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Abstract 

Adaptive behaviours depend on dynamically updating internal representations of the world based 
on the ever-changing environmental contingencies. People with a substance use disorder (pSUD) 
show maladaptive behaviours with high persistence in drug-taking, despite severe negative 
consequences. We recently proposed a salience misattribution model for addiction (SMMA; 
Kalhan et al., (2021)), arguing that pSUD have aberrations in their updating processes where 
drug cues are misattributed as strong predictors of positive outcomes, but weaker predictors of 
negative outcomes. We also argue that conversely, non-drug cues are misattributed as weak 
predictors of positive outcomes, but stronger predictors of negative outcomes. However, these 
hypotheses need to be empirically tested. Here we used a multi-cue reversal learning task, with 
reversals in whether drug or non-drug cues are currently relevant in predicting the outcome 
(monetary win or loss). We show that compared to controls, people with a tobacco use disorder 
(pTUD), do form misaligned internal representations. We found that pTUD updated less towards 
learning the drug cue’s relevance in predicting a loss. Further, when neither drug nor non-drug 
cue predicted a win, pTUD updated more towards the drug cue being relevant predictors of that 
win. Our Bayesian belief updating model revealed that pTUD had a low estimated likelihood of 
non-drug cues being predictors of wins, compared to drug cues, which drove the misaligned 
updating. Overall, several hypotheses of the SMMA were supported, but not all. Our results 
implicate that strengthening the non-drug cue association with positive outcomes may help 
restore the misaligned internal representation in pTUD.            
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1. Introduction 

In a non-random environment, the brain integrates past experience with current sensory input 

to make predictions about future environmental contingencies (Friston, 2010; Knill & Pouget, 2004; 

Körding & Wolpert, 2004; Tenenbaum et al., 2006). These predictions facilitate adaptive action 

selection. Therefore, one important aspect of brain functioning is to integrate past experience 

with the current sensory input such that the most accurate predictions are generated, which in 

turn leads to adaptive behaviors. Internal representations that best denote the environmental 

contingencies is key to making accurate predictions. However, to best represent the ever-

changing environmental contingencies, these internal representations need to be dynamic, and 

constantly updated from new sensory information. Given that there is usually an abundance of 

sensory information, these internal representations also need to be selectively updated from 

information or cues that are most relevant or salient in predicting future outcomes. Internal 

representations are therefore most adaptive when they are selectively updated from cues with 

high predictive values (Mackintosh, 1975). And because these internal representations are used 

for action selection (Tolman, 1948), behaviors are only as adaptive as these internal 

representations.    

 Addiction is a complex condition often characterized by a high persistence in 

maladaptive behaviors, despite severe negative consequences (Diagnostic and Statistical Manual of 

Mental Disorders (5th Ed.), 2013). We recently proposed a conceptual theory suggesting that 

aberrations in internal representation updating processes may be one contributor of some aspects 

of maladaptive addictive behaviors (Kalhan et al., 2021). Specifically, we proposed that drug 

predictive cues are misattributed as having a high salience in predicting positive outcomes, and 

less so in predicting negative outcomes. And the converse may also be true for non-drug 
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predictive cues, with higher salience in predicting negative outcomes over positives. A 

consequence of this salience misattribution is that a misaligned internal representation is 

produced, where overweighted positive predictions/expectations in response to drug predictive 

cues are generated, thereby, increasing the chances of selecting drug-related actions. Further, the 

salience of any negative outcomes of drug actions may be downweighed, contributing to reduced 

updating of the internal representation from these drug-related negative outcomes. Therefore, a 

misaligned internal representation is formed where drug cues have an inaccurately higher 

predictive value for positive outcomes, and inaccurately lower for negative outcomes. We 

proposed that this misaligned internal representation may be one contributor in the high 

persistence of maladaptive drug-related behaviors, despite their negative consequences. We refer 

to our theory throughout the current paper as the salience misattribution model for addiction 

(SMMA theory).  

The present experiment was designed to empirically test the theoretical concept of a 

salience misattribution effect producing a misaligned internal representation, between smoking-

related (drug) and non-drug (neutral) cues in people with a tobacco use disorder (TUD) and non-

smoking healthy controls. Here, we used a reversal learning paradigm, with reversals in the 

relevance of drug and neutral cues in predicting future outcomes, which could be a monetary win 

or loss. This was a non-instrumental task, where participants’ actions could not influence the 

outcome, and was adapted from Schwartenbeck et al., (2016) and Nour et al., (2018). 

Participants had to keep track of reversals but did not need to learn any new cue-outcome 

relationships during the experiment. 

We used a simple trial-by-trial Bayesian belief updating model (see Methods, 

computational modelling) to estimate how much predictive value a participant placed on drug 
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and neutral cues (all of which had objectively equal predictive values in the task). An internal 

representation in this task is specifically defined as a representation of whether the neutral or 

drug cue type is currently relevant in predicting the outcomes. The Bayesian model worked by 

integrating past experience (prior belief of which cue type is currently relevant), with the 

incoming sensory information (likelihood of the current outcome, given the cues presented), to 

produce an updated belief of which cue type is currently relevant (posterior belief). Using this 

Bayesian model, we estimated a trial-by-trial belief estimate of whether the drug or neutral cues 

are currently relevant in predicting the outcome. We also calculated the Kullback-Leibler 

divergence (KLD) on a trial-by-trial basis, which is a difference between the prior and posterior 

belief distributions and quantifies the magnitude of internal representation updates (information 

gain). Lastly, we used eye-tracking (gaze proportions and pupil size) to test whether eye-

behavior correlated with internal representation updating. 

Overall, we hypothesized that for people with a TUD, more so than in controls: 1) drug 

cues, compared to neutral cues, would have a higher estimated predictive value for positive 

outcomes, and 2) neutral cues, compared to drug cues would have a higher estimated predictive 

value for negative outcomes. The differences in predictive values may therefore capture a 

salience misattribution effect, that produces misaligned internal representations of cue-outcome 

predictions in people with a TUD, due to aberrant updating.        

 

2. METHODS 

 

2.1. Participants 
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Participants were recruited through advertisements at the University of Melbourne, paid 

Facebook advertisements, and a community website (gumtree.com.au). All participants provided 

written and verbal informed consent that was approved by the Human Ethics Committee of the 

University of Melbourne. The TUD group consisted of 24 individuals (12 males, 12 females: 

mean age 34.54, standard deviation +/- 9.96, and range 19-53). People in the TUD group smoked 

at least 10 cigarettes daily, for at least the last 2 years. The average Fagerström Test for Nicotine 

Dependence (FTND) (Heatherton et al., 1991) score was 4.92, indicating moderate dependence. 

The control group consisted of 24 individuals (12 males, 12 females; mean age 34.33, standard 

deviation 9.76, and range 18-55). Participants in the control group reported smoking fewer than 5 

cigarettes in their entire lifetime and having no history of vaping or neurological/psychiatric 

disorders. The mean Alcohol Use Disorders Identification Test (AUDIT) (Saunders et al., 1993) 

score for the control group was 2.96 with standard deviation +/- 3.69, and 10.38 with standard 

deviation +/- 9.04 for the TUD group. All participants were paid $20 per hour for their time 

during the experiment, and the TUD group participants were paid an additional $30 for 

abstaining 3-hours before the study.    

