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Abstract

Characterizing differences in biological sequences between two conditions
using high-throughput sequencing data is a prevalent problem wherein
we seek to (i) quantify differences in sequence abundances between con-
ditions, and (ii) build predictive models to estimate such differences
for unobserved sequences. A key shortcoming of current approaches is
their extremely limited ability to share information across related but
non-identical reads. Consequently, they cannot make effective use of
sequencing data, nor can they be directly applied in many settings
of interest. We introduce model-based enrichment (MBE) to overcome
this shortcoming. MBE is based on sound theoretical principles, is
easy to implement, and can trivially make use of advances in modern-
day machine learning classification architectures or related innovations.
We extensively evaluate MBE empirically, both in simulation and on
real data. Overall, we find that our new approach improves accuracy
compared to current ways of performing such differential analyses.

Using next-generation sequencing, we can now assay up to billions of DNA or
RNA sequences in parallel for an ever-expanding set of properties of interest [1–
3]. As a consequence, high-throughput sequencing has dramatically changed
the landscape of biological discovery—both for basic scientific inquiry into
cellular transcriptomes [4] and protein behavior and evolution [3, 5], and in
application areas spanning human disease and variant detection [5, 6], engi-
neering anti-viral immunogens and therapeutics [3, 7, 8], drug and antibiotic
resistance [3, 5], regulatory element engineering in synthetic biology [9] and
beyond. Across many of these scientific areas, a key desired outcome from a
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high-throughput sequencing experiment is to quantify the change in relative
abundance of a particular sequence between two conditions for a large number
of distinct sequences. This type of quantification is often referred to as estimat-
ing the “log-enrichment” of a sequence between conditions [2, 5, 7, 8, 10–12].
For example, log-enrichment estimation is performed in differential analyses
of RNA-seq and ATAC-seq experiments [4, 13–15] and in high-throughput
selection experiments [7, 8, 16–20]. The latter are frequently used for directed
evolution [21, 22], deep mutational scanning [2, 3, 5, 10, 12, 23], and functional
enrichment analysis [24]. The wide-ranging biologically-significant applica-
tions of such selection experiments include: antibody design [25, 26]; profiling
pathogen proteomes for epitopes and major histocompatibility complex bind-
ing [17, 18]; improving thermostability [27]; assessing binding [12, 16, 21],
catalytic activity [27, 28], and packaging efficiency or infectivity of viral
vectors [7, 8, 19, 20].

By accurately estimating log-enrichment for large sequence libraries in
these settings, one can identify sequences that are more (or less) likely to
have desired properties. Consequently, such estimates also have the potential
to reveal insights into the sequence determinants of the property of interest.
Increasingly, log-enrichment estimates are also being used as supervised labels
for training machine learning models so that one may predict enrichment for
unobserved sequences, or probe the model to gain further insights [16, 19–
21, 29–32]. These supervised models are often more accurate than popular
physics-based and unsupervised machine learning methods such as Rosetta
and DeepSequence [32].

Limitations of log-enrichment estimates

Although standard count-based log-enrichment (cLE) estimates calculated
from observed read counts have proven incredibly useful, they suffer from
a fundamental shortcoming—the inability to share information across non-
identical reads. This inability causes a loss of important available information
in a number of practical settings, including:

1. Short reads: when short, possibly overlapping, reads are available that each
only cover a portion of the sequence of interest—i. e., the entire span of
sequence which we would like to quantify—rather than long reads that span
the entire sequence of interest.

2. Sparse reads: when few sequencing reads are available per library sequence,
as is especially common with long-read sequencing [6, 33–35].

3. Hybrid reads: when a combination of long and short reads are collected.
4. Negative selection: when the goal is to discover sequences enriched in a

property that is opposite from the selection.

For the case of sparse reads and negative selection (i. e., low sequenc-
ing counts), it is well-known that cLE estimates suffer from high variance
[5, 11, 20]. Previous efforts to reduce variance employ regression to “de-
noise” cLE estimates by either using a model to intelligently aggregate data
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across iterative selection rounds [5], or by downweighting examples with low
counts [16, 20]. While these techniques can yield higher-quality results, they
are extremely limited in their ability to share information across non-identical
reads. As a simple, intuitive example, if only 10 out of 300 positions in a
sequence of interest are predictive of the property of interest, better statistical
power could be achieved by calculating cLE using counts defined only by the
10 relevant positions rather than all 300, since the latter will cause most reads
to appear to be non-identical and hence treated separately. A method that
could automatically deduce such concepts would, therefore, be of high value.
This simple, intuitive idea can be generalized well beyond this example, as we
discuss next.

Ideally, to accurately estimate log-enrichment (LE), we would like sequenc-
ing data with high read coverage that is comprised of reads that each
individually cover the full sequence of interest. However, in practice, individual
reads often do not cover the entire sequence of interest—this typically arises
with short-read sequencing, but could also occur when using long-read tech-
nologies to analyze large sequences of interest [35]. In these settings, it is not
obvious how to count reads for the sequence of interest, nor how to calculate
the desired cLE estimates. A similar issue occurs in the hybrid read scenario
of having both short and long reads. To tackle the LE estimation problem
nonetheless, one might consider estimating read-level cLE estimates and then
devising a heuristic to add them together to produce a LE estimate for the
sequence of interest. However, such an approach is not likely to account for cor-
relations across reads (e. g., linkage disequilibrium), nor allow for data sharing
by way of partial overlap between reads. Moreover, of the abundance of possible
heuristics one might consider, is not clear which to use, and the answer likely
depends on the specific application. In applications where there is a known ref-
erence sequence—such as in many RNA-seq and ATAC-seq experiments—the
reference can help provide information about how to combine reads [4]. How-
ever, this is typically performed by alignment and assembly, followed by cLE
estimation; thus such approaches also suffer from many of the same limitations
just described. Devising an alternative approach to LE estimation—one that is
capable of both “sewing” together partially overlapping reads and, more gen-
erally, sharing across non-identical reads—would enable more efficient sharing
of information.

A new approach for log-enrichment estimation

Ultimately, a method that can automatically learn to share information as
appropriate across non-identical reads will improve our ability to extract
important information from sequencing data in a range of settings. Herein,
we propose and evaluate a novel, coherent framework that enables us to do
just that. Our manuscript is organized as follows: next, we (i) detail how
log-enrichment estimates are currently computed; (ii) provide a high-level
overview of our approach, model-based enrichment (MBE); (iii) provide a



4 Model-based differential sequencing analysis

detailed empirical characterization of MBE using data from simulated high-
throughput selection experiments; and (iv) do the same on real experimental
data.

Overall, we find empirically that MBE enables effective analysis across a
broader range of common experimental setups than can currently be achieved,
including when short-read, long-read, or both types of sequencing reads are
used. Our primary motivation is to improve predictions of log-enrichment
on new (unobserved) sequences, as this is most relevant to our own work
in machine learning-guided library design. However, our results show that
MBE also enables better estimation of log-enrichment, the more classical use
case. We show that, compared to existing approaches based on cLE over a
broad range of settings, MBE produces predictions that correlate better with
true labels. We show that this is, in part, a downstream consequence of the
fact that MBE is more robust to low sequencing counts. We also show that
MBE enables better characterization of sequences of interest from a negative
selection experiment and, as a consequence, is better at identifying sequences
that are high in one property while simultaneously low in another—such as we
might seek when designing gene therapy viral vectors to infect one cell type
and not others—which we call selectivity experiments.

Results

Overview of current log-enrichment estimation
approaches

Given sequencing read counts from two libraries corresponding to two condi-
tions, A and B, cLE estimates are typically calculated by: (i) indexing the
unique sequences in the sequencing data from libraries A and B, denoting
each by xi; (ii) computing read counts, nA

i and nB
i , specifying the number of

times xi appeared in the sequencing data from each library; (iii) normalizing
the counts nA

i and nB
i by the total number of reads from each library, NA

and NB ; (iv) and, finally, taking the log-ratio of the normalized counts. Thus,

the cLE estimate, log ei, is given by: log ei = log
nB
i /NB

nA
i /NA . The estimate log ei

has higher variance when the counts nA
i and nB

i are lower. For example, for
fixed NA and NB , a sequence with nA

i = 1 and nB
i = 2 has the same log ei as

a sequence with nA
i = 100 and nB

i = 200, yet the latter is supported by 100
times more evidence (and thus is a lower-variance estimate).

