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Abstract
Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass
spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an
important consideration for interpreting mass spectra. However, due to an incomplete understanding
of the ionization mechanism, the analyte properties that influence CSDs are not fully understood.
Here, we employ a machine learning-based high-throughput approach and analyze CSDs of hundreds
of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one
would naively expect (number of basic sites). We find that these peptides can be classified into two
regimes—undercharging and overcharging—and that these two regimes display markedly different
charging characteristics. Strikingly, peptides in the overcharging regime show minimal dependence
on basic site count, and more generally, the two regimes exhibit distinct sequence determinants.
These findings highlight the rich ionization behavior of peptides and the potential of CSDs for
enhancing peptide identification.

Introduction
Over the years, electrospray ionization1 (ESI) has become a leading ionization technique for pairing
with liquid chromatography tandem mass spectrometry (LC-MS/MS)2,3. ESI’s ability to ionize a
wide range of biomolecules, and to process samples in a high-throughput manner4–8 has greatly
broadened the scope of mass spectrometry9,10, enabling applications to proteomics11–14, clinical
biology15,16, drug discovery17, and more18.

ESI ionizes aqueous solutions through maintaining a high voltage potential across a capillary,
which vaporizes the solution into a mist of highly charged droplets19. As the solvent continues to
evaporate, the droplets experience an increased charge density, and fissure into smaller droplets upon
reaching their Rayleigh limit20, the point at which the Coulombic forces overcome the surface tension.
The charges are ultimately deposited onto the analytes, through mechanisms that are still not fully
understood3,21, producing gaseous ionic molecules that arrive at the mass analyzer. Several theories
have been proposed to explain the ionization mechanism, such as the ion evaporation model22,23, the
charge residue model24,25, and the chain-ejection model26,27, which differ in their assumptions of how
the analyte interacts with the droplet. It is believed that these evaporation models are appropriate for
different types of analytes, depending on their size and structure27. However, the dynamic nature of
ESI and the inability to directly observe ESI at the molecular scale have made it challenging to fully
characterize the determinants of analyte ionization.

Here we utilize a high-throughput approach to investigate the ESI ionization of peptides. We
reasoned that a systematic analysis of a large-scale dataset would not only complement existing
studies on select analytes, but also provide more insights than previous “black box”28 deep learning
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approaches29. We therefore generated a dataset containing charging information on hundreds of
thousands of peptides, using both new and published LC-MS/MS runs. For each peptide, the
resulting dataset includes the measured charge state distribution (CSD), defined as the relative
intensities of the ions produced by that peptide.

We next employed machine learning on this dataset to gain insights into the relationship between
peptide sequence and CSD. Our analysis revealed that half of the peptides exhibited charges that did
not correspond to their number of basic sites. Classifying these peptides into two regimes, namely
undercharging and overcharging, we identified striking differences in their ionization characteristics.
Specifically, we discovered that for overcharged peptides, mass takes precedence over basic site count,
and that charging in the two regimes is affected by distinct amino acid features.

Overall, our findings offer new insights into the complex dynamics of peptide ionization, highlight
that CSDs contain rich information about peptide sequences, and may open opportunities for
applications to identification pipelines in proteomics.

Results

Data source

Ours Confetti Meier et al. Total

LC-MS/MS runs 20 18 288 (39*) 326 (77*)

Total peptides 264,259 166,543 416,306 847,108

Unique peptides 41,594 80,402 183,340 261,667

Varied parameters
gradient length,

voltage, flow rate
protease

organism,
protease

MS instrument Orbitrap Orbitrap timsTOF

Table 1. Overview of peptide CSD dataset. Breakdown of extracted CSDs from each of the three data sources (ours,
Confetti, Meier et al.). Asterisk (*) indicates the number of LC-MS/MS runs after aggregating over fractionations.

Overview of peptide CSD dataset.
To facilitate a machine learning approach, we developed an extraction scheme to extract CSD readings
from MS1 scans (see methods). In each LC-MS/MS run, a single CSD reading was assigned to each
MS2-identified peptide by averaging CSD readings across the peptide’s elution.

To cover a wide range of experimental settings, we applied our extraction scheme to 326 positive-
ion mode LC-MS/MS runs acquired from three sources: our own, Confetti30, and Meier et al.31

These data sources differ in their choice of experimental parameters, protease, organism, and type of
mass spectrometry instrument (Orbitrap32 and timsTOF33,34). The resulting dataset contained CSD
readings of 261,667 unique peptides (Table 1).

In order to confirm the reproducibility of the extracted CSD readings, we compared CSDs
obtained from various LC-MS/MS runs. We found that CSD readings of the same peptide were
generally consistent across different runs (Supplementary Fig. 1), and especially consistent among
experimental replicates (∼3.7% error Orbitrap, ∼5.2% error timsTOF). After applying a one-parameter
batch correction (see methods), errors across replicates dropped slightly (∼3.4% error Orbitrap,
∼4.7% timsTOF). Batch correction was not used in downstream analysis as LC-MS/MS runs were
analyzed separately. Furthermore, the datasets from timsTOF instruments had slightly higher errors
(Supplementary Fig. 1), which may be due to the extraction scheme being insufficiently optimized to
that technology (as it does not employ ion mobility information). Together, these results demonstrate
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Figure 1. CSDs of select peptides. Extracted CSDs and properties of select peptides from one of our HeLa trypsin runs
(2.5 kV ESI voltage, 160 min gradient length, 400 nL/min flow rate). Basic sites are bolded. Vertical black lines denote the
charge state equal to basic site count. U = undercharged (mean charge < basic site count). O = overcharged (mean charge
> basic site count).

the robustness of the extraction scheme, and that peptide CSDs are highly consistent across replicates.
Peptides in our dataset exhibited a variety of CSDs (select peptides shown in Fig. 1). It is known

that the basic site count serves as a rough estimate for the charge a peptide receives in positive-ion
mode ESI35. Indeed, 51% of the peptides in the dataset have a CSD concentrated solely on the charge
state equal to the basic site count. On the other hand, 40% of peptides exhibit undercharging (mean
charge less than basic site count), and 9% exhibit overcharging (mean charge greater than basic site
count). In downstream analysis, we explore factors that explain why some peptides receive fewer
charges or more charges than their basic site count.

