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Abstract1

With the availability of high quality full genome polymorphism2

(SNPs) data, it becomes feasible to study the past demographic and3

selective history of populations in exquisite detail. However, such4

inferences still suffer from a lack of statistical resolution for recent,5

e.g. bottlenecks, events, and/or for populations with small nucleotide6

diversity. Additional heritable (epi)genetic markers, such as indels,7

transposable elements, microsatellites or cytosine methylation, may8

provide further, yet untapped, information on the recent past popula-9

tion history. We extend the Sequential Markovian Coalescent (SMC)10

framework to jointly use SNPs and other hyper-mutable markers. We11

are able to 1) improve the accuracy of demographic inference in recent12

times, 2) uncover past demographic events hidden to SNP-based infer-13

ence methods, and 3) infer the hyper-mutable marker mutation rates14

under a finite site model. As a proof of principle, we focus on demo-15

graphic inference in A. thaliana using DNA methylation diversity data16

from 10 European natural accessions. We demonstrate that segregat-17

ing Single Methylated Polymorphisms (SMPs) satisfy the modelling18

assumptions of the SMC framework, while Differentially Methylated19

Regions (DMRs) are not suitable as their length exceeds that of the20

genomic distance between two recombination events. Combining SNPs21

and SMPs while accounting for site- and region-level epimutation pro-22

cesses, we provide new estimates of the glacial age bottleneck and post23

glacial population expansion of the European A. thaliana population.24

Our SMC framework paves the way for next generation demographic25

and selection inference by combining information from several herita-26

ble (epi)genomic markers.27

Keywords— Kingman coalescent, Sequentially Markovian Coalescent, ances-28

tral recombination graph, epigenetics, hidden markov model29
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Introduction30

A central goal in population genetics is to reconstruct the evolutionary history31

of populations from patterns of genetic variation observed in the present. Rele-32

vant aspects of these histories include past demographic changes as well as sig-33

natures of selection. Inference methods based on Deep Learning (DL, [37]), Ap-34

proximate Bayesian Computation (ABC, [9]) or Sequential Markovian Coalescent35

(SMC, [39, 50]) aim to infer this information directly from full genome sequencing36

data, which is becoming rapidly available for many (non-model) species due to37

decreasing costs. The SMC, in particular, offers an elegant theoretical framework38

that builds on the classical Wright-Fisher and the backward-in-time Kingman coa-39

lescent stochastic models (e.g. [35, 12, 67]). Both models conceptualize Mendelian40

inheritance as generating the genealogy of a population (or a sample), that is, the41

unique history of a fragment of DNA passing from parents to offspring. When this42

genealogy includes the effect of recombination, it is called the Ancestral Recombi-43

nation Graph (ARG, [26, 71]).44

45

Under the Kingmann coalescent model, the true genealogy of a population (or46

sample) is defined by its topology and branch length, and contains the information47

on past demographic changes and life history traits [45, 55, 60, 62] as well as selec-48

tive events [12, 67]. The genealogical and the mutational processes of any heritable49

marker can therefore be disentangled, and the frequency of any given marker state50

is given by the shape of the genealogy in time (see Figure 1A). A central assumption51

about heritable genomic markers is that they are generated by two homogeneous52

Poisson mutation processes along the genome as well as through time. This entails53

that mutations in different genealogies are independent due to the effect of recom-54

bination [71, 43], and that there are no time periods with a large excess, or a severe55

lack, of mutations along a genealogy (mutations are independently distributed in56

time within a DNA fragment). In other words, the frequency of polymorphisms57

at DNA markers observed across a sample of sequences are constrained by, as well58

as inform on, the underlying genealogy at this locus (Figure 1A). To clarify these59

assumptions, we present a schematic representation of a marker 1 (yellow in Figure60

1) which fulfills both homogeneous Poisson processes in time and along the genome.61

We also present cases applicable to a second genomic marker 2 that violates the62

model assumptions, namely by not being heritable (Figure 1B) or not following a63

non-homogeneous Poisson process in the genome (Figure 1C) or in time (Figure64

1D).65

66
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A) Neutral model with two markers B) Marker 2 is not heritable