Supervised machine learning regression models have been used to reduce
the variance of (i. e., “de-noise”) such cLE estimates [5, 16, 20], and to make
predictions for sequences not present in the training library [19–21, 32]. The
latter strategies, which we refer to as LE regression approaches, use cLE esti-
mates as supervised labels to learn a predictive model mapping from sequence
to predicted LE. Zhu et al. [20] additionally derive a variance estimate for log ei
which enables them to weight each training sequence according to the amount
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of evidence that supports its cLE estimate, yielding improved predictive per-
formance. Consequently, when comparing to a baseline for LE prediction, we
use this approach, which we refer to as weighted LE regression (wLER).

A new approach: model-based enrichment

Regression-based LE estimation (or prediction) is performed in two sequential
steps: first, one computes a cLE estimate for each unique sequence [2, 5, 10, 11],
and second, one trains a regression model to predict these cLE estimates from
the observed sequences, possibly weighting each sequence to account for its
corresponding level of evidence [20, 32].

We introduce a new method, MBE, that performs both of these steps at
once, resulting in a more powerful and more general analysis framework. We
do so by reframing the LE estimation problem: we show that a cLE estimate
can be viewed as an approximation of what is known as a density ratio—the
ratio of probability densities of the observed sequence under each condition.
Therefore, we can estimate and predict LE by solving a density ratio estimation
problem (DRE). Further, DRE can be effectively and accurately performed by
training a probabilistic classifier to predict which of the two densities a sample
came from (e. g., condition A or B) [36–42]. Specifically, the ratio of such
a classifier’s predicted class probabilities provably converges to the density
ratio [37–39].

Through this series of theoretically-justified steps, we are able to transform
the problem of estimating LE into one of training a read-level classifier. This
provides several distinct advantages over existing methods, which we outline
here and, later, demonstrate empirically. The first advantage is that we can
readily make use of modern-day neural network models in a plug-and-play
manner, which also enables us to easily handle (possibly overlapping) reads
of different lengths. Moreover, because it is classifier-based, MBE is easy to
implement using standard software packages. Second, our approach naturally
accounts for differing levels of evidence per sequence of interest, which in pre-
vious LE regression methods was either ignored or addressed post hoc under
specific distributional assumptions [16, 20]. Third, our approach trivially gen-
eralizes to settings with more than two conditions of interest by replacing the
binary classifier with a multi-class one; this enables us to naturally handle
experiments with multiple rounds of selection or properties of interest.

We highlight that our classifier-based DRE approach differs substantially
from several recent approaches that also make use of classification. In one,
cLE estimates are thresholded and a classifier built to predict the resulting
binarized labels (e. g., [19]). In another, a classifier is built to predict whether a
sequence appeared at all in post-selection sequencing data (e. g., [30]). Neither
of these approaches address the shortcomings that we seek to resolve with
MBE.
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Technical overview of MBE

Here, we provide more detail about our MBE approach (see Methods for full
detail). Recall that the cLE estimate is the log-ratio of the two normalized

counts,
nA
i

NA and
nB
i

NB . These normalized counts are also the empirical frequen-
cies of the ith unique read, xi, in the sequencing data for conditions A and
B, respectively. In particular, these two ratios are the sample-based estimates
of the population frequencies of xi in each library. We denote the population
frequencies by the probabilities pA(xi) and pB(xi). Consequently, log ei can
be viewed as a sample-based estimate of the population-level LE, which we

denote log d(xi). Specifically, log ei ≈ log d(xi) = log pB(xi)
pA(xi)

, where d is the

density ratio between the library distributions. By training a binary classifier
with parameters, θ, to predict the probability that a read with sequence xi

came from library B, pθ(l = B | xi), we can estimate log d(xi), and hence the

LE, as log d(xi) ≈ log pθ(l=B|xi)
1−pθ(l=B|xi)

[37, 39]. It has been proven theoretically

that under a correctly specified model, this density ratio estimation method is
optimal among a broad class of semi-parametric estimators—that includes the
wLER method—in terms of asymptotic variance [37] (Supplementary Note).

Overview of experimental setup

Next, we describe the simulated and experimental datasets used to empirically
compare and contrast our MBE approach with cLE and wLER across a broad
range of settings. Then, we provide an overview of the evaluation metrics,
before finally presenting the simulated and experimental results.

Simulated data

Using simulated experiments, we sought to understand the strengths and weak-
nesses of the MBE and wLER approaches as we changed following simulation
settings:

1. the length of the sequence of interest, L, ranging from 21–2,253 nucleotides.
2. whether short or long reads were used (300 vs. 10,000 nucleotides).
3. the number of unique sequences in the theoretical pre- and post-selection

libraries, M ′, ranging from 8.5× 106–2.6× 107.
4. the number of pre- and post-selection reads, Npre and Npost—always set

equal to each other, ranging from 4.6× 103–4.6× 107.
5. the complexity of the functional mapping between sequence and property of

interest; this complexity was characterized in terms of a summary parameter
controlling the amount of epistasis, T .

We simulated libraries that correspond to three types of experimental
library constructions:

(a) insertion of a sequence into a fixed background. In a given library, the
insertion has fixed-length and a fixed position within the background
sequence [20].
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(b) random mutagenesis.
(c) recombination.

The insertion library construction is motivated by our work in adeno-associated
virus (AAV) capsid engineering which aims to understand sequence determi-
nants of AAV properties such as packaging [20]. In this study, the sequence
of interest is a 21-mer nucleotide insertion sequence into the capsid with fixed
background. Herein, we simulate this insertion library with varying lengths
(21, 150, and 300 nucleotides). The pre-selection library is generated to be
roughly uniform in nucleotide space (technically, an “NNK” degenerate codon
distribution). The random mutagenesis library is motivated by a study to
understand the fitness landscape of a green fluorescent protein of length 714
nucleotides [31]. Herein, we mutagenise across all positions using a 10% muta-
tion rate to generate the pre-selection library. The recombination library is
motivated by an AAV directed evolution study [8], wherein several AAV
serotypes are recombined using seven crossovers separating eight recombina-
tion blocks. Herein, we generate library sequences by recombining nine AAV
serotypes using eight equally-sized blocks. The total length of all eight blocks is
2253 nucleotides. A summary of the simulated sequencing datasets is provided
in Table 1.

Underlying each of the motivating selection experiments is a property
on which the sequences get selected, such as protein fluorescence. To simu-
late selection, we must simulate the ground truth fitness function that maps
sequence to property. We did so as a linear function of a number of fea-
tures, including: all independent amino acid sites, and T higher-order epistatic

Table 1 Summary of simulated datasets. For each dataset we list the: library name
(Library), sequence length in nucleotides (L), number of unique library sequences (M ′),
epistasis hyperparameter used for fitness simulation (T ), read type (short, long, or hybrid),
percentage of the sequence of interest covered by individual reads (Cover), and number of
pre-selection and post-selection reads (Npre and Npost), which were always equal. We
simulate 4.6× 107 short reads to match the experimental data from Zhu et al. [20], and up
to 4.6× 105 long reads to be within the current throughput of PacBio’s
technologies [34, 35]. Each dataset is described in more detail in the Methods.

Library L M ′ T Read
Type

Cover Npre = Npost

21-mer insertion 21 8.5× 106 140 Short 100 4.6× 107

150-mer insertion 150 8.5× 106 1000 Short 100 4.6× 107

300-mer insertion 300 8.5× 106 2000 Short 100 4.6× 107

avGFP mutagenesis 714 2.5× 107 4760 Long 100 4.6× 105

Short 42 4.6× 107

AAV recombination 2253 2.6× 107 15020 Long 100 4.6× 105

Long 100 4.6× 104

Long 100 4.6× 103

Short 13 4.6× 107

Hybrid 100 long
+
13 short

4.6× 103 long
+
4.5× 107 short
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features drawn randomly from all possible such effects, in a manner that re-
capitulates the distribution of these effects in a real protein fitness landscape.
In particular, combining insights from several papers [43–45], we assumed that
T scaled linearly with the length of the sequence of interest, with a fixed
coefficient based on Poelwijk et al. [29].

Finally, the process to simulate reads from the pre- and post-selection
libraries can be summarized as follows: first, we generate library sequences
using one of the three previously described library construction simulations.
Then, we randomly perturb the empirical distribution of the simulated library
sequences (which simulates slight distributional perturbations that may occur
with PCR amplification) to generate a pre-selection probability distribution.
Next, the corresponding post-selection probability distribution is determined
by scaling the pre-selection distribution according to the simulated fitness of
the library sequences. Then, we sample reads that cover the full sequence of
interest from the pre- and post-selection distributions. When simulating short
reads, we truncate each of these reads to 300 nucleotides, at a position chosen
uniformly at random.

