of information from WM

706 In the DyNR model, taking advantage of early cues requires rapid removal of the VWM signal
7oz associated with uncued items, to admit further accumulation of activity encoding the cued item. To
708 achieve this, an active process of selective content elimination may be required [52], as opposed to
700 a passive decay of uncued representations during the post-cue interval. Mounting evidence for such
70 active removal has been provided at the behavioral [95] and neural [96] level. Importantly, studies
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711 show that a functional role of such active removal is to release resources allocated to the uncued
nz  representations, facilitating the encoding of new information [97]. The fast reallocation of neural
71z resources assumed by the DyNR model is consistent with such a description of active removal.

~ Data Availability

75 Data and code related to this study will be made available at https://doi.org/10.17863/CAM.95223.
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oo SUpplementary information

102 Methods

1012 Participants

1013 A total of twenty-three naive observers (12 females, 11 males; aged 18-34) took part in the study after
1014 giving informed consent in accordance with the Declaration of Helsinki. Ten observers participated in
1015 Experiment 1 and thirteen observers participated in Experiment 2. Volunteers were recruited through
10:6 the Cambridge Psychology research sign-up system. All observers reported normal color vision and
1017 normal or corrected-to-normal visual acuity, and were remunerated £10/hr for their participation.

11s  General methods

1010 Experimental setup. Stimuli were presented on a 69 cm gamma-corrected LCD monitor with a
1020 refresh rate of 144 Hz. Participants were seated in a dark room and viewed the monitor at a distance
1021 of 60 cm, with their head supported by a forehead and chin rest. Responses were collected using
1022 Magic Trackpad 2, a pointing device (16 x 11.5 ¢cm) with a tactile sensor operating at ~90 Hz (Apple
1023 Inc.). Eye position was monitored online at 1000 Hz using an infrared eye tracker (SR Research).
1024 Stimulus presentation and response registration were controlled by a script written in Psychtoolbox
1025 and run using Matlab (The Mathworks Inc.).

1026

1027 Stimuli. Memory stimuli consisted of randomly oriented Gabor patches (wavelength of the sinusoid,
128 0.65° of visual angle; s.d. of Gaussian envelope, 0.5°) presented on a uniform mid-grey background.
1020 The contrast of Gabor patches varied between experiments (see below). Memory stimulus positions
1030 were randomly chosen from a set of ten equidistant locations on the perimeter of an invisible circle
1031 with radius 6° centered at fixation. At the start of each trial, a black fixation annulus was shown
132 (r = 0.15° and R = 0.25°) in the display center. Once steady fixation was registered, the size of
1033 the inner radius increased (r = 0.2°). Observers perceived this change as the annulus becoming
103a  thinner. The fixation annulus then stayed visible throughout the trial. Items were cued for recall by
103 displaying a black arrow (2° length) extending from the center of the display and pointing to one of
1036 the previously occupied locations without overlapping with it.

1037

138 Procedure. Each trial started with presentation of the central fixation annulus. Observers were
1030 required to maintain gaze fixation for 500 ms within a radius of 2° around the central annulus
1040 in order for a trial to proceed. Following stable fixation, the appearance of the fixation annulus
1021 changed, indicating that the memory array would appear in 500 ms. The memory sample array
1042 consisting of 1, 4, or 10 randomly oriented Gabor patches was then presented. This was followed by
1043 a delay period and finally a cue display, indicating to observers to report the memorized orientation
1as  Of an item previously displayed at the indicated location.

1045

10a6  Observers were instructed to reproduce the remembered orientation as accurately and as quickly as
1047 possible by executing a single movement of their index fingertip over the surface of the touchpad
148 located centrally in front of them. Simultaneously with the observer’s movement, a blue line appeared
10ae  On the screen, extending from the center of the screen and mimicking the observer’s response in
1050 real-time. The response was terminated if one of the following conditions was satisfied: the observer
1051 stopped movement for 500 ms; the observer lifted their finger from the touchpad; or the response
1052 line reached the edge of the display. This was followed by a feedback display, consisting of the actual
1053 orientation (shown with a white line) and reported orientation (shown with a blue line) overlaid
1sa  at the location of the cued item. The recalled orientation was calculated as the angle of the line
185 connecting a starting point and an endpoint of hand movement on the touchpad.

1056

157 Observers were required to maintain central fixation during the stimulus presentation and delay
1ss  phase. If gaze position deviated by more than 2° a message appeared on the screen, and the trial
1se  was aborted and restarted with newly randomized orientations. Participants completed the task in
160 blocks of 50 trials, and each block corresponded to one experimental condition. The order of blocks
1061 was randomized for every observer. At the beginning of the testing session observers familiarized
162 themselves with the task and experimental setup by doing at most 50 practice trials.