Under- and overcharged peptides exhibit different dependence on mass and number of
basic sites.
Grouping peptides by their basic site count, we observed that mean charge increases with mass, and
exhibits transitions from under- to overcharging in all LC-MS/MS runs (representative runs shown in
Fig. 2, Supplementary Figs. 3, 4). For instance, in one of our HeLa runs, among peptides with three
basic sites and mass less than 2600 Da, 98% exhibited charges of 3+ or lower (undercharging, Fig. 2b).
In contrast, among peptides with three basic sites and mass greater than 2600 Da, 94% exhibited
charges 3+ or higher (overcharging, Fig. 2b). We confirmed that this transition phenomenon cannot
be explained by the mass spectrometer’s m/z cutoff, since the presence of a charge state recedes
well before reaching the m/z cutoff. Moreover, the phenomenon is present in runs performed with
other proteases (Supplementary Fig. 3) and with the timsTOF instrument (Supplementary Fig. 4),
suggesting it is independent of the peptide distribution or the choice of mass spectrometer instrument.

Prior studies on select protein complexes36–38 and synthetic peptides39 have also observed
correlations between size and charging. Moreover, the relationship is consistent with proposed
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Figure 2. Visualizing CSD dataset versus mass. Plots of mean charge versus mass for peptides from a representative run
(our HeLa trypsin run; 2.5 kV ESI voltage, 160 min gradient length, 400 nL/min flow rate), colored by number of basic
sites. Data points are shown as (a) a scatter plot with jittering in the y-axis, uniformly chosen from -0.02 to 0.02, and (b) 2D
hexagonal binning plots separated by basic site count. Colored curves show spline-interpolation of mean charge versus
mass, performed with 20 cubic-splines, a smoothing parameter of 5, and a monotonicity constraint. Curves are dashed
when the interpolated mean charge is less than the basic site count (undercharging) and solid otherwise (overcharging).
Hatched regions correspond to unobservable mean charge due to m/z cutoff.

ionization theories27 as larger analytes would be enclosed in larger, more highly charged droplets20,
may have higher solvent-exposed surface area37,38, and may have more functional groups that can
stabilize charge through intramolecular solvation40–42. Our findings suggest that this correlation
holds universally for peptides, and provide quantitative dependencies between the number of basic
sites, mass, and mean charge.

One striking observation is that in the overcharging regime, the number of basic sites has little
effect on the mean charge trend as a function of mass (Fig. 2a, solid lines). In contrast, in the
undercharging regime, the number of basic sites has a significant effect on the mean charge trend
(Fig. 2a, dashed lines). Thus, in the overcharging (but not in the undercharging) regime, mass takes
precedence over the number of basic sites. For instance, among peptides of mass 1800 Da, those with
1 or 2 basic sites exhibit, on average, similar mean charges of 2.1 and 2.2, respectively (overcharging),
whereas those with 3, 4, or 5 basic sites exhibit, on average, distinct mean charges of 2.9, 3.4, and 4.0,
respectively (undercharging). These observations suggest differences in ionization factors at play for
the over- and undercharging regimes.

These findings also demonstrate the potential benefits that CSDs can offer to peptide identification.
Aside from peptides that exhibit overcharging, peptides sharing the same mass but having a different
number of basic sites generally exhibit different CSDs (Supplementary Fig. 5), allowing them to be
distinguished based on the MS1 scan. For example, among peptides with mass 1600 ± 25 Da, 99% of
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those with two basic sites have mean charge < 2.5, while 98% of those with three basic sites have
mean charge > 2.5. As such, when one is searching for potential peptide candidates for a given
collection of ion peaks, the observed mass and CSD can be used to infer the peptide’s basic site count.
This example showcases a preliminary use-case for peptide CSDs, and suggests that incorporating
more sequence-dependent insights may provide further identification opportunities.

Figure 3. CSD sequence determinants for under- and overcharged peptides. (a) Schematic representation of the four
peptide charging regions of interest, determined by number of basic sites and pair of consecutive charge states (see text). (b)
Scatter plots of calculated amino acid intrinsic basicities (see text) versus mass for two representative charging regions (top:
region #3U; bottom: region #2O). Panels (a–b) use our HeLa trypsin run with 2.5 kV ESI voltage, 160 min gradient length,
400 nL/min flow rate. (c) Heatmap showing correlations between calculated amino acid intrinsic basicities among all pairs
of region-run combinations for our runs with sufficiently many data points (see methods). Along both axes, all 12 runs are
aligned four times, once for each of the four regions. (d) Box plot of estimated mass-adjusted intrinsic basicities (given by
residual intrinsic basicities after subtracting trend in mass, see methods) across runs with sufficiently many data points,
separated by data source and charging region. Runs from Meier et al. were aggregated across fractionations (average
taken for duplicate readings). C* denotes carbamidomethyl-cysteine in our and Meier et al.’s runs, and N-ethylmaleimide
modified cysteine in Confetti’s runs. (e) Box plot of intrinsic basicities for the N-terminal identity of select amino acids
(region #3U). Box plot elements: centerline, median; boxplot limits, upper and lower quartiles; whiskers, 1.5x interquartile
range; points, in whisker range with jitters (outliers not shown).
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Distinct sequence determinants underlie peptide ionization in the under- and overcharg-
ing regimes.
A peptide’s ionization depends on many factors, including Coulombic forces43,44, its gas-phase
conformation41,45, its protonatable locations46,47, and intramolecular forces40–42. To provide further
insights into the sequence factors that influence peptide ionization, we analyzed the sequence
determinants of CSDs within the under- and overcharging regimes.