C) Marker 2 inhomogeneity along the genome D) Marker 2 inhomogeneity in time

Fig. 1. Schematic distribution of two markers along the genealogy
and four genomes. A) Schematic distribution of marker 1 (yellow star)
and marker 2 (green star) along the genealogies in a sample of four genomes
both following a homogeneous Poisson process. B) The green marker 2 is
not heritable, so that its distribution is independent from the genealogy. C)
The green marker 2 is spatially structured along the genome, violating the
distribution of the Poisson process along the genome and conflicting with the
genealogy. D) The green marker 2 does not follows Poisson process through
time, e.g. burst of mutations at a specific time point represented by given
branches of the genealogies in green. The yellow marker 1 has an identical
Poisson process along the genome and the genealogy in all four panels, and
for readability, marker 2 exhibits light and dark green states.

Despite the power of the SMC, well-known model violations such as variation67

of recombination and mutation rates along the genome [5, 4] or pervasive selection68

[53, 31, 30] can compromise the accuracy of demographic and selective inference69

[24, 56]. There are two other important issues that have received less attention in70

the literature. The first issue occurs when the population recombination rate (ρ)71

is higher than the population mutation rate (θ). In such cases, inferences can be72

biased if not erroneous [63, 56, 55], because several recombination events cannot73

be inferred due to the lack of Single Nucleotide Polymorphisms (SNPs for point74

mutations). This problem affects many species, though interestingly not humans75

which have a ratio ρ/θ ≈ 1. A second issue occurs when the mutational process76

along the genealogy is too slow be informative about sudden and strong variation77

in population size (i.e. population bottlenecks), such as during colonization events78

of novel habitats. The typical low mutation rate of 10−9 up to 10−8 (per base, per79
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generation) found in most species therefore places strong limitations on SMC anal-80

ysis of recent bottleneck events (up to ca. 10−4 generations ago) when inference is81

based solely on SNP data. Indeed, bottlenecks are often either not found, or when82

inferred, their timing and magnitude are not well estimated (inferred smoother83

than in reality, [31, 56]), even when a large number of samples is used. A typical84

example is the large uncertainty of the timing and magnitude of the population85

size bottleneck during the Last Glacial Maximum (LGM) and post-LGM expan-86

sion in A. thaliana European populations based on several studies using different87

accessions and SMC inference methods [2, 18].88

89

Nonetheless, current SMC, DL or ABC inference methods making use of full90

genome sequence data rely almost exclusively on SNPs for inference [50, 63, 55,91

9, 36]. There are both practical and theoretical reasons for using SNPs: They are92

easily detectable from short-read re-sequencing data and their mutational process93

is well approximated by the infinite site model [12, 67], simplifying the inference of94

the underlying genealogy. However, other heritable genomic markers exists whose95

mutation rates can be several orders of magnitude higher than that of SNPs, and96

could thus be more informative about recent demographic events. These include97

microsatellites, insertions, deletions and transposable elements (TEs). Current98

technological limitations still impede the easy detection and estimation of allele99

frequencies for many of these markers [73, 48, 68]. For example, identifying inser-100

tion/excision variation of transposable elements (TEs) or or copy number variation101

of microsatellites requires a high quality reference genome and ideally long-read se-102

quencing approaches [48]. In addition to these genomic markers, DNA cytosine103

methylation is emerging as a potentially useful epigenetic marker for phylogenetic104

inference in plants [75, 76]. Stochastic gains and losses of DNA methylation at105

CG dinucleotides, in particular, arise at a rate of ca. 10−4 up to 10−5 per site per106

generation (that is 4 to 5 orders of magnitude faster than DNA point mutations,107

[65]), and can be inherited across generations [70]. These so-called spontaneous108

epimutations are likely neutral at the genome-wide scale ([66, 29], but see [44]),109

and can be easily detected from bisulpite converted short read sequencing data110

[40, 52]. Recent work suggests that CG methylation data can be used as a molec-111

ular clock for timing divergence between pairs of lineages over timescales ranging112

from years to decades [76].113

114

However, theoretical integration of the above-mentioned (epi)genomic markers115

into a population genomics and SMC inference framework is not trivial. Because of116

the high mutation rate, the mutational process at these (hyper-mutable) markers117

is reversible and more consistent with a finite site, rather than infinite site, model,118

which can result in extensive homoplasy (as known for microsatellite markers, [16]).119

