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Abstract: 19 
Cis-regulatory elements control gene expression and are dynamic in their structure, reflecting changes to the 20 
composition of diverse effector proteins over time1–3. Here we sought to connect the structural changes at cis-21 
regulatory elements to alterations in cellular fate and function. To do this we developed PRINT, a 22 
computational method that uses deep learning to correct sequence bias in chromatin accessibility data and 23 
identifies multi-scale footprints of DNA-protein interactions. We find that multi-scale footprints enable more 24 
accurate inference of TF and nucleosome binding. Using PRINT with single-cell multi-omics, we discover 25 
wide-spread changes to the structure and function of candidate cis-regulatory elements (cCREs) across 26 
hematopoiesis, wherein nucleosomes slide, expose DNA for TF binding, and promote gene expression. 27 
Activity segmentation using the co-variance across cell states identifies “sub-cCREs” as modular cCRE 28 
subunits of regulatory DNA. We apply this single-cell and PRINT approach to characterize the age-associated 29 
alterations to cCREs within hematopoietic stem cells (HSCs). Remarkably, we find a spectrum of aging 30 
alterations among HSCs corresponding to a global gain of sub-cCRE activity while preserving cCRE 31 
accessibility. Collectively, we reveal the functional importance of cCRE structure across cell states, 32 
highlighting changes to gene regulation at single-cell and single-base-pair resolution. 33 
 34 
Introduction: 35 
Through homeostasis, development, and disease, cis-regulatory elements change in structure and recruit new 36 
regulatory proteins, which define the overall function of the element4. In this process, cis-regulatory elements 37 
act as hubs of gene regulation to establish primed, activated, or repressed genes and determine the overall 38 
function and potency of cells1,3,5,6. These structural changes are largely mediated by the competition of 39 
nucleosomes, TFs and transcriptional machinery, which dynamically slide, evict and recruit effector proteins7,8. 40 
Despite this rich understanding of the biochemical activities occurring on DNA, in genomics individual cis-41 
regulatory elements are often studied as discrete functional units, motivating a need for genomic tools that 42 
trace chromatin structure at single-base-pair resolution. 43 
 44 
Methods that measure chromatin accessibility have revealed a diverse repertoire of cCREs6. Additionally, DNA 45 
footprinting methods elucidate TF binding at cCREs by quantifying the protection of DNA from chemical9 or 46 
enzymatic10–13 cleavage, yielding base-pair resolved maps of diverse proteins bound to DNA14. Using high-47 
throughput DNA sequencing, footprinting is now performed genome-wide, revealing the function of non-coding 48 
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genetic variation15 and improving the construction of gene regulatory networks16–18. However, despite best 49 
efforts, footprinting methods are afflicted with sequence bias severely limiting accuracy19. Further, 50 
computational methods for footprinting are optimized to detect binding of TFs of typical size, excluding the 51 
analysis of nucleosomes or atypical TFs. These limitations preclude our ability to measure intra-cCRE 52 
structural dynamics that reflect changes to the composition and function of cCREs over time. 53 
 54 
Here, we develop PRINT (Protein-Regulatory element Interactions at Nucleotide resolution using 55 
Transposition), a framework that i) accurately corrects for sequence bias in chromatin accessibility data, ii) 56 
computes the interaction of DNA with objects of various sizes (multi-scale footprinting) and iii) leverages 57 
single-cell multi-omics to identify the structural changes to cCREs and their impact on gene expression. Using 58 
this approach, we show that DNA bound proteins, including TFs and nucleosomes, create unique cleavage 59 
patterns and demonstrate that multi-scale footprints enable accurate prediction of TF binding genome-wide. 60 
Next, we combine multi-scale footprinting with single-cell multi-omic data across human hematopoiesis to 61 
track TF and nucleosome binding dynamics across differentiation. We discover wide-spread restructuring of 62 
cCREs during differentiation, wherein nucleosomes slide, expose new sites for TF binding and promote gene 63 
expression. We refer to the genomic regions that modularly expand and shrink within cCREs as “sub-cCREs” 64 
and show that sub-cCREs can explain changes to gene expression in the absence of overt changes to 65 
chromatin accessibility. Finally, we define sub-cCRE dynamics in response to aging of mouse hematopoietic 66 
stem cells (HSCs). Here, we find that many age-associated promoter alterations increase TF binding of sub-67 
cCREs, while maintaining the overall accessibility of the element. Overall, we find sub-CREs as regulators of 68 
gene expression and cell state, revealing a unique structure of gene regulation at single-cell and single-base-69 
pair resolution. 70 
 71 
Multi-scale footprinting enables detection of DNA binding by factors of diverse 72 
sizes 73 
To enable tracking of structural changes within cCREs we developed PRINT, a computational approach to 74 
footprint proteins of diverse sizes (Fig. 1a). To do this, we sought to use bulk or single-cell ATAC-seq data as 75 
input. However, Tn5 transposase has a strong sequence preference13,20, which may significantly confound 76 
footprint detection. To evaluate and create approaches for modeling Tn5 sequence bias, we generated high-77 
coverage Tn5 insertion data on deproteinized DNA from bacterial artificial chromosomes (BACs) containing a 78 
total of 5.6 Mb of the human genome (Extended Data Table 1). A total of 193.2 million reads aligned to the 79 
BACs, resulting in 34.5 Tn5 insertions per base-pair. We also performed 5 biological replicates and found that 80 
the observed Tn5 bias is highly reproducible (R > 0.97, Extended Data Fig. S1a-c).  81 
 82 
Using the BAC data, we trained a convolutional neural network that takes as input DNA sequence and predicts 83 
Tn5 sequence preference (Fig. 1b). We found that deep learning achieved a correlation of 0.94 between 84 
predicted and observed bias, significantly outperforming k-mer and PWM models (Fig. 1c, d) while achieving 85 
the highest improvements in regions of high GC-content (Extended Data Fig. S1d, e). Exemplifying the utility 86 
of modeling Tn5 preference, we provide Tn5 bias prediction for the entire human genome, alongside common 87 
model organisms including Pan troglodytes, Mus musculus, Drosophila melanogaster, Saccharomyces 88 
cerevisiae, Caenorhabditis elegans and Danio rerio, covering a total of ~11B bases of DNA sequence. We 89 
also provide a pre-trained deep learning model that can be extended to any new species or applied to personal 90 
genomes (see Data Availability).  91 
 92 
To call footprints, we developed a statistical approach for footprinting that quantifies the depletion of observed 93 
Tn5 insertions relative to the Tn5 sequence bias, resulting in a footprint score representing the statistical 94 
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significance (-log10 p-value) for each base pair position (Fig. 1e, Methods). Using our deproteinized BAC data 95 
as a control, we detected little to no footprint signal using our approach on naked DNA (Extended Data Fig. 96 
S1f-o). In contrast, prior footprinting methods21,22 report up to 35,262 false positive footprints within the 5.6 97 
Mb BAC regions, corresponding to an average false positive rate of 23% across all TFs (Fig. 1f). The Tn5 98 
bias model and statistical approach described here reduced the number of false positive footprints by 99 
approximately one order of magnitude (Fig. 1f), demonstrating that bias correction is essential for accurate 100 
footprinting.  101 
 102 
Finally, we explored footprinting across spatial scales to detect DNA-bound proteins of different sizes. We 103 
performed footprinting, using simulated data (Fig. 1g) and ATAC-seq data (Fig. 1h), with window sizes ranging 104 
between 4-200 base pairs and observed drastically different footprint patterns corresponding to TF and 105 
nucleosomes (Fig. 1h). Therefore, we reasoned that multi-scale footprinting may fractionate molecular 106 
interactions at different scales and outline the local physical structure of chromatin.  107 
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 108 
Figure 1. Multi-scale footprinting detects DNA-protein interactions at various spatial scales. a, 109 
Overview of the multi-scale footprinting workflow. b, Schematic illustration of the Tn5 bias prediction model. 110 
c, Single-nucleotide resolution tracks of observed and predicted Tn5 bias on naked DNA in the BAC RP11-111 
93G19. d, Bar plot comparing performance of the CNN model with previous bias correction models. e, 112 
Schematic illustration of footprint score calculation. f, Bar plot showing the frequency of calling false positive 113 
footprints by previous ATAC-footprinting methods and our method. g, Multi-scale footprints with simulated 114 
objects. Top: schematic of simulated objects with various sizes. Middle: Simulated single base pair resolution 115 
Tn5 insertion tracks based on the above objects. Bottom: Heatmap showing the multi-scale footprints 116 
calculated based on the simulated Tn5 insertions. The horizontal axis represents single base pair positions, 117 
and the vertical axis represents footprint window sizes. h, Multi-scale footprints in the cCRE region 118 
chr6:154732871-154733870. Bottom tracks are histone ChIP signals obtained from ENCODE. 119 