 

2.2. Procedure  

People in the TUD group were asked to abstain from smoking at least 3-hours prior to 

participating in the experiment, which was confirmed by self-report and further supported by the 

mean Shiffman–Jarvik Withdrawal Scale (SJWS) (15 items) (Shiffman & Jarvik, 1976) score of 

4.13 +/ 0.65, indicating moderate craving/withdrawal symptoms. The 3-hours abstinence window 

was chosen due to nicotine’s half-life of approx. 2-hours (Benowitz et al., 1982), and data 

suggesting that the 3-hour abstinence did not produce withdrawal effects on cognition (Charles-
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Walsh et al., 2014). At the start of the experimental session, participants were asked to fill out 

the relevant questionnaires. For the control group, this was the AUDIT questionnaire and for the 

TUD group this was the FTND and SJWS, in addition to the AUDIT. Next, participants from 

both groups were asked to rate all four visual cues used in the task for valence, arousal, and the 

urge to smoke. These cues were rated on a computerized slidable scale between 0 and 100, which 

was similar to how it was used by Manoliu et al., (2021) to assess cue ratings in people with a 

TUD. Subsequently, participants were given written and verbal instructions on the task, which 

took approx. 10 minutes. Next, participants did the training task (approx. 10 minutes – see 

Training session below). After this training task, we performed the eye calibration procedure 

(usually took less than 2 minutes). And finally, the participant did the main experiment (approx. 

45 minutes), with short breaks every ~12 minutes.      

 

2.3. Task contingencies and trial types 

The current experiment used a reversal learning task with reversals in the relevance of the 

cue type (drug or neutral) for predicting future monetary outcomes (wins or losses). Sometimes 

drug cues were relevant in predicting the future outcomes, and this would then reverse to neutral 

cues being relevant in predicting the outcome. At the beginning of every trial, one drug and one 

neutral cue were visually presented side-by-side. The participant’s primary aim was to keep track 

of these reversals and indicate, on a trial-by-trial basis, which cue type they thought was 

currently relevant in predicting the outcomes. They also indicated, on a trial-by-trial basis, how 

confident they were in their decision. Importantly, to minimize any explicit bias, we did not 

directly ask participants if they thought the “drug” or “neutral” cue predicted the outcome. 

Instead, participants were therefore asked whether they thought the “circle” or the “square” 
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predicted the outcome, as both (drug and neutral) cues were in either a circle or a square outline. 

In other words, if drug cues were consistently presented in a circle, neutral cues would be 

consistently presented in a square throughout the entire task for that participant. The outline for 

the drug and neutral cues was either a circle or a square and was counterbalanced across 

participants.   

There were four visual cues used in total - two drug cues and two neutral cues. One drug 

and one neutral cue predicted a win 80% of the time, and a loss the other 20% of the time. The 

other drug and neutral cue predicted a loss 80% of the time and a win the other 20% of the time 

(see Figure 1a for an example). The specific drug and neutral cues that predominately predicted 

wins/losses were counterbalanced across participants. Participants could infer which cue type 

was currently relevant in predicting the outcome when the two cues that were presented side-by-

side, predicted opposite outcomes (informative trials). For example, if the predominately win 

predictive drug cue and the predominately loss predictive neutral cue were presented side-by-

side, and the outcome was a win – it was likely that the drug cue predicted this, and the 

participants could therefore infer that they are likely in the drug relevant state (Figure 1b). These 

trials, where the two cues predicted opposite outcomes (incongruent trials; i.e., presenting one 

win predictive cue and one loss predictive cue) were informative trials as these could help the 

participant infer which cue predicted the outcome, indicating whether they were in a drug or 

neutral cue relevant state. These informative trials made up 40% of the total trials. Another 40% 

of the trials were uninformative, where both cues predicted the same outcome (congruent trials; 

i.e., both cues were win or loss predictive). These trials were not informative because they did 

not allow the participant to infer which cue predicted this outcome, and therefore 
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updating/changing their estimate of which cue type was relevant would mean that they were 

using unreliable information to guide their inferences.  

The last 20% were surprise trials, 10% of these were incongruent surprises, when 

participants were in a drug or neutral relevant state and the outcome was opposite to what the 

drug or the neutral cue would have predicted (e.g., if the participant was in a drug relevant state 

and the drug cue was predictive of a win, but the outcome was a loss) and the other 10% were 

congruent surprises where the outcome would be the opposite to what both cues predicted (e.g., 

the drug and neutral cues predicted a win, but the outcome is a loss). The distribution of these 

surprise trials were constrained such that there were no repeats, and the very first trial could not 

be a surprise trial. There were 280 trials in total, 112 were informative (40%), 112 were 

uninformative (40%), 28 were incongruent surprises (10%) and 28 were congruent surprises 

(10%). See Table 1 for a summary of the trial types and the relative proportions.  

The relevance of the cue type in predicting the outcomes reversed 24 times in total, with 

a reversal every 8, 10, or 12 trials. This number of trials before a reversal occurred was an even 

number so that there was an equal number of informative and uninformative trials within a 

relevance block. Whether the first relevant cue state was drug or neutral was counterbalanced 

between participants. Lastly, there was at least one informative trial within the first three trials 

after the reversal. This allowed the participant to infer that a reversal had occurred.  

Participants were instructed that each cue had 80% predictive values, and that 20% of the 

time they would predict the opposite outcome. They were also instructed that there would be a 

reversal every 8-12 trials. They were not informed on the proportion of informative vs 

uninformative trials. Participants were also trained on which drug and neutral cue was 

predominately win/loss predictive before starting the task (see the Training Session section 
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below). Importantly, while the money won or lost was real money, their responses did not

influence these win/loss outcomes. These outcomes were predetermined.  

Figure 1. Experimental contingencies and trial types. a) An example of cue contingencies for a given participant. There is
always one drug and one neutral cue predominately predictive of a win outcome (p(win | win cue) = 0.8, p(loss | win cue) = 0.2),
and another drug and neutral cue predominately predictive of a loss outcome (p(loss | loss cue) = 0.8, p(win | loss cue) = 0.2).
Drug cues are inside circles and neutral cues inside squares in this example. b) Example of an informative trial. The drug cue
(circle) predicts a win, and the neutral cue (square) predicts a loss. As the outcome is a win, the participant can infer that they are
likely in the drug relevant state (circles). Bottom panel is a situation where the participant had the prior belief (belief before the
trial) that both drug and neutral cue were equally relevant in predicting the outcome. Then the posterior belief (belief after
observing that trial) may be updated, to being more likely that the participant is in a drug relevant state, and less likely in the
neutral state. C) Example of an uninformative trial. Both the drug and the neutral cues are predictive of wins, and the outcome is
a win. Therefore, this is not informative about which cue type is currently relevant. The bottom panel shows no change in the
posterior belief after observing an uninformative trial. A change in the posterior belief would indicate that the participant is using
irrelevant information to make their inferences. D) Another informative trial, but indicative of a reversal. Previously, the drug
cues were predictive of the outcome. In this case the drug cue predicts a win outcome, and neutral cue predicts a loss outcome.
Because the outcome is a loss, the participant could now infer that the neutral cue (square) is likely now the relevant cue type.
Bottom panel shows the prior belief of the drug cue (circle) being relevant, but after observing the trial, which indicates a reversal
has occurred, the updated posterior belief is now indicative of the neutral cue (squares) being the relevant cue type. 
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The task started with a fixation screen randomized to be between 0.5-0.75 s long, following 

which the two cues were presented side-by-side for 2 s (see Figure 2; cue epoch). One was a 

drug cue, and the other was a neutral cue. The side (left or right) of cue presentation (neutral or 

drug) was randomized between trials. Following this 2 s cue epoch there is a blank ‘anticipation’ 

screen presented for 1.5 s. After this, the participant is presented with the outcome for 2 s. If it’s 

a loss, the square is red, and the sign is negative (“-”) with the amount lost (randomized between 

15 and 20 cents) indicated in cents with the “c” symbol. In the case of a win, the square is a 

green and the sign is positive (“+”) with the amount won (randomized between 20 and 25 cents) 

indicated in cents. While there were an equal number of trials with a win and loss, wins had a 

larger amount than losses so that participants could gain money on average at the end of the task. 

