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Abstract14

Reaction-diffusion systems have been widely used to model pattern formation in biolo-15

gical systems. However, the emergence of Turing patterns in three-dimensional (3D) domains16

remains relatively unexplored. A few studies on this topic have shown that extending pattern17

formation from 2D to 3D is not straightforward. Linear stability analysis, which is commonly18

used to associate admissible wave modes with predicted patterns in 1D and 2D, has yet to be19

applied in 3D. We have used this approach, together with finite element modelling of a Turing20

system with Schnakenberg kinetics, to investigate the effects of initial conditions and grow-21

ing domains on the competition between admissible modes in 3D Turing pattern emergence.22

Our results reveal that non-random initial conditions on the activator play a stronger role than23

those of the inhibitor. We also observe a path dependency of the evolving pattern within a24

growing domain. Our findings shed new light on the mechanisms ensuring reliable pattern25

formation in 3D domains and have important implications for the development of more robust26

models of morphogen patterning in developmental processes.27

Keywords: pattern formation; reaction-diffusion systems; finite element analysis; mode selec-28

tion; evolving spatial domain; linear stability analysis29
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1 Introduction30

The process by which organisms develop their shape and form during embryonic development31

has fascinated scientists for centuries. Pattern formation is a crucial stage in morphogenesis,32

as it leads to the emergence of structures that later support function. Alan Turing proposed a33

mechanism to explain how cell signalling can generate self-organising patterns, which drive cell34

differentiation and organisation into specific tissues and structures. In his influential paper [1],35

Turing modelled the behaviour of chemical signals, which he termed morphogens, through a36

reaction-diffusion system in which a spatial pattern emerges as a result of diffusion-driven in-37

stabilities. The formation of Turing patterns depends on the delicate balance between diffusion38

and reaction rates, as well as the nonlinear feedback between chemical species.39

Turing systems have been extensively used to model patterning in a variety of biological ap-40

plications [2,3], and the past two decades have brought experimental evidence to support Turing-41

type computational model predictions [4–9]. Most studies to date have focused on one- and42

two-dimensional models, with only a handful of papers considering reaction-diffusion systems in43

three-dimensional (3D) domains to explore patterning in development [10–12].44

For more than half a century, Turing models have been the focus of research, but questions45

remain regarding the selection and emergence of specific patterns. Despite a simple and widely46

applicable mathematical framework, the nonlinearities inherent to the reaction-diffusion system47

make it challenging to predict pattern evolution. Linear analysis is a common technique to assess48

the stability of the steady-state system and investigate pattern formation. It has been used to49

predict patterns in 1D [3] and 2D structures [13–17], albeit with limitations. To account for the50

effect of the nonlinearities on pattern emergence, more sophisticated mathematical analyses51

have been used [18–25]. Numerical methods like finite difference and finite element analyses52

have become the standard tool in the study of Turing pattern formation.53

To date, a limited number of computational studies have examined the emergence of Turing54

patterns in 3D domains [19, 20, 26–33]. The extension from 2D to 3D domains leads to a wider55

variety of patterns. All these studies have focused on the generation of complex patterns. How-56

ever, we know from linear stability analysis in 1D and 2D that these patterns are in fact the super-57

position of simpler patterns (e.g. spheres, cylinders and planes in 3D), which are associated to a58

specific wave mode. Admissible modes for a specific set of model parameters are obtained from59

the linear analysis of the governing equations, while the combination of the admissible modes60

leading to the final pattern is influenced by initial conditions [13,21,29,30,34–36].61

Through a combination of computational modelling and linear stability analysis, we have in-62

vestigated how the modes determine the emergence of Turing patterns in 3D domains as well as63

the effect that initial conditions have on them. A better understanding of mode superposition in64

3D will lead to insights on how more complex patterns form. Morphogen expression observed in65

developmental processes like embryonic axis specification or limb formation typically results in66

relatively simple patterns (e.g. gradients or ellipsoids). With this type of application in mind, we67

have also explored how growth may affect the evolution of the pattern as the domain grows.68