 120 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.533945doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.533945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Hu et al. 5 
 

TFs and nucleosomes have signature multi-scale footprints 121 
Inspired by the diversity of structures seen in multi-scale footprints, we sought to categorize proteins by 122 
footprint sizes and shapes. We obtained TF ChIP-seq data6 and generated aggregate multi-scale footprints 123 
to find that TFs may leave small (CREB1) and large (CTCF) footprints (Fig. 2a-b, Extended Data Fig. S2a-124 
c). We found that TFs (n = 112) clustered into 6 distinct groups based on their size, shape, and footprint 125 
strength (Extended Data Fig. S2d). We found that the majority of TFs in cluster 1, 4, and 5 leave visible 126 
footprints (n = 71) at 20 bp and 40 bp scales, whereas TFs in cluster 2, 3, and 6 (n = 41) leave weak or no 127 
footprints at these same size scales. We also validated that footprints of larger sizes (100-140bp) correspond 128 
to prior measures of nucleosome position23,24 (Fig. 2c). In summary, multi-scale footprints reveal diverse DNA-129 
protein interactions, enabling the analysis of both TFs and nucleosomes in one computational approach. 130 
 131 
Motivated by these observations, we trained a neural network classifier that uses multi-scale footprints and 132 
motif positions as input to predict TF binding (Fig. 2d, e and Extended Data Fig. S3a-c). Provided that cluster 133 
1 TFs leave the strongest footprints, we first trained the model predicting TF binding of cluster 1 TFs using 134 
multiscale footprints. The model achieved a median precision of 0.71 on held out test ChIP data25, 135 
outperforming prior methods (0.65 for HINT-ATAC and 0.62 for TOBIAS when benchmarked at a matched 136 
recall, Fig. 2f and Extended Data Table 2).  137 
 138 
We next sought to extend this approach to TFs that leave weak or undetectable footprints. We trained a new 139 
model using data from all 6 clusters of TFs. As many TFs (37%) do not leave clear footprints, this model further 140 
prioritizes nucleosome position for TF binding prediction. As such we refer to this model as the “TF habitation 141 
model” and its prediction scores as “TF habitation scores”. The TF habitation model achieved a median 142 
precision of 0.76 for cluster 1 TFs and 0.67 across all TFs on held out K562 data (n = 41), again outperforming 143 
previous methods (0.58 for HINT-ATAC and 0.59 for TOBIAS, Extended Data Fig. S3d, e). We next tested 144 
model performance on primary cell samples, expanding the analysis to 91 TF binding data datasets in total6. 145 
The model achieved a median precision of 0.73 across all TFs while recovering hundreds to thousands of 146 
binding sites per TF (Fig. 2g-h and Extended Data Table 2). Additionally, we determined a 0.8% false positive 147 
rate using the BAC data. In conclusion, using multi-scale footprinting, we developed an approach that 148 
accurately predicts protein-DNA interactions at multiple length scales. 149 
 150 
Upon further investigation we find that these models use nearby nucleosomes, together with TF footprints, to 151 
improve predictions (Fig. 2i, j). As expected, the model uses a high TF footprint signal (40 bp) at the motif 152 
center and low nucleosome signal (100-200 bp) surrounding the motif (Extended Data Fig. S3f) for prediction. 153 
Additionally, we found frequent cases wherein nucleosome footprints span lower (40bp) scales, but are 154 
correctly identified as artifacts by the model (Fig. 2i). Interestingly, the model also found that high nucleosome 155 
signal distal to the motif (~100-150 bp) is predictive of TF binding. To further explore the model, we simulated 156 
TF and nucleosome footprint within a 300 bp window to find that TF binding scores significantly decrease as 157 
nucleosomes approach the TF motif (Fig. 2j) or as nucleosomes become delocalized or “fuzzy” (Extended 158 
Data Fig. S3g). To quantitatively assess improvements, we performed ablation tests wherein TF or 159 
nucleosome footprints are removed during training (Fig. 2f, g). Using this approach, we observed decreased 160 
precision after ablating nucleosomes and found that nucleosomes, without TF footprints, may be highly 161 
predictive of TF binding (e.g., CREM). Altogether this indicates that nucleosome position strongly influences 162 
TF binding. 163 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.533945doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.533945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Hu et al. 6 
 

 164 
Figure 2. TFs and nucleosomes binding leave signature multi-scale footprint patterns. a, b, Multi-scale 165 
aggregate footprints for TFs CREB1 and CTCF. The x-axis represents the position relative to the center of the 166 
TF motif, and the y-axis represents footprint scores computed using each footprint window size. c, Multi-scale 167 
aggregate footprints for nucleosomes. The x-axis represents the position relative to the center of the 168 
nucleosome as determined by chemical mapping, and the y-axis represents footprint scores computed using 169 
each footprint window size. d, Multi-scale footprints around individual bound and unbound NFIA motif sites. 170 
Each row represents a single locus with a matched NFIA motif. e, Schematic illustration of training TF binding 171 
prediction models using multi-scale footprints as input. f-g Ablation test results. f, Example precision-recall 172 
curves of cluster 1-specific models trained without masking, with TF masking, and with nucleosome masking, 173 
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respectively. g, Bar plot showing precision of the TF habitation model when trained without masking, with TF 174 
masking, and with nucleosome masking, respectively. h, Comparison between predicted and ChIP-detected 175 
TF binding sites. Only sites with a matched TF motif are included. i, Top: heatmap showing multi-scale 176 
footprints within the cCRE at chr11:67629937-67630936. The x-axis represents single base pair positions in 177 
the cCRE, and the y-axis represents footprint window size. Bottom: predicted TF binding scores within the 178 
same region. j, Heatmap showing predicted TF habitation score for different simulated TF and nucleosome 179 
configurations. Horizontal and vertical axes represent the distances of the two simulated nucleosomes from 180 
the center TF.  181 
 182 
Emerging modular structures of intra-cCRE dynamics 183 
We reasoned that a single-cell multi-omic analysis of footprints would enable pseudo-time-resolved tracking 184 
of protein-binding and connect these changes to alterations in gene expression. To generate multi-omic data 185 
at a throughput and depth needed for footprinting, we used SHARE-seq26 (ATAC and RNA) to profile 874,480 186 
total cells from 7 human bone marrow donors. The resulting data represents a total of 935,959,306 nuclear 187 
ATAC fragments and 608,148,224 RNA UMIs across all major hematopoietic cell types, including 188 
hematopoietic stem cells (HSCs) and differentiated cell types (Fig. 3a, Extended Data Fig. S4a-e).  189 
 190 
Using these single-cell data we sought to define the dynamics at a sub-cCRE scale using PRINT. We 191 
generated 1,000 pseudo-bulks encompassing all major cell types and major developmental transitions 192 
(Extended Data Fig. S4f-l, Methods). Next, we applied multi-scale footprinting and our TF habitation model 193 
to these hematopoietic pseudo-bulks. Within individual cCREs, we observed modular structures reflecting gain 194 
or loss of TF habitation scores across pseudo-bulks, which we refer to as “sub-cCREs” (Fig 3b, Extended 195 
Data Fig. S5a, b). To quantitatively detect such sub-cCREs, we computed the correlation of TF habitation 196 
scores between all positions within each cCRE. The results again show modular structures within the cCRE, 197 
as exemplified by regions showing strong off-diagonal correlation (Fig. 3b, top-right panel, Extended Data 198 
Fig. S5c, d). Using such intra-cCRE correlation maps as input, we designed an algorithm to segment each 199 
cCRE into sub-cCREs with strong self-association. As a result, we detected 265,070 sub-cCREs across 200 
human hematopoiesis. We observed a positive association between cCRE accessibility and the number of 201 
sub-cCREs detected inside the cCRE. For the top 10,000 accessible cCREs, we detected on average 3.7 202 
sub-cCREs within each cCRE and the average size of a sub-cCREs is 211.9 bp, which is approximately the 203 
size of a nucleosome flanked with linker DNA. As a result, cCREs do not appear to have a fixed boundary or 204 
size, but instead shrink, expand, merge or split as modular sub-cCREs lose or gain activity across 205 
differentiation (Extended Data Fig. S5e, f).  206 
 207 
We next sought to examine if the activity of independent sub-cCREs is associated with gene expression 208 
variation across cell types. For every cCRE, we computed the correlations between the accessibility of the 209 
cCRE and the RNA levels of nearby genes (+/-50 kb). We next computed correlations between the activity of 210 
each sub-cCRE (as defined by the average TF habitation score with the sub-cCRE) within this cCRE with the 211 
same nearby genes. Interestingly, cCRE-gene and sub-cCRE-gene correlations show divergent association 212 
(Fig. 3c). A total of 8,239 sub-cCREs were significantly correlated to gene-expression while the corresponding 213 
cCREs were not (permutation test, FDR < 0.1). In these cases we find that cCREs re-organize TF binding while 214 
maintaining overall accessibility of the cCRE (Fig. 3b, bottom panels, Extended Data Fig. S5g, h). 215 
Furthermore, at these regions we observed strong enrichment in pathways related to cell cycle, proteostasis, 216 