All participants went through the same win-loss contingencies – with $4.89 received from the 

task itself, by all participants (this, in addition to the money received for their time – see 

Participants section above).   

Finally, participants were presented with a vertical rating scale (11 points; numbers not 

indicated in the scale), where they could select whether they thought that the circle or the square 

predicted the outcome. We used a vertical scale, instead of horizontal to avoid a left-right bias 

based on the way the cues were presented. Participants were instructed that this was a confidence 

scale, and to utilize the full scale (i.e., go all the way towards the “circle” end if they are very 

confident that the circle predicted the outcome, and vice versa towards the “square” end, or the 

middle if they’re completely unsure). The yellow dot indicated what the choice was on the scale, 

and this dot was randomly placed at the extreme end of either the circle or the square at the start 

of each trial. Participants therefore had to move the dot, using the “up” or “down” arrow on a 

keyboard, to indicate their choice. Participants had 3 s to make their rating choice, and after the 3 
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s, their choice was recorded, and the trial ended. Whether the “circle” text position or the

“square” test position was at the top or bottom of the scale was counterbalanced between

participants. We used COGENT on MATLAB 2017b to run this experiment, on a 1920 x 1080p

monitor, with a 120Hz refresh rate.   

Figure 2. Example of an experimental trial. The trial starts with a fixation screen which is randomised to be between 0.5-0.75
seconds (s) long. Following this, the drug and the neutral cues are presented side-by-side for 2 s. Then a blank ‘anticipation’
screen appears for 1.5 s. After this blank screen, the participant gets the outcome for 2 s which, in this case, is a loss. The amount
lost is indicated in cents. Lastly, a rating scale is presented. The participant has 3 s to rate how confident they are about whether
they are in the circle (i.e., drug) or the square (i.e., neutral) relevant state, by moving the yellow dot up or down. The position of
the yellow dot is recorded as their response at the end of the 3 s.  
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2.5. Training session  

The primary aim of the training session was to ensure that participants learnt which drug and 

neutral cues were predictive of a win or a loss. Unlike in the main task, all trials were 

informative (with 100% predictive values for all cues). There were no uninformative and no 

surprise trials. In the first trial, the participants were told which shape was relevant so that they 

could get started on the task. The timing of a trial and all the events within the trial were identical 

to the main task, with the participants having to rate the shape that they thought predicted the 

outcome. All 4 cues had 30 trials each of predicting the outcome, allowing for an equal 

opportunity to learn the contingencies across the 120 trials. All participants had learnt what 

outcome each of the four cues were predictive of prior to starting the main task (based on a 

positive correlation between their ratings and true task contingencies).    

 

2.6. Stimuli  

The two drug cues were chosen from the “SmoCuDa” database, which is an open access 

database of visual smoking cues validated to induce craving in people with a tobacco use 

disorder (Manoliu et al., 2021). They were chosen based on having similar valence (51 +/- 15. 

and 55 +/- 21), arousal (56 +/- 21 and 66 +/- 20) and urge to smoke (54 +/- 23 and 57 +/- 26) 

ratings. The neutral images were of a pen and pencil, which are commonly used as control 

images when comparing with smoking images (Kang et al., 2012; Valsecchi & Codispoti, 2022). 

These images were downloaded from pixabay.com, a royalty free database of images. To make 

the images suitable for eye-tracking, all images were matched for luminance, spatial frequency, 

and the pixel histograms (contrast) using the “shine_color” toolbox 
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(github.com/roddalben/shine_color) in MATLAB 2017b. These were all done using the 

“lumMatch”, “sfMatch” and “histMatch” functions within the toolbox. All four images were 

209.55mm (width) x 157.16mm (height). We put a 500 x 500mm black square behind all these 

images. The grey (RGB: 153 153 153) outline was used to indicate the shape, and this was 

350mm x 350mm. All images were in .png format, and were then converted to .bmp format, 

using the “imwrite” function in MATLAB 2017b in order to be used within COGENT. Overall, 

visual salience was very closely matched across all cues, which is considered best practice for 

eye tracking studies (Carter & Luke, 2020).  

Lastly, the color green is usually responsible for a higher luminance and can have a 

greater perceived brightness compared to the color red (Cohen et al., 1968; Mullen, 1985). Our 

outcome squares (even though they were very small relative to the screen) were red or green for 

losses and wins, respectively. Therefore, we used the luminous efficiency function (Cohen et al., 

1968) (Y = 0.21*Red + 0.72*Green + 0.07*Blue) to weight the red and green colors such that 

they had equal perceived brightness and minimized any confound on our pupillometry results 

due to the difference in colors.  

 

2.7. Eye-tracking and calibration  

The calibration was done prior to starting the main experiment and was a 10-point setting 

using the Eyelink toolbox for MATLAB (Cornelissen et al., 2002), which also used 

Psychtoolbox. Only the right eye was recorded. One eye is often recorded and has close accuracy 

and systemic error (sometimes lower) compared to two eyes which are later averaged (Carter & 

Luke, 2020; Hooge et al., 2019). We used the Eyelink® 1000 Plus eye tracker (https://www.sr-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.27.534463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534463
http://creativecommons.org/licenses/by-nc-nd/4.0/


research.com/wp-content/uploads/2018/01/EyeLink-1000-Plus-Brochure.pdf) with 1000 Hz 

sampling frequency. There were 3 participants in the TUD group, and 4 participants in the 

control group excluded from eye-tracking analysis (but were still included in modelling and 

behavioral analysis), due to difficulties in tracking their eyes. Therefore, the eye-tracking data is 

based on n = 21 for the TUD group and n = 20 for the control group.  

 

2.8. Computational Modelling  

The current model was built within the Bayesian framework, using a Hidden Markov Model. 

The model was used to infer the current hidden relevant state (X) in the task, which could either 

be a drug or a neutral relevant state (� � �1,2�, 1 � 	
�� 
�������, 2 � ����
�� 
�������). 

The hidden relevant state is inferred based on three observations in a given trial: 1) the drug cue 

(D) presented (whether it was predominately predictive of a win or a loss; � � �1,2�, 1 �

��� �
�	������, 2 � ���� �
�	������), 2) the neutral cue (N) presented (whether it was 

predominately win or loss predictive; � � �1,2�, 1 � ��� �
�	������, 2 � ���� �
�	������)), 

and 3) the outcome (Y) (whether it was a win or a loss; � � �1,2�, 1 � ���, 2 � ����)). These 

collectively formed the observation matrix (O), per every trial (t): �� � ���, ��, ���. Given this 

observation matrix, the Bayesian model inferred the hidden relevant state on a trial-by-trial basis, 

where t denotes the current trial (�� � �1,2�).    

The model started with a uniform prior belief, which is a probability estimate of which 

hidden state is currently relevant under each of the two hypotheses (i.e., hypothesis one (H1) - 

the probability that the drug cues are currently relevant (X = 1) and, hypothesis two (H2) - the 

probability that neutral cues are currently relevant (X = 2)). These prior beliefs are weighted by 
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the likelihood of observing the outcome given the cues that were observed during the trial, under 

each of the two hypotheses (see Equations 2 and 3 below). For example, if a win predictive drug 

cue and a loss predictive neutral cue was presented, and the outcome was a win, there is a higher 

likelihood that the drug cue predicted this win outcome. Therefore, the prior belief would be 

updated towards the drug relevant state (H1; X = 1). These prior beliefs and the likelihoods are 

used to calculate the posterior belief. This posterior belief is the updated probability estimate of 

the current hidden relevant state under both hypotheses, after observing the current trial. The 

posterior belief can be calculated on a trial-by-trial basis using Bayes’ rule below:  

� �� |��:�" � ����  | 	�:���
���	� | ��


∑ ���� | 	�:���
���	� | ��
���:�

   (Eq 1) 

Where, � �� |��:�" is the posterior belief after the observations of the current trial (t), the 

� �� | ��:�
�" is the prior belief, and � �� | ��" is the likelihood of the observations under both 

hypotheses. Importantly, the prior belief of the next trial (t+1) is the posterior belief of the 

current trial (t) (see bottom panel of Figure 1b-d).  