For the analysis, we considered the 20 amino acid counts and the identity of the N-terminal
amino acid as the sequence features of interest. To account for possible dependence on the number
of basic sites or charge states, we performed a separate analysis for each of four regions, labelled #2O,
#3O, #3U, and #4U (O : overcharged, U : undercharged, Fig. 3a). Region #2O consists of peptides
with two basic sites and considers charging across 2+ and 3+. We similarly define region #3O (three
basic sites, charging across 3+ and 4+), region #3U (three basic sites, charging across 2+ to 3+),
and region #4U (four basic sites, charging across 3+ and 4+). For each of our 12 LC-MS/MS runs
(with sufficiently many data points, see methods) and each of the four regions, we calculated a
feature’s contribution using an “intrinsic basicity” score (Fig. 3b), derived from coefficients of a
logistic regression (see methods). Interestingly, clustering the region-run pairs by their calculated
intrinsic basicities, we identified two distinct clusters (Fig. 3c): there was strong agreement only
between regions #2O and #3O, and between regions #3U and #4U. This result suggests that under-
and overcharging are influenced by different sequence features, and that these sequence features do
not depend strongly on the number of basic sites.

To understand the sequence determinants of overcharging, we examined some of the more
prominent calculated intrinsic basicities for region #2O across all runs. We observed that glutamine
(Q) and aspartic acid (D) have the highest and lowest mass-adjusted intrinsic basicities, respectively
(Fig. 3d, bottom; Supplementary Fig. 6a, bottom). These observations are consistent with previous
work: glutamine (Q) has been reported to have high gas-phase basicity due to its amide group46,48

and can be a potential charge carrier during ESI46; aspartic acid (D) has been observed to form salt
bridges with basic sites in molecular dynamics simulations49. Interestingly, despite having the same
functional group, glutamine (Q) displays notably higher calculated intrinsic basicity than asparagine
(N); similarly, glutamic acid (E) displays notably higher calculated intrinsic basicity than aspartic
acid (D) (Fig. 3b,d). Lastly, we observed that amino acids with nonaromatic hydrocarbon side chains
(alanine (A), valine (V), isoleucine (I), and leucine (L)) have high mass-adjusted intrinsic basicities.

Next, to understand the impact of sequence features on undercharging, we examined some
of the more prominent calculated intrinsic basicities for region #3U across all runs. We observed
that the presence of an arginine (R), lysine (K), or histidine (H) at the N-terminal greatly reduces
charging (Fig. 3e; Supplementary Fig. 6b, top). This suggests that undercharging occurs due to
Coulombic repulsion between the N-terminus and an N-terminal basic side chain. In particular, this
effect can be observed in sequential isomers TNSTFNQVVLKR and RTNSTFNQVVLK, which have
identical sequences apart from an arginine at the C- or N-terminal. In the four runs that contain
CSD readings for both peptides, the former peptide has a CSD of (p2+ , p3+) = (4%, 96%) ± 7%
(mean ± s.d.; not batch corrected), while the latter, with an N-terminal arginine, has a CSD of
(p2+ , p3+) = (44%, 56%)± 6%. In addition to these Coulombic effects, we observed that proline (P)
has a notably high intrinsic basicity (Fig. 3d, top; Supplementary Fig. 6a, top), especially if located
at the N-terminal. Moreover, the runs from Meier et al. demonstrated higher intrinsic basicity for
strongly hydrophobic amino acids (isoleucine (I), leucine (L), phenylalanine (F)) than did the Orbitrap
runs (Fig. 3d, top).

In conclusion, our analysis demonstrates that the under- and overcharging regimes are influenced
by distinct sequence determinants. These sequence determinants are consistent across different
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LC-MS/MS runs, and align with previously documented effects. Moreover, our findings indicate
that peptide ionization depends on many factors beyond mass and basic site count, including both
composition and position of the constituent amino acids. Collectively, these results underscore
the value of CSDs in providing information about peptide sequences, and suggest that CSDs may
complement other measured analyte properties for proteomics identification.

CSD variations offer opportunities for identification.
It is well known that certain LC-MS/MS experimental parameters change the overall degree of charg-
ing experienced by analytes3,35,50,51. Indeed, in our own experiments, we observed that increasing
flow rate and gradient length generally resulted in higher overall charging (Supplementary Fig. 7).
While such experimental variations may be perceived as undesirable, they can be potentially har-
nessed to improve peptide identification. Specifically, peptides with similar CSDs may exhibit more
distinct CSDs under different charging conditions, allowing for easier separation.

To illustrate this concept, consider the two peptides ASGQAFELILSPR and ACANPAAGSVIL-
LENLR. In the low flow rate runs (200 nL/min), these peptides exhibited CSDs of (p2+ , p3+) =
(96%, 4%) and (88%, 12%), respectively, a difference of 8%. In the high flow rate runs (800 nL/min),
these peptides exhibited CSDs of (p2+ , p3+) = (90%, 10%) and (74%, 26%), respectively, a difference
of 16%. In other words, increasing the flow rate resulted in a twofold increase in the difference be-
tween these two CSDs. In fact, this example occurs throughout our dataset (Supplementary Fig. 2a,b).
For instance, among peptides with mean charge between 2 and 2.15 in the low flow rate run, more
than half of the pairwise differences (59%) increased by twofold or more when flow rate increased
(Supplementary Fig. 2a). Similarly, among peptides with mean charge between 2.85 and 3 in the
high flow rate run, more than half of of the pairwise differences (52%) increased by two fold or more
when flow rate decreased. Lastly, CSD variations across other pairs of runs exhibited similar trends
(Supplementary Fig. 2b). Together, these findings highlight how varying experimental parameters
can magnify differences in CSDs.

Instead of varying experimental parameters across runs, one can also imagine inducing variations
in charging within a single run, possibly on a scan-to-scan basis. In fact, we observed that in many
runs, mild scan-to-scan charging fluctuations already exist. While the reasons for these fluctuation
are not clear, our findings indicate that they are not due to noise and have potential for improving
identification (Supplementary Text 1).

In summary, these findings suggest that varying charging conditions across runs and within a
single run may enhance the utility of CSDs for peptide identification.