Indeed, classic expectations of population genetics diversity statistics, mostly build120

for SNPs, need to be revised for these hyper-mutable markers [13, 69]. Here we121

develop the theoretical and methodological inference framework for the inclusion122
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of additional (potentially hyper-mutable) markers into the SMC. We showcase our123

model using extensive simulations as well as application to published DNA cytosine124

methylation data from local populations of A. thaliana ([52, 66]). We demonstrate125

that integration of hyper-mutable genomic markers into SMC models significantly126

improves the inference accuracy of past variation of population size, or can even un-127

cover demographic events not uncovered using SNPs alone. Our proof-of-principle128

approach opens up novel avenues for studying population genetic processes over129

time-scales that have been largely inaccessible using traditional SNP-based ap-130

proaches. This may prove particularly useful when exploring recent demographic131

changes of endangered species as a way to assess their potential for extinction in132

the context of biodiversity loss and global change.133

Results134

Theoretical results with two markers underlying the SMC135

computations136

We study polymorphic sites across genomes of several sampled individuals which137

exhibit several possible markers (DNA nucleotides, methylation, TEs, indels, mi-138

crosatellites,...). We define any marker by 1) its maximum number of possible139

states (nbs), for example nucleotide sites have four states (A, T, C and G) while a140

methylation site has two states (methylated or unmethylated), and 2) its mutation141

rate µ, i.e. the rate at which the state of a marker changes into another state per142

position and per generation [3]. More specifically, we are interested in two rates:143

the DNA mutation rate for changes in DNA nucleotides, and epimutation rate for144

change in methylation state. Furthermore, we assume that at each position on145

the genome only one type of marker can occur and be observed. We obtain as a146

first theoretical result the probability for a given site in the genome to be identical147

(P (id)) or segregating (P (seg)) (i.e. polymorphic) in a sample of size two (n = 2,148

two sampled chromosomes are compared):149

P (id, n = 2) =
1

nbs
+

(nbs − 1)

nbs
e
−2µtM

(nbs)
(nbs−1)

P (seg, n = 2) =
(nbs − 1)

nbs
− (nbs − 1)

nbs
e
−2µtM

(nbs)
(nbs−1)

(1)

This probability is a function of the time to the most recent common ances-150

tor (TMRCA in text and tM in equation 1, details in Supplementary Text). The151

probability for a mutation to occur for a given marker increases with an increased152

TMRCA [12, 67], but under high mutation rates the marker may not be polymor-153

phic in the sample as mutations may be reversed (so-called homoplasy, [16, 13]). In154

Figure 2 we illustrate these properties by computing the probability 1 for different155

mutation rates. The inference of recent demographic events and bottlenecks do rely156
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on the presence of polymorphic sites to detect recent coalescent event (TMRCA),157

and should be improved by using markers with high (or fast) mutation rate (e.g.158

hyper mutable).159
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Fig. 2. Probability of a site to be segregating in a sample of size two
for different mutation rates. The probability for a site to be segregating in a
sample of size two under different mutation rates: 10−2 in red,10−4 in orange, 10−6

in green and 10−8 in blue. The marker is assumed here to have nbs = 4 possible
states.

In the following, we simulate data under different demographic scenarios using160

the sequence simulator program msprime [6, 33], which generates the ARG of n161

sampled diploid individuals (set to n = 5 throughout this study, leading to 10162

haploid genomes). This ARG contains the genealogy of a given sample at each163

position of the simulated chromosomes. We then process the ARG to create DNA164

sequences according to the model parameters and the type of marker considered.165

We first assume a set of genomic markers obtained for a sample size n, and mu-166

tating according an homogeneous Poisson process along the genome and in time167

(along the genealogy) as in Figure 1A. To simulate the sequence data, we define168

the number of marker types (any number between 1 and the sequence length) and169

the proportion of sites of each marker type in the sequence. Each marker is char-170

acterized by both parameters nbs and µ. For simplicity, we simulate sequences171

with two markers, but note that the method can be easily extent to additional172

markers. Marker 1 represents 98% of the sequence, and has a per site mutation173
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rate µ1 = 10−8 mimicking nucleotide SNP markers under an infinite site model174