and DNA damage response, suggesting a unique mode of regulation for such pathways (Fig. 3d, Extended 217 
Data Table 3). 218 
 219 
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Sub-cCREs are approximately ~200 bp in size, similar to the size of nucleosomes plus linker regions. Hence, 220 
we hypothesized that the activity of sub-cCREs is driven by the dynamics of nucleosomes. To further explore 221 
this idea, we tracked nucleosome positioning and sub-cCRE dynamics across pseudo-time along erythroid 222 
differentiation. We observed nucleosome dynamics in the form of binding, eviction, as well as sliding 223 
accompanied by sub-cCRE activation/repression at the same locus (Fig. 3e, Extended Data Fig. S5i, j), 224 
providing evidence for nucleosome reorganization during native human hematopoiesis. 225 

Figure 3. Emerging modular structures of intra-cCRE dynamics. a, UMAP of the human bone marrow 226 
SHARE-seq dataset. b, Example of sub-cCREs. Top left: Tracks showing chromatin accessibility and single-227 
base pair resolution Tn5 insertion in the cCRE at chr4:173334022-173335021. Bottom left and bottom right: 228 
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Heatmap of nucleosome footprints (100 bp scale) and TF habitation scores in the same region across all 229 
pseudo-bulks, respectively. Each row corresponds to a single pseudo-bulk, while each column represents a 230 
single base pair position in the cCRE. Left color bar shows the cell type annotation of each pseudo-bulk. Color 231 
palette is the same as in a. Middle color bars show total accessibility within the cCRE and RNA level of the 232 
gene HMGB2 in each pseudo-bulk, respectively. Top right: Heatmap showing correlation of TF habitation 233 
scores between any two positions within the cCRE. Top color bar shows results of automatic segmentation of 234 
the cCRE into sub-cCREs. c, Scatter plot comparing cCRE-gene correlation and sub-cCRE-gene correlation. 235 
For each cCRE, the sub-cCRE with the strongest correlation is selected. Dashed lines represent the FDR 236 
threshold of 0.1. d, Bar plot showing pathway enrichment of genes with significant sub-cCRE-gene correlation 237 
but not cCRE-gene correlation (FDR < 0.1). e, Nucleosome tracking across erythroid differentiation. Left: 238 
Heatmap of nucleosome footprints in the region chr7:99471434-99472433 across pseudo-bulks in the 239 
erythroid lineage. Pseudo-bulks are ordered by pseudo-time. Right: heatmap of TF habitation scores in the 240 
same region and pseudo-bulks. Left color bar shows the cell type annotation of each pseudo-bulk. Color 241 
palette is the same as in a. Middle color bar shows total accessibility within the cCRE in each pseudo-bulk. 242 
 243 
Intra-cCRE dynamics in hematopoietic aging 244 
Aging is a major risk factor for many highly prevalent diseases such as cancer, cardiovascular disease and 245 
neurodegeneration27. Extensive previous studies have shown that aging is accompanied by widespread 246 
“epigenetic decline”28–30. In particular, HSCs have been shown to be compromised in function during aging, 247 
contributing to deficient pathogen- and vaccine-evoked immunity and heightened inflammatory responses31–248 
33. Mutation of genes involved in epigenetic and chromatin remodeling has frequently been observed in 249 
humans with clonal hematopoiesis of indeterminate potential (CHIP), an age-associated condition 250 
characterized by the expansion of somatically mutated hematopoietic cell clones, a process associated with 251 
an increased risk of hematopoietic malignancy, cardiovascular disease, stroke and all-cause mortality34,35. As 252 
such, prior studies have investigated alterations to DNA methylation, heterochromatin or chromatin 253 
accessibility during HSC aging36. Here, we hypothesized that aging HSCs relocalize regulatory proteins to 254 
restructure sub-cCREs and alter the expression of aging genes. Thus, we applied PRINT to discover 255 
alterations of TF and nucleosome binding in young or aged hematopoietic cells.  256 
 257 
We isolated hematopoietic progenitor cells (Lineage-) and HSCs (Lineage- Sca-1+ c-Kit+ Cd48- CD150+) from 258 
the bone marrow of young (11 weeks old, n = 10) or aged (24 months old, n = 5) mice by FACS. We then 259 
obtained joint ATAC-RNA profiling using the 10x platform (Fig. 4a, Extended Data Fig. S6a-c, Methods). 260 
Consistent with previous studies, we observed an expansion of the HSC compartment during aging33 261 
(Extended Data Fig. S6d). After QC filtering, we obtained 48,225 cells covering 14,640 HSCs and 33,585 262 
hematopoietic progenitor cells in the mouse bone marrow (Fig. 4b, Extended Data Fig. S7a). From the 263 
Lineage- single-cell data we confirmed an age-associated increase in HSC frequency (Extended Data Fig. 264 
S7b). Further, HSCs clustered into 3 clusters reflecting points along a continuum of age-related cell states 265 
(Fig. 4c, d). Validating these clusters, we used gene expression to find age-specific marker genes (Nupr1, 266 
Clu, Selp) (Extended Data Fig. S7c-e), consistent with findings of previous work36,37. Of the two aging clusters, 267 
we found that cluster 6 was more similar to young HSCs (R = 0.95 vs R = 0.91). We therefore refer to the 268 
three clusters as young, young-like old, and old HSC states (Fig. 4d). Focused on age-related alterations, we 269 
used the ATAC profile of single cells to define pseudo-bulks38 revealing representative cell states (Fig. 4e, f, 270 
Extended Data Fig. S7f). 271 
 272 
We first applied PRINT to examine intra-cCRE reorganization in promoters of genes expressed in an age-273 
variant manner. More specifically, we identified promoters of genes with differential expression (Extended 274 
Data Fig. S7e, Extended Data Table 4), and segmented these promoters into sub-cCREs. Applying 275 
differential testing among young and old pseudo-bulks, we detected 4,132 old-specific and 1,373 young-276 
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specific sub-cCREs (Fig. 4g, two-sample t test, FDR < 0.1). We identified age-associated elements with robust 277 
increase to the overall accessibility and sub-cCRE activity (“Class I”; n = 1,715). In contrast, we discovered 278 
age-associated increases to sub-cCRE activity that are missed when assessing the overall accessibility of 279 
cCREs (“Class II”; n=1,681). As one example of Class II promoters, in young cells the promoter of Cdc25b is 280 
flanked by two nucleosomes. In aged cells, the -1 phased nucleosome is lost, exposing additional DNA for TF 281 
binding, which is accompanied by increased gene expression (Fig. 4h-k). Strikingly, promoters showing age-282 
related changes only at the sub-cCRE level (i.e., Class II promoters) were enriched for genes in the heat shock 283 
pathway, such as Hsp90ab1, Dnaja2 (Hsp40 member), Bcl2l11, and Ubqln2, suggesting dysregulated 284 
proteostasis during aging (Fig. 4l, Extended Data Fig. S8a, Extended Data Table 5). This suggests that 285 
intra-cCRE reorganization might be involved in age-related impairment of proteostasis as reported by previous 286 
studies in model organisms39–41 and in HSCs42. Additionally, we observed enrichment in pathways related to 287 
cell adhesion, involving genes such as Igf1, Grb2, and Thy1, potentially reflecting responses to the altered 288 
cell-cell interactions within the HSC niche. 289 
 290 
We next expanded the above analysis to include distal and proximal cCREs to identify sub-cCRE age-291 
associated alterations genome-wide. This analysis revealed 4 clusters (n = 18,166) with 84% of age-292 
associated sub-cCREs gaining activity during aging (Fig. 4m), denoting a global widening of cCREs. Further 293 
categorizing distal and proximal sub-cCREs as Class I or Class II, revealed Class II elements were more 294 
proximal to promoters (p = 1.39*10-9). We observed both the significant gain in expression and downstream 295 
displacement of nucleosomes occluding motifs associated with AP-1 (Fosl2, Fos, Fosb, Jund and Junb) and 296 
Tcf4 TFs (Extended Data Fig. S8b), which has been reported by previous studies to be involved in HSC 297 
aging36,43. Similarly, we also observed down-regulation of TFs such as Arnt and Atf736,43. Analysis of Class II 298 
elements revealed Hif1a (heat shock), Smad3 (cell adhesion), and Ybx1/3 (proteostasis) regulators. In 299 
contrast, Class I elements reflected alterations to TFs such as Hox, Rorc, Maf and Runx factors. 300 
 301 
Overall, we find that aging is accompanied by widespread widening of cCREs to expose new TF binding sites. 302 
These sub-cCRE changes are particularly enriched at loci encoding genes involved in regulating proteostasis 303 
and cell adhesion in HSCs, and constitute a different class of regulation (Class II) than the Class I regulation 304 
that has commonly been seen in development and cell fate decisions, which is driven by opening and closing 305 
of entire cCREs (Fig. 4n). These data thus point to a new mechanism underlying age-dependent alterations 306 
in gene expression, and help to explain why certain HSC functions, including protein quality control, cell 307 
adhesion and RNA processing, are particularly vulnerable to age-dependent decline. 308 
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Figure 4. Intra-cCRE dynamics in hematopoietic aging. a, Schematic illustration of dataset generation and 310 
analysis. b-f, UMAP of HSC and progenitor cells. b, Cell type annotation. c, Percentage of old cells in the 100-311 
cell nearest neighborhood. d, Young, young-like old, and old HSC clusters. e, Representative cell states 312 
detected by SEACells. f, Example pseudo-bulk. Black dots represent member cells in old pseudo-bulk 21. g, 313 