Our negative selection simulations are motivated by experiments wherein
one seeks to understand a property, such as low-binding, for which the available
assay enriches for the opposite, such as high-binding. This situation arises, for
example, in studies of AAV tropism [8, 46] where the ideal viral vector selec-
tively infects one cell type, but not others. We, therefore, aimed to estimate the
accuracy of wLER and MBE to negatively select against an undesirable fitness
and, moreover, to identify sequences of interest that are selective—meaning
that they are simultaneously high in one fitness (the positive fitness) and low
in a second (the negative fitness). To do so, we simulated two independent fit-
ness functions and used each, separately, on the same pre-selection library to
simulate two post-selection libraries and corresponding reads.

Although most of our simulations did not include sequencing errors, we
constructed versions of two of the aforementioned datasets that did. For
one of the insertion datasets, we used a uniform random substitution error
rate of 1%, consistent with observed error rates of Illumina’s next-generation
sequencers [47]. For one of the recombination datasets, we used SimLoRD [48]
to simulate PacBio SMRT sequencing errors.

Real experimental data

We also used five experimental datasets—each comprised of sequencing data
from a pre-selection library and after one or more selections on that library. For
our evaluations, we also used low-throughput experimental property measure-
ments corresponding to the selected property for each of the five sequencing
datasets. Each experimental dataset and its corresponding property measure-
ments are summarized in Table 2 and described briefly in the same order
here:
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1. A library of 21-mer nucleotide insertions into a fixed AAV background
sequence subjected to a round of packaging selection, and packaging titer
measurements for five sequences not present in the library [20].

2. A library containing every 15 amino acid peptide in the SARS-CoV-2 pro-
teome (which has 14,439 amino acids) subjected to four rounds of selection
for binding to human major histocompatibility complex (MHC). For ground
truth, there are IC50 measurements for 24 peptides [17] held out from the
LE analysis.

3. A site saturation mutagenesis library containing all single and double amino
acid mutations within the 168 nucleotide IgG-binding domain of protein G
(GB1) subjected to selection for binding to IgG-FC. For ground truth, the
are ∆ln(KA) measurements for 11 individual variants held out from the
sequencing data [12].

4. A library containing natural chorismate mutase homologs and designed
sequences sampled from a direct coupling analysis (DCA) model. All
sequences are of length 288 nucleotides. For ground truth there are bio-
chemical measurements for 11 variants held out from the sequencing data
[28].

5. A β-glucosidase enzyme (Bgl3) error-prone PCR random mutagenesis
library subjected to a heat challenge and high-throughput droplet-based
microfluidic screening. All sequences are of length 1506 nucleotides. For
ground truth, there are T50 (temperature where half of the protein is inac-
tivated in ten minutes) measurements for six mutants held out from the
sequencing data [27].

Table 2 Summary of experimental datasets. For each dataset we list the: library
description (Library); reference (Ref.); sequence length in nucleotides (L); number of
unique library sequences after holding out experimentally-validated variants, if needed
(M ′); number of experimentally-validated variants (n); number of pre-selection reads
(Npre); and number of post-selection reads (Npost). For the dataset from Huisman et
al. [17], the number of reads for each round of selection is presented on a separate row.

Library Ref. L M ′ n Npre Npost

AAV5 insertion [20] 21 8,552,729 5 46,049,235 45,306,265
SARS-CoV-2-derived peptide [17] 45 167,841 24 44,073 88,032

88,032 169,730
169,730 235,787
235,787 160,863

GB1 double site saturation [12] 168 536,953 11 324,434,913 262,112,210
Chorismate mutase homolog [28] 288 3,063 11 1,228,687 1,929,212
Bgl3 random mutagenesis [27] 1506 468,194 6 1,177,842 710,555

Model architectures

We implemented wLER and MBE using several model architectures. To enable
direct comparison of the two methods, we kept the set of architectures and
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allowed hyper-parameters the same for both approaches, excluding the final
layer and loss which dictate whether the model is for regression (wLER) or
classification (MBE). Specifically, we used the seven model architectures in
Zhu et al. [20]—three linear models and four fully- connected neural networks
(NNs)—as well as four additional convolutional neural network (CNN) archi-
tectures. As the linear and NN architectures and hyper-parameters are from a
paper that used wLER, to the extent the selected architectures may favor one
of the approaches compared herein, they would favor wLER. The CNNs can
operate on variable-length sequences, allowing us to train on short reads and
make predictions on full-length sequences of interest.

Several of our experiments simulate negative selection against an under-
sirable fitness, and selectivity experiments that select for sequences that are
simultaneously high in a desirable positive fitness and low in an undesirable
negative fitness. For simplicity, in these experiments we used only one model
architecture—the smallest NN architecture—as a two-output model, one for
the positive fitness and one for the negative. We used this architecture because
it was the simplest non-linear model architecture we explored—meaning it
is capable of capturing higher-order epistasis whilst being relatively parsimo-
nious. Based on the results of our initial simulation experiments, this choice
of architecture does not systematically benefit either of the wLER or MBE
approaches (Supplementary Fig. 1).

For all real experimental datasets (except for the Bgl3), we similarly
used the smallest NN architecture because it tended to achieve better
cross-validation performance than the linear architectures and comparable
performance to the larger NN and CNN architectures, whilst being more par-
simonious (Supplementary Fig. 10a-l). For the Bgl3 dataset, we used a simpler
linear model because overfitting was observed with the NNs (Supplementary
Fig. 10m-o). For the one dataset that had multiple rounds (Huisman et al. [17]),
we used a multi-output model with one output per round and took the final
prediction to be the average of the predictions for each round.

Evaluation methods

For both real and simulated data, we compared and contrasted three
approaches, as appropriate: standard cLE, wLER (recall this is a weighted
regression on cLE), and our MBE approach which bypasses computation of
cLE. For all but cLE, we can both (i) make predictions on sequences not
seen in the training data, and (ii) make model predictions on the training
data itself to yield LE estimates—a sort of“de-noising” of the cLE estimates.
We refer to these two tasks, respectively, as prediction and estimation. The
cLE approach can only be used for estimation, hence it does not appear in
prediction experiments.

To compare wLER to MBE on any given dataset, we used all model
architectures and hyper-parameters for both methods, and then selected the
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best combination separately for each of wLER to MBE. No model or hyper-
parameter selection is required for cLE since it does not use any model or have
any parameters.

An important point to appreciate throughout our work is that we cannot
use straight-forward cross-validation to assess accuracy because we cannot use
the ground truth fitness values to train, only to evaluate. Nor can we use, say,
cLE estimates for cross-validation, as these are not ground truth values. Hence
in simulated settings, we perform modified cross-validation where we evaluate
performance on each fold by comparing predictions to the sequences’ ground
truth fitness values. For the real experimental datasets where ground truth
fitness values for the library sequences are unknown, we use available low-
throughput (non-sequencing-based) experimental fitness measurements (which
may still be corrupted by noise, but are more direct measurements of the
property of interest than the sequencing-based assays) for validation.

In our simulations, we use three-fold cross-validation to compute the Spear-
man correlation between ground truth fitness and predicted LE to compare and
contrast the performance of each method. Additionally, we make use of a gen-
eralized Spearman correlation that focuses on sequences that have the highest
ground truth LE—the focusing is controlled by a threshold on true LE which
we sweep through a range of values, such that at one extreme, we compute the
Spearman of all sequences in the test set, and on the other, of only the most
truly enriched sequences (similarly to Zhu et al. [20]). The test set is always
comprised of full sequences of interest, even when the training data contained
reads that were shorter. For all cross-validation experiments, we averaged the
Spearman correlations computed on each fold to produce one cross-validated
correlation value. We use William’s t-test to assess statistical significance of
the difference between the cross-validated Spearman correlations.

Each selectivity simulation is defined by two different simulated fitnesses, a
positive fitness and negative fitness. We learn two-output models (one output
per fitness) on these data. We define the selectivity of a sequence as the differ-
ence between its positive and negative fitness values. We apply the generalized
Spearman correlation evaluation method described above for the positive fit-
ness. For the negative fitness, we use a similar generalized Spearman correlation
that focuses on sequences with lowest—instead of highest—ground truth LE.
In the selectivity experiments, we also seek to compare how well wLER and
MBE identify test sequences with high selectivity. To do so, for each method,
we rank the sequences in each test fold according to predicted selectivity—
the difference between predictions for each fitness—and take the top ten test
sequences. Then, we compare the two ground truth fitness values of each of
the chosen sequences to the fitness values of a theoretical optimally-selective
sequence that has the maximum true positive fitness and minimum true nega-
tive fitness observed in the given dataset. We also use McNemar’s test to assess
the statistical significance of the difference between the methods’ accuracy at
identifying the 1% of test sequences with highest selectivity.