(thus considered as bi-allelic at a given DNA site, [74]). By contrast, marker 2175

composes the complementary 2% of the sequence length, with a per site mutation176

rate of µ2 = 10−4 per generation between two possible states. Marker 2 is thus177

hyper-mutable compared to marker 1 and mimics methylation/epimutation sites.178

Note, that mutation events in Marker 1 and 2 are simulated under a finite site179

model.180

181

We use different SMC-based methods throughout this study. These methods182

include: 1) MSMC2 used as a reference method [19], 2) SMCtheo is an extension183

of the PSMC’ [39, 50] accounting for any number of heritable theoretical mark-184

ers, and 3) eSMC2 which is equivalent to SMCtheo but accounting only for SNPs185

markers [56] (to avoid any bias in implementation differences between SMCtheo186

and MSMC2). All methods are Hidden Markov Models (HMM) derived from the187

Pairwise Sequentially Markovian Coalescent (PSMC’) [50] and assume neutral evo-188

lution and a panmictic population. The hidden states of these methods are the189

coalescence time of a sample of size two at a position on the sequence. From the190

distribution of the hidden states along the genome, all methods can infer population191

size variation through time as well as the recombination rate [50, 19, 56].192

The inclusions of hyper-mutable genomic markers im-193

proves demographic inference194

We assume that the mutation rate of marker 1 is µ1 = 10−8 per generation per195

bp. We use this information to estimate the mutation rate of marker 2, which196

we vary from µ2 = 10−8 to µ2 = 10−2 per generation per bp. The estimation197

results based on simulated data under a constant population size of N = 10, 000198

are displayed in Table 1. We find that our approach is capable of inferring µ2 with199

high accuracy for rates up to µ2 = 10−4. However, when the mutation rate µ2 is200

10−2, our approach underestimates it by a factor three, suggesting the existence of201

an accuracy limit. To demonstrate that information can be gained by integrating202

marker 2 (with µ2 = 10−4), we compared the ability of several inference methods to203

recover a recent bottleneck (Figure 3A). All methods correctly infer the amplitude204

of population size variation. When accounting only for marker 1 (with µ1 = 10−8,205

MSMC2 and eSMC2 fail to infer accurately the sudden variation of population size.206

However, with the inclusion of hyper-mutable marker 2, our SMCtheo approach207

correctly infers the rapid change of population size of the bottleneck (Figure 3A,208

green). It is encouraging that an accurate estimation of the demography is ob-209

tained, even when the mutation rate of marker 2 is unknown (Figure 3A, blue).210

211
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True µ2 value Estimated value of µ2

10−8 9.9× 10−9 (0.02)
10−6 1.0× 10−6 (0.008)
10−4 1.4× 10−4 (0.01)
10−2 3.05× 10−3 (0.41)

Table 1: Average estimated values of the mutation rate of marker 2 (µ2),
knowing that of marker 1. We use 10 sequences of 100 Mb (r = µ1 = 10−8

per generation per bp) under a constant population size fixed to N = 10, 000.
The coefficient of variation over 10 repetitions is indicated in brackets.

Furthermore, some species or populations might feature small effective popu-212

lation sizes (ca. N = 1, 000), potentially resulting in reduced genomic diversity.213

In such cases the inclusion of hyper-mutable markers should also improve demo-214

graphic inference. We present the results of such a scenario in Figure 3B, where215

the population size was divided by a factor 10 compared to the previous scenario in216

Figure 3A. We find that in the absence of the hyper-mutable marker 2, no approach217

can correctly infer the variation of population size. From the shape of the inferred218

demography, methods using only marker 1 do not suggest the existence of a bottle-219

neck followed by recovery (the "U-shaped" demographic scenario is not apparent220

with the orange and red lines, Figure 3B). Yet, when integrating both markers,221

the population size can be recovered, even if the mutation rate of marker 2 is not222

a priori known. In both Figure 3A and B, we assume that the marker 2 occurs223

at a frequency of 2% in the genome. This percentage may be unrealistically high224

depending on the marker and the species. To test the impact of reducing marker 2225

frequency, we repeat the simulations shown in Figure 3A, but set its frequency to as226

low as 0.1% (a 20-fold reduction). We find that the inclusion of the hyper-mutable227

marker 2 continues to improve inference accuracy in very recent times, albeit less228