For every trial, the likelihood is based on the cues observed, for both hypotheses, based 

on the matrices see below:  

H1: drug relevant  �#� �  $ � % 1 & � %
1 & � & � & '     (Eq 2) 

H2: neutral relevant  �#� �  $ � % 1 & � %
1 & � & � & '     (Eq 3) 

Here, �#� is the likelihood matrix under the hypothesis that the current hidden state is drug 

relevant (H1; X = 1), given the observations. The �#� is the likelihood matrix under the 

hypothesis that the current hidden state is neutral relevant (H2; X = 2), given the observations. 

Here, a win predictive drug and neutral cue predict the outcome win with likelihood D+ and N+, 
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respectively. And a loss with likelihood 1-D+ and 1-N+, respectively. Conversely, a loss 

predictive drug and neutral cue predict a loss with likelihood D- and N-, respectively. And a win 

with likelihood 1-D- and 1-N-, respectively. Therefore, in both these matrices, row one 

represents a win outcome, and row two a loss outcome (� � �1,2�;  1 �  ���, 2 �  ����). And in 

both these matrices, column one represents the win predictive cue (D+ and N+) and column two 

is the loss predictive cue (D- and N-) 

(� ��	 � � �1,2�;  1 � ��� �
�	������, 2 � ���� �
�	������). Under this layout, the 

likelihoods can be chosen for the two hypotheses as below:  

H1: drug relevant  � �� � ���, ��� | �� � 1" � �#� ��, ��"   (Eq 4) 

H2: neutral relevant � �� � ���, ��� | �� � 2" � �#� ��, ��"   (Eq 5) 

These four likelihood values (one for each cue) were free parameters and was estimated for 

each participant. The greater the likelihood estimation for a given cue, the more the estimated 

predictive value (likelihood) for that cue, and the more the belief updates based on observing this 

cue. The likelihood estimate could be between 0.5 and 1. A likelihood value of 0.5 means no 

predictive value (no updates based on this) and 1 means perfect predictive value (maximal belief 

updating). Importantly, the overall internal representation update depends on the likelihood of 

both hypotheses, where if the likelihood of H1 is much greater than the likelihood for H2, the 

update will be strongly in favour of H1. But if the likelihoods for the two hypotheses are similar, 

there will be a weaker update, in favour of the hypothesis with a higher likelihood. For example, 

if a drug positive cue was presented, and a neutral negative cue was presented, and the outcome 

was a win, the internal representation update is dependent on 1) the likelihood of the drug 

positive cue (D+) predicting this win outcome, and 2) the likelihood of the neutral negative cue 

(1-N-) predicting this win outcome. Therefore, if the D+ estimate is very high, and at the same 
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time the 1-N- estimate is very low, there will be a strong update towards the drug cue in this trial. 

But if the ratio between the two is similar, there will be a weaker update towards this drug 

relevant state. In this way, the overall update depends on the likelihood that the drug positive cue 

(D+) will predict the win, but also on the likelihood that the neutral negative cue (N-) will not 

predict the win (1-N-). Therefore, the larger the ratio/difference between the two likelihood 

parameters, the larger the update towards one relevant state over the other.  

 The probability estimate of a non-reversal (nR) between the two relevant states is another 

free parameter estimated for each participant. Here, nR represents the probability that no switch 

will occur, and 1-nR is the probably that a switch will occur. The greater the estimated 

probability of a non-reversal (nR), the more stable the participant believes the environment is, 

and the more they use their prior beliefs to make inferences. The transition probability between 

the two hidden states was encoded in a 2x2 matrix below: 

�)������      �  $ �) 1 & �)
1 & �) �) '    (Eq 6) 

� �� � �| ��
� � *" �  �)������ �, *"    (Eq 7) 

The nR could be between 0.5 and 1. A nR = 0.5 corresponds to the participant not using their 

prior beliefs at all, that is, the environment is estimated to have no stability/pattern. A nR = 1, 

corresponds to the participant only using their prior beliefs to make their inferences, with the 

environment being estimated as completely stable. This matrix is then multiplied by the prior 

belief of the relevant hidden state under both hypotheses (i.e., � �� � 1 | ��:�
�" ��	 � �� �

2| ��:�
�"). Therefore, to weight the prior beliefs with estimated reversal probabilities, there is a 

multiplication of a 1x2 matrix (prior beliefs of the two hypotheses), with the 2x2 matrix 

(�)������). This multiplication allows for the prior beliefs to be weighted by the appropriate nR.  
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In sum, we estimated 5 free parameters per participant, and four of these are likelihood 

parameters, one for each cue. These indicated how much reliability each participant placed on 

each of the four cues (likelihood). The fifth free parameter is the non-reversal probability (nR). 

For details on the parameter recovery procedures, see Supplementary Materials. Importantly, we 

validated the parameter recovery procedure used here, through simulations using identical task 

condition/contingencies under the proposed model, with reliable recovery at the appropriate 

bounds for all 5 free parameters (see Supplementary Materials; Figure S1).   

To determine internal representation updating based on the model estimated prior and 

posterior distributions, we calculated the Kullback-Leibler divergence (KLD). This KLD was 

calculated on a trial-by-trial basis and is the difference between the prior and posterior 

distribution (see equation 8 below).   

+,���
  � ∑ � �� � �|��:�"�� ������|	�:�


������|	�:���


�
���    (Eq 8) 

Based on this equation, if there is no difference between the prior and posterior distributions for 

that trial, the KLD will be 0, indicating no update to the internal representation. If the KLD is 

greater than 0, then there is an update of the internal representations. Importantly, the KLD 

computation gives the magnitude of the update, but does not give a direction of whether this 

update was towards the drug (H1; X = 1) or neutral (H2; X = 2) relevant state. However, the 

direction of each update can be determined based on the difference between the prior and 

posterior of the two hypotheses. For example, if the prior at trial t, for H1 and H2 is 0.8 and 0.2, 

respectively, and the posterior at trial t is 0.9 and 0.1, for H1 and H2, respectively, then the KLD 

calculated at trial t is updated towards the direction of H1, as the belief for H1 went from 0.8 to 
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0.9, and for H2 it went from 0.2 to 0.1. In this way, we treated KLD as a 2-dimentional vector, 

with magnitude and direction of the internal representation update.      

 

2.9. Pupillometry pre-processing 

The raw pupillometry data was preprocessed using a custom script adapted from Bogdanov 

(2021). We first identified blinks as values below 1. Next, we identified rapid/high speed 

deviations as well as any large gaps, which are variations usually caused due to the eye-tracker 

losing the eye momentarily or the participant moving out of range for the eye-tracker. All these 

blinks and large deviations were removed and replaced with a cubic interpolation (using the 

“interp1” function in MATLAB 2017b) for time sensitive analyses. We then baseline corrected 

(Carter & Luke, 2020; Mathôt et al., 2018; O’Reilly et al., 2019) the data, with the mean of 500ms prior 

to the epoch of interest. The “outcome” epoch was our main epoch of interest, and there was a 

blank screen prior to this (“anticipation” screen; see Figure 2). All pupil size data was z-scored 

per participant to allow between participant comparisons.  