2 Theoretical background69

2.1 A reaction-diffusion model with Schnakenberg kinetics70

The general dimensionless form of a two-component Turing system is given by the reaction-71

diffusion equations72 .
u = γf(u, v) + ∆u,.
v = γg(u, v) + d∆v,

(1)
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where u(x, t) and v(x, t) are the species concentrations. Their time derivatives are indicated by73

a superimposed dot, and ∆(•) = (∂2
x + ∂2

y + ∂2
z )(•) is the standard Laplacian operator. Time74

and space dependence will be in general omitted for clarity. The term γ can have multiple inter-75

pretations linked to the domain size and to the relative strength of the reaction terms, and d is76

the ratio of diffusion coefficients of each species. The functions f(u, v) and g(u, v) will be here77

represented by the Schnakenberg kinetics [37], i.e.,78

f(u, v) = a− u+ u2v,
g(u, v) = b− u2v,

(2)

where a and b are the positive parameters of the model. Hence, the reactant u acts as an ac-79

tivator by self-activating itself and inhibiting v, while v self-inhibits itself and activates u, which80

corresponds to an activator-substrate model.81

There are several advantages to using the Schnakenberg general nondimensional form. The82

first one is that it has a relatively large Turing space in comparison to other models, making83

the Schnakenberg model more robust [38]. In addition, other well-known systems, such as the84

Gierer-Meinhardt model [39], can be scaled to take this general form. Another advantage is that85

the parameters γ and d have a physical and biological interpretation.86

2.2 Pattern prediction using linear stability analysis87

Linear stability analysis of the Turing system’s steady-state solution is commonly used to study88

the conditions necessary for the emergence of patterns [17, 25, 40]. The most unstable mode of89

the resulting eigenvalue problem typically determines the wavelength of the pattern. Thus, this90

sort of analysis is a useful tool in determining the critical parameter values under which diffusion-91

driven instability will occur and Turing patterns will form.92

The emergence and stability of patterns is analysed by assuming solutions of (1) linearised93

at u0 = (u0, v0) = (a+ b, b/(a+ b)2) and with the form,94

u(x, t) ≃ u0 +

k2∑
k1

ck e
λt eik·x , (3)

where k is the wavevector, and the constants ck are determined by a Fourier expansion of the95

initial conditions. The sum in (3) runs on a set of plausible values of k = ||k||, to be specified96

below. The stability of the system is determined by the sign of the real part of λ, which can be97

written in terms of k. Indeed, after inserting the expression in (3) into the linearisation of (1), the98

presence of non-trivial solutions requires that λ depends on k2 as99

λ =
γ

2
(fu + gv)−

k2

2
(1 + d) +

1

2

√
(γ (fu + gv)− k2 (1 + d))2 − 4 detk , (4)

where fu, fv, gu and gv are the derivatives of the Schnakenberg kinetics evaluated at (u0, v0)100

and function detk is the determinant of the matrix in the linearised system. See Supplementary101

Information (SI), section S1 for more details.102

The relation in (4) is the so-called dispersion relation, and allows relating the wavelength k103

with the (positive) real part of λ. The emergence of plausible (unstable) oscillatory modes requires104

that k2 ∈ [k2
1, k

2
2], with the values of the interval given by105

k2
1 =

γ

2d

(
(dfu + gv)−

√
(dfu + gv)

2 − 4d (fugv − fvgu)

)
,

k2
2 =

γ

2d

(
(dfu + gv) +

√
(dfu + gv)

2 − 4d (fugv − fvgu)

)
.

(5)
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We will focus our study on parallelepipedic domains of dimensions Lx × Ly × Lz and with106

homogeneous Neumann boundary conditions (BCs). In this case, the wavevectors k in (3) must107

take the form108

kT = π

[
m

Lx

,
n

Ly

,
p

Lz

]
, (6)

where the integers m, n and p represent the number of oscillations along the x, y and z direc-109

tions, respectively. We have chosen Neumann BCs as they provide a better approximation of the110

biological environment in morphogenesis than Dirichlet BCs. Note also that in our parallepipedic111

domain, adding periodic BCs restricts the set of solutions to even integer numbers in (6), while112

solutions with homogeneous Neumann BCs can take odd and even integers. In view of (6), the113

condition k2 ∈ [k2
1, k

2
2] is tantamount to requiring that114

k2
1 < k2 = π2

(
m2

L2
x

+
n2

L2
y

+
p2

L2
z

)
< k2

2 . (7)

In consequence, there is only a finite and discrete number of integers {m,n, p} and values115

of k for which k2 is within the interval [k2
1, k

2
2]. Model parameters and domain dimensions may116

be selected such that only a single wavelength k verifies (7), i.e. there exists a single admissible117

mode (SI, section S1) and, according to the linear analysis, only this mode will appear in the final118

pattern. This is referred to as “mode selection” by Murray [3], where the use of linear stability119

analysis to predict patterns in 1D and 2D domains is explained in detail. We note though that120

the approximated linearised solution in (3) does not satisfy the nonlinear equations in (1)-(2), and121

therefore, the steady-state solutions obtained in our simulations cannot be exactly identified with122

