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Abstract:  34 

Responses of wildlife to climate change are typically quantified at the species level, but 35 

physiological evidence suggests significant intraspecific variation in thermal sensitivity (non-36 

stationarity) given adaptation to local and seasonal environments. Non-stationarity carries 37 

important implications for climate change vulnerability; for instance, sensitivity to extreme 38 

weather may increase in specific regions or seasons. Here, we leverage high-resolution 39 

observational data from eBird to understand regional and seasonal variation in thermal sensitivity 40 

for 20 bird species. Across their ranges, most birds demonstrated spatial and seasonal variation in 41 

both thermal optimum and breadth, or the temperature and range of temperatures of peak 42 

occurrence. Some birds demonstrated constant thermal optima or breadths (stationarity) while 43 

others varied according to local and current environmental conditions (non-stationarity). Across 44 

species, birds typically invested in either geographic or seasonal adaptation to climate. 45 

Intraspecific variation in thermal sensitivity is likely an important but neglected aspect of 46 

organismal responses to climate change.  47 
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Introduction  48 

Anthropogenic climate change is impacting wildlife at all organizational levels, from individuals 49 

to populations to species (Scheffers et al., 2016), representing a leading conservation priority for 50 

wildlife management (Abrahms et al., 2017; LeDee et al., 2021). Using traditional species 51 

distribution models or ecological niche models, ecologists typically operate at the species level to 52 

quantify responses to the thermal environment and predict the consequences of climate change 53 

(Smith et al., 2019). These approaches generally ignore adaptive capacity and phenotypic 54 

plasticity within species, implicitly assuming that thermal sensitivity, or the influence of 55 

temperature on behavior, performance, or fitness, is stationary (static) in both space and time 56 

(Jarnevich et al., 2015; Smith et al., 2019). However, emerging physiological evidence suggests 57 

that populations of a species may be locally adapted to distinct thermal conditions depending on 58 

the climate zones they inhabit, and individuals may dynamically alter their response to seasonal 59 

changes in temperature via phenotypic flexibility (Bennett et al., 2019; Louthan et al., 2021; 60 

Stager et al., 2021). Approaches assuming constant thermal sensitivity across continental spatial 61 

extents and the full annual cycle may thus be inadequate to account for the full spectrum of 62 

responses to climate change exhibited by a given species (Sultaire et al., 2022). As organisms 63 

increasingly face novel climates, understanding variation in thermal sensitivity within species 64 

will provide more detailed insights about which populations are most impacted by changing 65 

climatic conditions or extreme weather (Louthan et al., 2021; Smith et al., 2019). 66 

Populations within a species are likely to exhibit non-stationarity in thermal sensitivity across 67 

space and time due to physiological mechanisms and constraints (Bennett et al., 2019; Louthan et 68 

al., 2021; Stager et al., 2021; Youngflesh et al., 2022; Fig. 1). Across geographic gradients, 69 

populations of wide-ranging species are likely adapted to local climatic conditions (Atkins and 70 

Travis, 2010; Stager et al., 2021). Physiological studies have suggested that within species, 71 

southern and lowland populations adapted to warm climates demonstrate warmer optimum 72 

thermal performance temperatures when compared with northern and high-elevation populations 73 

that demonstrate cooler optimums (Richardson et al., 2014; Zillig et al., 2021). Thermal breadth, 74 

or the range of tolerable conditions, is associated with the level of variability in the local climate, 75 

with ‘thermal specialists’ being found in more stable climates and ‘thermal generalists’ found in 76 

more variable climates (Bozinovic et al., 2011; Stevens, 1989). Given that climatic variability is 77 

increasing with climate change (Cai et al., 2022; La Sorte et al., 2021; Pendergrass et al., 2017), 78 

these findings highlight the importance of considering population-level variation in thermal 79 

breadth (Stager et al., 2021). In seasonal environments, non-migratory organisms must adapt to 80 

variable weather across the annual cycle via phenotypic plasticity, often undergoing behavioral 81 

and physiological changes (foraging during different times of day, seeking out refugia, gaining 82 

fat reserves, etc.) to cope with cold winter temperatures (Jimenez et al., 2020; Laplante et al., 83 

2019). Indeed, physiological studies have revealed that organisms often fluctuate in thermal 84 

sensitivity depending on time of year (Doucette and Geiser, 2008; Hopkin et al., 2006).  85 

 86 
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 87 

Figure 1. Non-stationarity in thermal sensitivity. Conceptual schematic of spatial and seasonal patterns in 88 

the thermal sensitivity of a species given (a-d) the assumption of stationarity, or lack of variability in thermal 89 

sensitivity within a species, and (e-h) non-stationarity or variation in space and time. In (a,e) curves represent 90 

hypothetical relationships between temperature and activity levels in a warm, stable climate (solid line) or 91 

cold, variable climate (dotted line). In (b,f) curves represent seasons (summer, orange; winter, blue). In right 92 
panels, variation in thermal optimum (Topt, temperature of peak activity; c,g) and thermal breadth (Tbreadth, 93 

range of temperatures at which activity is high; d,h) is driven by climate context only in the non-stationarity 94 

scenario. Black arrows represent the degree of spatial non-stationarity in thermal optimum or breadth, while 95 

gray arrows represent seasonal non-stationarity between seasons. 96 

 97 

Together, evidence from physiological and behavioral studies suggests that non-stationarity in 98 

thermal sensitivity may be widespread, especially among species that occur across a wide 99 

latitudinal or elevational gradient or occupy seasonal environments (Bennett et al., 2019; 100 