 

2.10. Analysis 

All trials were split into two groups: 1) informative (where the two cues predicted opposite 

outcomes, allowing participants to infer which state they are likely in) and 2) uninformative trials 

(where both cues predicted the same outcome and did not allow participants to infer which state 

they are in). We further subdivided informative trials into four trial types; 1) drug win - where 

the win outcome was predicted by the drug cue, 2) drug loss – where the loss outcome was 

predicted by the drug cue, 3) neutral win – where the win outcome was predicted by the neutral 
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cue, and finally, 4) neutral loss – where the loss outcome was predicted by the neutral cue. To 

test for significance, we used an ANOVA design with 3 factors, with 2 levels per factor. These 

included the factor of group (TUD and controls), cue type that predicted the outcome (drug or 

neutral) and outcome (win or loss).  

The uninformative trials were subdivided into two trial types; 1) win – where both cues 

predicted the outcome win and, 2) loss – where both cues predicted the outcome loss. To test for 

significance for these uninformative trials, we used an ANOVA with factors of group (TUD and 

controls) and outcome (win or loss). In all analyses, t-tests were used to test for simple effects, 

adjusted for multiple comparisons using the Tukey method. Importantly, we did not include any 

“surprise” trials in these analyses. Lastly, the boxplot method was used to identify and exclude 

outliers, where participants with values +/- 3 times the interquartile range were excluded. All 

statistical analyses were done using RStudio 4.1.2. A complete list of results from the ANOVAs 

and t-tests are listed in the Supplementary Materials.  

 

3. RESULTS 

 

3.1.Model independent behavioral analysis  

3.1.1. Compared to the control group, people with a TUD misrepresented the drug and 
neutral cue-outcome relationships 

 

Figure 3a shows the average rating towards the drug or neutral cue for informative trials, for 

each of the four trial types. Here, a rating of 1 indicates absolute confidence in the drug cue 

predicting the outcome, and a rating of 11 is absolute confidence in the neutral cue predicting the 
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outcome. There was a significant main effect of cue type (F(1,176) = 1200.58, p = 2.2e-16), 

indicating that both groups did correctly attribute trials where drug cues predicted the outcome 

(“drug win” and “drug loss”) towards the drug cue, and vice versa for neutral predictive trials 

(“neutral win” and “neutral loss”). There was also a significant interaction between the cue type 

and group factors (F(1,176) = 19.20, p = 2.023e-05). Subsequent t-tests suggested that both 

groups equally attributed drug predicted wins to the drug cue (p = 0.27; “drug win” trials), 

however, when drug cues predicted a loss (“drug loss” trials), the TUD group rated more towards 

the neutral cue having predicted this outcome, compared to controls (p = 7e-04), as predicted by 

our SMMA theory. Further, and also in keeping with our SMMA prediction, when neutral cues 

predicted a win (“neutral win” trials), the TUD group rated more towards the drug cue having 

predicted this win outcome, compared to controls (p = 0.045). However, contrary to our 

prediction, when the neutral cue predicted a loss, the TUD group were also more likely to rate it 

towards the drug cue having predicted this loss (p = 0.03; “neutral loss”). Overall, compared to 

controls, the TUD group misrepresented the cue-outcome relationships in all trial types, except 

for when the drug cue predicted a win (“drug win” trials). 

 Figure 3b shows the average rating towards drug and neutral cues, but for uninformative 

trials, with “win” or a “loss” outcome. There was a significant main effect of outcome (F(1,84) = 

5.48, p = 0.022) and a significant interaction between group and outcome ((F(1,84) = 5.03, p = 

0.028). Subsequent t-tests revealed that compared to the control group, the TUD group was more 

likely to attribute uninformative wins to the drug cue (p = 0.028), consistent with our prediction, 

however, they did not perform differently to the control group for the loss outcome (p = 0.35).  
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Figure 3. Ratings towards drug and neutral cues given the outcomes. Smaller dots are mean ratings per participant, with the
larger dots being the overall mean +/- standard error of the mean. a) Ratings for informative trials. The TUD group performed
similar to controls in attributing drug predictive wins to the drug cues (“drug win” trials) (p = 0.27). However, the TUD group
attributed drug predictive losses more so towards the neutral cues, compared to the controls (“drug loss” trials; p = 0.0006).
When neutral cues predicted a win, the TUD group was more likely to attribute this win to the drug cues (“neutral win” trials; p =
0.045). Lastly, however, when neutral cues predicted a loss, the TUD group was also more likely to attribute this towards the
drug cues (“neutral loss” trials; p = 0.032). b) Ratings for uninformative trials. When neither cue predicted a win, the TUD group
were more likely to attribute this win to the drug cues (p = 0.028). However, both groups performed similarly for the loss
outcome (p = 0.35).  
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3.1.2. Compared to the control group, people with a TUD are biased in updating the drug 
and neutral cue-outcome relationships 

 

Figure 4 shows the proportion of updates towards the drug cue. Updates for a given trial were 

calculated as the difference between the rating of the current trial (t), and the trial before (t-1). 

Therefore, to calculate proportion of updates towards the drug cue, we summed all the updates 

towards the drug cue, and divided this by the total updates (updates towards both drug and 

neutral cues). Figure 4a shows the proportion of updates towards the drug cue for informative 

trials. There was a significant main effect of cue type (F(1,176) = 1221.94, p = 2.2e-16), 

indicating that both groups did update more so towards the drug cue when they predicted the 

outcome, and towards the neutral cue when neutral cues predicted the outcome. There was also a 

significant group and cue type interaction (F(1,176) = 18.22, p = 3.218e-05). Subsequent t-tests 

suggested that both groups updated similarly for drug win (p = 0.28) and neutral win (p = 0.20) 

trials. However, when drug cues predicted a loss (“drug loss” trials), the TUD group updated less 

so towards the drug cue compared to the control group (p = 1e-04), in keeping with SMMA. 

However, inconsistent with SMMA, when neutral cues predicted a loss, the TUD group updated 

more towards the drug cue, compared to controls (p = 0.03). Overall, compared to controls, the 

TUD group had a bias in updating/learning the predictive relationships for the informative loss 

outcome, but not the informative win outcome. Figure 4b is the proportion of updates towards 

the drug cue for uninformative trials. There was a non-significant trend for the main effect of 

group (F(1,92 = 3.08, p = 0.08), with the trend being that the TUD group had a higher proportion 

of updates towards the drug cue for uninformative wins, but not for losses. 
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Figure 4. Proportion of updates towards the drug cue based on ratings. Smaller dots are mean updates per participant, with the
larger dots being the overall mean +/- standard error of the mean. a) Proportion updates towards the drug cue for informative
trials. Both groups updated similarly for the drug and neutral win trials. However, when losses were predicted by the drug cue,
there were fewer updates towards the drug cue by the TUD group, compared to controls (“drug loss” trials; p = 1e-04). When
neutral cues predicted the loss, the TUD group had more updates towards the drug cue, compared to controls (“neutral loss”
trials; p = 0.030). b) Proportion updates towards the drug cue for uninformative trials. When neither cue predicted a win, the
TUD group had a non-significant trend in updating towards the drug-cue. 
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3.2.Model based analyses 

3.2.1. Compared to the control group, people with a TUD generally had lower likelihood 

estimates 

Figure 5 shows the recovered parameter estimates, which was optimised by minimising the 

difference between the observed and model generated rating behaviour (see Supplementary 

Materials for details). There was a significant main effect of group (F(1,42) = 9.34, p = 0.004), a 

significant main effect of parameter type (F(4,176) = 4.76, p = 0.001) and a significant 

interaction between group and parameter type (F(4,176) = 4.56, p = 0.001). Subsequent t-tests 

suggested that the TUD group had a lower likelihood for the win predictive drug cue (D+; p = 

0.007), win predictive neutral cue (N+; p = 1e-4) and the loss predictive neutral cue (N-; 0.018) 

parameters. The loss predictive drug cue (D-) had similar likelihood for both groups (p = 0.41). 