the expression in (3).123

When several wavelengths are interacting nonlinearly, the wavelength with the maximum λ is124

expected to grow faster and be the dominant contribution. We denote by (m,n, p) the resulting125

pure mode with k = π [m/Lx, n/Ly, p/Lz] and k2 satisfying the inequalities in (7). When multiple126

modes are interacting, complex patterns may form, which result from the combination of the127

patterns corresponding to pure modes.128

3 Numerical simulations129

Through computational modelling in 3D domains we examined how the modes predicted by the130

solution to the linearised system (3) contribute to the final pattern computed with the nonlinear131

governing equations (1)-(2). We also explored the impact of initial conditions and a growing do-132

main on Turing pattern emergence.133

3.1 Methods134

The governing equations (1)-(2) were discretised in space by applying the finite element method135

and in time using the implicit mid-point rule. Details of the numerical implementation in Matlab136

(2022a, The MathWorks Inc.) are provided in SI, section S2. The time step was ∆t = 0.1 and137

simulations ran for as many increments as required until the pattern reached a steady-state solu-138

tion. Steady-state was considered to be reached at tn when the difference of nodal values of139

u and v where all below 0.5% with respect to values at tn − 10∆t. In random initial conditions140

we considered a perturbation of up to a 10% variation from a constant value corresponding to141

u0 = (u0, v0) = (a + b, b/(a + b)2). Cubic geometries were meshed with 20×20×20 hexahed-142

ral elements and homogeneous Neumann BCs were applied. The model parameters a, b and d,143

and domain sizes Lx × Ly × Lz were adjusted for each simulation. Values are given alongside144
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Figure 1: Graphical representation of pure modes in 3D for the reactant u. Applying specific initial condi-
tions, and periodic and homogeneous Neumann boundary conditions allows obtaining a final pattern that
corresponds to a pure mode, when selecting a particular geometry and set of model parameters.

the results for each case. For simplicity, γ = 1 was considered in all simulations, unless stated145

otherwise.146

Figure 1 shows three final patterns obtained from a pure mode (m,n, p) each. These allow147

us to unequivocally associate a mode with its graphical representation (or pattern) in 3D, up to148

half-length translations and symmetries. We targeted the mode by choosing specific boundary149

conditions, model parameters and domain sizes. To expedite the numerical computation, we con-150

sidered an initial distribution of the reactant concentrations close to the targeted mode. In the151

results shown in figure 1, we applied periodic and homogeneous Neumann boundary conditions,152

which only allow an even number of oscillations, and facilitate the association of the mode to a153

pattern.154

Mode (0, 2, 0) corresponds to a full cosine wave in the y–direction, which results in a pattern155

with a plane perpendicular to the y–direction (figure 1, left). Mode (2, 2, 0) corresponds to full156

cosine waves in the x– and y–directions, which form central and corner cylinders with their axes157

perpendicular to the x–y plane (figure 1, centre). Finally, mode (2, 2, 2) is the product of three full158

cosine waves, one in each direction, which result in a set of split spheres (figure 1, right), with a159

pattern on each plane similar to the pattern on the x–y plane of mode (2, 2, 0). We note that in all160

cases, the central values of u are close to the value u0 = a+ b predicted by the linear analysis.161

3.2 Mode selection and its influence on the final pattern162

We performed several simulations in which we chose the parameters and domain size to select163

certain admissible modes and, therefore, target specific patterns. We found that the final pattern164

sometimes corresponds to the mode associated with the largest eigenvalue of the admissible165

wavenumbers, but not always. Figure 2 shows two illustrative cases: when the final pattern is166

associated with the largest eigenvalue (C) and when it is not (F). To aid in the identification of167

the pattern corresponding to the predominant mode, we ran additional simulations (A, B, D, E) in168

which we tailored the model parameters to obtain only one of the possible eigenvalues within the169

admissible range of wavenumbers of figure 2C and F. For each simulation (A-F), the positive real170

part of the dispersion relation (4) is plotted and the wavelengths verifying (7) are indicated on the171

plot.172

The number of modes interacting depends on the domain dimensions and the model para-173

meters a, b and d. Most final patterns are a combination of several admissible modes predicted174

by the linear analysis. The multiplicity of modes with a same eigenvalue is typically known as175

mode degeneracy [26, 29]. For the example in figure 2A, the three modes obtained from the lin-176
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Figure 2: The mode corresponding to the largest eigenvalue is not necessarily the predominant one in
the final pattern. For each case (A-F), the plot represents the dispersion relation λ vs the wavenumber k2

obtained from the linear stability analysis (equations (4)-(7)). We can deduce the admissible modes and
their corresponding eigenvalue from it. Below each plot, the domain dimensions and model parameters
considered are given. On top of the plot, the steady distribution of u obtained by finite element analysis
is shown. The modes participating in the pattern obtained from the non-linear system are specified below
each simulation. Each figure shows patterns associated with corresponding admissible modes. The final
pattern in C corresponds to the sum of the modes (0, 0, 1)+(0, 1, 0)+(1, 0, 0), which have the largest eigen-
value. Conversely, the final pattern in F corresponds to mode (1, 1, 1), which has the lowest eigenvalue.