Scatter plot comparing differential cCRE testing and differential sub-cCRE testing results for promoters of 314 
differentially expressed genes. Dashed lines represent the FDR = 0.1 threshold. h, Heatmaps of TF habitation 315 
scores and nucleosome footprints (100 bp scale) within the promoter of Cdc25b at chr2:131186436-316 
131187435. Each row corresponds to a single pseudo-bulk, while each column represents a single base pair 317 
position in the cCRE. Middle color bars show total accessibility within the cCRE and RNA of Cdc25b in each 318 
pseudo-bulk, respectively. i-k, Heatmaps showing the multi-scale footprints within the Cdc25b promoter 319 
across age groups. The horizontal axis represents single base pair positions, and the vertical axis represents 320 
footprint window sizes. i, Young. j, Old. k, difference between young and old. l, Bar plot of pathway enrichment 321 
Amy using either Class I or Class II as foreground and the other category as background. m, Heatmap showing 322 
activity of age-related differential sub-cCREs across pseudo-bulks. Rows correspond to pseudo-bulks and 323 
columns represent sub-cCREs. n, Schematic illustrating contrasting two classes of age-related cCRE changes 324 
(modulation of overall cCRE accessibility and intra-cCRE reorganization).   325 
 326 
Discussion 327 
Our results highlight limitations of treating cCREs as digital, indivisible units. The observation that cCREs 328 
shrink, expand, and merge as cells modulate the activity of sub-cCREs argues for a model wherein cCREs 329 
dynamically recruit new effector proteins to alter their function over time. Prior studies argued that TF binding 330 
is determined by wholesale opening or closing of cCREs instead of differential binding of TFs within the same 331 
cCRE44. In contrast, our study describes structural changes to cCREs, mediated by the repositioning of 332 
nucleosomes and exposure of previously inaccessible DNA for TF binding. This difference likely arises from 333 
the increased resolution with which we were able to examine cCRE structure, including the ability to footprint 334 
objects of various sizes along a continuous trajectory of cell differentiation. In support of this model, studies 335 
mapping TF binding by ChIP-seq report that TFs switch in development3,45,46. Further, prior studies using high 336 
resolution ChIP-seq find that nucleosomes are in active competition with transcriptional machinery7. 337 
 338 
We find that cCREs may be divided into sub-cCREs according to their change across single-cell data to 339 
significantly improve mapping of chromatin accessibility. In hematopoiesis, we find that individual cCREs 340 
change in structure, exposing DNA for TF binding, and altering gene expression. In aging, we find that most 341 
age-associated promoter changes alter the structure of cCREs, while fewer alter overall accessibility of the 342 
element. Our approach for footprinting is generalizable, and may reveal sub-cCREs in previously published 343 
bulk or single-cell ATAC-seq data, creating immediate opportunities across diverse studies of healthy and 344 
disease biology. From this vast repertoire of regulatory diversity, we anticipate discovering functions for not 345 
yet appreciated chromatin remodelers that slide or evict nucleosomes from regulatory DNA. Parsing cCREs 346 
into sub-cCREs may also ascribe new functions to disease-causing genetic variation previously overlooked 347 
by peak-based analyses. Taken together, our approach reveals the dynamics and functional importance of 348 
cCRE structure, providing new insights into gene expression and highlighting functional DNA at single-cell 349 
and single-base-pair resolution.  350 
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Extended Data Figures: 351 

Extended Data Figure S1. Tn5 bias modeling and footprinting 352 
a, Scatter plot comparing single nucleotide observed Tn5 insertion bias on BAC RP11-910P5 from replicate 353 
1 and 2. b, Heatmap showing Pearson correlation of observed Tn5 on all BACs among replicates. c, Motif plot 354 
of Tn5 sequence bias. d, Histogram of local GC-content in a +/- 10 bp window for top 2000 genomic positions 355 
where the neural network Tn5 bias model achieved the highest improvement in prediction error compared to 356 
the PWM bias model. e, Histogram of local GC-content in a +/- 10 bp window for bottom 2000 genomic 357 
positions where the neural network Tn5 bias model achieved the least improvement in prediction error 358 
compared to the PWM bias model. f-o, Testing our footprinting framework in an example cCRE region. f-j, 359 
Results for BAC naked DNA. f, Observed raw Tn5 insertion counts. g, Observed Tn5 bias. h, Tn5 bias 360 
predicted by the convolutional neural network. i, Footprint scores with bias correction. j, Footprint scores 361 
without bias correction. k-o, Results for HepG2 chromatin ATAC-seq. k, Observed raw Tn5 insertion counts. 362 
l, Observed-expected deviation of center / (center + flank) insertion ratio. m, Footprint scores with model-363 
based bias correction. n, Footprint scores with bias correction using ground truth bias in g. o, Footprint scores 364 
without bias correction.   365 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.533945doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.533945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Hu et al. 14 
 

 366 
Extended Data Figure S2. Multi-scale aggregate footprints centered around different TF motif sites.  367 
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a-c, Multi-scale footprints for example TFs. a, NFIA. b, ATF2. c, TFE3. d, Heatmap showing clustering of 368 
multi-scale aggregate footprints of different TFs. Each row is the multi-scale aggregate footprints of a specific 369 
TF. Left color bar shows the cluster each TF is in. Right color bar shows the TF family each TF belongs to.   370 
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 371 
Extended Data Figure S3. Predicting TF binding using multi-scale footprints 372 
a-c, Multi-scale footprints around individual bound and unbound TF motif sites similar to Figure 2D. a, NRF1. 373 
b, YY1. c, CEBPB. d, Bar plot showing performance of different methods when benchmarked on cluster 1 374 
TFs. e, Bar plot showing performance of different methods when benchmarked on TFs from all clusters. f, 375 
Heatmap showing gradients of predicted TF binding score with respect to input multi-scale footprints. Rows 376 
correspond to different footprint scales and columns represent single base pair positions within a +/- 100 bp 377 
range from the center. g, Effect of changing nucleosome footprint width on predicted TF binding scores. The 378 
two nucleosomes are fixed at +/- 100 bp positions, respectively and their widths are scaled by a scaling factor 379 
𝜆.   380 
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 381 
Extended Data Figure S4. Quality control and pseudo-bulking of the human bone marrow dataset.  382 
a, Tn5 insertion enrichment around TSSs. b, Fragment size distribution. c, Scatter plot showing library size 383 
and fraction of reads in peaks (FRIP) of single cells. d, Dot plot showing gene scores (ATAC signal within a 384 
region around promoter) of marker genes across cell types. e, Dot plot showing of RNA levels of marker genes 385 
across cell types. f, UMAP showing donor origin of single cells. g, Line plot showing single cell coverage for 386 
each cell type as a function of the number of pseudo-bulks. h, UMAP showing the positions of pseudo-bulk 387 
centers for all 1000 pseudo-bulks we generated. i-l, Example pseudo-bulks. Black dots represent member 388 
cells within the pseudo-bulk.  389 
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Extended Data Figure S5. sub-cCRE and nucleosome dynamics.  391 
a-d, Defining sub-cCREs. a-b, Heatmap of predicted TF habitation scores in the cCRE at chr17:40329944-392 
40330943 and chr20:56411666-56412665, respectively. Each row corresponds to a single pseudo-bulk, while 393 
each column represents a single base pair position in the cCRE. Left color bar shows the cell type labels of 394 
pseudo-bulks, and the colormap is the same as in Figure 3a. Right color bar shows total accessibility of the 395 
cCRE across the pseudo-bulks. c-d, Heatmap showing pairwise correlation of TF habitation scores among 396 
individual base pair positions within the same cCRE as in a-b. Top color bar shows results of sub-cCRE 397 
segmentation. e-f, Examples of cCRE merging and unmerging. e, Example cCRE at chr11:64810186-398 
64811185. f, Example cCRE at chr1:84690049-84691048. Left heatmaps show the nucleosome footprints 399 
(footprint scores calculated at 100 bp scale), while right heatmaps show the TF habitation scores in the same 400 
region. Each row corresponds to a single pseudo-bulk, while each column represents a single base pair 401 
position in the cCRE. Middle color bar shows total accessibility of the cCRE across the pseudo-bulks. g-h, 402 
Example cCREs with strong sub-cCRE-gene correlation and weak cCRE-gene correlation. g, Example cCRE 403 
at region chr3:187739617-187740616. h, Example cCRE at region chr6:152982810-152983809. Middle color 404 
bars show total accessibility of the cCRE and the RNA of the target gene, respectively. i-j, Tracking 405 
nucleosome dynamics across erythroid differentiation. i, Heatmap showing nucleosome binding/eviction 406 
dynamics across pseudotime during erythroid differentiation. Rows are individual nucleosome tracks. Color 407 
represents the change in footprint score compared to t = 0. j, Heatmap showing nucleosome sliding dynamics 408 
across pseudotime during erythroid differentiation. Rows are individual nucleosome tracks. Color represents 409 