Lastly, the non-reversal probability parameter (nR) was also similar for both groups with (mean 

+/- SE) of 0.76 +/- 0.027 for the TUD group and 0.80 +/- 0.027 for controls (not plotted; p = 

0.28). Overall, the parameter estimates suggested that the TUD group generally had a low 

likelihood estimate for all cues, compared to the control group, except for drug predicting losses 

(D-).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.27.534463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534463
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5. Recovered likelihood parameter estimates. Smaller dots parameter estimates per participant, with the larger dots being
the overall mean +/- standard error of the mean. Compared to controls, the TUD group had a lower likelihood estimate for all
parameters (p < 0.05), except for the D- parameter (p > 0.05). Abbreviations: D+ = drug predicting win likelihood, D- = drug
predicting loss likelihood, N+ = neutral predicting win likelihood and N- = neutral predicting win likelihood.      

 

3.2.2. Differences in the likelihood parameter estimates between groups captured the bias
in internal representation updating in people with a TUD 
 

Here we used the recovered parameter estimates from each participant (see Figure 5) to

estimate the prior and posterior distributions per participant on a trial-by-trial bases, using our

Bayesian belief updating model. Based on these prior and posterior belief distributions, we

calculated the trial-by-trial KLD magnitude and direction (update towards the drug or neutral

relevant state; see Computational Modelling for details) for each participant. Figure 6a shows the

total magnitude of updates (KLD) towards drug and neutral cues, for informative trials. In order

to differentiate the direction of the update, we subtracted the total KLD towards drug cues with
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the total KLD towards neutral cues, for each participant. This subtraction made updates towards 

the drug cues positive, and updates towards the neutral cue, negative. We found a significant 

main effect of cue type (F(1,172) = 363, p = 2.2e-16), indicating that both groups updated more 

towards the drug cue when these were predictive of the outcome, and towards the neutral cue 

when they predicted the outcome. There was also a significant group and cue type interaction 

(F(1,172) = 21.19, p = 8.052e-06). Subsequent t-tests suggested that both groups updated their 

internal representations similarly for drug win (p = 0.06) and neutral win (p = 0.36) trials. When 

a loss was predicted by the drug cue, the TUD group had fewer updates towards the drug cue 

compared to controls (p = 0.001), in keeping with the SMMA theory. However, when a loss was 

predicted by the neutral cue, the TUD group updated more towards the drug cue, compared to the 

control group (p = 0.01), which is inconsistent with the SMMA theory. Overall, compared to the 

control group, the TUD group updated their internal representations less when drug and neutral 

cues predicted losses, but not wins. 

Figure 6b captures the proportion of internal representation updates (KLD) towards the drug 

cue for uninformative trials. This was calculated as the total KLD towards the drug cues divided 

by the total KLD/updates (towards both, drug and neutral cues). Based on the KLD proportions, 

there was a significant main effect of group (F(1,90) = 4.08, p = 0.046). Subsequent t-tests 

suggested that the TUD group updated more towards the drug cue during uninformative wins, 

when neither cue predicted the win outcome (p = 0.02). However, both groups updated similarly 

for uninformative loss outcomes (p = 0.63). Overall, the TUD group had a bias in updating their 

internal representations more towards the drug cue for wins, when neither cue predicted this win 

outcome. 
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In sum, these model-based results were consistent with the model independent behavioural

results (see Figure 3), indicating that the differences in the parameter estimates between groups

(Figure 5) contributed to the behavioural differences observed.    

 

Figure 6. Internal representation updates using KLD. Smaller dots are mean updates per participant, with the larger dots being
the overall mean +/- standard error of the mean. a) Total updates (KLD) towards the drug cue and neutral cues for informative
trials. Positive values indicate that the update was towards the drug cue, and negative towards the neutral cue. Both groups
updated similarly for the drug and neutral win trials. However, when losses were predicted by the drug cue the TUD group
updated less towards the drug cue than controls (“drug loss” trials; p = 0.001). When neutral cues predicted the loss, the TUD
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group updated more towards the drug cue than controls (“neutral loss” trials; p = 0.01). b) Proportion updates towards the drug 
cue for uninformative trials. When neither cue predicted a win, the TUD group updated more towards the drug cue (p = 0.02). 
However, both groups performed similarly for the loss outcome (p = 0.63). 

 

3.3.Eye-tracking analyses  

3.3.1. Gaze Behaviour 

Figure 7a shows the proportion of gaze towards the drug cue for informative trials. This 

proportion was calculated as the time spent with the on the drug cue, divided by the total time 

(spent with the gaze on both drug and neutral cues). There was a significant three-way 

interaction between group, cue type, and outcome (F(1,114) = 5.68, p = 0.019). Subsequent t-

tests suggested that the TUD group had a higher gaze proportion towards the drug cue for neutral 

loss trials (p = 0.03), compared to the control group. Both groups had a similar gaze proportion 

in the other informative trial types (p > 0.05). Figure 7b shows proportion of gaze towards the 

drug cue for uninformative trials. There was a non-significant trend for the main effect of group 

(F(1,78) = 3.61, p = 0.06).  

Next, we used a linear regression model to determine whether gaze proportion towards the 

drug cue had a linear relationship with internal representation updating (KLD) towards the drug 

cue. That is, does a longer gaze towards the drug cue predict larger KLD updating towards the 

drug cue? We performed a linear regression separately for each group and trial type and found a 

significant linear correlation for “neutral loss” informative trials, where the control group had a 

negative relationship between gaze towards the drug cue and KLD updates towards the drug cue 

(adjusted r2 = 0.21, p = 0.026; not plotted). This negative relationship suggested that for trials 

where the neutral cue predicted a loss, the more the gaze was towards the drug cue, the less they 

updated towards the drug cue. However, there were no other linear relationships between gaze 
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proportions and internal representation updating, suggesting that eye gaze behaviour likely did

not determine updates for most trial types in the current task, for both groups.   

 

Figure 7. Gaze behaviour. Smaller dots are mean gaze proportions per participant, with the larger dots being the overall mean
+/- standard error of the mean. a) Proportion of gaze towards the drug cue for informative trials. The TUD group had a higher
gaze proportion towards the drug cue for the neutral loss trials (p = 0.03). There were no differences between groups for the other
informative trials (p > 0.05). b) Proportion of gaze towards the drug cue for uninformative trials. Both groups had similar gaze
proportions for win trials (p = 0.55). The TUD group had a higher gaze proportion towards the drug cue for loss trials, compared
to controls (p = 0.04). 
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3.3.2. In the TUD group (but not the control group), pupil size positively correlated with
internal representation updating during informative drug win trials 

 

Here, we used a linear regression model to correlate the mean pupil size at outcome phase

with the mean updates (KLD) towards the drug cue. This linear regression was performed

separately per group, for all trial types in the informative and non-informative trials. There were

no significant correlations between pupil size and KLD updates towards the drug cue, except for

the drug win informative trials (adjusted r2 = 0.44, p = 6.3e-04), for the TUD group (Figure 8a),

but not for the control group (Figure 8b). When the drug cue predicted the win outcome, the

TUD group showed larger pupil sizes for greater updates towards the drug cue.  