Discussion
In this work, we demonstrate that utilizing a high-throughput approach can reveal novel, general
patterns underlying peptide ionization. Previous work has demonstrated that the ionization of
native proteins, due to their tightly compacted structure in their folded state, is well-predicted by
their surface-exposed area37,38. In contrast, our study indicates that denatured peptides, typically
encountered in shotgun proteomics52, exhibit complex ionization behavior: the interplay of mass and
basic site count determines under- and overcharging, with further fine-tuning based on additional
sequence-dependent factors.

Notably, our findings demonstrate that the under- and overcharging regimes display different
dependencies on mass and basic site count. We found that basic site count has little effect on
the typical mean charge exhibited by overcharged (but not undercharged) peptides. One potential
explanation for this phenomenon is that overcharged peptides, having high mass relative to their basic
site count, contain enough backbone carbonyls for solvating excess protons42. As such, additional
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basic sites may not have a strong effect on overcharging. There may be other potential explanations
for this phenomenon, even causes arising outside of ESI such as the efficiency of transporting ions
into the mass analyzer. Regardless, the striking contrast in basic site count dependence suggests
there are differences in the underlying ionization processes that govern under- and overcharging of
peptides.

Additionally, the distinct sequence determinants that we derived for the two regimes align with
factors related to gas-phase interactions and dynamics, suggesting possible mechanistic connections.
Specifically, for overcharged peptides, our findings align with previously documented effects of
glutamine (Q) having high gas-phase basicity46, and aspartic acid (D) forming salt bridges41,49.
Interestingly, we observed that both glutamine (Q) and glutamic acid (E) had notably higher intrinsic
basicities than asparagine (N) and aspartic acid (D), respectively. Both pairs of amino acids share
the same functional group, but differ only in side-chain length, suggesting that the observed
effect is associated with differences in conformational entropy53. Additionally, we discovered that
amino acids with non-aromatic hydrocarbon side chains (A, V, I, L) promote overcharging. As
non-polar moieties increase a peptide’s affinity for the droplet-air interface50, this finding suggests
that peptides positioned closer to the droplet surface may exhibit a stronger overcharging response.
For undercharged peptides, our results align with the effects of Coulombic repulsion for basic
amino acids at the N-terminal. We also found unexpected features that counteract undercharging,
such as the presence of proline, especially when located at the N-terminal, and hydrophobic amino
acids (I, L, F), specifically in the timsTOF datasets. We speculate that internal prolines may reduce
undercharging by introducing a kink in the peptide chain54, thereby promoting charge solvation42

and protecting from Coulombic repulsion. Further studies would be necessary to elucidate the
mechanisms underlying the aforementioned observations, and why the sequence determinants differ
so much in the two regimes.

Our findings suggest that peptide CSDs—through their rich sequence determinants and their
differential response to experimental conditions—contain information that may benefit shotgun
proteomics, information that is mostly neglected in state-of-the-art identification pipelines55,56. In
addition to data-dependent acquisition (DDA)57, our findings may especially be useful for data-
independent acquisition (DIA)58 and MS1-only59 approaches, where there are no fragmentation
spectra dominated by one peptide.

Of the many machine learning techniques available to analyze large-scale datasets, deep learning
has had tremendous progress in recent years, as demonstrated by accurate predictions for retention
time29,60–62, collisional cross section62,63, fragmentation spectra31,62, and charge state distributions29.
However, interpreting the predictions of black box neural networks still remains a challenge28,64.
While we have experimented with deep learning in the early stages of this study, we show here that
classic machine learning approaches still have merit in providing easily communicable and readily
interpretable insights. In fact, these two approaches are not mutually exclusive: the insights derived
here from analyzing peptide CSDs can potentially inform model design and improve deep learning
predictions.

Our study has several inherent limitations. Firstly, the extraction scheme cannot extract intensities
that fall below the mass spectrometer’s intensity threshold. This may introduce biases in CSD
readings for less abundant peptides and for scans located at the tails of elution profiles. We address
this through our extraction scheme’s filtering steps which favor the extraction of high intensity
peptides; we verified that the intensity threshold only accounts for < 2% error for most CSD
readings (data not shown). Secondly, the distribution of peptide sequences in our dataset is affected
by the proteome, the experimental setup, and the extraction scheme’s filtering steps. To address
this, we used LC-MS/MS runs across different experimental parameters, proteases, cell lines, and
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instruments. This issue can be further addressed through incorporating synthetic peptides. Thirdly,
our analysis on calculated intrinsic basicity does not capture pairwise, nor higher-order, interactions
between amino acids. Although we explored including these higher-order terms, we had difficulty
interpreting the results due to overparameterization. A deeper mechanistic understanding may
provide opportunities for better feature engineering that can overcome these challenges. Fourthly,
CSDs are influenced by all factors that occur in and downstream of ESI, including ionization efficiency,
transport efficiency (from ESI to MS detection)50, and possible interactions within the drift tube65.
These factors can limit the interpretation of our analysis. We partly addressed this by using runs
from both Orbitrap and timsTOF instruments. Lastly, our analysis can only establish correlations,
not causal relationships. Further experiments and molecular dynamics simulations are necessary to
fully establish the mechanisms underlying the insights we have identified.

In conclusion, our high-throughput study of peptide CSDs has yielded informative results for the
field of ESI and LC-MS/MS-based proteomics. The insights we have generated for peptide ionization
contribute to our understanding of ESI mechanisms, and offer opportunities for improved peptide
identification.

Data availability Raw files and MaxQuant analyses for our LC-MS/MS runs are available at the
MassIVE data repository with ID MSV000091473. The CSD dataset generated and analyzed in this
study is available at figshare66.

Code availability Extraction scheme and figure generating code are available on GitHub (https:
//github.com/regev-lab/extract-csd).
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Methods

Sample preparation & mass spectrometry.

To include LC-MS/MS runs with different experimental parameters, we ran our own experiments
varying ESI voltage, gradient length, and sample flow rate.

