Abstract
A complete understanding of human behavior and disease depends upon our ability to parse genetic and environmental influences in the human brain. The heritability of a trait quantifies the degree of its variability due to genetic influences. Classical approach for quantifying heritability operate on simple traits, and sometimes do not properly control for other potential sources of variation, such as age or sex. We therefore develop Causal Heritability of Networks (CHaiN) to rigorously quantify heritability of human brain networks (i.e., connectomes). We applied CHaiN to 1024 anatomical connectomes derived from the Human Connectome Project. Connectomes appeared to be heritable, but heritability was insignificant once we addressed variability within networks. These results suggest that previous conclusions on connectome heritability may be driven by the shared network structures, and highlights the importance of modeling networks and other sources of variability when studying heritability of connectomes.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Revamped text for abstract, introduction, methods, results, and discussion. Some of the math were moved to the methods/appendix.