12 Model-based differential sequencing analysis

On real experimental data, we compare the wLER and MBE approaches by
computing Spearman correlation between predicted LE and low-throughput
experimental property measurements. We use a paired t-test to assess sta-
tistical significance of the performance difference between wLER and MBE
aggregated across all five experimental datasets.

Results on simulated data

Fig. 1 Simulated library results. Spearman correlation between ground truth fitness
and cLE, wLER, and MBE estimates on full-length sequences of interest in (a) held-out test
folds and (b) training folds in a three-fold cross-validation. For wLER and MBE, each panel
displays the Spearman correlation achieved by the best-performing model architecture for
each method on each simulated dataset. cLE can only be applied for estimation on the subset
of datasets for which sequencing reads match the sequences of interest. Results were obtained
by averaging Spearman correlation computed on each fold. All differences are statistically
significant (p < 10−10). Results for all model architectures are in Supplementary Fig. 1.
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Across all simulated datasets, our MBE approach made significantly more
accurate LE predictions than wLER (Fig. 1a) according to standard Spearman
correlation (p < 10−10). The improvements of MBE over wLER in terms of
Spearman correlation values were as much as 0.561 and as little as 0.005,
with an average of 0.177. In no cases did MBE do worse than wLER. We
also found that our MBE method performed better when faced with both
Illumina- and PacBio-like sequencing error (Fig. 1, Supplementary Fig. 7).
Moreover, MBE was much less sensitive to the choice of model architecture, to
such an extent that even the worst-performing MBE model performed better
than the best-performing wLER model on several datasets (Supplementary
Fig. 1a). Similarly, for the estimation task, MBE outperformed wLER across all
simulated datasets (Fig. 1b, Supplementary Fig. 1b). Collectively, these results
demonstrate a clear win for MBE over wLER, across a broad range of settings.
In the subsequent sections, we examine the following specific settings to get
a fuller view of the strengths and weaknesses of each method: sparse reads,
overlapping short-reads, hybrid long- and short-reads, negative selection, and
selection for sequence selectivity.

Sparse read setting

We define the sparse read setting as occurring when the average number of
sequencing reads per library sequence was lower than 0.02. In our experiments,
this includes simulated long-read datasets for the avGFP mutagenesis and
AAV recombination libraries. We hypothesized that the MBE approach would
have a particular advantage in this setting because of its improved ability to
combine information across similar but non-identical reads. On the prediction
task, MBE maintains comparable accuracy to wLER on test sequences with
high ground truth fitness, while improving accuracy in the other regimes (Sup-
plementary Fig. 2a-b, Supplementary Fig. 3). Additionally, MBE had lower
variance than wLER across the different test folds (Supplementary Fig. 3).
We also note that the longer the sequence of interest, the more MBE out-
performs wLER—this nicely matches our intuition as the longer the read,
the more sparse the setting (Fig. 1a, Supplementary Fig. 3d-e, Supplemen-
tary Fig. 4). We observed similar trends for the estimation task (Fig. 1b,
Supplementary Fig. 1b, Supplementary Fig. 8). When we increase the total
number of long reads for the AAV recombination library (from 4.6 × 103 to
4.6× 105), more unique sequences with low counts occur in the data (Supple-
mentary Fig. 5). Consequently, wLER is particularly challenged because it is
trained using cLE estimates that cannot share data across non-identical reads
to mitigate the effects of low counts. In fact, wLER is so challenged that,
for many model architectures, its performance degrades when provided with
more long-read sequencing data (Supplementary Fig. 2). In contrast, MBE fol-
lows a more intuitive pattern: more training data always either maintained or
improved performance, but never hurt the overall performance metrics (Fig. 1,
Supplementary Fig. 2).
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Short- and hybrid-read settings

In practice, experimenters often offset the sparsity of long-read sequencing by
augmenting with higher-throughput short-read sequencing. We refer to this
as the hybrid-read setting. Again, our results follow our intuition: for short-
read and hybrid datasets, MBE outperformed wLER (Fig. 1a, Supplementary
Fig. 6). In fact, because wLER cannot leverage partial overlap between reads,
its accuracy actually decreased when long-read data was supplemented with
additional short reads, despite the fact that this creates a larger overall training
set. In contrast, MBE, again, behaved more intuitively: its accuracy improved
with this larger dataset.

Negative selection

In negative selection experiments, the property being selected for is opposite
from the property of interest. Thus, a key goal is to produce accurate predic-
tions for sequences with low ground truth fitness, for which the post-selection
read counts are, by definition, low, making these estimates extremely chal-
lenging. We compared wLER and MBE predictive accuracy using generalized
Spearman correlation focused on sequences with low ground truth fitness. MBE
achieved higher predictive accuracy, not only overall, but also specifically on
the subset of the test sequences with lowest true fitness (Fig. 2).

Selection for sequence selectivity

A key reason to seek high predictive accuracy for the negative selection task is
so that we can leverage this task to perform a selectivity experiment, wherein
we seek to identify sequences that simultaneously appear high in a positive
fitness, and low in the negative fitness. Indeed, we find that MBE is bet-
ter than wLER at identifying those selective sequences. First, we found that
MBE yielded better predictive accuracy on both fitnesses than wLER (Supple-
mentary Fig. 9a-b, d-e, and g-h). More importantly, MBE was also better at
identifying the selective sequences, which we assessed as follows. To measure a
sequence’s selectivity, we computed the difference between its positive and neg-
ative fitness values: the larger this difference, the more selective the sequence
is for the positive selection relative to the negative selection. MBE was more
accurate than wLER in identifying selective sequences (Fig. 3). Moreover,
the best sequences identified by MBE were, on average, closer to a theoreti-
cal optimally-selective sequence, compared to wLER (Fig. 3, Supplementary
Fig. 9c, f, and i). Overall, for each of the three datasets, MBE was significantly
better than wLER at identifying the 1% of test sequences with highest true
selectivity (p < 10−3).

Results on real experimental data

Having characterized the behavior of wLER and MBE in a broad range of sim-
ulated settings, we applied these methods on real experimental data. Across all
the real datasets, MBE achieved better predictive accuracy than wLER (Fig. 4,
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Fig. 2 Simulated negative selection prediction results. Comparison of wLER and
MBE predictive accuracy for simulated negative selection using the 100-unit NNs on the
(a) 21-mer insertion (4.6× 107 short reads), (b) avGFP mutagenesis (4.6× 105 long reads),
and (c) AAV recombination (4.6× 105 long reads) datasets. Results were obtained by aver-
aging Spearman correlation computed on each fold in a three-fold cross-validation. Dot size
represents the fraction of test sequences with lowest ground truth fitness used to compute
Spearman correlation. In these experiments, we focus on sequences with lower ground truth
fitness, which are the smaller dots. The dashed black line represents equal performance of
the two approaches.

Supplementary Fig. 11). Recall that an important challenge here is that, to
obtain the best ground truth experimental values possible, we require access
to detailed biophysical assays rather than sequencing-based proxies. Conse-
quently, the validation data we have access to have extremely limited sample
sizes (ranging from 5–24 test points), thereby limiting our our ability to detect
statistical significance on each dataset individually. Nevertheless, the trends
that we observed on the simulated data continue on each dataset, and when
performance over all of them is considered jointly, the improvement of MBE
over wLER is statistically significant (p < 0.03) (Fig. 4).

As an aside, for the SARS-CoV-2 dataset from Huisman et al. [17], we
found that predictions of experimental IC50 by MBE were more accurate than
the predictions by NetMHCIIpan4.0, a model specifically devised to predict
peptide binding to MHC II molecules (Supplementary Table 1).
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Fig. 3 Simulated sequence selectivity prediction results. Comparison of wLER and
MBE (using 100-unit NNs) for identifying selective test sequences over three simulated
datasets: (a) 21-mer insertion (4.6 × 107 short reads), (b) avGFP mutagenesis (4.6 × 105

long reads), and (c) AAV recombination (4.6×105 long reads). Colored points show the true
positive and negative fitness of the top ten test sequences identified from each of three test
folds from three-fold cross-validation according to each model’s predicted selectivity (i. e.,
difference in predicted positive and negative fitness values). To gauge overall performance,
the average point from each method is also plotted in black-and-white, as is a theoretical
optimally-selective sequence (star) with the maximum positive fitness and minimum negative
fitness among all sequences in the relevant dataset. Distance from optimal to average is
conveyed by a circular contour line through the average point for the better-performing
method, which was always MBE. On all three datasets, MBE is significantly more accurate
than wLER at identifying the 1% of test sequences with highest true selectivity (p < 10−3).