1063

27


https://doi.org/10.1101/2023.03.27.534406
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534406; this version posted March 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

10es Experiment 1

10es  In Experiment 1 we investigated the temporal dynamics of VWM fidelity over short delays by
1066 presenting observers with sets of stimuli of variable size and then cueing one of them for recall
106z after a variable delay relative to the stimuli offset. A typical trial sequence is shown in Figure
1es  S1A. The memory sample array (Michelson contrast = 0.5) was presented for 200 ms. In 50% of
1ee trials, the stimuli changed phase (by 180°) and contrast (Michelson contrast = 1) for the last 50
1070 ms of presentation, while remaining at the same orientation. This manipulation was intended to
1072 minimize retinal after-effects (see e.g. 98 for similar techniques). The stimuli offset was followed by a
1072 variable blank delay of 0, 100, 200, 400, or 1000 ms, after which one item was cued for recall. In one
1073 additional condition, the cue was instead presented simultaneously with the memory sample array,
107a  indicating an item while it was still visible on the screen (Fig. S1B).

1075

Fixation
A Stimulus
150ms Phase
Delay
0-1000 ms
Response
B Fixation Feedback
Stimulus
and cue Phase
shift and cue
Response
Feedback
C Fixation

Stimulus
30-500 ms

Response

Feedback

Figure S1: Experimental procedure. (A) Experiment 1. On each trial, a memory array was presented
consisting of 1, 4, or 10 randomly oriented Gabor stimuli. In 50% of all trials, the stimuli underwent
a change of phase and contrast towards the end of the exposure period intended to minimize retinal
aftereffects. After a variable delay, an arrow cue was shown pointing towards the location of one
stimulus from the preceding array. Observers reported the remembered orientation of the cued stim-
ulus by swiping their index finger on the touchpad. The response was followed by feedback showing
the true orientation. (B) In a proportion of trials, the cue was presented simultaneously with the
stimuli. (C) Experiment 2. On each trial a memory array consisting of 1, 4, or 10 randomly oriented
Gabors was presented for a variable duration, and followed by a white noise flickering mask. The
mask was replaced by an arrow cue pointing towards the location of one stimulus from the preceding
array. Observers reported its remembered its orientation and received feedback as in Experiment 1.
Stimuli are not drawn to scale.

1076 Each observer completed a total of 1800 trials, split into 36 blocks. The experiment was organized
177 such that half of the observers first completed 18 blocks with phase shift (see above), and the
1078 other half first completed blocks without phase shift. Except for this constraint, block order was
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17e randomized for every observer. The testing was divided into four equal testing sessions, each lasting
1080 approximately 1.5 hours, with a separation of at least one day between sessions.

1081

10sz2  Experiment 2

1083 In Experiment 2 we investigated the temporal dynamics of VWM fidelity during encoding. To this
108s  end, we displayed oriented stimuli for a variable duration and in sets of variable size. The experiment
1085 was similar to the previous experiment with a few exceptions (Fig. S1C). Each trial started with
18s & presentation of a fixation annulus, followed by a memory array (Michelson contrast = 0.3). The
1087 stimuli stayed on the screen for a variable duration of 30, 48, 77, 122, 196, 313, or 500 ms, and
108s  were then replaced by noise masks (100 ms). Mask stimuli consisted of white noise at full contrast,
1se  windowed with a Gaussian envelope (0.5° s.d.) and flickering at 35 Hz. At the offset of the masking
1000 stimuli, one memory item was cued for recall. Each observer completed 21 blocks, for a total of 1050
1001 trials. Blocks were spread over two testing sessions, each lasting approximately 1.5 hours, and taking
1002 place on different days. Observers completed 10 blocks in the first, and the remaining 11 blocks in
1003 the second session.

1094
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wes IMinimizing retinal after-effects

10s  We assessed the method of minimizing retinal afterimages by repeating all measurements, with the
1007 exception of not using phase shift of stimuli (Fig S1A). We predicted retinal afterimages could serve
100 as an additional source of information, but only for a brief period after stimuli offset. Therefore,
1000 here we expected to see better performance for brief delays compared to conditions with phase shift.
100 Figure S2A shows recall error increased with both set size and delay. Both of these effects were
uor  statistically significant, as well as their interaction (set size: Fio15) = 47.3,p < .001,n? = .31; delay
moz  time: Fi5 45 = 48.4,p < .001,7* = .26; interaction: F(y990) = 21.3,p < .001,7* = .14), reminiscent
103 of findings for data with phase shift.