HeLa cells were grown to 90% confluency and washed twice with PBS before direct lysis on
the plate. Total proteins were extracted using a urea lysis buffer (8 M Urea, 75 mM NaCl, 50 mM
Tris/HCl pH 8.0, 1 mM EDTA). The protein concentration was determined by Pierce BCA assay.
20 µg of total protein was processed further. Disulfide bonds were reduced with 5 mM dithiothreitol
and cysteines were subsequently alkylated with 10 mM iodoacetamide. Samples were diluted 1:4
with 50 mM Tris/HCl (pH 8.0) and sequencing grade modified trypsin (Promega) was added in an
enzyme-to-substrate ratio of 1:50. After 16 h of digestion, samples were acidified with 1% formic
acid (final concentration). Tryptic peptides were desalted on C18 StageTips according to Rappsilber
et al.67 and evaporated to dryness in a vacuum concentrator. Desalted peptides were reconstituted in
Buffer A (3% acetonitrile, 0.2% formic acid).

For mass spectrometer runs that were run in April 2021, 2 µg of peptides were analyzed on a
Thermo Scientific Orbitrap Q Exactive HF mass spectrometer coupled via a 25 cm long, 1.6 µm
particle size Aurora C18 column (IonOpticks) to an Acuity M Class UPLC system (Waters). For the
long gradient, peptides were separated at a flow rate of 400 nL/min with a linear gradient spanning
2 min from 5% to 8% solvent B (100% acetonitrile, 0.1% formic acid), followed by a 87 min linear
gradient from 8% to 22% solvent B, a 20 min linear gradient from 22% to 30% solvent B, a 14 min
linear gradient from 30% to 60% solvent B, and a 1 min linear gradient from 60% to 90% solvent B.
Each sample was run for 160 min, including sample loading and column equilibration times. For
the short gradient, peptides were separated at a flow rate of 400 nL/min in linear steps from 2% to
8% solvent B over 1 min, from 8% to 30% solvent B over 33 min, from from 30% to 60% solvent B
over 5 min, and from 60% to 90% solvent B over 5 min. Each sample was run for 90 min, including
sample loading and column equilibration times.

For mass spectrometer runs that were run in August 2021, 2 µg of peptides were analyzed on
a Thermo Scientific Orbitrap Q Exactive HF mass spectrometer coupled via a 15 cm long, 3 µm
particle size EASY-Spray C18 column (ThermoFisher Scientific) to an Acuity M Class UPLC system
(Waters). Peptides were separated at varying flow rates ranging from 200 nL/min to 800 nL/min in
200 nL/min increments. The peptides were separated in linear steps from 5% to 8% solvent B over
4 min, from 8% to 14% solvent B over 45 min, from 14% to 22% solvent B over 45 min, from 22% to
30% solvent B over 20 min, from 30% to 60% solvent B over 9 min, and from 60% to 90% solvent B
over 1 min. Each sample was run for 190 min, including sample loading and column equilibration
times.

Data was acquired in data dependent mode using the Xcalibur 4.1 software. MS1 spectra were
measured with a resolution of 120,000, an AGC target of 3e6 and a mass range from 300 to 1800 m/z.
Up to 12 MS2 spectra per duty cycle were triggered at a resolution of 15,000, an AGC target of 1e5,
an isolation window of 1.6 m/z and a normalized collision energy of 28.

Gathering published LC-MS/MS raw files.

To supplement our LC-MS/MS runs, we gathered published raw files from two sources: Confetti30

and Meier et al.31. These raw files are located at the ProteomeXchange Consortium via PRIDE partner
repository68 with data identifier PXD000900 (Confetti) and PXD019086 (Meier et al.).
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Preprocessing steps for LC-MS/MS raw files.
To identify peptides that were present in the LC-MS/MS runs, the raw LC-MS/MS files were analyzed
with the MaxQuant software55. MaxQuant was run with the following parameters: maximum of
two missed cleavages, methionine oxidation and N-terminal acetylation as variable modifications,
cysteine carbamidomethylation (ours, Meier et al.) or N-ethylmaleimidation (Confetti) as a fixed
modification, minimum peptide length of 7 amino acids, maximum peptide mass of 4600 Da, and a
false discovery rate of 1%. MaxQuant was run with version 1.6.10.43 (ours, Confetti) and version
1.6.5.0 (Meier et al., original analysis retained).

Additional preprocessing steps were performed to access MS1 profile peaks from the raw LC-
MS/MS files. The Thermo .raw files from Orbitrap runs were converted to .mzML format using
MSConvert from ProteoWizard version 3.069, with the vendor peak picking setting enabled to
obtain centroided MS1 peaks. The MS1 spectra of Bruker .d folders from timsTOF runs were
accessed using alphatims v. 1.0.070. The MS1 profile peaks were centroided using our own procedure
(Supplementary Text 2). These centroided MS1 peaks were fed into our downstream CSD extraction
scheme.

CSD extraction scheme.
Per-scan CSD readings were extracted from MS1 scans for MS2-identified peptides using the following
scheme. For each peptide and each charge state from 1+ to 5+, relevant MS1 scans were searched
for peaks that matched the theoretical isotope envelope and passed stringent filtering requirements.
From these peaks, the charge states’ intensities were estimated, and then normalized to obtain the
peptide’s CSD reading for that scan. Finally, these per-scan CSDs were combined into one CSD
estimate per peptide by performing an intensity-weighted average across scans. The full details of
the extraction scheme are provided in Supplementary Text 2.

One of the main design goals was to achieve high quality CSD readings. As such, we applied
stringent filtering and only retained CSD readings which contained confident intensity estimates for
every charge state. To determine whether a peptide’s charge state was present in an MS1 spectrum,
we verified that (i) the theoretical isotope peaks had low m/z offset from the observed isotope
peaks, (ii) the shape of the theoretical isotope distribution matched the observed isotope distribution
(cosine similarity >0.98), and (iii) there was an absence of peaks that might belong to the isotope
distributions of other peptides (chimeric peaks). On the other hand, a charge state was denoted
absent and thereby assigned an extracted intensity of 0 if no peaks were in a sufficiently large m/z
vicinity. Through tuning the thresholds used for filtering, the extraction scheme favors the extraction
of highly confident peptide CSD readings.