Louthan et al., 2021). However, it remains unclear to what extent spatial and seasonal non-101 

stationarity exists and whether its presence is similar across species (Louthan et al., 2021). Thus, 102 

studies are needed that can determine whether species demonstrate stationarity, meaning 103 

consistent thermal sensitivities across their ranges, or non-stationarity, where sensitivity is 104 

primarily driven by the local environment. Field- or lab-based studies conducted with one or few 105 

species (i.e., most physiological and behavioral studies) rarely capture spatial and seasonal 106 

variation in thermal sensitivity across many species occupying broad geographic regions and are 107 

unable to assess the extent to which non-stationarity is associated with certain traits across 108 

species. To evaluate the stationarity of species’ responses to their thermal environments, these 109 
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relationships must be modeled at high temporal resolutions (to capture dynamic changes in 110 

temperature) across multiple seasons, and with high spatial resolution across broad geographic 111 

extents to characterize the responses of regionally distinct populations.  112 

Across species, variation in thermal sensitivity may be mediated by morphological or life history 113 

traits (Ryding et al., 2021). For example, larger-bodied species are more common in cooler 114 

climates due to their ability to retain heat more effectively (Bergmann’s Rule; Bergmann, 1848) 115 

and larger appendages are important for effective heat dissipation for species in warmer climates 116 

(Allen’s Rule; Allen, 1877). Habitat specialists, which are more often thermal specialists than 117 

generalists (Barnagaud, Devictor et al. 2012), and species occupying forested or urban habitats, 118 

which may have more microclimates to buffer environmental conditions than open/grassland 119 

species (Jarzyna, Zuckerberg et al. 2016), may also be likely to exhibit high spatial and seasonal 120 

variation in thermal sensitivity. Thus, we hypothesize that non-stationarity is greatest in birds 121 

that 1) are small-bodied, 2) have smaller appendages, 3) are habitat specialists, and 4) occupy 122 

forested or urban habitats. Understanding which species have greater non-stationarity in thermal 123 

sensitivity – including both thermal optimum and breadth – is an important step towards 124 

anticipating organismal responses to climate change. For such species, a cold-adapted northern 125 

population may be more sensitive to warming events than a warm-adapted southern population, 126 

and a population from a stable climate may be more sensitive to increasing temperature 127 

variability than a population from a variable climate.  128 

Here, our goal was to analyze how sensitivity to the thermal environment varies across species’ 129 

ranges and between seasons by quantifying it at high resolution across space and time. Our 130 

approach modelled the association between species occurrence rates and daily temperature and 131 

used this information to estimate population-level parameters of thermal performance. We 132 

measure thermal sensitivity as both thermal optimum, or the temperature at which a species 133 

occurs most often, and thermal breadth, or the range of temperatures at which a species occurs at 134 

80% of its maximum rate, with daily occurrence rate as a measure of behavioral activity (Cohen 135 

et al., 2020) (Fig. 1). We used North American bird species as a case study because they are 136 

highly detectable and demonstrate strong sensitivity to weather and climate (Knudsen et al., 137 

2011). We focused on 20 bird species from across the United States that met the following 138 

criteria: 1) broad ranges spanning latitudinal and climate zones, enabling comparisons of 139 

populations occupying diverse climates; 2) year-round presence in most of their range, enabling 140 

direct comparisons of similar populations over different seasons; and 3) ranges that overlap, 141 

minimizing variation in available thermal conditions between species that could account for 142 

differing relationships between activity levels and climatic conditions. Thus, differences in non-143 

stationarity across species (e.g., if one species demonstrates stationarity and another with nearly 144 

the same range demonstrates non-stationarity) are a consequence of an organismal response to 145 

temperature and not simply a reflection of available conditions. 146 

Specifically, we pose the following questions: 147 
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1. Do species vary in thermal sensitivity across their ranges (spatial non-stationarity)? 148 

2. Do birds vary in thermal sensitivity across seasons (seasonal non-stationarity)?  149 

3. Do species with greater spatial non-stationarity have greater seasonal non-stationarity? 150 

Species that exhibit high spatial and seasonal non-stationarity likely have increased 151 

adaptive capacity whereas a negative relationship suggests a trade-off (e.g., a species 152 

with high seasonal non-stationarity is less reliant on local adaptation).  153 

4. Is non-stationarity mediated by species’ traits or phylogeny?  154 

To address our questions, we present a novel analytical framework for exploring thermal 155 

sensitivity based on observational data from eBird, a citizen science initiative in which users 156 

submit bird sightings (Sullivan et al., 2014). eBird is especially useful for our approach because 157 

it has a massive data volume in the US (over 500 million records) with dense coverage, and 158 

observations are collected throughout the year, at all times of day (La Sorte et al., 2018). We 159 

leverage this dataset to identify regional and seasonal non-stationarity in thermal sensitivity for 160 

20 species, fitting random forest models as dynamic species distribution models (SDMs) within a 161 