Discussion

Quantifying the difference in sequence abundances between two conditions
using high-throughput sequencing data—as occurs, for example, in high-
throughput selection experiments—is a key component in answering a large
array of scientific questions. Furthermore, we often wish not only to quantify
the difference, but also to predict the difference for sequences not yet observed,
in order to design further rounds of experimentation or to draw conclusions
from existing data. Until now, this was accomplished by counting the number of
times a sequence occurred in each condition and taking the ratio of these counts
(after normalization). Then, optionally, one may have constructed a regression
model to predict these count-based log-enrichment ratios. The key issue under-
lying all of this processing is the inability of count-based estimates to share
any information across sequences that are not identical, when such sharing of
information can be extremely valuable. Herein, we introduce, and evaluate, a
framework that overcomes this key limitation. This framework is based on a
reformulation of the problem that uses density ration estimation, implemented
using any standard machine learning classifier. Our new method, model-based
enrichment, improves performance over competing approaches based on either
raw counts or weighted regression on count-based log-enrichment. In particu-
lar, we show this improvement holds across a broad range of simulated data,
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Fig. 4 Real experimental prediction results. Comparison of Spearman correlation
between wLER or MBE predictions and n experimental property measurements from Zhu
et al.[20], Huisman et al.[17], Olson et al.[12], Russ et al.[28], and Romero et al.[27]. Each
method is trained on real pre- and post-selection sequencing data, then used to predict the
fitness of the n unobserved test sequences. The 100-unit NN model architecture is used for
all datasets except that from Romero et al.[27], for which the linear architecture with IS
features is used. The average performance improvement of MBE over wLER over all five
experimental datasets, jointly, is statistically significant (p < 0.03).

as well as on real experimental data. It will be valuable to perform further
validation of these results, as more experimental data become available.

Our method enables estimation of log-enrichment in challenging experi-
mental setups comprised of, for example, short reads spanning a sequence of
interest; long reads with poor coverage; a mixture of both short and long
reads; and settings with more than two conditions—such as when we seek to
find sequences enriched for one selection and negatively selected by another,
as occurs in engineering gene therapy viral vectors to selectively infect one cell
type but not another. In general, our approach also helps to mitigate poor
estimates arising from relatively little sequencing data.

Our newly-developed method can immediately leverage any advances in
general machine learning classifiers, and naturally handles sequencing reads of
variable lengths within a given experiment, so long as the classifier itself does
so—as we demonstrated herein using convolutional neural networks. We antic-
ipate that, as high-throughput selection experiments and sequencing-based
assays continue to become more varied in their applications, the full potential
of model-based enrichment will be further revealed.

Methods

Log-enrichment regression

Subjecting two sequence libraries—one for each of two conditions A and B—to
high-throughput sequencing yields a dataset

D = {(ri, yi)}Mi=1 (1)
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where ri is the ith read’s sequence and yi is a binary −1/ + 1 label indicat-
ing whether read ri arose from condition A or B, respectively. In our analyses
of high-throughput selection experiments, the conditions A and B correspond
to pre- and post-selection, but the following methodology applies broadly to
settings with sequencing data from two conditions for which we seek to under-
stand or predict sequence properties. In subsequent sections, we also further
generalize to more than two conditions.

From these data, D, one often calculates a count-based log-enrichment
(cLE) estimate for each unique sequence [2, 3, 5, 10, 11], which serves as an
estimate of the extent to which the sequence has the property being inves-
tigated. In selection experiments, we refer to the selection process as acting
according to a particular fitness, and the cLE estimate thus serves as a proxy
for this fitness. To compute cLE estimates, it is convenient to represent D in
terms of unique sequences: D′ = {(xi, n

A
i , n

B
i )}M

′

i=1 where {xi}M
′

i=1 ⊆ {ri}Mi=1 is
the set of unique observed sequences,

nA
i =

∑
(r,y)∈D

1{r = xi}1{y = −1} (2)

is the observed read count for sequence xi in the sequencing data for condition
A, and

nB
i =

∑
(r,y)∈D

1{r = xi}1{y = +1} (3)

is the corresponding condition B read count. For each sequence, the cLE
estimate is equal to the log-ratio of read frequencies for conditions A and B:

log ei = log

((
nB
i

NB

)(
nA
i

NA

)−1
)
, (4)

where NA =
∑M ′

i=1 n
A
i and NB =

∑M ′

i=1 n
B
i . In practice, it is common to add

a small constant to each count prior to calculating cLE estimates for mathe-
matical convenience [2, 5]. These “pseudo-counts” stabilize the cLE estimates,
and allow one to avoid division by zero for sequences observed in only one
condition. In our experiments, we added a pseudo-count of 1 to each raw count.

Log-enrichment (LE) regression approaches fit a model that maps from xi

to log ei. In particular, Zhu et al. [20] derive a weighted least squares procedure
for fitting such a regression model; their procedure assigns a weight, wi =
(2σ2

i )
−1, to each sequence, where

σ2
i =

1

nB
i

(
1− nB

i

NB

)
+

1

nA
i

(
1− nA

i

NA

)
. (5)

This choice of wi is motivated by a convergence argument: σ2
i is the asymptotic

variance of log ei [11, 20]. Note that when the counts nA
i and nB

i are low, log ei
is a noisier estimate of fitness and the corresponding weight, wi, is smaller.
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Thus, training a model fθ, with learnable parameters θ, using the weighted
least squares loss

ℓR =

M ′∑
i=1

wi(log ei − fθ(xi))
2 (6)

accounts for the heteroscedastic noise in the observed cLE estimates. We refer
to this modeling approach as the weighted LE regression (wLER) approach.

Model-based enrichment

Existing methods that use cLE estimates to train predictive models [20, 21,
29, 32] proceed in two steps: first, one computes a cLE estimate for each
observed sequence, and, second, one uses supervised regression to train a model
to predict these cLE estimates given the observed sequences. Here, we present
a new method, model-based enrichment (MBE) that performs both of these
steps at once by reframing LE estimation as a density ratio estimation (DRE)
problem. First, we define the density ratio between libraries in each of two
conditions and show that a cLE estimate can be viewed as an approximation of
the density ratio. Then, we describe the technical details of the MBE approach,
which uses a probabilistic classifier trained on sequencing reads to perform
DRE.

As in the preceding section, suppose two libraries corresponding to con-
ditions A and B have been subjected to high-throughput sequencing. Each
library can be represented by a discrete probability distribution over sequences:
each unique sequence xi is present in the libraries from conditions A and B
in some ground truth proportions pA(xi), p

B(xi) ∈ [0, 1]. The density ratio

between these two library distributions is d = pB

pA .
We can connect this density ratio to cLE estimates. The cLE estimate,

log ei, is the log-ratio of the two empirical read frequencies
nA
i

NA and
nB
i

NB (Eq. 4).
These read frequencies are approximations of the true library proportions
pA(xi) and pB(xi) based on the observed sample of sequencing reads. Thus,
the cLE estimate, log ei, can be viewed as a sample-based approximation of
log d(xi). LE regression methods can, therefore, be viewed as, first, approxi-
mating log d using observed counts, and then training a regression model to
predict these approximate log-density ratios.

In contrast, DRE techniques [38, 39] can be used to model the density
ratio directly from sequencing data. Our proposed MBE approach uses a
classification-based DRE technique [36–39] which involves training a proba-
bilistic classifier, gθ, on D (Eq. 1) to predict yi from ri for each individual
read. We use the standard logistic loss,

ℓC =

M∑
i=1

log(1 + exp(−yigθ(ri))). (7)
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This produces a model of p(y | r) and, by Bayes’ theorem, of the density

ratio [37, 39]: d ≈ NAgθ
NB(1−gθ)

, where NA and NB are the total read counts for

each condition, as in Eq. 4. This ratio of predicted class probabilities, NAgθ
NB(1−gθ)

,

provably converges to d [37–39] and is the optimal density ratio estimator
among a broad class of semi-parametric estimators (that includes the wLER
method) in terms of asymptotic variance under a correctly specified model [37]
(Supplementary Note).