We analyzed a total of 326 raw LC-MS/MS files which resulted in CSD readings extracted for a
total of 261,667 unique peptides (Table 1). The resulting CSD dataset has a similar distribution of
peptides to those typically identified using MS/MS, with masses ranging from 700 Da–4600 Da, and
varying numbers of basic sites (Fig. 2).

Measuring error between CSD readings.
Error between CSD readings of the same peptide was measured through total variation. The total
variation between two distributions (p1, . . . , pn) and (q1, . . . , qn) is given by the sum of absolute
differences between probabilities divided by two:

1
2

n

∑
k=1

|pk − qk| .

Total variation ranges from 0 to 1, signifying equivalent or disjoint distributions, respectively.
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Correcting experimental batch effects.
To better assess CSD errors across pairs of runs, we applied a one-parameter batch correction
(Supplementary Figs. 1,2). Peptide CSDs were transformed according to the following scheme. For
each charge state k+, we scaled its probability pk+ by a factor of βk, for some global batch parameter
β > 0. The scaled probabilities were then renormalized to sum to one, forming the transformed CSD.
In other words, our batch correction maps peptide CSDs of the form (p1+ , . . . , p5+) to

(βp1+ , . . . , β5 p5+)

∑5
k=1 βk pk+

.

This transformation can be interpreted as additive shifts in the energy scale (i.e., log probability
scale), where the magnitude of the shift scales linearly with the charge state.

Errors across pairs of runs were measured before and after applying a batch correction (Supple-
mentary Fig. 1). The batch correction parameter was chosen to minimize the total error, calculated as
the sum of the total variation in CSD readings across all peptides common to both runs. We found
this batch correction to be reasonably effective given that it only depends on one parameter.

Calculating and analyzing intrinsic basicity scores.
In the analysis of sequence effects on charging, we calculated the intrinsic basicities of amino acid
features for each of four charging regions (Fig. 3). Each charging region considered a subset of
peptides (those with a given number of basic sites and with no variable modifications) and charging
across consecutive charge state probabilities pk+ and p(k+1)+ for some k from 2 to 4.

The calculated intrinsic basicities were given by the coefficients of a logistic regression. The input
variables were chosen as follows: 20 numerical variables for each of the 20 amino acid counts, and
20 binary variables to denote the identity of the N-terminal amino acid. The target variable for
the regression was chosen as p(k+1)+/(pk+ + p(k+1)+). The logistic regression was performed using
the pyGAM library71, with binary cross entropy as the loss function and mild L2 regularization
(λ = 0.01).

To compare across region-run pairs (Fig. 3c), we calculated the Pearson correlation coefficient of
the calculated intrinsic basicities for the 17 non-basic amino acids. Only our LC-MS/MS runs with
sufficiently many data points in all four charging regions were considered; that is, each charging
region needed to contain >100 peptides that exhibited nonzero probabilities on both charge states in
question. The resulting LC-MS/MS runs, which were used in Fig. 3c, are the 12 runs from the April
2021 experiment.

To calculate mass-adjusted intrinsic basicities for each region-run pair (Fig. 3d), we subtracted
from the overall intrinsic basicities the portion that could be explained by mass. Specifically, the
mass-adjusted intrinsic basicities were derived as the residuals of a linear regression between the
calculated intrinsic basicities and the masses of the 17 non-basic amino acids plus an intercept term.
The linear regression used a Huber loss72 with parameter δ = 0.01. We selected the Huber loss,
which is equal to the L1 loss for large values (> δ) and the L2 loss for small values (< δ), to ensure
that amino acids with intrinsic basicities significantly different from the mass trend were not overly
penalized, and to guarantee uniqueness of the coefficients.

Extended Data Figures
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Supplementary Figure 1. Error across runs before and after batch correction. Color-coded matrix of average CSD
error across pairs of runs (with ≥ 200 common peptides) measured before (upper left) and after (lower right) applying a
one-parameter batch correction (see methods). Error is measured as average total variation (see methods) between CSD
readings of common peptides. Meier et al.’s runs were aggregated across fractionations (average taken for duplicate
readings).
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Supplementary Figure 2. Examples of before and after batch correction. Comparison of mean charge readings of
common peptides between (a,c) our low and high flow rate runs, and (b,d) a Confetti run and our high voltage run. Mean
charge is shown before (a,b) and after (c,d) applying a one-parameter batch correction (see methods). Red lines and text in
(a) illustrate the effect of experimental variation on mean charge differences.
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Supplementary Figure 3. Visualizing CSD dataset versus mass for a Confetti run. Plots of mean charge versus mass for
peptides from a representative run (Confetti; HeLa GluC) as in Fig. 2.
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Supplementary Figure 4. Visualizing CSD dataset versus mass for a run from Meier et al. Plots of mean charge versus
mass for peptides from a representative run (Meier et al.; HeLa trypsin) as in Fig. 2

Supplementary Figure 5. Mean charge for different basic site counts are generally disjoint. Distributions of peptide
mean charge, separated by number of basic sites, shown along different slices of mass. Kernel density estimation is
performed with a gaussian kernel (bandwidth = 0.1). Data shown is from our HeLa trypsin run with 2.5 kV ESI voltage,
160 min gradient length, 400 nL/min flow rate.
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Supplementary Figure 6. Extended versions of Figure 3d,e. Box plot (with outliers) of (a) estimated mass-adjusted
intrinsic basicities (given by residual intrinsic basicities after subtracting trend in mass, see methods) for amino acids and
(b) intrinsic basicities for identity of N-terminal across runs, separated by data source and charging region. C* denotes
carbamidomethyl-cysteine in our and Meier et al.’s runs, and N-ethylmaleimide modified cysteine in Confetti’s runs. Box
plot elements: centerline, median; boxplot limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, all
with jitters.
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Supplementary Figure 7. Relative charging across runs. Box plot showing distribution of excess charging across runs for
124 peptides common to all our runs. Excess peptide charging is the difference between a peptide’s mean log odds across
its elution to the mean of that value across all runs. Log odds is defined as the log of the ratio of consecutive charge states.
Box plot elements: centerline, median; boxplot limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,
none (outliers not shown).