STEM wrapper (Fink et al., 2020, Spatio-Temporal Exploratory Models; 2010). STEM is an 162 

ensemble modeling approach that fits regional SDMs over broad spatial extents, allowing 163 

relationships between weather conditions and observations to vary spatially. We fit models using 164 

data across the full annual cycle and generated predictions for both the summer and winter 165 

seasons. In doing so, we quantified associations between species occurrence and daily 166 

temperature at local and seasonal scales to assess non-stationarity across a continental extent 167 

encompassing ~900 million km2. Finally, we examined trait and phylogenetic associations with 168 

non-stationarity at the species level. 169 

 170 

Materials and Methods  171 

eBird observational data 172 

Our overarching goal was to examine spatial and seasonal variation in the responses of North 173 

American bird species to variation in daily temperature. We compiled all ‘complete checklists’ 174 

contributed to eBird in the contiguous United States (bounding box with dimensions 25° to 47° 175 

N and 60° to 125° W) between 2004-2018. When submitting ‘complete checklists’, users 176 

indicate that all identified species were recorded, allowing the inference of non-detection for 177 

presence-absence modeling. We applied a number of filters to the data in accordance with 178 

established best practices outlined in Johnston et al. (Johnston et al. 2019). We limited checklists 179 

to “traveling” or “stationary” observations, excluding exhaustive area-counts, which are less 180 

numerous and not directly comparable with the bulk of the eBird dataset. In all checklists, 181 

subspecies information was discarded, and observations were summarized at the species level. 182 

Likewise, we excluded checklists with extreme high values of effort (> 3 hours or > 5 km 183 

traveled, to mitigate positional uncertainty in eBird data) or extreme Checklist Calibration Index 184 

(CCI) scores (z-score < -4 or > 4), an index designed to capture inter-observer variation among 185 
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eBird checklists (Johnston et al. 2019). To mitigate site selection and temporal bias, we also 186 

filtered eBird checklists by randomly selecting one observation per 5 km2 grid cell during each 187 

calendar week (Johnston et al. 2019). Database management was completed using tidyverse 188 

packages (Wickham et al., 2019). 189 

Distribution models  190 

We included environmental features in each model to account for the many factors that influence 191 

species’ detection and occurrence rates. To account for variation in detection rates associated 192 

with search effort, and varying activity levels among birds at different times of the day and 193 

among observers, we included time spent birding, number of birders, whether a checklist was 194 

categorized as traveling or stationary, distance traveled, and CCI as features in species 195 

distribution models (SDMs, see below) following established best practices for modeling eBird 196 

data (Johnston et al. 2019). Further, we accounted for seasonal and daily timing by including 197 

calendar date and the time difference from solar noon in models.  198 

To account for species preferences in landscape composition and configuration, we gathered land 199 

and water cover and topographic data corresponding to each checklist. We obtained annual 200 

landcover data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover 201 

Type (MCD12Q1) Dataset, version 6 202 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1). For each 203 

checklist, we calculated the proportion of land and water classes within a neighborhood with 1.4 204 

km radius occupied by a variety of landcover types (Hansen et al., 2000), including grasslands, 205 

croplands, mixed forests, woody savannahs, urban/built, barren, evergreen broadleaf, evergreen 206 

needle, deciduous broadleaf, deciduous needle, closed shrubland, open shrubland, herbaceous 207 

wetlands, and open savannah. Land-cover data varied annually, although we used 2017 land-208 

cover values for checklists recorded in 2018. We also collected topographical information 209 

(median aggregations of elevation, eastness, northness, roughness, and topographic position 210 

index or TPI at a 1 km2 resolution) from the Global Multi-Terrain Elevation Dataset, a product of 211 

the U.S. Geological Survey and the National Geospatial-Intelligence Agency (Danielson and 212 

Gesch, 2011).  213 

Daily mean temperatures and total daily precipitation corresponding to each checklist were 214 

compiled from Daymet, a high-resolution, interpolated grid-based product from NASA that 215 

offers daily, 1 km2 scale weather data across North America (Thornton et al., 2017). To account 216 

for the climate zone of each observation point, we included mean seasonal (DJF=winter, 217 

MAM=spring, JJA=summer, SON=fall) temperature and precipitation (via Worldclim; Fick and 218 

Hijmans, 2017) as additional features in random forests. The spatial resolution of our 219 

environmental features is similar to the typical radius of search effort in eBird checklists within 220 

our filters (Auer et al. pers. comm.).  221 

Species distribution models: Random Forest 222 
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The objective of the analysis was to study the relationship between species’ local occurrence 223 

rates and daily temperature for widespread, commonly detected species. We modeled responses 224 

to daily temperature in common, widespread species with sufficient data to ensure enough power 225 

to detect regional-scale variation in the relationships between temperature and occurrence across 226 

the study extent. We excluded long-distance migratory species from our analysis because winter 227 

and summer populations at the same locations are not directly comparable, although our species 228 

do move semi-locally within our spatial extent. Within the eastern or western US and Canada, 229 

we selected species with sympatric ranges to ensure that species-level differences in spatial and 230 

seasonal thermal sensitivity were not due to differences in weather availability. We divided the 231 

continent in this way to increase the similarity and overlap between species’ range extents. In the 232 

east (< 100° W), we modeled Northern cardinal (Cardinalis cardinalis), Blue jay (Cyanocitta 233 

cristata), American crow (Corvus brachyrhynchos), Mourning dove (Zenaida macroura), White-234 

breasted nuthatch (Sitta carolinensis), Black-capped chickadee (Poecile atricapillus), Carolina 235 

chickadee (Poecile carolinensis), Tufted titmouse (Baeolophus bicolor), Carolina wren 236 