MBE naturally accounts for heteroscedastic noise in the observed sequenc-
ing data. To see this, we can rewrite ℓC in terms of unique sequences,

ℓC =

M ′∑
i=1

nB
i log(1 + exp(−gθ(xi))) + nA

i log(1 + exp(gθ(xi)), (8)

where nA
i and nB

i are read counts as defined in Eq. 2-3. This form of ℓC high-
lights the fact that sequences with higher counts make larger contributions
to the loss than those with lower counts, simply by virtue of having been
sequenced many times. Thus, gθ is biased towards modeling d more accurately
for sequences with more sequencing data, as desired. In this way, the MBE
approach accounts for heteroscedasticity in the observed sequencing data with-
out the need to derive a bespoke weighted loss function, unlike the wLER
approach.

Multi-output modeling

In practice, one often aims to compare sequences across more than two con-
ditions. For example, one may wish to perform multiple rounds of selection
for a property of interest (e. g., [17]) or to select for multiple different prop-
erties (e. g., [8]). Here, we describe generalizations of the MBE and wLER
approaches that can be used to model high-throughput sequencing data col-
lected from more than two conditions. In this setting, one has sequencing data
D′′ = {(ri, yi)}Mi=1 where ri is the ith read’s sequence and yi is a categorical
label indicating the condition from which the read ri arose. For example, if
one runs an experiment selecting for k ∈ N different properties, one can define
y ∈ {0, 1, . . . , k} where yi = 0 indicates a read from the pre-selection sequenc-
ing data, and yi = j for j ∈ {1, . . . , k} indicates a read from the post-selection
sequencing data for the jth property.

It is straightforward to handle multiple conditions using the MBE
approach: instead of using a binary classifier, one trains a multi-class classifica-
tion model, gθ, to predict the categorical label yi from read sequence ri using
a standard categorical cross-entropy loss. This produces a model of p(y | r)
which can be used to estimate the density ratios dj = pj

p0 ≈ N0gj
θ

Njg0
θ
, where pj

denotes the true probability distribution corresponding to the library in the
jth condition and gjθ denotes the predicted class probability for y = j.
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For the wLER approach, the data D′′ can be converted into cLE estimates
for each unique sequence:

log eji = log

((
nj
i

N j

)(
n0
i

N0

)−1
)
,

where nj
i is the number of times the sequence xi appeared in the sequencing

data for the jth condition and N j is the total number of reads from the jth

condition. One can, then, fit a multi-output regression model that jointly pre-
dicts the cLE estimates for each condition from sequence. The overall loss for
training a such a multi-output model, fθ, using wLER is

k∑
j=1

M ′∑
i=1

wj
i (log e

j
i − f j

θ (xi))
2

where wj
i is the weight for the ith sequence and jth condition, and f j

θ denotes
the jth model output.

Model architectures and training

In our experiments, we aim to compare and contrast the general performance
of the wLER and MBE approaches across a broad range of settings. To enable
direct comparison of the two methods, we implemented wLER and MBE using
the same model architectures and hyperparameters for the underlying regres-
sion and classification models. We will, next, describe each model architecture
and provide implementation details.

We used eleven different model architectures: seven architectures that are
the same as in Zhu et al. [20]—three linear models and four fully-connected
neural networks (NNs)—and four convolutional neural network (CNN) mod-
els that can operate on variable-length inputs. The linear models each use one
of three input representations: (1) an “independent site” (IS) representation
comprised of one-hot encodings of individual amino acids, (2) a “neighbor”
representation comprised of the IS features and one-hot encodings of the pair-
wise interactions between pairs of positions directly adjacent in sequence, and
(3) a “pairwise” representation comprised of the IS features and one-hot encod-
ings of all possible pairwise interactions. All NNs use IS input features and
have two hidden layers, and differ by the number of hidden units: 100, 200,
500, or 1000 units per layer. The CNNs differ in the number of convolutional
layers used (2, 4, 8, or 16), but all use IS input features, convolutions with a
window of size 5 and 100 filters, residual and skip connections, and a global
max pooling layer as the penultimate layer.

All models were trained using the AMSGrad Adam optimizer [49] with
default learning rate (10−3) for ten epochs. For the linear models and NNs, we
used the default value for Adam’s ϵ parameter (10−7); for the CNNs, we set
ϵ = 10−4 and applied gradient clipping with a threshold of 1. We performed
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three-fold cross-validation at the sequence level: for each fold, one third of the
unique sequences in the library (and their corresponding sequencing reads)
were held-out as a test set.

Simulating ground truth fitness

We constructed several simulated datasets to help analyze the strengths and
weaknesses of MBE, wLER, and cLE across different practical settings. These
simulations were motivated by high-throughput selection experiments [8, 20,
31] which perform a selection on large sequence libraries for a property of inter-
est, such as fluorescence [31]. To simulate such selection experiments, we first
simulate the ground truth fitness function that maps sequence to property,
then use this fitness to simulate selection. In the remainder of this section, we
describe the process used to simulated fitness as a linear function of indepen-
dent amino acid sites and randomly selected higher-order epistatic interactions.
In the following section, we describe the procedure to simulate selection using
simulated fitness.

First, we give a brief overview of the process used to simulate ground
truth fitness before providing the technical details. For a given sequence of
interest, we first constructed a set containing all independent amino acid sites
and a user-specified number of combinations of sites—such as an epistatic
combination of the second, third, and tenth positions—drawn randomly from
among all possible higher-order epistatic interactions between positions. The
degree of each epistatic effect (2 up to the sequence length) is drawn randomly
based on an empirical estimate of this degree distribution. The fitness function
is, then, taken to be a linear function of all the independent sites and epistatic
terms in this constructed set with random coefficients.

In more detail, for a sequence x of length La amino acids, we simulated
the fitness function, FT (x) as

FT (x) =
∑
J∈ET

βJ · ϕ(x[J ]), (9)

where T is the hyper-parameter controlling the maximum number of epistatic
terms included in FT ; ET ⊆ 2{1,...,La}, is a set of index sets—each of
which represents an independent site or a particular higher-order epistatic
combination—whose construction is described below; x[J ] is the subsequence
of x at the positions in the index set J ; ϕ denotes standard one-hot encoding;
and the coefficients are sampled according to βJ ∼ N (0, 2−|J|I).

We constructed ET (the specific set of first-order and higher-order epistatic
terms to include in the simulated fitness function) to contain all singleton sets
({{i} | i ∈ {1, . . . , La}} ⊆ ET ), so that FT includes terms for all independent
sites. In addition, ET contains T randomly-chosen non-singleton index sets,
each generated by:

1. randomly choosing the order of epistasis, R, by sampling R̃ ∼ N(3, 1/2)
(based on visual inspection of the empirical bell-shaped distribution of the
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orders of statistically significant epistatic terms in Poelwijk et al.. [29]), and
taking R = round(R̃); and

2. choosing the specific positions included in the epistatic term by sampling
R times without replacement from {1, . . . , La}.

To guide our choice of T , we combined the following insights: (i) for a
fluorescent protein with 13 amino acids, 260 epistatic terms are sufficient for
an accurate model of fitness [29]; (ii) the number of contacts in a protein scales
linearly with sequence length [43, 44]; and (iii) recent work suggests that the
sparsity of higher-order epistatic interactions in fitness landscapes is closely
related to structural contact information [45]. We, therefore, hypothesized that
the linear scaling T = 260La

13 provides a reasonable starting point for analyses.

Simulating pre- and post-selection sequencing data

The wLER and MBE approaches both aim to accurately quantify sequences of
interest based on high-throughput sequencing data. We used simulated high-
throughput selection datasets to compare each method’s ability to quantify
sequences accurately using sequencing data, which requires simulating sequenc-
ing reads from pre- and post-selection libraries. Here, we detail the process of
simulating sequencing reads given library sequences and a ground truth fitness
function. Then, in the subsequent sections, we will describe how we com-
bined this process three specific approaches for simulating library sequences
to construct our datasets.

Let {(xi, ci)}M
′

i=1 be pairs of, respectively, a unique library sequence and its
true count—as generated, for example, by one of the three library construc-
tion simulations described in the subsequent sections. In addition, let FT be a
ground truth fitness function simulated as in the previous section. Briefly, the
process to simulate sequencing reads from pre- and post-selection libraries pro-
ceeds as follows: first, we generate a pre-selection library distribution by adding

a small random perturbation to the empirical distribution
{
ci/
∑M ′

i=1 ci

}M ′

i=1
.