ear analysis are (0, 0, 1), (0, 1, 0) and (1, 0, 0). Each of them separately correspond to a plane177

perpendicular to the z–, y– and x–directions, respectively. Added together, the final pattern forms178

an eighth of a sphere in one corner of the cubic domain. We note that this is qualitatively differ-179

ent from mode (1, 1, 1) shown in E and F, as illustrated also in SI, figure S1. Therefore, the final180

pattern in A results from an equal contribution of the three admissible modes.181

Similarly, for the example in figure 2B, the final pattern results from the addition of the three182

modes obtained through the linear analysis. Modes (0, 1, 1), (1, 0, 1) and (1, 1, 0) are individually183

associated with two quarter cylinders in opposite corners parallel to the x–, y– and z–planes,184

respectively. Added together, these modes form an eighth of a sphere in two opposite corners of185

the cubic domain.186

Figure 2C shows that the dominant mode of the final pattern corresponds to the largest ei-187
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genvalue (the addition of modes (0, 0, 1), (0, 1, 0) and (1, 0, 0)), similar to the pattern observed188

in figure 2A. The opposite is true for the example of figure 2F, in which the dominant mode ob-189

tained, (1, 1, 1), corresponds to the smallest eigenvalue. This final pattern is identical to the one190

predicted for the example in figure 2E, for which there is a single admissible mode. Note that this191

pattern, in contrast to the one in figure 2F, corresponds to what we have termed a pure mode192

as it does not result from a combination of modes, and corresponds in fact to one eight of mode193

(2, 2, 2) in figure 1 (right).194

Figure 2D shows the pattern associated with the sum of modes (0, 0, 2), (0, 2, 0) and (2, 0, 0).195

It corresponds to the largest eigenvalue in figure 2F, but for latter parameters and dimensions,196

it does not seem to contribute to its final pattern. It appears that when eigenvalues are close197

together, as in this case, the nonlinearities of the reaction-diffusion system may result in a smaller198

eigenvalue predominating over the largest one, making final pattern prediction based on the linear199

analysis unreliable. In these cases, the initial conditions become critical in determining the final200

result. This is explored in the next section.201

3.3 Impact of the initial conditions on the final pattern202

Initial conditions play a critical role during the mode competition described in the previous section.203

A specific initial condition can favour one mode over the other. Leppännen et al. [30] showed that204

even random initial conditions can favour one type of pattern over another.205

To study the impact of initial conditions on the final pattern, we performed a series of sim-206

ulations considering the same geometry, boundary conditions and model parameters as that of207

figure 2C (case 1 in figure 3) and 2F (case 2 in figure 3), but starting from different random initial208

conditions with up to a 10% or 20% variation around the constant values (u0, v0).209

Figure 3: Effect of different random initial conditions on the final pattern of u. The model parameters,
boundary conditions and domain size correspond to the ones of figure 2C (case 1) and figure 2F (case 2).
The frequency of appearance of each pattern is indicated as a percentage out of the total of 23 simulations
performed for each case. The modes that contribute to each final pattern are specified below the patterns.
The pattern corresponding to the mode that does not appear in case 1 (B) has been obtained from a
different set of model parameters and is shown for illustrative purposes. The highest u values are shown in
red, and the lowest in blue. While case 1 always resulted in the same final pattern (A), for case 2 different
patterns were obtained depending on the randomness of the initial conditions (C-G).
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Figure 3 shows that, for particular configurations with the exact same conditions except for210

different randomness in the initial conditions, different patterns may be obtained. For case 1, we211

consistently predicted the same final pattern, regardless of the initial conditions (figure 3A). Case212

2 was very sensitive to initial conditions (figure 3C-G). The difference between the two cases may213

be explained by the interval between the eigenvalues (see figures 2C and 2F). When eigenvalues214

are close to each other, the resulting final pattern is more sensitive to the initial conditions and215

multiple final patterns may emerge. For case 2, mode (1, 1, 1) appeared the most (14 of 23216

simulations). Note that the patterns observed in figure 3D-F are in fact identical if translated half217

the length of the domain, and correspond to the combination of modes (0, 0, 2), (2, 0, 0) and218