(Thryothorus ludovicianus), Downy woodpecker (Dryobates pubescens), Hairy woodpecker 237 

(Dryobates villosus), Red-bellied woodpecker (Melanerpes carolinus), and Northern 238 

mockingbird (Mimus polyglottos). In the west (> 100° W), we modeled Mountain chickadee 239 

(Poecile gambeli), Chestnut-backed chickadee (Poecile rufescens), Pygmy nuthatch (Sitta 240 

pygmaea), Bewick's wren (Thryomanes bewickii), Black-billed magpie (Pica hudsonia), Steller's 241 

jay (Cyanocitta stelleri), Anna's hummingbird (Calypte anna), and Acorn woodpecker 242 

(Melanerpes formicivorus). 243 

For each species, we individually fit occurrence models using Random Forests (RF; ranger 244 

package; Wright et al., 2018), a flexible machine learning method that has been used in a number 245 

of species distribution modeling problems (Mi et al., 2017) and is designed to analyze large 246 

datasets with many features, adjust automatically to complex, nonlinear relationships, and 247 

consider high-order interactions between all features. To account for spatiotemporal variation in 248 

species responses to climate across broad spatial extents, we fit RF models within a 249 

spatiotemporal exploratory models (STEM) as a wrapper (Fink et al., 2020, 2010). We used 250 

STEM to generate a randomized ensemble of partially overlapping regional models consisting of 251 

10° x 10° cells (‘stixels’) across our spatial extent and fit independent RF models within each 252 

cell with a minimum of 20,000 checklists, producing a uniformly distributed ensemble of 253 

hundreds of partially overlapping models. Within each stixel, we assume relationships between 254 

species’ occurrence and environmental variables to be stationary. We generated spatially explicit 255 

occurrence estimates by averaging predictions from all regional RF overlapping a given location. 256 

STEM is established as an effective method for measuring non-stationary relationships between 257 

environmental features and observations (Fink et al., 2010; Johnston et al., 2015; La Sorte et al., 258 

2017; Zuckerberg et al., 2016). 259 

Before modeling, all data was split 75/25 into training/testing subsamples. Initial training data 260 

were further split 75/25 for model training and validation (see below). For each set, we used 261 
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case-weights to equalize weighting by year, accounting for the increasing sample sizes by year 262 

generated by eBird (submissions increase 30% annually). For each model, we calibrated 263 

predicted probabilities based on a validation set calibration adjustment. Finally, we assessed the 264 

fit of each model based on a series of predictive performance metrics computed with the test 265 

data, including specificity, sensitivity, Kappa, and area under the curve (AUC). 266 

Partial dependence and non-stationarity metrics 267 

To examine the regional-scale relationships between species occurrence rates and daily mean 268 

temperature, we calculated the partial dependence (Hastie et al., 2009) within each stixel. Partial 269 

dependence statistics describe how occurrence varies as a function of certain focal features, 270 

averaging across the values all other features in models (except date, see below). By averaging in 271 

this way, the partial dependence estimates capture systematic changes in occurrence associated 272 

with temperature while averaging out all other sources of variation captured by the models, 273 

including variation in detection rates and heterogeneity in search effort and among observers. For 274 

each species, we generated partial dependence estimates for both summer and winter seasons for 275 

every stixel by predicting at the median date within season (December-February dates were 276 

adjusted to a continuous scale). 277 

We derived two measures of thermal sensitivity from partial dependence plots fit for 278 

temperature-occurrence relationships within each stixel: 1) Thermal optimum, the value of daily 279 

temperature at which predicted occurrence is maximized; 2) Thermal breadth, equal to the 280 

difference between the value of daily temperature above the thermal optimum at which predicted 281 

occurrence falls below 80% of the maximum value and the value below the thermal optimum at 282 

which occurrence falls below 80% of the maximum value. The 80% threshold is in line with 283 

many physiological studies (e.g., Angilletta Jr et al., 2002). 284 

For both measures, we quantified the spatial and seasonal non-stationarity within each species by 285 

summarizing how thermal optimum and breadth varied across the species range and between 286 

seasons. To estimate spatial non-stationarity, we regressed mean annual temperature (bio1 from 287 

worldclim) on the thermal optimum to calculate the slope across all stixels spanning a 288 

geographic-climatic gradient within the given season, summer or winter. Similarly, we regressed 289 

mean annual temperature range (bio7) against thermal breadth to calculate the slope of thermal 290 

breadth spanning a geographic-climatic gradient within the season. A slope closer to one 291 

suggests that stixel-level thermal optimum or breadth is closely associated with local 292 

environmental conditions, while a slope closer to zero suggests that each is consistent across the 293 

species’ range. To estimate seasonal non-stationarity, we recorded the mean stixel-level 294 

difference in thermal optimum or breadth between seasons and computed a Welch’s two-sample 295 

t-test (Welch, 1938) to evaluate whether the difference in thermal optimum or breadth between 296 

winter and summer are statistically different. Greater differences suggest greater seasonal non-297 

stationarity. Thus, we compiled six metrics of non-stationarity for each species: spatial (two 298 

seasons) and seasonal variation in thermal optimum and breadth. 299 
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All plots visualizing metrics were generated using ggplot2 (Wickham, 2011) and RcolorBrewer 300 