1104

u0s  Next, we focused on the comparison of conditions with and without phase shift of stimuli (Fig S2B).
106 We illustrate the difference in performance by subtracting RMSE obtained in the condition without
1107 phase shift (Fig 3B) from RMSE shown in Figure S2A. Negative values indicate better performance
108 in a condition without phase shift. As predicted, the overall pattern of data suggested performance
1100 was comparable for 1 item across all delays, and for all set sizes for extreme delays (simultaneous
110 presentation and 1000 ms), indicated by the difference values around 0. We confirmed the difference
111 in recall error for 1 item across all delays did not differ consistently with and without phase shift, as
uz  neither phase shift (F;9) = 0.03,p = .86, n? < .001, BF};, = 0.143) nor the interaction of phase shift
aa and delay (F5 45) = 0.41,p = .89, 7 = .00, BFj,; = 0.042) reached significance. Based on this result,
11 we conducted all remaining analyses using only the remaining two set sizes. We ran separate repeated
115 measures ANOVAs for each delay using phase shift and set size as factors. The pattern of results we
116 Observed was clear: performance was comparable with and without phase shift with the simultaneous
m17  presentation and 1000 ms delay (phase shift, F{; ) < 1.08,p > .33,1% <.002, BF.,; > 3.62; interac-
s tion, Fip18) < 0.8,p > .44, n? < .02, BF ;¢ > 3.39), while for the remaining intermediate delays recall
m1e  error was consistently lower when phase shift was omitted (phase shift, F{; gy > 5.8,p <.039, n? > .06;
120 interaction, F(; gy < 2.8,p > 13,1% <.001).

1121
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Figure S2: (A) Experiment 1 RMSE for trials without phase shift. (B) Differences in RMSE between
trials with and without phase shift across set size and delay conditions. Negative values indicate
better performance in the condition without phase shift.

1122 Taken together, performance with and without phase shift of stimuli was comparable in perceptual
123 condition (simultaneous presentation) and with the longest delay, suggesting phase shift did not
u2¢ change visibility or encoding of information into VWM. In contrast, we found strong evidence that
1125 observers had access to an additional source of information over intermediate delays when phase shift
1126 was not used, demonstrated by a better recall performance from 0 ms to 400 ms delay. Specifically,
1127 this source of information was available immediately after stimuli offset and was short-lived, consistent
u2s with the theoretical description of retinal afterimages [99].
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120 SWap error estimates
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Figure S3: Swap error estimates. (A&B) Probability of swap errors estimated from empirical data
using the three-component mixture model [92] in Experiment 1 (A) and Experiment 2 (B). (C&D)
Probability of swap errors in best-fitting DyNR model in Experiment 1 (C) and Experiment 2 (D).
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10 Alternative models’ fits
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Figure S4: Experiment 1 behavioral data and model fit for the DyNR model without sensory persis-
tence after stimulus offset. (A) A version of the DyNR model with equal diffusion across set sizes.
(B) A version of the DyNR model with diffusion that scales with set size.
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Figure S5: Experiment 2 behavioral data and model fit for the neural model without sensory per-
sistence after stimulus offset. (A) A version of the DyNR model without sensory persistence. (B)
Separate fits of the simplified neural model to each exposure time.
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Figure S6: Behavioral data and model fit for the DyNR model without the cue processing time for
(A) Experiment 1 and (B) Experiment 2.
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Figure S7: Behavioral data and model fit for a neural model with constant accumulation of information
into WM for (A) Experiment 1 and (B) Experiment 2.
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Figure S8: Behavioral data and model fit for a neural model with the direct read-out of information
from sensory memory for (A) Experiment 1 and (B) Experiment 2.
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usn Additional dataset 1

132 To further investigate the role of diffusion in memory dynamics, we analysed an additional dataset
133 collected in our lab [57]. In this experiment we varied the set size and delay duration similar to
13a  Experiment 1. In contrast to Experiment 1, we used longer memory delays, which allowed us to
135 examine the diffusion mechanism on a more suitable time scale. Moreover, memory delays used in
136 this study are out of reach of the decaying sensory information, enabling us to investigate the diffusion
137 without changes in the neural signal strength post-cue.

uss  Methods

130 Ten observers (6 females, 4 males, aged 18-34) took part in this experiment. The data for this
140 experiment was collected using the same equipment and the testing setting as described for the main
ua  experiments. A typical trial sequence is illustrated in Fig. S9. Each trial began with the presentation
a2 of a central annulus which served as a fixation point. Once a stable fixation was achieved, the inner
1a3 annulus radius changed indicating that stimuli would appear in 500 ms. The memory sample array
114a  was then presented for a duration of 500 ms. The array consisted of one or three randomly oriented
1es black bars (length 2.8°). Each bar was positioned in one of six predetermined locations equally
146 distributed around the circle with a radius of 5° around center of the screen. Each bar was presented
1e7  along with a placeholder circle (radius 1.5°).