(0, 2, 0).219

This example illustrates how the symmetries of homogeneous Neumann BCs may span the220

possible patterns arising from the simulation, suggesting that boundary conditions play a strong221

role during mode competition and the frequency of their appearance. In case 2, the equivalent222

patterns in figures 3D-F corresponding to combinations of modes with the smallest eigenvalue,223

were obtained in 61% of the simulations while those corresponding to the largest value were224

obtained in 39% of the simulations. The pattern in figure 3G corresponds to the sum of modes225

(2, 0, 0) and (0, 2, 0), and further illustrates how modes may combine in unexpected ways to form226

different final patterns.227

Results in figures 2 and 3 were computed using a random perturbation about an homogen-228

eous initial condition. However, as Turing stated, “Most of an organism, most of the time, is de-229

veloping from one pattern into another, rather than from homogeneity into a pattern” [1]. To gain230

insights in biological development and morphogenesis, it may be useful to study Turing systems231

with different patterns as initial conditions. Morphogen gradients have been observed during early232

embryonic pattern formation in multiple studies [41, 42], suggesting a gradient in one or both233

morphogens might be a sensible initial pattern to consider.234

A gradient was imposed along a direction with values ranging from 0 to the value (u0, v0)235

using the model parameters of figure 2F. Initial gradients were prescribed for either v (figure 4A,236

top row), u (figure 4B, top row) or for both (figure 4C, top row). The initial conditions on u have a237

stronger impact than initial conditions on v. When an initial gradient was imposed for v, the final238

pattern was similar to the pattern obtained for random initial conditions, which corresponds to239

mode (1, 1, 1) (figure 4A, bottom row). However, an initial gradient on u, regardless of the initial240

values considered for v, resulted in a final pattern associated with mode (0, 0, 2) (figure 4B and C,241

bottom row). This stronger effect of the reactant u may be explained by its higher exponent in the242

term u2v with respect to v in the nonlinear reaction term (see equation (2)). Imposing a specific243

pattern as initial condition allows in this case targeting a particular mode.244

3.4 Influence of a growing domain on the final patterns245

Results in the previous sections reveal the influence of domain size on the admissible modes, in246

addition to the significant role of initial conditions in mode competition. Thus, emerging patterns247

are dependant on domain dimensions and possibly existing pre-patterning. Since template size248

increases during most developmental events such as gastrulation or limb formation, it follows that249

morphogen pattern evolution will likely be determined, in part, by the growth of the domain.250

We conducted numerical simulations to examine the effect of a growing domain on the res-251

ulting patterns. To model domain growth, we took the converged pattern of a first simulation in a252

cubic domain starting from random initial conditions (figure 2F) and imposed this pattern as initial253

conditions in an elongated geometry, where the mesh size was increased by 10% along a direc-254

tion (represented by a dotted arrow in figure 5). Next, we ran the simulation with this new domain255

size and the prescribed initial conditions until the pattern converged once again (represented by256

a solid arrow in figure 5). This process was repeated three more times, increasing the domain257
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Figure 4: Effect of imposing gradients as initial conditions on the final pattern. The same parameters and
dimensions as in figure 2F are used. Red represents the highest values of the reactant concentration
while blue corresponds to the lowest ones. The initial conditions considered are shown in the top row while
final patterns are shown in the bottom row. Note that Schnakenberg kinetics result in the two reactants
being out of phase. An initial gradient for v and random values for u (A) result in the same final pattern
(corresponding to mode (1, 1, 1)) as having both u and v with random initial values (figure 2F). However, an
initial gradient for u results in a final pattern corresponding to mode (0, 0, 2) for both initial random values
(B) and an initial gradient (C) in v.

size along the same direction by 10% each time, until we reached a total elongation of 40%. The258

top rows of figure 5 show the initial conditions considered and the converged patterns obtained259

for each step in this growth process. For comparison, a pattern obtained for the same domain260

size in each step of the process, but considering random initial conditions, is shown in the bottom261

rows of figure 5. Note the difference in converged patterns obtained at each step of the growth262

process with respect to the equivalent domain size with random initial conditions.263

4 Discussion264

The few groups that have explored Turing patterns in 3D domains to date [19, 20, 26–32] have265

focused on predicting and classifying the complex patterns arising due to the added dimension.266