(Neuwirth and Neuwirth, 2011). 301 

Influence of human observers 302 

We explored the possible confounding influence of daily temperature on eBird observers by 303 

fitting a random forest model with daily temperature as the dependent variable and effort, CCI, 304 

landcover, topography, and mean climate features and all model parameters identical to our 305 

primary models. We then examined the explanatory power of this model, using root mean 306 

squared error (RMSE), Spearman’s rank correlation, and the partial dependency of daily 307 

temperature based on effort variables and CCI. 308 

Spatial predictions 309 

We generated maps depicting spatial variation in thermal optimum throughout the range of each 310 

species across both the winter and summer seasons. First, we created a gridded dataset with 2.8 311 

km2 resolution and generated model predictions of occurrence in each cell assuming 12 evenly 312 

spaced values of daily temperature ranging between 0° and 36°C, assigning a thermal optimum 313 

to each cell corresponding to the temperature at which occurrence in the cell was maximized. We 314 

held all the observation process features constant to remove variation in detectability, resulting in 315 

occurrence predictions for a standardized eBird search defined as a checklist reported by an 316 

average observer traveling 1 km over one hour. For each cell, we compiled values of land cover, 317 

elevation, and topographic features for use when generating predictions. For each species, we 318 

generated these predictions at the hour of the day when the species is most often observed based 319 

on our data, and on a day with mean annual 1970-2000 temperatures and total precipitation. 320 

Maps were generated using the purr package (Wickham et al., 2019) and plotted using 321 

RColorBrewer.  322 

Species trait and phylogeny assessment 323 

Our final goal was to determine whether spatial and seasonal variation in thermal sensitivity is 324 

associated with various avian life-history traits. We compiled information on preferred habitat 325 

(merging forest with woodland and grassland with shrubland categories), body mass (which was 326 

log-transformed) and hand-wing index from AVONET (Tobias et al., 2022). Further, we 327 

calculated species-level landcover diversity index (following Zuckerberg, Fink et al. 2016) to 328 

represent habitat generalism, based on mean partial effects of all landcover features in 329 

independent continent-wide SDMs (Cohen and Jetz in prep). Thus, we compiled four traits. 330 

To assess phylogeny as a driver of non-stationarity, we calculated Blomberg’s K (Blomberg, 331 

Garland Jr et al. 2003) using an avian phylogeny (Jetz, Thomas et al. 2012) and comparing it to a 332 

null distribution of K after randomizing species’ responses 1,000 times ('picante' package; 333 

Kembel, Cowan et al. 2010). Finally, we fit six multivariate phylogenetic generalized least-334 

squares (PGLS) models to assess the simultaneous influence of traits and phylogeny on each of 335 
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the six non-stationarity metrics. We then fit ANOVAs to each model to assess the importance of 336 

the categorical variable (habitat preference).  337 

 338 

Results 339 

Overall, species demonstrated both spatial and seasonal non-stationarity, though with 340 

considerable variation among species (Table 1; Figs. 2 & 3). During both seasons, species 341 

exhibited higher thermal optimums in warmer climates, although this relationship was stronger 342 

during winter (summer: mean β = 0.59 +/- 0.09; winter: 1.09 +/- 0.14). Birds also exhibited 343 

wider thermal breadths in more variable climates (summer: mean β = 0.1 +/- 0.04; winter: 0.09 344 

+/- 0.05), and greater optimums (mean sample difference = 14.74 ºC +/- 1.01) and narrower 345 

breadths (-2.69 ºC +/- 0.43) in summer than winter.  346 

In both summer and winter, all but one bird species exhibited spatial non-stationarity in thermal 347 

optimum (based on a model coefficient +/- SE not overlapping zero) across climate zones. In 348 

summer, thermal optima of two species (10%) perfectly matched that of their environment 349 

(based on a model coefficient > 1), but this increased to 11 species (55%) during winter. Spatial 350 

non-stationarity in thermal breadth was mixed, with 55% of species demonstrating shifts in 351 

winter and 60% in summer (Fig. 2). Meanwhile, seasonal non-stationarity in thermal optimum 352 

(the difference in thermal optimum between summer and winter) was observed in all birds but 353 

varied in magnitude across species, and seasonal non-stationarity in thermal breadth was 354 

observed in all species except for Pygmy nuthatch and Anna’s hummingbird (Fig. 2). Across 355 

species, we observed that birds with greater spatial non-stationarity generally had lower seasonal 356 

non-stationarity, especially in winter (optimum, β = -2.47 +/- 1.50 SE; breadth, β = -4.82 +/- 357 