the displacement (in bp) compared to starting position at t = 0. Negative values represent sliding towards 410 
upstream regions and vice versa.  411 
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 412 
Extended Data Figure S6. FACSorted Hematopoietic Cells from Aging Male Mice. a-b, Flow cytometry 413 
gating strategy for isolation of hematopoietic progenitor cells (Lineage Negative, gate bolded; Live Lin-) and 414 
hematopoietic stem cells (HSCs, gate bolded; Live Lin- Sca1+ cKit+ CD48- CD150+) from the bone marrow 415 
(BM) of young (a, n = 10) and aged (b, n = 5) male C57BL6/J mice. Representative FACS plots shown from 416 
one young and one aged mouse. For individual FACS plots from each mouse, see Extended Data File 1. c, 417 
Purity of resorted HSCs was greater than 99%. d, Frequency of FACSorted HSCs in young and aged mice 418 
(two-tailed t-test; t13 = 9.283, p<0.0001).  419 
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 420 
Extended Data Figure S7. Characterizing age-related changes in mouse HSCs 421 
a, UMAP showing gene scores of cell type marker genes Cd3d, Elane, Hlf, and Gata1, respectively. b, 422 
Percentage of old cells in the 100-cell nearest neighborhood for FACS sorted HSCs (left) or Lineage- cells 423 
(right). c-d, UMAP showing (c) RNA and (d) ATAC levels of aging marker genes (Clu, Selp, Nupr1) in HSCs. 424 
e, Volcano plot of differential RNA testing (old-versus-young). f, UMAP showing example pseudo-bulks. Black 425 
dots represent member cells within each pseudo-bulk.   426 
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 427 
Extended Data Figure S8. Hallmarks of aging-associated sub-cCRE alterations 428 
a, Heatmaps of predicted TF habitation scores in the promoters of Eif2b5, Dnaja2, Ubqln2, and Bcl2l11, 429 
respectively. Each row corresponds to a single pseudo-bulk, while each column represents a single base-pair 430 
position in the cCRE. Right color bar shows total accessibility of the cCRE and RNA level of the corresponding 431 
gene across the pseudo-bulks. Top color bar shows correlation of TF habitation score with RNA level at each 432 
base-pair position. b, Scatter plot comparing differential TF motif score testing results using cCREs and sub-433 
cCREs as input features, respectively.  434 
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Methods: 435 

EXPERIMENTAL METHODS 436 

Cell culture 437 
HepG2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 11965092, ThermoFisher) with the 438 
addition of 10% FBS and 1% of penicillin-streptomycin. Cells were incubated at 37°C in 5% CO2 and 439 
maintained at the exponential phase. Cells were digested with TrypLE express (12604013, ThermoFisher) for 440 
preparing single-cell suspension. 441 
V6.5 mouse embryonic stem cells were cultured in Glasgow Minimum Essential Medium (GMEM) 442 
supplemented with 10% FBS, 2 mM L-glutamine, 1% Pen/Strep, 1 mM sodium pyruvate, 2000 units/mL 443 
(10ng/mL) Leukemia Inhibitory Factor (LIF, Millipore), 1x Minimum Essential Medium Non-Essential Amino 444 
Acids (MEM NEAA, Invitrogen) and 50 uM β-Mercaptoethanol. Tissue culture plates were coated with 0.2% 445 
gelatin and 0.25 mg/mL laminin for 2 hours at 37C before seeding. Media was changed every other day, and 446 
cells were split every 3-4 days. 447 
 448 
BMMC sample processing 449 
Frozen human Bone Marrow Mononuclear Cells (BMMCs, Allcells) were thawed in a 37 °C water bath for 1 450 
min and transferred to a 15 mL centrifuge tube. 10 mL of pre-warmed DMEM with 10% FBS was added to 451 
cells drop-wisely. The cells were spun at 400g for 3 min at room temperature. After removing supernatant, the 452 
cells were washed twice in 0.5 mL PBS with 0.04% BSA. To deplete neutrophils, the cells were resuspended 453 
in 100 μl chilled DPBS with 0.2% BSA and 10 μl of human TrueStain FcX (BioLegend, 422302) and incubated 454 
on ice for 10 min to reduce non-specific labeling. The cells were then incubated on ice for another 30 min after 455 
adding 0.5 μl of biotin anti-human CD15 antibody (BioLegend, 301913). After immunostaining, 25 μl of MyOne 456 
T1 beads were added to the sample to capture the neutrophils for 5 min at room temperature. We then added 457 
900 μl of DPBS with 0.2% BSA to dilute the sample. The sample was placed on a magnet for 3 min and 1 ml 458 
of the sample was transferred to a new tube while the sample was on the magnet. The cells were ready for 459 
fixation and SHARE-seq experiment.  460 
 461 
Fixation 462 
Cells were centrifuged at 300g for 5 minutes and resuspended to 1 million cells/ml in PBSI. Cells were fixed 463 
by adding formaldehyde (28906, ThermoFisher) to a final concentration of 1% and incubated at room 464 
temperature for 5 minutes. The fixation was stopped by adding 56.1 μl of 2.5M glycine, 50 μl of 1M Tris-HCl 465 
pH 8.0, and 13.3 μl of 7.5% BSA on ice. The sample was incubated at room temperature for 5 minutes and 466 
then centrifuged at 500g for 5 minutes to remove supernatant. All centrifugations were performed on a swing 467 
bucket centrifuge. The cell pellet was washed twice with 1ml of PBSI, and centrifuged at 500g for 5 minutes 468 
between washings. The cells were resuspended in PBS with 0.1U/μl Enzymatics RNase Inhibitor and 469 
aliquoted for transposition. 470 
 471 
SHARE-seq 472 
Following fixation SHARE-seq was performed as previously described26, with the following modifications. To 473 
improve transposition, transposition was performed using pre-assembled Tn5 (seqWell, Tagify(TM) SHARE-474 
seq Reagent). To improve RNA capture, we added polyA to transcripts prior to reverse transcription. To do 475 
this, transposed cells (60 μl) were mixed 240 μl of poly(A) mix (final concentration of 1× Maxima RT buffer, 476 
0.25 U/μl Enzymatics RNase Inhibitor, 0.25 U/μl SUPERase RI, 0.018 U/μl E.coli poly-A enzyme (M0276L), 1 477 
mM rATP). The sample was aliquoted to 50 μl per PCR tube and incubated at 37 °C for 15 minutes.  478 
 479 
Quantification and sequencing 480 
Both scATAC-seq and scRNA-seq libraries were quantified with the KAPA Library Quantification Kit and 481 
pooled for sequencing. Single cell libraries were sequenced on the Nova-seq platform (Illumina) using a 200-482 
cycle kit (Read 1: 50 cycles, Index 1: 99 cycles, Index 2: 8 cycles, Read 2: 50 cycles). Bulk libraries were 483 
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sequenced on the Nova-seq platform (Illumina) using a 100-cycle kit (Read 1: 50 cycles, Index 1: 8 cycles, 484 
Index 2: 8 cycles, Read 2: 50 cycles). 485 
 486 
SHARE-seq data pre-processing 487 
SHARE-seq data were processed using the SHARE-seqV2 alignment pipeline 488 
(https://github.com/masai1116/SHARE-seq-alignmentV2/) and aligned to hg38. Open chromatin region peaks 489 
were called on individual samples using MACS2 peak caller47 with the following parameters: --nomodel –490 
nolambda –keep-dup -call-summits. Peaks from all samples were merged and peaks overlapping with 491 
ENCODE blacklisted regions (https://sites.google.com/site/anshulkundaje/projects/blacklists) were filtered out. 492 
Peak summits were extended by 150 bp on each side and defined as accessible regions (for footprinting 493 
analyses, thes peaks were later resized to 1000 bp in width). Peaks were annotated to genes using Homer 48. 494 
The fragment counts in peaks and TF scores were calculated using chromVAR49. Cell barcodes with less than 495 
30% reads in peaks (FRiP) or 250 unique fragments were removed. The aligned reads were then intersected 496 
with peak window regions, producing a matrix of chromatin accessibility counts in peaks (rows) by cells 497 
(columns). To examine the cell identity, the cisTopic (50 topics)50 were used for dimension reduction, followed 498 
by Louvain clustering. The progenitor populations were sub-clustered to obtain finer cell identity. The data 499 
were projected into 2D space by UMAP51. Seurat V352 was used to scale the DGE matrix by total UMI counts, 500 
multiplied by the mean number of transcripts, and values were log transformed.  501 
 502 
Generation of BAC naked DNA data 503 
We selected 25 chromatin regions based on overlap with a manually selected set of key transcription factors 504 
and differentiation related genes. The BAC clones (BACPAC Resources) were cultured in LB for 14 hours. 505 
The BAC DNA was extracted using ZR BAC DNA Miniprep Kit (Zymo, D4048) following manufacturer’s 506 
instructions. The purified DNA was quantified using Qibit (ThermoFisher). The BAC DNA were tagmented 507 
similar to the SHARE-seq ATAC-seq experiment. Briefly, 50 ng of BAC DNA from multiple clones were pooled 508 
for tagmentation following the SHARE-seq transposition condition. The tagmented DNA was purified using a 509 
Qiagen Minelute PCR clean up kit and then amplified for 7 cycles by PCR. To minimize batch effect, we 510 
generated 5 replicates and pooled all the materials for sequencing. The library was sequenced on a Nova 511 
platform (Illumina) using a 100-cycle kit (Read 1: 50 cycles, Index 1: 8 cycles, Index 2: 8 cycles, Read 2: 50 512 
cycles). The sequencing data was processed the same way as SHARE-seq ATAC-seq data.  513 
 514 
Aging Multi-ome experiment 515 
Mouse experiments were approved and performed in compliance with Harvard University’s Institutional Animal 516 
Care and Use Committee. C57BL6 mice were obtained from either Jackson Laboratory or the National Institute 517 
on Aging Aged Rodent Colony (Charles River Laboratory), and housed at a density of 2-5 mice per cage in 518 
standard ventilated racks and provided food and water ad libitum in a pathogen-specific free facility accredited 519 
by the Association and Accreditation of Laboratory Animal Committee (AALAC). Mouse cages contained 520 