 

Figure 8. Pupil size positively correlated with updates (KLD) towards the drug cue for informative “drug win” trials for the a)
TUD group, but not for b) the controls. Dots are means per participant, with the line +/ standard error estimated from a liner
regression.   
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4. DISCUSSION 

 

We investigated internal representation updating processes in people with a TUD and 

compared them to a non-smoking control group using a reversal learning task. The task had 

reversals in whether drug or neutral cues were relevant in predicting future outcomes (monetary 

wins or losses). Model independent and model-based behavioural results suggested that 

compared to the control group, the TUD group misrepresented drug and neutral cue-outcome 

relationships (Figure 3), with maladaptive internal representation updating processes (Figure 4 

and 6). There was no linear relationship between internal representation updating (KLD), and 

eye behaviour (cue gaze and pupil size during the outcome epoch), with some exceptions (see 

Figures 7 and 8). Overall, we found key differences in how drug and neutral cue-outcome 

relationships are encoded and updated within the internal representation of people with a TUD 

and non-smoker controls.      

   

4.1.Model independent behavioural results 

 

Consistent with our hypotheses, compared to the control group, the TUD group misattributed 

drug predicted losses by rating more towards the neutral cue having predicted this loss outcome 

(Figure 3a). Further, when neutral cues predicted a win, the TUD group misattributed this win to 

the drug cue (Figure 3a). These results are consistent with our salience misattribution model 

(Kalhan et al., 2021), where people with a SUD are thought to misattribute drug cues as better 

predictors of positive outcomes, and neutral cues as better predictors of negative outcomes, even 

when both have equal predictive values. However, the TUD group also misattributed neutral 
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predicted losses by rating more towards the drug cues, compared to the control group. Our 

SMMA theory predicted otherwise. We expected that compared to controls the TUD group 

would misattribute losses predicted by the neutral cue even more towards the neutral cues.   

A key pattern across these rating results (Figure 3a) is that the TUD group generally 

performed worse than controls in all these informative trial types (except for “drug win” trials). 

Therefore, where the SMMA theory predicted the TUD group to have a bias in the direction of 

performing better than controls, the prediction was not met. An absence of a group difference 

specifically for these drug win trials suggested that the TUD group performed as well as controls 

only when the performance entailed forming a drug positive association, but not the other 

associations, which is consistent with our SMMA theory and other associative learning and 

memory theories of addiction (Di Chiara, 1999; Hyman, 2005; Keiflin & Janak, 2015; Redish, 2004; 

Torregrossa et al., 2011). However, these behavioural results also point towards a key limitation in 

our experimental design. Our task was relatively easy during informative trials, which may have 

led individuals in both groups to reach ceiling levels. This possibly diminished key behavioural 

differences between groups, especially in cases where the SMMA prediction of misattribution 

bias relied on the TUD group having better performance than controls. 

 When neither cue predicted the outcome (uninformative trials), the TUD group misattributed 

wins to drug cues (Figure 3b). This rating misattribution is consistent with our SMMA theory 

and suggested that there is a bias in the TUD group, where a pattern of drug cues predicting the 

positive outcome emerges, even when no such predictive pattern exists. However, contrary to our 

hypothesis, the TUD group did not misattribute uninformative losses more towards the neutral 

cue, compared to controls. In contrast to the informative trials, these uninformative trials are less 

susceptible to confounds based on participants reaching ceiling level performances as no 
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predictive pattern exists here. Hence, these uninformative trials better reflect the biases between 

groups due to the salience misattribution processes, and less likely based on confounds due to the 

experimental design. 

Model independent internal representation updating results suggested that the TUD group 

performed as well as controls in updating the informative win contingences but performed worse 

than controls in updating from the losses, for both drug and neutral loss trials (Figure 4a). 

Specifically, when the drug cue predicted a loss outcome, the TUD group updated less towards 

the drug cue having predicted the loss, compared to the control group. The reduced updating 

towards the drug loss cue is consistent with the SMMA theory, which predicted a misaligned 

internal representation generated with reduced updating/learning towards the drug cue being 

predictive of negative outcomes. However, contrary to what we had expected, when the neutral 

cue predicted the loss (“neutral loss” trials), the TUD group updated more towards the drug cue 

having predicted the loss. Therefore, the internal representation is also misaligned in attributing 

neutral predicted losses towards the drug cue, which is inconsistent with the SMMA theory.  

During these neutral loss trials, the neutral negative cue is presented next to the drug positive 

cue. Therefore, one interpretation for updating more towards the drug positive cue here, may be a 

compulsive-like habitual responding towards the drug positive cue, irrespective of the outcome. 

This interpretation is consistent with dual-processing theories of addiction (Dalley et al., 2011; 

Everitt & Robbins, 2005, 2013, 2016; Lüscher et al., 2020; Redish et al., 2008) which suggests that there 

may be some instances when the TUD group seeing the drug positive cue released a situation � 

action habitual chain (see Redish et al., (2008) Vulnerability 7), that leads to the action of rating 

towards the drug cue, irrespective of the outcome. Alternately, because the reduced internal 

representation updating is specific to informative loss outcomes, the TUD group may generally 
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be worse at learning the loss contingencies, which is consistent with several other empirical other 

accounts (Carey et al., 2015; Duehlmeyer et al., 2018; Duehlmeyer & Hester, 2019; Forman et al., 2004; 

Franken et al., 2007; Hester et al., 2007, 2009, 2012; Hester, 2012). Our findings add to this body of 

work in that this impaired error learning is not dependent on the cue type (drug or neutral) and 

may be a general phenomenon within the SUD population.     

During uninformative trials, when neither cue predicted a win, the TUD group attributed 

wins more to the drug cue (Figure 3-4b). The TUD group may be more susceptible to forming 

falsely strong drug-win associations during periods where there are no obvious predictive 

patterns but may be able to overcome this bias during the informative trials, where predictive 

patterns do exist. Unlike the informative loss trials, there was no bias in updating from 

uninformative losses. In sum, the findings for uninformative trials support a salience 

misattribution effect consistent with the SMMA theory, with TUD misattributing relevance of 

drug cues in predicting positive outcomes. However, we did not find evidence for a 

misattribution of neutral cues predicting negative outcomes.   

Overall, the TUD group showed misattribution of wins and losses. The TUD group was 

generally worse than controls at attributing credit to the correct cue in all informative trial types 

except for when the drug cues predicted a win – possibly indicating that the drug-win association 

was the easiest to learn for the TUD group, consistent with our SMMA theory. Model 

independent updating results suggested that the TUD group updated similarly to controls for 

informative win trials, but not during the informative loss trials, with fewer updates towards the 

correct cue type for both drug and neutral loss trials. These results indicated that several 

decision-making systems may be involved, in addition to salience misattribution effects, 

including compulsive-like responding towards the drug positive cue, as well as a general 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.27.534463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534463
http://creativecommons.org/licenses/by-nc-nd/4.0/


aberration in learning from negative outcomes, irrespective of the cue type. During 

uninformative trials, the TUD group revealed a bias where they misattributed and updated more 

towards the drug cue as predictors of the wins, but there was no updating bias for uninformative 

losses. Therefore, a key finding, consistent with the SMMA theory, was that in the absence of a 

predictive pattern, the TUD group is susceptible to falsely forming a drug-win association. In 

sum, these model independent results suggested key behavioural differences between groups, but 

also possible task limitations. However, to gain a better understating of the underlying latent 

processes influencing the behavioural results, we utilized computational modelling using our 

Bayesian belief updating model (see below).         

 

4.2.Model-based behavioural results 

The recovered parameter estimates suggested that the TUD group had a lower likelihood 

estimate for all cue types, except for the drug negative cue (D-), compared to controls (Figure 5). 