Supplementary Figure 8: Per-scan CSD fluctuations and effect of experimental parameters on charging. (a,b) Fluctuations
in CSD readings of two representative pairs of co-eluting peptides across their common scans. (c) Scatterplot, across runs,
of median correlation between CSD fluctuations of co-eluting peptides (>10 common scans) versus median standard
deviation in CSD fluctuation. Runs were only included if they contained >15 co-eluting peptides. Our runs with 2.5 kV
ESI voltage are labeled. CSD fluctuations in (a–c) are measured as the log odds between charge state 3+ and 2+. (d) Violin
plot showing correlations between log odds of co-eluting peptide CSDs (left and middle columns), and between log odds
of peptide CSDs and total ion current (right column) for our HeLa trypsin run (2.5 kV ESI voltage, 160 min gradient length,
400 nL/min flow rate). Correlations taken after scrambling CSD readings across co-elution are shown as controls. Violin
plot elements identical to previously defined box plot elements.
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Supplementary Figure 9. Infographic for the extraction scheme. Flowchart outlining steps taken to process raw LC-
MS/MS files to obtain per-scan CSD readings.
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Supplementary Text
Supplementary Text 1: CSD variations across scans offer opportunities for identification
In the main text, we assigned a single CSD reading to each peptide, which was obtained through
averaging per-scan CSD readings across the peptide’s elution. In this section, we report our findings
on how CSD readings for the same peptide differ across scans.

We observed that CSDs exhibited mild scan-to-scan fluctuations, ranging from ∼1–5% depending
on the LC-MS/MS run. To verify whether these CSD fluctuations were due to noise or due to
scan-to-scan differences in overall charging, we compared the fluctuations of co-eluting peptides
(Supplementary Fig. 8a,b). In most runs, we found that co-eluting peptides exhibited high correlation
in their scan-to-scan charging, the only exceptions being runs that showed little to no fluctuations
(Supplementary Fig. 8c,d). Moreover, a representative high-correlation run (one of our 2.5 kV runs)
demonstrates that strong correlation is present not only on average but also for nearly all pairs of
co-eluting peptides (Supplementary Fig. 8d, left). These correlations were also consistently observed
regardless of the choice of charge states: comparing charging across 2+ and 3+ from one peptide
with charging across 3+ and 4+ from another co-eluting peptide showed equally strong correlations
(Supplementary Fig. 8d, center). In summary, these findings indicate that CSD fluctuations are
largely attributable to variations in the overall degree of charging across scans.

Next, we sought to identify per-scan features that correlated with CSD fluctuations and can
provide insights into their underlying cause. Among the features available from the LC-MS/MS files,
we identified negative correlation (median Pearson’s r across peptides = −0.57) between per-scan
charging and total ion current (TIC), defined as the total intensity of all ion peaks in the scan
(Supplementary Fig. 8d, right). Since ion current is proportional to charge times molar abundance,
the observed negative correlation between charging and TIC further indicates a negative correlation
between charging and total molar abundance of analytes entering the mass analyzer. One explanation
for this observation is the phenomenon of “charge competition”: prior work has demonstrated that
higher charge availability per analyte (for example from decreasing analyte concentration) resulted
in higher charging35,73. As such, these results suggest that fluctuations in the total abundance of
analytes (against a fixed background of charge availability) cause changes in scan-to-scan peptide
charging due to fluctuating levels of “charge competition”. Overall, these finding indicate that
correlated CSD fluctuations arise from some underlying, time-varying experimental factors.

These findings have potential applications to mass spectrometry identification. Specifically,
peptides that have similar CSDs in one scan may exhibit more disparate CSDs in another scan
due to differences in charging conditions, similar to what was observed for run-to-run CSD vari-
ations (see main text). For example, consider the two co-eluting peptides SNEILTAIIQGMR and
ALPFWNEEIVPQIK during the 13 scans shown in Supplementary Fig. 8b. During the low charg-
ing scans, the absolute differences in CSD is ∼ 7%, whereas during the high charging scans that
differences is ∼ 14%. Namely, this proof-of-concept example showcases that scan-to-scan charging
variations may amplify differences in CSDs, allowing them to be more easily distinguished. Overall,
these findings highlight potential avenues for enhancing peptide identification through leveraging
scan-to-scan CSD fluctuations.

Supplementary Text 2: Details of CSD extraction scheme.
Here, we provide details about the CSD extraction scheme (see infographic, Supplementary Fig. 9).
In this section, the terms “scans” and “spectra” both refer to MS1 mass spectra (at a specific retention
time). The term “ion” refers to a peptide combined with a charge state. Adjustable parameters of
the extraction scheme are denoted in all caps (default values are provided in “Default parameters”
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below).

Collapsing ion mobility axis & re-centroiding timsTOF spectra.
Input: Bruker .d folder or .mzML file
Output: centroided spectra (without ion mobility axis)

Here, we describe the steps taken to collapse the ion mobility axis, and re-centroid the re-
sulting peaks for timsTOF MS1 spectra. First, we collapsed the ion mobility axis, retaining the
m/z, and intensity axes. Second, we filtered all peaks with intensity lower than CENTROID-
ING MIN PROFILE PEAK INTENSITY. Third, we identified peaks that were adjacent in m/z (where
two peaks are considered adjacent if they are located consecutively based on the uniform discretiza-
tion in the “time of flight” scale, that is in the (m/z)2 scale). Third, we grouped peaks based on
adjacency (taking the maximum range of peaks that were adjacent to one another). Fourth, for each
group of peaks, we assigned one centroided peak, with intensity equal to the sum of intensities and
m/z equal to the intensity-weighted average of m/z’s.

Processing MaxQuant analysis.
Input: MaxQuant analysis (evidence.txt, summary.txt)
Output: list of ion spectrum pairs, list of peptide spectrum pairs

Here, we describe the steps taken to establish ground truth ions and peptides, and the spectra
they are located in, which will be used in the later calibration and extraction stages.