1148

Fixation Stimulus

500ms Delay
1000-7000 ms

Response

Figure S9: Experimental procedure. Stimuli are not drawn to scale.

126 Memory array presentation was followed by a memory delay during which fixation circle and
uso  placeholders stayed visible. The retention interval was either 1 or 7 seconds long. After that, one
151 stimulus was randomly cued for recall. The cue consisted of a second, larger circle drawn around one
us2  of the placeholders. Observers were instructed to start rotating a response dial (Griffin Technology
uss  PowerMate USB) once they were ready to respond. After the rotation of the response dial was
1sa  detected, a randomly oriented black bar was displayed within the placeholder. Observers were
1ss  instructed to rotate the dial until the displayed bar matched the remembered orientation of the cued
use item. Observers confirmed their response by pressing the dial. Trials with different set sizes and
157 delay durations were randomly interleaved.

1158

11se  Eye movements were monitored from the beginning of the trial until stimuli offset, and observers
160 were required to hold steady fixation during that period. If the gaze position deviated by more than
1e1  2° a message appeared on the screen and the trial was aborted and restarted with new orientations.
ue2  Hach observer completed 700 trials, divided into two sessions and each consisting of 7 equal blocks.
163 Two sessions were separated by at least one day, and each lasted approximately 1 hour. At the
ues  beginning of each session observers familiarized themselves with the task and experimental setup by
ues doing at most 50 practice trials.

1166

11ez  Results

1es  Behavioral data. Recall performance is shown in Figure S10. As predicted, response error increased
1160 With set size and memory delay. A repeated measures ANOVA revealed a significant effect of set
ur  size (F(19) = 111.17,p < .001,7m% = .76) and memory interval (Fli,9) = 58.14,p < 001,72 = .12),
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and their interaction (F(; 9y = 10.66,p = .01,m7> = .02) on response error. Moreover, conducting
paired t-tests within each set size revealed recall error increased with the delay with set size 1
(tgy = 5.83,p < .001,d = 1.84) and set size 3 (t9) = 5.78,p < .001,d = 1.83). The interaction
effect was a consequence of a larger increase in error with delay for set size 3 compared to set size 1
(ARMSE = RMSE~0g0ms — RMSE1000ms; t(9) = 3.27,p = .01,d = 1.03). These results are consistent
with Experiment 1, corroborating our finding that increasing the set size and delay time have a
disadvantageous effect on memory fidelity.

—0—1
—0—3

Setsize 1
IS

RMS Error

O/Q

Set size 3

0 T - 0

1000 ms 7000 ms 1000 7000

Delay times (ms)

Figure S10: Behavioral data and model fit for Experiment 1a

Neural model. We fitted the DyNR model to the data to test whether noise-driven diffusion
is sufficient to account for changes in recall fidelity with longer memory intervals. We applied a
simplified version of the model without sensory decay and VWM accumulation components. This
was justified given that estimate of sensory decay from Experiment 1 was shorter (mean life 7 =
0.21) than the shortest interval used in this experiment (1 s). Moreover, based on our findings in Ex-
periment 2, we argue that a display duration of 500 ms is sufficient to fully encode objects into VWM.

Curves in Figure S10 show fits of the model with maximum likelihood (ML) parameters (mean =+
se: population gain v = 385.02 £+ 208.3, tuning width k£ = 2.67 £ 0.43, cue processing constant b =
0.68 + .67, base diffusion 03,4 = 0.009 £ 0.001, swap probability p = 0.005 £ 0.002). The model
provided an excellent quantitative fit to response distributions and summary statistics (Fig. S10),
successfully explaining the adverse effects of set size and memory interval on recall fidelity. Critically,
and consistent with results from Experiment 1, the proposed DyNR model provided a better fit
to human response error compared to the matching model without diffusion (AAIC = 144.75) or
the model in which diffusion rate increases with set size (AAIC = 42.3). In conclusion, this result
shows that variability in representations over longer memory intervals can be fully accounted for by
noise-driven accumulation without changes in the representational signal [9, 10, 26].