1.62; Fig. 4). We did not detect consistent effects of daily temperature on human observer effort 358 

or variation (RMSE = 8.05; Spearman’s ρ = 0.54; Fig. S1). 359 

We found no evidence that phylogeny is associated with spatial or seasonal non-stationarity 360 

across species (K < 0.39, λ < 0.32, p > 0.1 for all metrics; Table S1). Most species traits were not 361 

associated with stationarity or non-stationarity either. However, habitat diversity consistently 362 

emerged as associated with spatial or seasonal non-stationarity in thermal optimum and breadth 363 

after controlling for phylogeny. For example, habitat generalists were less likely to exhibit 364 

spatial non-stationarity in thermal breadth in winter (PGLS: β = -1.70, p < 0.01), while more 365 

likely to show seasonal non-stationarity in thermal optimum (β = 36.73, p < 0.05) and thermal 366 

breadth (β = 18.19, p < 0.01; Figs. 5-6; Tables S2-3). 367 

 368 
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 369 

Figure 2. Spatial non-stationarity across 20 North American bird species. Estimates of spatial and 370 

seasonal non-stationarity in thermal optimum (a-c) and breadth (d-f). Spatial non-stationarity is defined as 371 

the slope coefficient (+/- SE) describing the regional-scale relationship between a species’ thermal 372 

optimum or breadth and the regional mean temperature or temperature range and is presented for summer 373 

(a,d) and winter (b,e) seasons. Seasonal non-stationarity is defined as the mean stixel-level difference in 374 

°C (+/- 95CI) between a species’ thermal optimum (c) or thermal breadth (f) during summer and winter 375 

seasons. The black dotted lines correspond to a value of zero, or no relationship between thermal 376 

optimum/breadth and local climate (i.e., stationarity) and gray lines correspond to one, or a 1:1 377 

relationship, or strong spatial non-stationarity. Open circles denote species with error overlapping zero. 378 

 379 
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 380 

Figure 3. Spatial and seasonal non-stationarity differs between species. Left panels illustrate 381 

relationships between annual seasonal mean temperature and thermal optimum (the daily temperature at 382 

which activity level is greatest in each region based on model predictions; points), or relationships 383 

between historic seasonal temperature range and thermal breadth (the range of temperatures at which 384 

activity levels are above 80% of maximum) for each stixel. Patterns are given across summer (orange 385 

points, solid trendline) and winter (blue points, dashed line), with shaded 95% confidence bands. Maps 386 

visualize thermal optimums in space for each species across both seasons. (a) Carolina wren (Thryothorus 387 

ludovicianus) has a consistent optimum at warm temperatures with moderate spatial variation across the 388 

map, with seasonal variation in optimum occurring only in cold climates. It has moderate variation in 389 

breadth during both seasons. (b) Blue jay (Cyanocitta cristata) has high spatial and low seasonal variation 390 

in optimum, but more seasonal variation in breadth. Note that patterns in scatterplots may not directly 391 

correspond to those on maps because scatterplots summarize thermal sensitivity at the stixel level while 392 

maps average multiple (10-20) stixels at the point level. 393 
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 394 

 395 

Figure 4. Relationships between spatial and seasonal non-stationarity in thermal sensitivity. Spatial 396 

non-stationarity (x-axes), or the slope coefficient describing the stixel-level relationship between a 397 

species’ thermal optimum or breadth and the local mean temperature or temperature range, is compared 398 

against seasonal non-stationarity (y-axes), or the mean stixel-level difference in thermal sensitivity across 399 

seasons, with points representing species. In (a-b), these comparisons are visualized for thermal optimum; 400 

in (c-d), thermal breadth. Panels (a,c) visualize trends in summer and (b,d) do so in winter. All variables 401 

were standardized to increase interpretability. Linear trendlines are given with gray shading representing 402 

95% confidence bands. Dotted lines represent medians. 403 

 404 
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 405 

 406 

Figure 5. Habitat diversity is associated with the extent of non-stationarity across species. At the 407 

species level (points), partial residual plots visualize relationships between an index of habitat diversity 408 

(x-axes) and (a) spatial non-stationarity in thermal optimum in summer, (b) spatial non-stationarity in 409 

winter, or (c) seasonal non-stationarity across seasons (y-axes), based on phylogenetic least-squares 410 

models. In (d-f), equivalent relationships are presented for thermal breadth. Linear trendlines are shown 411 

with gray shading representing 95% confidence bands.  412 

 413 

 414 

Discussion 415 

Thermal sensitivity and responses to climate change are typically quantified at the species level 416 

(Smith et al., 2019), but recent evidence suggests significant physiological and morphological 417 

variation among individuals below the species level (Bennett et al., 2019; Louthan et al., 2021; 418 

Stager et al., 2021; Youngflesh et al., 2022). Thus, researchers require a better understanding of 419 

variation in thermal sensitivity within species to assess when and where populations are more 420 

likely to be sensitive to weather-related effects (Louthan et al., 2021; Smith et al., 2019; Sultaire 421 

et al., 2022). However, thermal sensitivity is difficult to measure across numerous populations 422 

and multiple seasons for many species. Here, we use dynamic species distribution models that 423 
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allow spatial and seasonal variation in temperature responses to identify patterns of spatial and 424 

seasonal non-stationarity in thermal sensitivity across common North American resident birds. 425 

We found that birds exhibit both stationarity and non-stationarity in responses to variation in 426 

temperature across space and time.  427 

Our findings support recent physiological work suggesting that populations of a species vary in 428 

their thermal optimum and breadth based on geography. For both thermal optimum and breadth, 429 

most species occupied an intermediate space between complete spatial stationarity (coefficient = 430 