This step simulates slight distributional perturbations that may occur with
PCR amplification, and also has the nice side-effect of allowing one to gen-
erate multiple replicates with slightly different pre- and post-selection library
distributions for the same set of unique sequences {xi}M

′

i=1. Next, we simulate
selection according to the fitness FT : the post-selection library distribution is
determined by scaling the pre-selection distribution using {exp(FT (xi))}M

′

i=1,
which ensures that the ground truth log-density ratio is proportional to the

specified fitness
(
log d = log ppost

ppre ∝ FT

)
. Finally, we sample from the pre- and

post-selection distributions to simulate sequencing reads, optionally truncating
each read to 100 amino acids uniformly at random to generate short reads.

In more detail, we simulated pre- and post-selection sequencing data by:

1. sampling (ppre(xi))
M ′

i=1 ∼ Dirichlet(c1, . . . , cM ′);
2. setting

ppost(xi) = Z exp(FT (xi))p
pre(xi)
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where Z =
∑M ′

i=1 exp(FT (xi))p
pre(xi) is a normalization constant;

3. sampling pre- and post-selection sequencing counts according to

(npre
i )M

′

i=1 ∼ Multinomial(Npre, (ppre(xi))
M ′

i=1) and

(npost
i )M

′

i=1 ∼ Multinomial(Npost, (ppost(xi))
M ′

i=1)

for some desired number of sequencing reads, Npre and Npost; and, if
simulating short reads, additionally

4. sampling npre
i and npost

i contiguous 100-mers from xi uniformly at random.

Simulated insertion libraries

To empirically compare and contrast our MBE approach to the wLER
approach in practical settings, we sought to simulate realistic sequence libraries
motivated by experimental constructions from recent studies.

We simulated diversified libraries of insertion sequences motivated by our
work in adeno-associated virus (AAV) capsid engineering [20]. In this study, we
used a library of 21-mer nucleotide insertion sequences, where each codon was
independently sampled from the distribution defined by the NNK degenerate
codon: “NN” denotes a uniform distribution over all four nucleotides in the
first two positions of a codon and “K” denotes equal probability on nucleotides
G and T in the third codon position. Here, we sampled sequences from this
NNK distribution to simulate three insertion libraries containing length 21,
150, and 300 nucleotide sequences, respectively. Specifically, each sequence is
generated by sampling either 7, 50, or 100 codons independently from the NNK
distribution. To keep each of our simulated insertion datasets as similar as
possible to the experimental data from Zhu et al. [20], we sampled sequences
in this manner until we obtained a set of 8.5 × 106 unique library sequences.

We take the set {(xi, ci)}8.5×106

i=1 to be the simulated library, where xi is the i
th

unique insertion sequence and ci is the number of times it was sampled from
the NNK distribution before 8.5 × 106 unique sequences were generated.We
used T = 140, 1000, and 2000 to simulate ground truth epistatic fitness for the
21-mer, 150-mer, and 300-mer insertion libraries, respectively, and simulated
Npre = Npost = 4.6× 107 sequencing reads for each library using the process
described in the previous section.

To gain insight into the effect of sequencing error on MBE and wLER,
we also constructed a noisy version of the sequencing data for the 21-mer
insertion library containing simulated sequencing errors in both the pre- and
post-selection sequencing reads. Because Illumina’s next-generation sequencers
have an approximately 1% error rate and predominantly produce substitution
errors [47], we added substitution errors to each position of each simulated
read uniformly at random with probability 0.01.
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Simulated avGFP mutagenesis library

Motivated by a recent study of the fitness landscape of the green fluorescent
protein from Aequorea victoria [31], we generated an avGFP library by mutat-
ing positions of the avGFP reference sequence from Sarkisyan et al. [31] (238
amino acids long) uniformly at random. We used a mutation rate of 10% to
generate 2.5×107 unique library sequences. Specifically, we generated mutated
avGFP sequences—by mutating each position independently with probability

0.01—until we obtained a set {(xi, ci)}2.5×107

i=1 , where each xi a unique library
sequence and ci is the number of times it was generated before 2.5×107 unique
sequences were obtained.

To simulate selection and sequencing, we used T = 4, 760 to simulate
ground truth fitness, and generated both long-read (Npre = Npost = 4.6× 105

to be within PacBio’s throughput [34, 35]) and short-read (Npre = Npost =
4.6× 107 to match the dataset from Zhu et al. [20]) sequencing data.

Simulated AAV recombination library

We simulated a recombination library of AAV capsid sequences motivated
by an AAV directed evolution study [8], wherein several AAV serotypes are
recombined using seven crossovers separating eight recombination blocks. We
generated library sequences by recombining AAV serotypes 1-9 with seven
uniformly-spaced crossovers. This library contains 26,873,856 unique library
sequences that are 2,253 nucleotides long. We simulated epistatic fitness with
T = 15, 020.

To assess the effects of the type and amount of sequencing data, we gener-
ated multiple datasets: three long-read datasets with Npre = Npost = 4.6×103,
4.6 × 104, and 4.6 × 105, respectively; one short-read dataset with Npre =
Npost = 4.6× 107; and one hybrid dataset containing 4.6× 103 long reads and
4.5×107 short reads for both pre- and post-selection. To help gain insights into
the effects of sequencing error, we also constructed a noisy AAV recombina-
tion dataset that incorporated simulated sequencing errors into 4.6× 105 pre-
and post-selection sequencing reads using SimLoRD [48] to simulate PacBio
SMRT sequencing errors.
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Supplementary Figures

Supplementary Fig. 1 Simulation results for all model architectures. (a) and (b)
are the same as Fig. 1a and b, respectively, but display the Spearman correlation between
model predictions and ground truth fitness for all model architectures. Results were obtained
by averaging Spearman correlations calculated on each fold in a three-fold cross-validation.
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Supplementary Fig. 2 Simulated AAV recombination library results with
increasing long read sparsity. Compares Spearman correlation between simulated ground
truth fitness and wLER or MBE predictions on held-out sequences of interest for the simu-
lated AAV recombination dataset with (a) 4.6 × 105, (b) 4.6 × 104, and (c) 4.6 × 103 long
reads. Each panel compares the Spearman correlation achieved by the wLER and MBE
approaches using the same model architecture and hyper-parameters. Dot size represents
the fraction of test sequences with highest ground truth fitness used to compute Spearman
correlation. Results were obtained by averaging Spearman correlations computed on each
test fold in a three-fold cross-validation.



28 Model-based differential sequencing analysis

Supplementary Fig. 3 Generalized Spearman for simulated library prediction.
Comparison of generalized Spearman correlation between simulated ground truth fitness and
wLER or MBE predictions on held-out full-length sequences for the simulated (a) 21-mer
insertion (4.6 × 107 short reads), (b) avGFP mutagenesis (4.6 × 105 long reads), (c) AAV
recombination (4.6× 105 long reads), (d) 150-mer insertion (4.6× 107 short reads), and (e)
300-mer insertion (4.6×107 short reads) datasets. In each row, the leftmost panel compares
the performance of wLER for each model architecture (the horizontal axis displays the
fraction of top test sequences with highest ground truth fitness used to calculate Spearman
correlation), the center panel is the same as the left panel MBE, and the rightmost panel is
a paired plot version of the left and center panels (dot size represents the fraction of top test
sequences used to compute Spearman correlation). Correlations and error bars are computed
using Spearman correlations calculated on each test fold from three-fold cross-validation.
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Supplementary Fig. 4 Sequencing count histograms for simulated insertion
libraries. (a) Histograms and (b) cumulative histograms of simulated post-selection
sequencing counts for the 21-mer, 150-mer, and 300-mer insertion datasets.

Supplementary Fig. 5 Sequencing count histograms for simulated AAV recom-
bination libraries. (a) Histograms and (b) cumulative histograms of simulated post-
selection sequencing counts for the AAV recombination datasets with 4.6 × 105, 4.6 × 104,
and 4.6× 103 long reads.