We calculated the KLD on a trial-by-trial basis for every participant. The KLD updating results 

were consistent with the model independent updating results, where the TUD group updated less 

towards the correct cue during informative loss trials but had similar performance to controls for 

informative win trials, irrespective of the cue type (Figure 6a). Also consistent with model 

independent updating results, KLD updating for the TUD group was greater towards the drug 

cue for uninformative drug wins, but there were no group differences in updating during 

uninformative losses (Figure 6b). Given the consistency between the model-based and 

independent results, it is likely that the recovered likelihood parameter estimates are contributing 

to the behavioural differences observed between groups.   
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Most likelihood parameter estimates were lower for the TUD group, compared to the control 

group, explaining reduced updating in general by the TUD group during informative trials. The 

true overall likelihood estimate in the task for all cues were 0.8. Therefore, it may seem 

paradoxical that the TUD group had a closer likelihood estimate to the true task than the control 

group, yet the TUD group still had misaligned internal representation updating. However, this 

can simply be explained by the surprise trials. Given that reversals occurred very quickly in our 

task (every 8-12 trials), with half of these trials being uninformative trials, it was difficult for 

participants to distinguish between incongruent surprise trials and informative non-surprise trials 

(as they were both incongruent trials, where the two cues predicted opposite outcomes). 

Therefore, both groups treated incongruent surprise trials just as if they were informative trials 

and accordingly updated their internal representations (see Figure S2, supplementary materials). 

These updates during surprise trials caused both groups to have higher likelihood estimates. 

However, the control group correctly updated more than the TUD group during the informative 

trials (Figure 4a and 6a), indicating that they did form more accurate internal representations.    

A key finding was that the TUD group had an especially low likelihood estimate of the 

neutral positive cue predicting a positive outcome (N+). This low N+ value also meant that these 

neutral positive cues had a relatively high likelihood estimate of, incorrectly, predicting a 

negative outcome (1-N+). Therefore, the TUD group updated less towards the drug negative cue 

during drug loss trials, not because they had a low likelihood estimates for the drug negative cue 

(D-), but because they had a relatively high likelihood estimate of the neutral positive cue in also 

predicting the loss outcome (1-N+). Consequently, as the SMMA theory predicted, the internal 

representation of the TUD group is misaligned towards the drug cues being less predictive of the 

loss. Modelling results added that the low N+ estimate by the TUD group was a key latent 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.27.534463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534463
http://creativecommons.org/licenses/by-nc-nd/4.0/


variable in producing this misaligned internal representation. The TUD group’s low N+ value 

estimate can also explain the bias found during uninformative win trials, where the TUD group 

updated more towards the drug positive cue in predicting the uninformative wins. The TUD 

group had a lower likelihood estimate of the neutral positive cue predicting a win (N+) compared 

to the likelihood estimate of the drug positive cue in predicting the win (D+). As a result, 

updating was biased towards the drug positive cue having predicted this uninformative win. 

Consequently, as the SMMA theory predicted, the internal representation of the TUD group was 

misaligned towards drug cues being better predictor of wins, even when no predictive patterns 

existed.   

In sum, computational modelling suggested that the low N+ likelihood estimate of the TUD 

group was a key latent variable contributing to the behavioural results. Due to this low N+ value, 

we see a salience misattribution effect where 1) there are fewer updates by the TUD group 

towards the drug negative cue when they predict a loss during informative drug loss trials, and 2) 

there are more updates towards the drug positive cue predicting the win outcome, during 

uninformative win trials. Collectively, these findings support a key prediction of the SMMA 

theory where maladaptive updating produces a misaligned internal representation in people with 

a SUD such that non-drug cues are worse predictors of wins, but better predictors of losses. The 

critical factor explaining these results was that the neutral positive cue for the TUD group had a 

very low likelihood estimate in predicting the win (N+), and consequently, a relatively higher 

likelihood estimate in predicting a loss (1-N+).      

 

4.3.Eye-tracking results 
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The gaze behaviour results suggested that the TUD group, compared to controls, had a higher 

gaze proportion towards the drug cue during neutral loss informative trials, and uninformative 

loss trials (Figure 7). These results suggest that the TUD group may have had greater visual 

attention towards the drug cue, before losses were observed. However, these gaze proportions 

did not correlate with KLD internal representation updating. Therefore, internal representation 

updating processes in the present task are unlikely related to visual salience attentional processes 

(Lambert et al., 2018), but more likely cognitive/motivational-based salience attentional 

processes.  

Our SMMA theory predicts the involvement of these anterior cingulate cortex and 

dopaminergic processes in assigning a greater salience to cues with higher estimated predictive 

values and producing greater updating from these as a result (Akaishi et al., 2016; Kolling, 

Behrens, et al., 2016; Kolling, Wittmann, et al., 2016; Nour et al., 2018; O’Reilly et al., 2013; 

Schwartenbeck et al., 2016). We speculate that these salience-related neural processes may be 

involved in the current task, possibly explaining the misaligned internal representation updating 

in people with a TUD. However, neuroimaging data is needed to support or oppose our 

speculation.     

 There was no relationship between pupil size and KLD updates, except for the TUD 

group during informative drug win trials. During these trials where the drug cue predicted a win, 

the larger the pupil size during the win outcome epoch, the greater the KLD updating by the 

TUD group (Figure 8a). Such a linear relationship between pupil size and KLD updates was not 

found in the control group (Figure 8b). Pupil size generally correlates with greater attentional 

processing (Gabay et al., 2011), and has also correlated with KLD updating a similar task 

involving multiple cues (Hämmerer et al., 2019). Further, Zénon (2019) proposed that the many 
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seemingly disparate decision-making related associations (e.g., uncertainly, learning rate, 

volatility) with pupil size may be explained by pupil size being generally associated with 

information gain (i.e., the KLD). Consistent with these accounts, we find that the TUD group’s 

pupil size positively correlated with KLD. However, this was only for drug predicted wins in the 

TUD group but not for other trials, nor for the control group. One possible explanation is that our 

task being very passive, and relatively easy, did not elicit large enough variations in pupil size, 

which may have hinder further relationships with KLD. It is possible that in the TUD group drug 

predicted wins may have captured more attentional resources/variability.   

 

4.4.Implications 

A key finding was that the TUD group had a very low likelihood estimate for neutral cues in 

predicting the positive outcome (N+). The low N+ estimate here led to the misaligned internal 

representation updating processes in the TUD group where losses predicted by the drug cue 

produced fewer updates towards forming the drug-loss predictive association. Further, the low 

N+ estimate also led to more updates towards forming the drug-win predictive association during 

uninformative win trials. An implication of misaligned updating is likely the formation of a 

maladaptive internal representation, where drug cues are more predictive of positives, but less 

predictive of negative outcomes. Therefore, based on this maladaptive internal representation, it 

is more likely for the individual to further engage in drug taking actions, as they are 

misattributed as better predictors of positive outcomes.  

Our finding of the reduced N+ value for the TUD group is also consistent with previous 

accounts suggesting that people with a SUD usually find non-drug positive cues less 
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engaging/salient, including those associated with primary rewards (Garavan et al., 2000; Verdejo-

Garcia et al., 2018; Volkow et al., 1997; Volkow & Li, 2004). However, our finding goes further to 

suggest that the reduced salience towards the non-drug positive cues may be because these cues 

have a reduced estimated likelihood of predicting positive outcomes, which we have captured 

through our Bayesian belief updating model. Consequently, treatments such as cognitive 

behaviour therapy where associations between non-drug cues and positive outcomes are 

strengthened may help restore the misaligned internal representation, and possibly aid in 

reducing drug related behaviours. The current task, in combination with other similar tasks and 

diagnostic tools/questionnaires may also be used to identify those with such maladaptive 

associations, with treatments more personalised based on restoring such associations. In sum, we 

used strong theoretical hypotheses in concert with computational modelling and eye-tracking to 

gain a better understanding of the internal representation updating processes of people with a 

TUD.  
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