Anderson’s Bed o Cob bedding (The Anderson, Inc), two nestlets (Ancare, 2x2” compressed cotton square), 521 
and a red mouse hut (Bioserv). For HSC isolation and flow cytometry. Cells from the bone marrow of long 522 
bones (2 femurs and 2 tibias per mouse) from young (n = 10; 11 weeks old) and aged (n = 5; 24 mo. old) male 523 
C57BL/6 mice were flushed with a 21-gauge needle into staining media (HBSS/2% fetal bovine serum), 524 
pelleted, and resuspended in ACK lysis buffer for 5 min on ice. Cells were then washed with staining media, 525 
filtered through a 40mm cell strainer, pelleted, and incubated with the following cocktail of rat anti-mouse, 526 
biotin conjugated lineage antibodies on ice for 30 min: CD3 clone C145-2c11 (Biolegend, 1000304; 1:100), 527 
CD4 clone GK15 (Biolegend, 1000404; 1:400), CD5 clone 53-7.3 (eBioscience, 13-0051-85; 1:400), CD8 528 
clone 53-6.7 (Biolegend, 100704; 1:400), CD19 clone 6D5 (Biolgend, 115504; 1:400), B220 clone RA3-6B2 529 
(Biolegend, 103204; 1:200), GR1 (Ly6-G/Ly6-C) clone RB6-8C5 (eBioscience, 13-5931-82; 1:400), 530 
Mac1/CD11b clone M1/70 (Biolegend, 101204; 1:800), and Terr119 clone TERR-119 (Biolegend, 116204; 531 
1:100). Cells were then washed in staining media, with a small aliquot reserved for each sample to serve as 532 
a non-depleted control, and lineage depleted using sheep anti-rat Dynabeads (Invitrogen, 1135) on a magnet. 533 
Cells were washed, pelleted, and incubated with the following cocktail of anti-mouse antibodies on ice for 45 534 
min. to identify hematopoietic stem cells (HSC): Pacific Orange Streptavidin (Invitrogen, S32365; 1:500), 535 
PE/Cy7 Sca1(Ly-6a/E) clone D7 (eBioscience, 25-5981-82; 1:200), APC cKit clone 2B8 (BD Pharmingen, 536 
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553356; 1:200), FITC CD48 clone HM48-1 (Biolegend, 103403; 1:200), and PE CD150 clone Tc15-12F12.2 537 
(Biolegend, 115904; 1:200). Following incubation, cells were washed and resuspended in staining media, and 538 
7-AAD (BD Pharmingen, 559925; 1:50) added immediately prior to flow cytometry. Cell sorting of HSCs (Live 539 
Lin- Sca1+ cKit+ CD48- CD150+) was performed on a BD FACS Aria II, and data analysis performed using BD 540 
FACS Diva and FlowJo software. Data processing was performed using CellRanger. 541 
 542 
After sorting, nuclei were isolated following 10x Genomics' demonstrated protocol "Low Cell Input Nuclei 543 
Isolation", which is described in the CG000365 User Guide. Nuclei were then processed using the Chromium 544 
Single Cell Multiome ATAC + Gene Expression kit (10x Genomics), following manufacturer's instructions, to 545 
obtain between 2,000 and 10,000 cells per sample. Libraries were sequenced on an Illumina Nextseq system 546 
using the following sequencing formats: Read 1 - 28, i7 index - 10, i5 index - 10, Read 2 - 44 (scRNA-seq), 547 
Read 1 - 30, i7 index - 8, i5 index - 24, Read 2 - 30 (scATAC-seq). Data processing was performed using the 548 
CellRanger software from 10x Genomics. 549 
 550 
Tn5 sequence bias modeling 551 
 552 
Getting Tn5 insertion counts 553 
The ends of the fragments files are shifted by +4/-4 (in 1-based indexing system) to obtain the center of the 9 554 
bp staggered end created by Tn5 transposition. The number of insertions at each single base-pair position 555 
within each cCRE from each sample is then quantified and stored in a sample-by-cCRE-by-position 3D tensor 556 
for fast data retrieval. 557 
 558 
Data preprocessing 559 
The model takes local DNA sequence context as input and predicts single-base pair resolution Tn5 bias. To 560 
this end, the +/- 50 bp DNA sequence surrounding each position of interest is encoded by one-hot encoding 561 
into a 101-by-4 matrix and used as model input. For the prediction target, we use local relative Tn5 bias as 562 
the target value. More specifically. The raw Tn5 insertion count at each position is divided by the average Tn5 563 
insertion count within a +/-50 bp window. Positions with low local coverage (< 20 insertions per bp) were 564 
removed to guarantee quality of training data. To facilitate model training, the resulting observed Tn5 bias 565 
values are log10-transformed and rescaled. For dataset partition, we randomly split all the BACs into 80%, 566 
10%, and 10% for training, validation, and test sets. In other words, all data originating from the same BAC 567 
belong to the same partition. This is to prevent overlapping local sequence contexts ending up in both training 568 
and testing datasets, which might lead to overestimation of performance. To guarantee equal coverage of 569 
examples with different bias levels, we binned all training examples into 5 bins based on their Tn5 bias values, 570 
and up-sampled each bin so that all bins end up with the same number of examples. Additionally, given the 571 
symmetric nature of Tn5 insertion, we generated reverse complement sequences of the training examples as 572 
data augmentation. The original and reverse complement data were combined, shuffled, and then used for 573 
model training. 574 
 575 
Model architecture  576 
The convolutional network consists of three convolution & max-pooling layers and two fully connected layers. 577 
Each convolution and max-pooling layer performs convolution, ReLU nonlinear activation53, and max pooling 578 
sequentially. We used 32 filters of width 5 for each layer, along with “same” padding mode and stride size of 579 
1. The two following fully connected layers have output dimensions of 32 and 1, respectively. ReLU activation 580 
is used by the first fully connected layer and linear activation is used by the second layer (i.e., the final output 581 
layer).  582 
 583 
Model training and evaluation  584 
The model was trained on the training set, and hyperparameters were optimized based on performance on 585 
the validation set. Final performance of the frozen model was evaluated on the test set. The model was 586 
implemented using Keras54, trained with mean square error as loss function and optimized using the Adam 587 
optimizer55 with default parameters. Training was performed with a batch size of 64 and early stopping based 588 
on model loss on the validation set.  589 
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 590 
Benchmarking with other Tn5 bias models 591 
Methods including k-mer models (k = 3, 5, 7) and PWM methods (single nucleotide and dinucleotide) were 592 
included in benchmarking. For k-mer methods, the foreground and background frequencies for all possible k-593 
mer sequences were quantified. The foreground frequency / background frequency ratio was used as the 594 
estimated Tn5 bias for the corresponding k-mer. For single nucleotide PWM, we calculated foreground and 595 
background base frequencies within a +/- 10 bp window (total length = 21) and computed the PWM of Tn5 596 
insertion. Dinucleotide PWM scores were calculated using TOBIAS21 with default settings. 597 
 598 
Genome-wide Tn5 bias reference tracks  599 
Sequences of reference genomes for Homo sapiens (hg38), Mus musculus (mm10), Drosophila melanogaster 600 
(dm6), Saccharomyces cerevisiae (sacCer3), Caenorhabditis elegans (ce11), Danio rerio (danRer11), and 601 
Pan troglodytes (panTro6) are downloaded from the UCSC genome browser website56 602 
https://hgdownload.soe.ucsc.edu/goldenPath/. The aforementioned Tn5 bias neural network model was 603 
applied to each position in the reference genomes to generate genome-wide Tn5 bias tracks. 604 
   605 
Computing footprint scores 606 
To detect DNA-protein interactions at different scales within cCREs, we implemented a framework for 607 
computing footprint scores for each base pair position in the cCRE. In short, for each single bp position, we 608 
define a center footprint window and flanking windows on both sides (Figure 1e). Then we calculate the 609 
observed ratio of center / (center + flanking) Tn5 insertion counts. The foreground observed ratio is compared 610 
to a background distribution to calculate statistical significance, which is then converted to a footprint score. 611 
 612 
Estimation of background dispersion   613 
Given a specific combination of center bias, flanking bias, and local coverage, we expect a certain distribution 614 
of center / (center + flanking) insertion ratio when no protein is bound. This is defined as the background 615 
distribution. Such background distribution can be estimated using BAC naked DNA Tn5 insertion data. To this 616 
end, we first randomly sampled 100,000 positions from the BAC dataset, and retrieved their local coverage 617 
(defined as the total insertion number in center and flanking areas), center bias, as well as flanking bias. Then 618 
for each sampled position A, we identified 500 nearest neighbor positions NN1-NN500 in the 3-dimensional 619 
space of (center bias, flanking bias, local coverage). To make sure each dimension is weighed equally, the 620 
values of each dimension were first normalized to zero mean and unit variance. The 500 nearest neighbor 621 
observations can be considered as background observations with nearly identical bias and coverage, and the 622 
center / (center + flanking) ratio of NN1-NN500 forms the background distribution of position A. Therefore, for 623 
each of the 100,000 sampled positions, we can calculate the mean and standard deviation of its background 624 
ratio distribution. This allows us to train a background dispersion model that takes the tuple (center bias, 625 
flanking bias, local coverage) as input and predicts the mean and standard deviation of the background 626 
distribution very efficiently. To make sure the model is exposed to training examples with a wide range of local 627 
coverage, we down-sampled the BAC dataset to 50%, 20%, 10%, 5%, and 1% of the original sequencing 628 