In contrast, our study shows that the pattern predicted by a Turing system is an addition of pure267

patterns associated with the admissible modes computed from the linearised equations. We have268

demonstrated that the contribution of these modes to the final pattern depends on their associ-269

ated eigenvalues and the initial conditions considered. We have also explored the effect of a270

growing domain on pattern emergence.271

4.1 The largest eigenvalue does not always determine the final pattern272

Turing patterns can help us understand how and why certain patterns emerge in Nature. Lin-273

ear stability analysis provides a tool to predict the emerging patterns through the study of the274

admissible modes and how they interact together. The power of this technique resides on its275
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Figure 5: Effect of a growing domain on the final pattern of u. Red represents the highest activator values
and blue the lowest ones. The initial conditions are shown above the final patterns for all simulations.
For the growing domain, initial conditions correspond to the final pattern of the previous step, stretched
by 10% along a direction (top two rows). In the other cases, each simulation is computed considering a
random perturbation of up to 10% about the linearised steady-state solution as initial conditions at each
corresponding domain size. The vertical arrows represent the simulation process and the dotted arrows
represent the stretching of the domain. The patterns obtained at each step of a growing domain are
different from the ones obtained for the same domain size but starting from random initial conditions.

simplicity in both formulation and computation. However, as we have seen in this and past stud-276

ies [13,18,19,25], it is limited due to the nonlinearities of the reaction-diffusion system, which can277

play a strong role during mode competition.278

Mode contribution is determined, in part, by the eigenvalue corresponding to each admissible279

mode. It is often assumed that the largest eigenvalue will have the largest growth factor, and thus,280

will determine the dominant pattern for small random initial conditions [3]. We have shown that,281

even in this case, associating the largest eigenvalue and the dominant mode in the final pattern282

is not straightforward, especially when the eigenvalues corresponding to competing modes are283

close together (figure 2).284

To unequivocally predict the final pattern using only linear stability analysis, we would have285

to select the model parameters to target only one admissible mode, which will result in what we286

call a pure mode, e.g., the example in figure 2E. The linear combination of patterns, as assumed287

in the linear analysis, is altered by nonlinear effects. Indeed, two steady solutions (u1, v1) and288

(u2, v2) of the Schnakenberg system in (1)-(2), if added, would yield a transient solution where289

.
u1 +

.
u2 +

.
v1 +

.
v2 = −(a+ b) < 0 ,
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so that the system would necessary evolve and reach a different steady-state solution. Nonethe-290

less, linear analysis has allowed us to sufficiently predict and explain most of the results simulated291

here numerically.292

Past studies in 3D domains have shown intricate patterns arising for random initial condi-293

tions [20, 27, 29–32]. Complex patterns result from the combination of pure modes as illustrated294

in SI, figure S2. When several admissible modes coexist, the dominant modes cannot always be295

consistently predicted. We believe the reliability of the emerging pattern is associated to the prox-296

imity between the eigenvalues of the different admissible modes. When the largest eigenvalue297

was far from the other eigenvalues, only one pattern corresponding to the mode of the largest298

eigenvalue was observed for all simulations (figure 3A). However, we obtained different patterns299

as we repeated simulations when the eigenvalues were close together (figure 3B-F). In the latter300

case, the different randomness in each simulation was enough to also generate translations of301

a same pattern (figure 3D-F) as well as produce a pattern in which only two of the three modes302

sharing a same eigenvalue contributed (figure 3E).303

The coexistence of multiple patterns for a same set of parameters and general conditions304

has been one of the main criticisms of the Turing system as a model for pattern emergence in305

morphogenesis [6, 43]. However, we have shown that with suitable set of parameters, leading to306

one eigenvalue far from the others, the final pattern is consistent and predictable when consider-307

ing different random initial conditions (figure 3A).308

4.2 Initial conditions on u have a stronger impact on pattern prediction309

than initial conditions on v310

Initial conditions are known to play a crucial role in mode competition and, therefore, the final311

pattern [3, 36]. When initial conditions are similar to one of the admissible modes, this mode312

typically dominates in the final pattern. This is the case in figure 4C, in which the final pattern313

associated to mode (0, 0, 2) is the closest pattern to the gradient imposed as initial conditions314

in the simulation. Interestingly, due to the non-symmetric roles of activator and inhibitor in the315

reaction terms, initial conditions have different effects on each reactant: when an initial gradient316

is imposed only on the activator u (figure 4B) the same result is observed, while equivalent initial317

conditions only on v (figure 4A) do not seem to affect the final pattern. Turing patterns arise when318

a local self-enhancing reaction is coupled to a longer range antagonistic process. This may be319

accomplished in several ways, as described by Meinhardt [6], but always requires v to diffuse320

faster than u.321

For the Schnakenberg kinetics (2) used in the present study, the activator u fulfils the role of322

self-activation through a nonlinear positive feedback on itself, but also inhibits the production of323

v. In turn, v is self-inhibiting but with a linear feedback on itself and acts as an activator of u.324