Supplementary Fig. 6 Simulated short-read prediction results. Comparison of the
Spearman correlation between simulated ground truth fitness and wLER or MBE predic-
tions on held-out full-length library sequences when models are trained using the simulated
(a) AAV recombination (4.6× 107 short reads), (b) AAV recombination (4.6× 103 long and
4.6 × 107 short reads), and (c) avGFP mutagenesis (4.6 × 107 short reads) datasets. Dot
size represents the fraction of top test sequences with highest ground truth fitness used to
compute Spearman correlation. Only CNNs are included since the linear and NN models
cannot operate on variable-length sequences. Results are obtained by averaging the Spear-
man correlations computed on each test fold from three-fold cross-validation.
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Supplementary Fig. 7 Generalized Spearman for prediction with simulated
sequencing errors. Comparison of the Spearman correlation between simulated ground
truth fitness and wLER or MBE predictions on held-out full-length library sequences when
models are trained using the simulated (a-c) noisy 21-mer insertion (4.6× 107 short reads)
and (d-f) noisy AAV recombination (4.6 × 105 long) datasets. The noisy 21-mer insertion
dataset includes substitution errors added to the training set at a uniform error rate of 1%,
consistent with Illumina’s next-generation sequencers [47]. The noisy AAV recombination
dataset contains simulated PacBio SMRT sequencing errors added to the training set using
SimLoRD [48]. In each row, the leftmost panel compares the performance of wLER for each
model architecture (the horizontal axis displays what fraction of top test sequences with
highest ground truth fitness is used to calculate Spearman correlation), the center panel is
the same as the left panel for MBE, and the rightmost panel is a paired plot version of the
left and center plots (dot size represents the fraction of top test sequences used to compute
Spearman correlation). Correlations and error bars are computed using Spearman correla-
tions calculated on each test fold from three-fold cross-validation.
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Supplementary Fig. 8 Generalized Spearman for simulated library estimation.
Comparison of the Spearman correlation between simulated ground truth fitness and wLER
or MBE LE estimates for full-length library sequences observed during training for the
simulated (a-c) 21-mer insertion (4.6×107 short reads), (d-f) avGFP mutagenesis (4.6×105

long reads), (g-i) AAV recombination (4.6×105 long reads), (j-l) 150-mer insertion (4.6×107

short reads), and (m-o) 300-mer insertion (4.6 × 107 short reads) datasets. In each row,
the leftmost panel compares the performance of wLER for each model architecture (the
horizontal axis displays what fraction of top test sequences with highest ground truth fitness
is used to calculate Spearman correlation), the center panel is the same as the leftmost panel
for MBE, and the rightmost panel is a paired plot version of the left and center plots (dot
size represents the fraction of top test sequences used to compute Spearman correlation).
Correlations and error bars are computed using Spearman correlations calculated on each
test fold from three-fold cross-validation.



32 Model-based differential sequencing analysis

Supplementary Fig. 9 Simulated positive, negative, and selectivity selection
results. Comparison of wLER and MBE on (left) prediction for sequences with high ground
truth positive fitness, (center) prediction for sequences with low ground truth negative fit-
ness, and (right) selection for sequence selectivity for the simulated (a-c) 21-mer insertion
(4.6 × 107 short reads), (d-f) avGFP mutagenesis (4.6 × 105 long reads), and (g-i) AAV
recombination (4.6×105 long reads) datasets. Results were obtained by averaging the result
on each of three test folds from three-fold cross-validation. For positive fitness, dot size rep-
resents the fraction of top test sequences according to highest ground truth positive fitness.
For negative fitness, dot size represents the fraction of test sequences with lowest ground
truth negative fitness. In each row, the rightmost panel displays ground truth selectivity (the
difference between positive and negative fitness values, ∆) for the top ten test sequences
according to each model’s predicted selectivity (the difference between predicted fitness val-
ues) for each of the three test folds.
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Supplementary Fig. 10 Experimental library cross-validation results. Comparison
of the Spearman correlation between wLER or MBE predictions and observed cLE estimates
on the real sequencing datasets from (a-c) the AAV5 insertion library from Zhu et al. [20],
(d-f) the SARS-CoV-2 tiled peptide library from Huisman et al. [17], (g-i) the GB1 double
site saturation mutagenesis library from Olson et al. [12], (j-l) the library of natural and
designed chorismate mutase homologs from Russ et al. [28], and (m-o) the Bgl3 random
mutagenesis library from Romero et al. [27]. In each row, the leftmost panel compares the
performance of wLER for each model architecture restricted to a given top fraction of held-
out test sequences with highest observed cLE estimate, the center panel is the same as the
leftmost panel for MBE, and the rightmost panel is a paired plot version of the left and
center panels (dot size represents the fraction of top test sequences with highest observed cLE
estimate used to compute Spearman correlation). Correlations and error bars are computed
using Spearman correlations calculated on each test fold from three-fold cross-validation.
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Supplementary Fig. 11 Low-throughput experimental property measurement
predictions. Comparison of (left) wLER and (right) MBE predictions and experimental
property measurements from (a-b) Zhu et al. [20] (packaging titer), (c-d) Huisman et al. [17]
(IC50, half maximal inhibitory concentration), (e-f) Olson et al. [12] (∆ln(KA), change
in log-binding constant), (g-h) Russ et al. [28] (log10(kcat/Km), log-second-order reaction
rate constant), and (i-j) Romero et al. [27] (T50, temperature where half of the protein is
inactivated in ten minutes). The 100-unit NN architecture is used for all datasets except
that from Romero et al. [27] for which the linear architecture with IS features is used.
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Supplementary Table 1 Comparison of Spearman correlation between experimental
IC50 measurements from Huisman et al. [17] and wLER predictions, MBE predictions, or
reported NetMHCIIpan4.0 predictions from Huisman et al. [17]. The 100-unit NN
architecture is used for the wLER and MBE methods.

Spearman p-value

MBE 0.394 0.057
wLER 0.190 0.375
NetMHCIIpan4.0 %Rank 0.275 0.193
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Supplementary Note

Asymptotic optimality of model-based enrichment

In this section, we review key parametric convergence results which imply
that, under the assumption of a correctly specified parametric model, the pro-
posed model-based enrichment (MBE) estimator is optimal among a broad
class of semi-parametric density ratio estimators—including the weighted log-
enrichment regression (wLER) method [20]—in terms of asymptotic variance.

We begin by recalling some notation: let pA and pB be two probability

distributions, d = pB

pA be their density ratio, and

D = {(ri, yi)}Mi=1 (10)

be a dataset of observed samples where yi is a binary label indicating whether
the sample ri is from pA (yi = −1) or pB (yi = +1). Further, let NA and NB

be the number of samples from pA and pB , respectively. Recall that the MBE
approach uses logistic regression to learn a classifier that predicts p(yi | ri),
and these predicted class probabilities give an estimate of the density ratio
(Methods). In other words, the MBE approach estimates the density ratio
using the parametric model

log dθ(r) = θ0 + ϕθ1(r) (11)

where θ0 ∈ R, θ = (θ0, θ1) ∈ Rb is a b-dimensional parameter, and ϕθ1 is a
real-valued function (e. g., defined by the choice of model architecture).

Whenever correctly-specified density models for both pA and pB are

unavailable, direct density ratio estimation of pB

pA—as performed by the MBE

approach—is preferable compared to separate density estimation of pA and
pB in terms of asymptotic unnormalized Kullback–Leibler divergence to the
true density ratio, d [39]. Moreover, Qin [37] showed that, if the logistic
regression model is correctly specified—that is, if the true density ratio d is
realized by dθ∗ in the parametric model—then the MBE approach is opti-
mal among a large class of semi-parametric density ratio estimators in the
sense that it has the smallest asymptotic variance. Specifically, the class
of semi-parametric estimators in Qin’s analysis is a class of generalized
moment-matching estimators:

{θ̂η | ηθ(r) ∈ Rb,VarpA [ηθ(r)] and VarpB [ηθ(r)] are finite,

1

NA

∑
(ri,yi)∈D

ηθ̂η (ri)dθ̂η (ri)1{yi = −1} =
1

NB

∑
(ri,yi)∈D

ηθ̂η (ri)1{yi = +1}}.

This class of estimators contains several popular density ratio estimators,
including the Kullback-Leibler (KL) importance estimation procedure [38, 39]
that learns a density ratio model by minimizing empirical KL divergence
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between d · pA and pB . Other estimation techniques, including weighted and
non-linear least squares regression, can also be cast in terms of general-
ized moment-matching optimization [50] and, therefore, the wLER approach
is included in Qin’s class of estimators, as are several other existing log-
enrichment regression approaches [19, 29]. Thus, under a correctly specified
parametric model, the MBE approach is the preferred density ratio estimation
technique—and, in the context of this work, the preferred technique for quan-
tifying sequences based on sequencing data from a high-throughput screen or
selection—in terms of asymptotic variance.
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