depth. Finally, we trained a neural network with a single hidden layer (32 nodes, ReLU activation53) and linear 629 
output layer activation. The dataset was randomly split into 80% training, 10% validation, and 10% test. The 630 
model was implemented using Keras54, and trained on the training dataset with mean squared error loss using 631 
the Adam optimizer54,55. Early stopping was determined using loss on the validation set, and performance of 632 
the final model was evaluated on the test set. Additionally, we trained separate models for each footprint radius 633 
due to the drastic differences in total center or flank bias when footprint radius varies. For details, see 634 
Supplementary Notes. 635 
 636 
Calculating footprint scores 637 
For each position in the cCRE, we define a center footprint window and flanking windows on both sides. We 638 
first calculate the foreground observed center / (center + flanking) ratio of Tn5 insertion counts. Then we apply 639 
the pre-trained background dispersion model to calculate the mean and standard deviation of its background 640 
distribution. We next use a lower-tailed z-test to calculate the p-value for footprinting. If the observed ratio is 641 
significantly lower than the background distribution, then this position is likely to be bound by a protein. More 642 
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specifically, to avoid calling footprints at positions where only one flanking side shows higher Tn5 insertion 643 
than the center window but not the other, we perform center-versus-left and center-versus-right tests 644 
separately and keep the larger p-value (See Supplementary Notes for details). The -log10(p-values) are 645 
smoothed by running-max and running-mean smoothing and then used as the final footprint scores. 646 
 647 
Aggregate footprinting 648 
To calculate aggregate footprints, Tn5 insertions surrounding TF or nucleosome binding sites across the 649 
genome are first aggregated and then used to calculate footprint scores. For TFs, we selected sites with a 650 
matched TF motif using motifmatchr57 (p.cutoff = 1e-5) and overlapping with a ChIP-seq peak of the 651 
corresponding TF. For motif matches on the minus strand, the Tn5 insertion profile surrounding the motif is 652 
inverted so the insertions for different sites are aligned in the same direction. For nucleosomes, we 653 
downloaded a previously published list of chemically mapped nucleosome positions in mouse embryonic stem 654 
cells (mESCs)24 and used these positions for aggregating nucleosome footprinting with mESC single cell 655 
ATAC-seq data. 656 
 657 
Predicting TF binding 658 
Input data 659 
To predict the landscape of TF binding, we trained a binary classifier that predicts whether any TF motif site 660 
is bound by the corresponding TF. Motif sites are identified by the matchMotifs function in the motifmatchr 661 
package57. All sites with a matching p-value below 5e-5 are kept. For any TF motif site, we use multi-scale 662 
(20 bp, 40 bp, 60 bp, 100 bp, 160 bp, 200 bp in diameter) footprints within a +/- 100 bp local area centered 663 
around the motif, as well as a motif match score as input to the model. The motif match score returned by the 664 
matchMotifs function is quantile-transformed to uniform distribution. As a result, by combining the 201-665 
dimensional footprint vectors from 6 different scales with a single motif match score, we end up with a 1207-666 
dimensional vector as the final model input. The first 1206 dimensions of footprint scores are standardized 667 
individually to zero mean and unit variance. For the prediction target, we assign a label of 1 to all sites 668 
overlapping with a ChIP peak of the same TF, and a label of 0 to sites not overlapping with ChIP. 669 
 670 
In total, we trained two separate models. (1) The first model was trained using only data of cluster 1 TFs. This 671 
model was trained to predict binding of TFs that leave strong footprints. Some TFs were found to have a very 672 
low percentage of motif sites overlapping with ChIP (< 25%), potentially due to low quality of the motif or the 673 
ChIP dataset. Such TFs are removed from model training and testing. We also added an equal number of 674 
random negative examples as well as reverse-complement examples for data augmentation. (2) The second 675 
model, referred to as the TF habitation model, was trained on TFs from all clusters (to include more training 676 
data, we were keeping TFs with > 20% of motifs overlapping with ChIP data). The model was trained to infer 677 
binding for both strong-footprinting and weak-footprinting TFs. Similarly, we added reverse complement 678 
examples for data augmentation. 679 
 680 
For data partition, we used HepG2 SHARE-seq data and GM12878 SHARE-seq data (GM12878 data is 681 
previously published in the original SHARE-seq paper26) for model training and validation, and test the model 682 
on K562 Biorad single cell ATAC data, as well as three cell types (naive B cells, CD14 monocytes, and late-683 
erythroid cells) in the human BMMC SHARE-seq dataset. In particular, for the cluster I-specific model, TFs in 684 
cluster I were used as training data and other TFs were used as validation. For the TF habitation model, 685 
HepG2 data was used as training data and GM12878 data was used as validation. After fixing model 686 
hyperparameters, HepG2 and GM12878 data were combined to train a final TF habitation model for 687 
performance testing. 688 
 689 
Model architecture and training 690 
The TF binding prediction model is a neural network model with two hidden layers (32 + 16 nodes for cluster-691 
I specific model, and 128 + 16 nodes for the TF habitation model). ReLU activation53 is used by both hidden 692 
layers and sigmoid activation is used by the final output layer. The model was implemented using Keras54. 693 
The model was trained on the training dataset with a batch size of 128 using the Adam optimizer58. Binary 694 
cross entropy is used as the loss function. Early stopping was used based on model loss on the validation set. 695 
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 696 
ChIP validation and benchmarking with previous methods 697 
To evaluate model performance, we used ChIP-seq as ground truth and validated predicted binding events. 698 
HepG2 and GM12878 data for model training were downloaded from ENCODE6. ChIP-seq for BMMC cell 699 
types were downloaded from cistromeDB59. For benchmarking with previous methods, to make sure we only 700 
include high quality TF binding sites, we downloaded K562 ChIP-based TF binding data from unibind25 701 
(https://unibind.uio.no/search). For ENCODE datasets, we removed those with the two most severe levels of 702 
audit categories. For cistromeDB datasets, we applied QC filters as specified on the cistromeDB website 703 
http://cistrome.org/db/#/about. More specifically, we included the below filters: FRiP >= 0.01, FastQC >= 0.25, 704 
uniquely mapped ratio >= 0.6, peaks with fold change above 10 >= 500, peaks union DHS ratio >= 0.7, and 705 
PBC >= 0.8. Datasets with the below cell type labels are included: “Monocyte”, “B Lymphocyte”, “Erythroid 706 
cell”, “Erythroid Progenitor Cell”, and “Erythroid progenitor”.  707 
 708 
The K562 datasets from unibind were used for benchmarking with previous methods, including HINT-ATAC 709 
and TOBIAS. In short, the same ATAC-seq data was used as input to all three methods. To guarantee fair 710 
comparison, we first took the intersection of candidate TF binding sites from all three methods. Then for each 711 
method, we ranked the remaining candidate sites by predicted binding score, and evaluated precision of 712 
prediction using the top 10% sites. Only TFs with at least 10% of motifs overlapping with unibind validated TF 713 
binding sites were included. Visualization of predicted and ground truth binding sites was done with the Gviz 714 
package60. Furthermore, to evaluate the false positive rate of each model, we also tested all three models on 715 
our BAC naked DNA data. The same data was used as input to each model and the number of predicted 716 
binding events are used to represent the false positive predictions. 717 
 718 
Model Interpretation 719 
To interpret how the TF binding model makes predictions, we first calculated gradients of the output with 720 
respect to input features using GradientTape from tensorflow61. Gradients were computed for each individual 721 
motif site and then the gradients for all sites were averaged and smoothed to generate the final gradient map. 722 
Additionally, we performed ablation tests to evaluate the contribution of TF and nucleosome footprints. Here, 723 
we masked TF footprints (20 bp, 40 bp, and 60 bp footprints) or nucleosome footprints (100 bp, 160 bp, and 724 
200 bp footprints) separately during training by setting the corresponding features to zeros. The performances 725 
of the models trained on masked data were then compared to the model trained on unmasked data. 726 
Furthermore, we performed simulation analysis to study the impact of nucleosome positioning and width on 727 
model prediction. To simulate TF and nucleosome footprints that reflect their real sizes, we first generated a 728 
gaussian signal to represent the initial guess for their size (30 bp for TFs, 50 bp for nucleosomes), Next, we 729 
went through footprints called on the HepG2 dataset at the corresponding scale and found examples that 730 
highly correlates (Pearson correlation > 0.8) with our initial guess profile. The matched data was eventually 731 
averaged to get the realistic width of footprints at each scale. We next simulated a TF signal at the center of 732 