Then, the concentration of v decreases in response to high concentrations of u. The quadratic325

term u2 amplifies the effect of the activator, likely making it more sensitive to changes in its326

concentration. In contrast, the effect of v is linear, which means that its influence is proportional327

to its concentration. Altogether, it seems reasonable that initial conditions on u have a strong328

influence on the final pattern while initial conditions on v do not.329

A similar dependence on the initial concentration of u has been reported for the Gierer-330

Meinhardt [39] model. A small baseline production of activator u initiates patterning even at low331

concentrations, whereas a small baseline production of inhibitor v can maintain a stable inactive332

state until activated by an external trigger like an influx of activator from a neighbouring zone [6].333

Hence, it is plausible to assume that similar behaviours will be observed for all models in which334

the reactant u promotes pattern emergence. Nonetheless, whether imposing specific initial con-335

ditions on either reactant for different kinetic models affects the resulting pattern merits further336

study. Future work will also include testing alternative patterns as initial conditions, such as a local337
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source of reactant, to verify whether such asymmetry in pattern emergence is still observed.338

4.3 Bifurcations and path dependence in a growing domain339

The Turing system provides a useful model for understanding how patterns arise during a variety340

of morphogenetic processes, which generally involve a growing structure. Morphogen expres-341

sion driving these processes evolves in the expanding tissue over time. Hence, studying the342

emergence of Turing patterns in 3D growing domains may provide insights into the factors and343

conditions involved in morphogenesis.344

As discussed in the previous section, initial conditions can enhance certain admissible modes345

when they are close to the pattern associated with one of these modes. However, the admissible346

modes may change within a growing domain, such that some modes might appear and others347

disappear as the domain increases in size, giving rise to bifurcation events in the configuration348

space. This may condition how the observed pattern evolves, which could explain the predictions349

at different stages of the growing domain in figure 5. The admissible modes associated to each350

domain size in this example are given in figure 6.351

We observe that for the domain size corresponding to 20% elongation, the final pattern for352

the growing domain corresponds to a combination of modes (0, 2, 0) and (2, 0, 0). Here, initial353

conditions were the pattern associated with the sum of modes (0, 0, 2), (0, 2, 0) and (2, 0, 0), but354

only the former two are admissible modes for this domain size. It seems that the resulting pat-355

tern “keeps” the admissible modes of the initial conditions, namely, (0, 0, 2)+(0, 2, 0), instead of356

“switching” to the new modes which have the largest eigenvalue. However, when starting from357

random initial conditions (figure 5), the new admissible modes (0, 1, 2) and (1, 0, 2) may be more358

likely to be favoured. Our simulations (SI, figure S3) show that different combinations of the ad-359

missible modes form various final patterns when starting from random initial conditions. Similar360

analyses can be made for the other steps in the growing domain.361

A recent study already showed that domain growth in curved surfaces affects pattern selec-362

tion [44]. A previous study in 1D had discussed the history dependence of pattern evolution, and363

Figure 6: Admissible modes change as the domain grows, forcing the pattern evolution as seen in figure
5. The admissible modes identified for each domain size are listed in each column. Asterisks (*) indicate
the modes with the largest eigenvalues. The header indicates the percentage of elongation of the domain.
The modes associated with the pattern observed at each domain size increment have been highlighted,
showing the path the pattern followed during its evolution with the growing domain.
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the transiency of certain modes in growing domains [45]. Here, we have made similar observa-364

tions in 3D and associated pattern evolution to the corresponding (transient) admissible modes.365

Although we were not exhaustive in the study of pattern repeatability for each domain size (SI,366

figure S3), and we are neglecting convective terms and growth rate effects [46], our example367

illustrates how changes in admissible modes may drive pattern evolution as the domain grows.368

In fact, our results appear to be consistent with the recent conjecture by Van Gorder et al. [46],369

stating that how long a given mode remains admissible within a growing domain is more determ-370

inant in pattern selection than the magnitude of its associated eigenvalue. Given that growth has371

been suggested as a mechanism for endowing robustness to emerging Turing patterns [34, 35],372

further investigations on the influence of growth rate would be of interest. Especially, because373

robustness of the solution has been seen to break down when growth is too fast or too slow [46].374