0), or no variation among locations where non-stationarity that perfectly matches the local 431 

environment (coefficient = 1).  Thermal optimum was more likely than thermal breadth to match 432 

local environmental conditions, with 95% of species (19 of 20) demonstrating a relationship 433 

between thermal optimum and local climate that differed from zero, and only 55% (11 of 20) 434 

demonstrating such a relationship for thermal breadth. In fact, 10 of 20 species (50%) 435 

demonstrated thermal optimums closer to one than zero, suggesting that their thermal sensitivity 436 

more closely matches the local environment than conspecifics in different regions – however, 2 437 

of 20 species (10%) reflected a coefficient ~1, or thermal sensitivity that matches the local 438 

environment. It has long been known that thermal breadth is highly important in terms of 439 

constraining organismal distributions, likely more so than thermal optimum (Buckley, 2010; 440 

Huey and Stevenson, 1979), and our results may suggest that thermal breadth is a more 441 

hardwired physiological constraint than thermal optimum across populations of many bird 442 

species. Across species, we found that spatial non-stationarity was infrequently associated with 443 

phylogeny or species traits, although the limited sample of 20 species limited our ability to draw 444 

broad inferences. We also found limited evidence that spatial non-stationarity in thermal breadth 445 

was greater in habitat specialists than generalists, though only during the winter season. This link 446 

was predicted because habitat and thermal generalism is often observed in the same species 447 

(Barnagaud, Devictor et al. 2012), and thermal generalists may be less likely to adapt to the local 448 

environment.  449 

Surprisingly, all species reflected different thermal optima and 90% (18 of 20) displayed 450 

different thermal breadths across seasons, despite substantial overlap in conditions across 451 

seasons in most species’ ranges. However, this pattern may not be representative of all bird 452 

species; the species in our selection are mostly residential and thus more likely than other bird 453 

species to be seasonally flexible in thermal sensitivity. Interestingly, habitat generalism was 454 

more closely associated with seasonal non-stationarity in both thermal optimum and breadth. 455 

Therefore, habitat generalists may be selecting a strategy in which they eschew adaptation to 456 

local climates in space in favor of seasonal flexibility across the annual cycle. Finally, during 457 

winter, species with greater spatial variation in thermal sensitivity had reduced seasonal 458 

variation, suggesting a trade-off; for example, a species with seasonal non-stationarity in thermal 459 

sensitivity may not need to rely on local adaptation to climate. 460 

Variation in thermal sensitivity across space and time may be more difficult to quantify in 461 

species that seasonally move long distances, occupy smaller ranges, or are reported less 462 
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frequently, which we avoided exploring in this study. Within species that seasonally migrate 463 

long distances, seasonal variation in thermal sensitivity is difficult to measure because without 464 

knowing which sets of locations have the same individuals (e.g., information on migratory 465 

connectivity; Fuentes et al., 2022), making direct comparisons between populations over time 466 

difficult. However, recent improvements in animal tracking, even for smaller birds, will allow 467 

for direct comparisons of thermal sensitivity at the population or individual level even for 468 

migratory species (Costa-Pereira et al., 2022). Some genetic evidence suggests that populations 469 

with are northerly during the breeding season also northerly during the overwintering period 470 

(Bay et al., 2021), although this is not reliable for species which compress their ranges during 471 

winter, as do many neotropical migrants (Rushing et al., 2020). Species that occupy small ranges 472 

may exhibit little spatial variation in thermal sensitivity, as climate generally varies across large 473 

spatial scales. Although local adaptation to different climates is possible along elevational 474 

gradients, differences in data abundance between lowlands and uplands may inhibit direct 475 

comparisons between adjacent populations inhabiting each zone. Finally, assessing non-476 

stationarity in thermal sensitivity may be more difficult for species with limited data coverage in 477 

space and time, including birds outside of North America or most other animal taxa, although 478 

citizen science observations are increasing exponentially every year (Callaghan et al., 2021). 479 

Despite these limitations, our results provide a framework to predict how widespread, residential 480 

species with continuous data coverage may vary in population and seasonal thermal sensitivity at 481 

fine scales. 482 

Although bird species varied in their extent of spatial and seasonal non-stationarity, it remains 483 

unclear whether non-stationarity translates to increased or decreased climate change 484 

vulnerability. Plausible explanations exist for either scenario. For example, a species exhibiting 485 

non-stationarity in space may be more vulnerable to climate change if populations are adapted to 486 

distinct thermal conditions and climates become more homogenous (e.g., northern latitudes 487 

warming faster than southern latitudes). Given non-stationarity, a continent-wide heat wave may 488 

pose a greater risk of disturbance to a northern population of a given species if it has less heat 489 

tolerance than a southern population. Alternatively, populations of a species exhibiting 490 

stationarity may be more vulnerable if southern populations already living on the edge of their 491 

thermal tolerance experience an extreme weather event, such as a heat wave. A species 492 

exhibiting seasonal stationarity may face a greater disturbance from warm weather during winter, 493 

when individuals have undergone physiological changes to suppress heat loss, than summer. 494 

Further work should explore how variation in thermal sensitivity along a climatic gradient is 495 

related to population-level consequences to aid finer-scale conservation approaches. 496 

Conclusions 497 

Researchers typically predict and measure static responses to climate change at the species level 498 