36


https://doi.org/10.1101/2023.03.27.534406
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.27.534406; this version posted March 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1uer  Additional dataset 2

108 To further validate predictions of the DyNR model we fitted it to an existing working memory study
100 (Experiment 1 in 35). This study focused on the role of temporal dynamics during WM encoding,
1200 thereby addressing the same question as our Experiment 2. In contrast to our Experiment 2, Bays
1200 et al. [35] used a longer delay period (1100 ms), precluding the strengthening influence of decaying
1202 sensory information on recall. This dataset therefore isolates the initial information accumulation
1203 process during stimuli presentation.

1202 Methods

120 The observers (N = 32) performed a continuous report task in which a variable number of oriented
1206 bars was presented for a variable duration, followed by a pattern mask (100 ms) and a 1-second
1207 delay period after which one of the items was probed for recall. Set size was manipulated between
1208 Observers and exposure duration was manipulated within observers. Each observer performed 100
1200 trials per exposure duration, for a total of 25600 trials in the study. A more detailed description of
1210 the experiment is provided in Bays et al. [35].

1212 Analysis

1212 Considering only exposure duration in this experiment was manipulated at the observer level, we
1213 decided to expand our modelling approach by employing a Bayesian hierarchical method as a com-
1214 promise between fitting the data for each observer (i.e., set size) independently and pooling the data
1215 across all observers. Using a Bayesian hierarchical modelling, individual-observer parameters are con-
1216 sidered samples from population distributions, whose means and variances are estimated based on all
1217 available data. In general, this approach has a desirable characteristic of constraining individual-level
1218 parameters with the population-level distribution and producing meaningful parameter estimates
1210 when a model is fitted across separate groups. The dynamic neural model fitted to the data is iden-
1220 tical to the model fitted in Experiment 2, with the exception that here we assumed any existing
1221 post-stimulus sensory activity completely diminished by the time of the cue (1100 ms post-stimulus
1222 offset), and therefore we did not model sensory decay here. To obtain the hierarchical fit, we used the
1223 Differential Evolution Markov Chain algorithm [100]. All individual-level parameters were samples
122¢  drawn from normal (i.e., Gaussian) distributions, with corresponding mean and standard deviation
1225 being constrained by uniform hyperprior distributions. We collected 240000 post-warmup samples
1226 across 12 chains and computed median and 95% equal-tailed intervals (ETI) of posterior distributions
1227 to obtain the group and individual-level parameter estimates. Prior specifications and empirical data
1228 for all analyses can be found along with the published code.

1220 Results

1230 Figure S11 and Figure S12 show empirical distributions and summary statistics across all conditions.
1222 Similar to Experiment 2, increasing the exposure duration (F7 196y = 110.9,p < .001, n? = .188) and
1232 decreasing the set size (F(328) = 22.83,p < .001,72 = .53) had beneficial effect on response error.
1233 Interaction of exposure duration and set size was significant (F{21,196) = 3.13,p < 001, 7% = .02).
123¢ Critically, the pattern of memory fidelity dynamics largely matches the pattern observed in Exper-
1235 iment 2, with response errors decreasing rapidly as presentation duration was increased from the
123 minimum duration, saturating at longer durations. This pattern was consistent across all set sizes,
1237 which only differed in the absolute error.

1238

1238 These dynamics were accurately predicted by the DyNR model, both at the level of response
12¢0  distributions (curves in Fig. S11) and summary statistics (curves in Fig. S12). The parameters used
1241 to generate model predictions were obtained by taking the individual observer’s posterior medians.
122 We observed the following hyperparameters (median and 95% ETT of hyperposterior): population
1243 gain v = 109.47 (88.1 - 133.57), tuning width x = 3.23 (2.6 - 4.03), sensory rise time constant Tyise
12ea = 0.0049 (0.0019 - 0.0091), VWM accumulation time constant 7wy = 0.067 £+ (0.051 - 0.087), cue
12es  processing constant b = 0.423 (0.093 - 0.8436), base diffusion o3z = 0.095 (0.057 - 0.149), spa-
1246 tial uncertainty time constant Typatial = 0.031 (0.022 - 0.041), swap probability p = 0.02 (0.011 - 0.034).

1247
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Figure S11: Empirical recall error distributions (black circles) from Experiment 1 in Bays et al. [35]
and the DyNR model fits to the data (colored curves).
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Figure S12: Summary statistics (black circles) from Experiment 1 in Bays et al. [35] and the DyNR
model fits to the data (colored curves). The DyNR model was fit to the distributions of recall errors
shown in Fig. S11.
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