For each identified ion from the MaxQuant analysis, we extracted the start and finish elution
times based on those stated in the evidence.txt file. Since each ion may appear multiple times in the
evidence.txt file, the start (finish) time was defined as the minimum (maximum) of all occurrences of
that ion.

For each identified ion, we paired the ion with all spectra that had a retention time located between
the ion’s start and finish elution time. For the purposes of quality control, an ion was removed if the
start and finish time differed by more than CALIBRATION MAX RETENTION LENGTH.

For each identified peptide, we paired the peptide with all spectra that were previously paired to
one of the peptide’s ions. In other words, the peptide spectrum pairs are a union of its ion spectrum
pairs.

Calibration.
Input: centroided spectra
Output: calibrated spectra

To improve the subsequent extraction stage, we calibrated the m/z axis of the MS1 spectra using
the following steps. First, for each ion spectrum pair (see “Processing MaxQuant analysis” above),
we computed its m/z offset, given as the difference between the ion’s theoretical monoisotopic m/z
and its nearest peak in the spectrum. Then, for each spectrum, we calculated a robust average (see
below) of all the m/z offsets of paired ions. Lastly, we shifted the m/z of all peaks in the spectrum
by that average.

To compute the robust average of m/z offsets, we first computed a rough estimate for the FWHM
(full width at half maximum), calculated as 2 median(|m/z offsets − median(m/z offsets)|). Then,
we removed all m/z offsets with magnitude greater than 3 FWHM. Lastly, we took the average of
the remaining m/z offsets.

To avoid problematic scans, spectra with an insufficient number of ions were removed from
downstream steps, where the minimum number of required ions is determined by CALIBRATION
MINIMUM REQUIRED PEPTIDE COUNT.
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Extraction.
Input: calibrated spectra
Output: per-scan CSD readings

Here, we describe the steps taken to extract per-scan CSD readings for each peptide spectrum
pair (see “Processing MaxQuant analysis” above). As an overview, peptide CSDs were calculated
through normalizing the estimated intensity readings of each charge state. To ensure high-quality
extractions, charge state intensity readings were labeled as “confidently present”, “confidently
absent”, or “ambiguous”, and CSDs were filtered if they contained any “ambiguous” intensity
readings. Below, we describe the specific details of the extraction scheme and the labeling criteria
used.

For each peptide spectrum pair, we first computed properties regarding the theoretical and
observed isotope distributions. For each charge state from 1+ to 5+ (or EXTRACTION MAX
CHARGE), we computed the first three peaks of the theoretical isotope distribution; we refer these

three peaks as #0 (monoisotopic), #1, and #2 peaks, respectively. We also extracted the isotope
distribution observed in the spectrum, defined as the collection of the nearest peaks (in m/z) to
the theoretical #0, #1, and #2 peaks. From these, we calculated the following properties: the m/z
offsets between the theoretical and observed isotope peaks, the cosine similarity between the isotope
distributions, and dot product between the isotope distributions (which serves as the charge state’s
estimated intensity reading). Moreover, we checked for the presence of extraneous peaks that
may suggest that the observed isotope distribution overlaps with other peptide spectra. Namely,
we extracted the nearest peak to the theoretical #-1 peak (a peak located one neutron below the
monoisotopic peak). We also extracted nearest peaks to the theoretical #-1/2, #1/2, and #3/2 peaks
(which are located at the midpoints of the #-1, #0, #1, and #2 peaks). Moreover, these extraneous
peaks were denoted as non-negligible if their intensities were high (defined as greater than one half
of the intensities of adjacent #0, #1, #2 peaks). Lastly, these properties were used to label the given
charge state based on the criteria below.

Charge states were labeled as “confidently present” if all three conditions held:

• absolute m/z offset for #0, #1, and #2 peaks < EXTRACTION MAXIMUM MZ OFFSET FOR
MATCH

• absolute m/z offsets for #-1, #-1/2, #1/2, and #3/2 peaks with non-negligible intensities >

EXTRACTION MAXIMUM MZ OFFSET FOR EXTRANEOUS PEAKS
• cosine similarity score > EXTRACTION MINIMUM SIMILARITY SCORE FOR MATCH

and consequently assigned an intensity reading derived from the spectrum (see above). Charge states
were labeled as “confidently absent” if the following condition held:

• absolute m/z offset for #0 and #1 > EXTRACTION MINIMUM MZ OFFSET FOR NO MATCH

and consequently assigned an intensity reading of zero. Charge states were labeled as “ambiguous”
otherwise.

If none of the charge states were labeled as “ambiguous”, then the peptide was assigned a CSD
reading for the scan, given by the normalized intensity readings. For the results in the main text,
each peptide was assigned a single CSD reading through an intensity-weighted average of CSDs
across scans.

Default parameters.
The default values for the parameters of the extraction scheme are:

• CENTROIDING MIN PROFILE PEAK INTENSITY = 100
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• CENTROIDING MIN CENTROIDED PEAK INTENSITY = 500
• CALIBRATION MAX ABS MZ OFFSET = 0.05
• CALIBRATION MAX RETENTION LENGTH = 5.0
• CALIBRATION MINIMUM REQUIRED PEPTIDE COUNT = 5
• EXTRACTION MAX CHARGE = 5
• EXTRACTION MINIMUM SIMILARITY SCORE FOR MATCH = 0.98
• EXTRACTION MAXIMUM MZ OFFSET FOR MATCH = 1×FWHM
• EXTRACTION MAXIMUM MZ OFFSET FOR EXTRANEOUS PEAKS = 2.5×FWHM
• EXTRACTION MINIMUM MZ OFFSET FOR NO MATCH = 5×FWHM

where FWHM is determined from the absolute m/z offsets between the theoretical and observed
monoisotopic peaks in the “Extraction” stage (e.g., 0.0018 Da for our HeLa trypsin run with 2.5 kV
ESI voltage, 160 min gradient length, 400 nL/min flow rate).
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