(Smith et al., 2019). In standard species distribution and niche modeling approaches, the thermal 499 

niche is treated as a static “envelope”, with climate-occurrence relationships assumed to be 500 

stationary over both species entire ranges and throughout the year (Jarnevich et al., 2015; Smith 501 
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et al., 2019). Even in “dynamic” distribution modeling approaches, responses to a temporally 502 

shifting feature (e.g., weather) are assumed to be consistent across the spatial and temporal 503 

extent of the modeling domain (Milanesi et al., 2020). Further, conservationists and managers 504 

typically develop climate change vulnerability assessments and adaptation plans at species level, 505 

ignoring population-level variability. However, with the modern availability of high-resolution, 506 

high-volume, continuous observational and environmental datasets, variation in species’ 507 

responses to environmental variables, such as temperature, can now be modeled over large 508 

spatial extents and across the annual cycle to detect variation in responses to climate change as 509 

higher resolutions (Carlson et al., 2021; Latimer et al., 2018). Our results suggest that many 510 

species-level assessments of thermal sensitivity may be missing significant variability over space 511 

and time, leading to misleading climatic vulnerability assessments. Researchers must consider 512 

variation in thermal sensitivity across populations and seasons to improve understanding of 513 

climate change adaptation (Smith et al., 2019). 514 
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Supplementary Materials 686 

 687 

 688 

Figure S1. The relationship between daily temperature and human observers. Partial dependence 689 

plots based on a random forest model explicitly testing the relationship between daily temperature and 690 

metrics of human observation, including (a) number of hours birding, (b) distance traveled (km), (c) the 691 

number of observers, and (d) Checklist Calibration Index, which reflects inter-observer variation (see 692 

methods).  693 
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Table S1. Metrics describing phylogenetic signal (Lambda and Blomberg’s k) in spatial or seasonal non-695 

stationarity. 696 

Non-stationarity metric lambda lambda p-value k k p-value 

Spatial Optimum (summer) 0.317 0.786 0.388 0.149 

Spatial Optimum (winter) <0.001 1 0.152 0.959 

Seasonal Optimum <0.001 1 0.217 0.744 

Spatial Breadth (summer) <0.001 1 0.278 0.408 

Spatial Breadth (winter) <0.001 1 0.260 0.483 

Seasonal Breadth <0.001 1 0.216 0.787 
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Table S2. Summary tables from phylogenetic least-squares models associating species functional traits 699 
with spatial and seasonal non-stationarity in thermal optimum while controlling for phylogenetic 700 
structure.  701 

Spatial (summer) Coefficient SE t-value p-value 

(Intercept) -0.939 1.508 -0.623 0.543 

Body Mass 0.064 0.146 0.439 0.667 

Habitat diversity 1.398 1.037 1.349 0.197 

Hand-Wing Index 0.069 0.373 0.185 0.856 

Habitat (Grassland) 0.347 0.245 1.415 0.177 

Habitat (Human Modified) -0.453 0.498 -0.910 0.377 

     

Spatial (winter) Coefficient SE t-value p-value 

(Intercept) 3.644 4.507 0.809 0.431 

Body Mass -0.338 0.438 -0.772 0.452 

Habitat diversity 1.000 3.131 0.320 0.754 

Hand-Wing Index -0.607 1.117 -0.543 0.595 

Habitat (Grassland) -0.255 0.734 -0.348 0.733 

Habitat (Human Modified) 0.667 1.489 0.448 0.661 

     

Seasonal Coefficient SE t-value p-value 

(Intercept) -27.989 22.054 -1.269 0.224 

Body Mass 1.368 2.135 0.641 0.531 

Habitat diversity 36.725 15.164 2.422 0.029 

Hand-Wing Index 4.033 5.453 0.740 0.471 

Habitat (Grassland) -3.783 3.583 -1.056 0.308 

Habitat (Human Modified) -7.227 7.277 -0.993 0.336 
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Table S3. Summary tables from phylogenetic least-squares models associating species functional traits 704 
with spatial and seasonal non-stationarity in thermal breadth while controlling for phylogenetic structure. 705 

Spatial (summer) Coefficient SE t-value p-value 

(Intercept) -0.180 0.769 -0.234 0.818 

Body Mass 0.032 0.074 0.435 0.670 

Habitat diversity 0.232 0.529 0.439 0.667 

Hand-Wing Index 0.024 0.190 0.127 0.901 

Habitat (Grassland) -0.326 0.125 -2.613 0.020 

Habitat (Human Modified) 0.040 0.254 0.156 0.878 

     

Spatial (winter) Coefficient SE t-value p-value 

(Intercept) 0.858 0.828 1.036 0.317 

Body Mass -0.025 0.081 -0.309 0.762 

Habitat diversity -1.698 0.575 -2.952 0.010 

Hand-Wing Index 0.186 0.205 0.906 0.379 

Habitat (Grassland) 0.212 0.135 1.571 0.137 

Habitat (Human Modified) -0.405 0.274 -1.482 0.159 

     

Seasonal Coefficient SE t-value p-value 

(Intercept) -15.256 8.219 -1.856 0.083 

Body Mass 0.435 0.795 0.547 0.592 

Habitat diversity 18.193 5.651 3.219 0.006 

Hand-Wing Index 1.000 2.032 0.492 0.630 

Habitat (Grassland) -2.411 1.335 -1.806 0.091 

Habitat (Human Modified) -0.154 2.712 -0.057 0.955 
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