the motif, as well as signals of two flanking nucleosomes. By changing either the positioning or width of the 733 
flanking nucleosomes, we were able to evaluate their impact on TF binding by observing the changes in the 734 
predicted TF habitation scores. 735 
 736 
Segmentation of sub-cCREs 737 
cCREs are segmented into sub-cCREs using an approach conceptually similar to segmentation algorithms 738 
for topologically associating domains (TADs)62. In brief, each cCRE is first divided into 10 bp intervals as 739 
candidate binding sites. Suppose there are k intervals in a specific cCRE. We first compute TF habitation 740 
scores for these k candidate binding sites across all n pseudo-bulks, resulting in a k-by-n matrix S of TF 741 
binding scores. We then calculate the pairwise correlation among the rows, obtaining a k-by-k correlation 742 
matrix M. Then for each TF site, we assign a score to it indicating whether it should be a sub-cCRE boundary. 743 
More specifically, for each TF site, we first calculate 3 separate scores representing the average correlation 744 
(1) within the upstream neighboring TF sites, (2) across the current TF site, and (3) within the downstream TF 745 
sites. With a local neighborhood of radius r, we have: 746 
 747 
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 753 
The boundary score is defined as  754 
 755 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑠𝑐𝑜𝑟𝑒	 = 	𝑚𝑎𝑥(𝑆𝑐𝑜𝑟𝑒𝐴, 𝑆𝑐𝑜𝑟𝑒𝐶) 	− 	𝑆𝑐𝑜𝑟𝑒𝐵	 756 
 757 
We then smooth the boundary score and identify local maximum positions as the final sub-cCRE boundaries. 758 
Furthermore, the average predicted TF habitation scores within a sub-cCRE is used as the activity of the latter. 759 
For details on cCRE segmentation, see Supplementary Notes. 760 
 761 
Calculating cCRE-gene correlation and sub-cCRE-gene correlation 762 
To investigate whether sub-cCREs can be associated with gene expression independent from the cCRE they 763 
reside in, we compared cCRE-gene correlation and sub-cCRE-gene correlation. For each gene, we identified 764 
cCREs within a 50 kb radius from the gene TSS. We then calculated correlation between cCRE accessibility 765 
(as quantified by ATAC signal within the 1 kb window) and RNA level of the gene across pseudo-bulks. 766 
Meanwhile, we also took sub-cCREs detected within the same cCRE and correlated their activities with RNA 767 
of the same gene. Low signal sub-cCREs with an activity < 0.3 were removed. To also assign statistical 768 
significance to each cCRE-gene pair or sub-cCRE-gene pair that we correlated, we constructed a background 769 
distribution of correlation values. In the case of cCREs, we first randomly selected 100,000 cCRE-gene pairs 770 
and calculated their observed correlation. For each cCRE-gene pair, we also recorded average gene 771 
expression across pseudo-bulks, average cCRE accessibility across pseudo-bulks, and GC content of the 772 
cCRE as the 3 main features of the cCRE-gene pair. Therefore, each pair will have a unique coordinate in the 773 
3-dimensional feature space (i.e., accessibility, expression, GC content). Next, for each cCRE-gene pair that 774 
we wish to assign significance to, we find its 100 nearest neighbors in the 3-dimensional feature space. The 775 
correlation values of the nearest neighbor cCRE-gene pairs are used as the background distribution. A z-test 776 
is performed to obtain a p-value for the pair of interest. In the case of sub-cCREs, a similar procedure is 777 
conducted. The only difference is that we use mean activity of the sub-cCRE instead of mean accessibility as 778 
a main feature. Again for every sub-cCRE-gene pair 100 background pairs are found in the 3-dimensional 779 
feature space and a z-test is performed to get the p-value. 780 
 781 
Tracking TF binding dynamics across human hematopoiesis 782 
Generation of pseudo-bulks 783 
Single cells in the human BMMC dataset were first embedded into lower dimensional space using cisTopic50, 784 
and then grouped into 1000 pseudo-bulks based on their spatial proximity in the cisTopic space. More 785 
specifically, we first sample 1000 cells as pseudo-bulk centers, and then identify k-nearest neighbors (k = 786 
5000) of each center cell in the cisTopic space as other members of the same pseudo-bulk. We reasoned that 787 
sampling center cells with low local connectivity can help increase coverage of the state space by preventing 788 
over-sampling of densely connected local neighborhoods. Therefore, we first randomly sampled 10,000 789 
scaffold cells and used them to construct a KNN graph (k = 10). Then we selected the 1000 cells with the 790 
lowest in-degree in the KNN graph as pseudo-bulk centers. 791 
 792 
Computing pseudo-time 793 
Pseudo-time along human hematopoietic lineages was computed using the Palantir package63. To reduce 794 
computing time, we randomly sampled 100,000 cells from the human BMMC dataset as scaffold cells. The 795 
cisTopic embedding of the scaffold cells as well as pseudo-bulk center cells are used as input to Palantir. 796 
 797 
Pathway enrichment analysis 798 
Gene set annotations used for pathway enrichment analyses are obtained using the msigdb_gsets function 799 
from the R package hypeR64. For human data, we used the "Homo sapiens","C5","BP" gene sets, while for 800 
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mouse data, we used the "Mus musculus","C5","BP" gene sets. Pathway enrichment was calculated using 801 
Fisher’s exact test. 802 
 803 
Tracking nucleosome binding dynamics across human hematopoiesis 804 
To characterize nucleosome reorganization during human hematopoiesis, we implemented a custom script 805 
for automatic tracking of nucleosome footprints. Given any lineage of interest, we ordered all pseudo-bulks in 806 
the lineage by pseudo-time. Due to the sparsity of data, we applied a sliding pseudo-time window of 10 807 
pseudo-bulks and combined the data in each window before footprinting. Nucleosome footprints (100 bp scale 808 
footprints) were then called at each pseudo-time point. Next, we aggregated the data from all pseudo-bulks 809 
and called nucleosome footprints. The aggregate nucleosome footprint centers were used as rough mapping 810 
of the position for each nucleosome. For fine-mapping of nucleosome position, we defined a window of 100 811 
bp in diameter centered at the aggregate nucleosome footprint position. At each pseudo-time point, we found 812 
the position of maximum footprint score within this 100 bp window as the instantaneous position of the 813 
nucleosome. The instantaneous position as well as footprint intensity of the nucleosome were recorded for 814 
each nucleosome and pseudo-time point. Eventually, the position and footprint intensity of the same 815 
nucleosome were compared across pseudo-time to analyze sliding / binding / eviction of the nucleosome. 816 
 817 
Characterizing age-related intra-cCRE dynamics 818 
Data preprocessing 819 
Cells with fraction of reads in peaks (FRIP) < 0.3 and depth < 300 were first removed. Additionally, we used 820 
ArchR65 to calculate doublet scores for each single cell and removed cells with top 5% doublet scores. The 821 
remaining cells were then processed with the Seurat package66. Cells were embedded into lower dimensional 822 
space using latent semantic indexing (LSI)67 and then clustered. Seurat clusters corresponding to HSCs were 823 
selected for pseudo-bulking and downstream differential testing. Cells with the “LinNeg” FACS sort label were 824 
excluded for HSC-specific analyses. To identify representative cell states, we used SEACells38 to identify 30 825 
representative cell states across HSCs. The representative cells are used as centers to form pseudo-bulks. 826 
Each pseudo-bulk is generated by serially including nearest neighbor cells from the center cell in an order of 827 
increasing distance until we reach a total of 5 million reads. 828 
 829 
Differential testing 830 
Differential RNA testing was performed using DESeq268. We first quantified total RNA read counts for each 831 
gene in each pseudo-bulk, and used DESeq2 to identify significant differential genes with age as the covariate. 832 
Additionally, we applied the TF habitation model to all cCREs and then segmented cCREs into sub-cCREs 833 
using the method mentioned above. After filtering out low signal sub-cCREs (< 0.3 activity), we performed 834 
differential cCRE and sub-cCRE testing with two-tailed unequal variance t-test (Welch’s test) using the cCRE 835 
accessibility and sub-cCRE activity, respectively. 836 
 837 
Motif score analysis 838 
Motif scores were calculated using chromVAR49. Unlike the standard practice using the cCRE-by-sample 839 
count matrix, here we used sub-cCRE-by-pseudo-bulk activity matrix. Only sub-cCREs with differential sub-840 
cCRE FDR < 0.1 as well as differential cCRE FDR > 0.1 are included for motif scoring. We performed 841 
differential motif score analysis using two-tailed unequal variance t-test (Welch’s test) between young and old 842 
age groups.  843 
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Data Availability 844 
Additional data such as pre-trained machine learning models and pre-computed Tn5 bias tracks can be 845 
accessed on Zenodo at https://zenodo.org/record/7121027#.ZCLo0ezMI8M. Interactive visualization using 846 
Shinyapps can be found at https://buenrostrolab.shinyapps.io/ACAMShiny/ (human bone marrow) and 847 
https://buenrostrolab.shinyapps.io/aging/ (mouse HSC aging). Raw and processed sequencing data can be 848 
found on Gene Expression Omnibus (GEO) with the accession number GSE216464. 849 
 850 
Code Availability 851 
All code used in this study, including tutorial for running PRINT, can be found at 852 
https://github.com/HYsxe/PRINT.  853 
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