Overall, exploring the impact of these factors as well as the effect of growth type (e.g. stretching375

the domain versus adding domain in an apical manner) on the reliability of final pattern prediction376

is especially relevant in the study of morphogenetic processes.377

4.4 Challenges and opportunities for 3D Turing models in morphogenesis378

We have begun to explore the effect of initial conditions and growth on simple 3D Turing patterns379

with the ultimate goal of modelling more complex patterns of morphogen expression observed380

in development. We explored a gradient as initial conditions because it is a morphogenic pattern381

frequently identified in early embryogenesis and they have been associated with the polar-axial382

organisation of cells [6]. For example, a gradient of retinoic acid signalling appears to coordinate383

the proximo-distal patterning in vertebrate limb formation [47]. Following positional information384

theory [48], such a concentration gradient is believed to inform cells of their relative position in385

space, and these then differentiate accordingly. Yet, in the past years, it has become apparent that386

Turing-like self-organising mechanisms may work in conjunction with cell-fate informing gradient387

establishment [43].388

Incorporating additional components into the reaction-diffusion model has allowed investiga-389

tion of biological mechanisms driving digit patterning [49, 50], embryonic axis specification [50]390

and frog embryo gastrulation [51], among others. Coupling reaction-diffusion systems with tissue391

growth [52,53] provides additional means to explore the factors regulating these processes. The392

role of physical interactions between cells and how they respond to their mechanical environment393

have also been considered in mechanochemical models of pattern formation [10, 12]. All these394

mechanisms work together to generate the complex spatial patterns that define the tissues and395

organs of the developing organism and they are now starting to be integrated together into a396

more comprehensive understanding of the processes involved.397

One of the main concerns in using Turing-based systems to model morphogenesis is their ro-398

bustness or lack thereof. As mentioned in the previous section, domain growth under specific con-399

ditions may make pattern emergence more robust. The use of different boundary conditions for400

each reactant has also been shown to reduce the sensitivity of patterns to domain changes [54].401

We considered homogeneous Neumann BCs, i.e. no flux conditions at the domain boundary,402

because we believe that, in general, it adequately represents biological conditions. However, the403

use of Dirichlet or mixed boundary conditions could be a closer approximation in specific morpho-404

genetic events, which is worth exploring. Remarkably, boundary conditions do affect the number405

of potential symmetries in the resulting solutions, and the probability of the emerging patterns.406

Only through a better understanding of the fundamental elements driving the patterning in Turing407

models, can we successfully use them to elucidate the biophysical mechanisms in morphogen-408

esis.409

Finally, extension from 1D and 2D patterns to 3D is not trivial, and we must study 3D domains410

to fully capture the characteristics of certain developmental processes such as limb structure411
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asymmetries. Predicting the type of pattern that will arise in these domains, and relating it to412

the model parameters and initial conditions as we have done in this study is an additional step413

towards developing useful models to interrogate biological hypotheses. All in all, the use of Turing-414

like reaction-diffusion systems to model the spatial-temporal expression of morphogens in 3D will415

enable us to probe the factors and conditions that affect the emergence of patterns at the organ416

level, which then drive cell fate, throughout the complete morphogenetic process.417

5 Conclusions418

The use of Turing patterns as a means to explore morphogen expression is widespread in devel-419

opmental biology applications. However, a full understanding of the factors that lead to a specific420

pattern forming in three-dimensional (3D) domains is still lacking. Through linear stability analysis421

and finite element modelling, we have associated the admissible modes of the linearised Turing422

system with the emerging patterns, and studied the effects of initial conditions and domain growth423

in 3D.424

Our results reveal that nonlinearities play a strong role when the eigenvalues of the linearised425

system are close to each other. This can lead to less robust predictions, with different patterns426

emerging for repeated simulations in which random perturbations around the linearised steady-427

state solution are considered as initial conditions. We also demonstrate that the effect of initial428

conditions is asymmetric between the reactants u and v, with initial conditions on u having a429

greater influence than the initial conditions on v. Therefore, carefully selecting the model para-430

meters that determine the system’s eigenvalues and the initial conditions are crucial factors in431

accurately predicting 3D Turing patterns. Finally, the bifurcations in admissible modes that we432

have seen within a growing domain have the potential to improve the reliability of predictions,433

which supports the use of Turing patterns as a model for morphogenesis.434

Further research on Schnakenberg and other alternative kinetic models is necessary to gain435

a complete understanding of how 3D Turing patterns evolve in growing domains, as this particular436

field of research has been relatively overlooked. Exploring the emergence of patterns, and their437

dependence on the evolution of domain size is particularly relevant to the study of developmental438

processes such as limb formation. By combining computational modelling of Turing patterns with439

experimental analyses of morphogen expression, we will improve our understanding of morpho-440

gen patterning and gain further insights into the mechanisms that underlie these processes.441
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