pronounced than in Figure 3A (see Supplementary Figure 1). This suggests that a229

very small proportion of hyper-mutable genomic sites is sufficient to significantly230

improve the accuracy of inferences.231

232
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Fig. 3. Performance of SMC approaches using different markers. Esti-
mated demographic history of a bottleneck (black line) by SMC approaches using
two genomic markers. In orange and red, are the estimates by MSMC2 and eSMC2
based on only marker 1. Estimates from SMCtheo integrating both markers are in
green (with known µ2), and in blue with unknown µ2. The demographic scenarios
are A) 10-fold recent bottleneck with an ancestral population size N = 10, 000, B)
10-fold recent bottleneck with an ancestral population size N = 1, 000, C) 10-fold
bottleneck with an ancestral population size N = 10, 000, and D) a very severe
(1,000 fold) and very recent bottleneck with incomplete size recovery. In A, B and
D, we assume r/µ1 = 1 (with r = µ1 = 10−8, µ2 = 10−4 per generation per bp)
and in C, r/µ1 = 10 (with r = 10−7, µ1 = 10−8, and µ2 = 10−4 per generation per
bp).

All full genome inference methods, especially SMC approaches, display lower233

accuracy when the population recombination rate (ρ = 4Nr) is larger than the234

population mutation rate of marker 1 (θ1 = 4Nµ1). We simulate sequence data235
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under a bottleneck scenario slightly more ancient than in Figure 3A and assume236

that ρ/θ1 = r/µ1 = 10 and ρ/θ2 = r/µ2 = 10−3. Our results show that by237

integrating the genomic marker 2 which mutation rate is larger than the recom-238

bination rate, estimates of the recombination rate as well as past population size239

variation are substantially improved (Table 2, Figure 3C). Indeed, analyzing only240

marker 1, eSMC2 and MSMC2 fail to infer the sudden variation of population size,241

overestimate the population size in recent times (Figure 3D). By integrating the242

hyper-mutable marker 2, our SMCtheo approach correctly infers the strength and243

time of the bottleneck when µ1 and µ2 are known (Figure 3D, green line), while244

the timing of the bottleneck is slightly shifted in the past when µ2 is unknown and245

estimated by our method (Figure 3D, blue line). Using only marker 1, the esti-246

mates of the recombination rate are inaccurate (Table 2 under various demographic247

scenarios in Supplementary Figure S2). We further improve the accuracy of esti-248

mation by optimizing the likelihood (LH) to estimate the recombination rate and249

demography compared to the classically used Baum-Welch (BW) algorithm (Table250

2). Our results demonstrate that SNPs are limiting and insufficient for accurate251

inferences in recent times and that the inclusion of an additional marker with mu-252

tation rate higher than the recombination rate generates significant improvements253

in demographic inference. However, by directly optimizing the likelihood the true254

recombination rate can be well recovered even with Marker 1 only.255

256

Method True recombination rate Average estimated recombination rate
MSMC2 (BW) 10−7 0.23× 10−7 (0.017)
1 Marker : BW 10−7 0.25× 10−7 (0.012)
2 Marker : BW 10−7 0.90× 10−7 (0.004)
1 Marker : LH 10−7 0.84× 10−7 (0.036)
2 Marker : LH 10−7 0.94× 10−7 (0.01)

Table 2: Estimates of recombination rates with one or both markers. For
SMCtheo, BW stands for the use of the Baum-Welch algorithm to infer
parameters, and LH to the use of the likelihood. We use 10 sequences of 100
Mb with r = 10−7, µ1 = 10−8 and µ2 = 10−4 per generation per bp in a
population with a past bottleneck event. The coefficient of variation over 10
repetitions is indicated in brackets.

Integrating DNA methylation improves the accuracy of257

inference258

Definition of the theoretical model for DNA methylation259

Following the previously encouraging results of demographic inference with SNPs260

and an hyper-mutable marker under the specific assumptions of Figure 1A, we de-261

velop a specific SMCm method to jointly analyse SNPs and cytosine methylation as262

an epigenetic hyper-mutable marker. We focus here on methylation located in CG263
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contexts within genic regions as these are more likely to evolve neutrally [66, 75, 76].264

The methylation of individual CG dinucleotides presents a biallelic heritable marker265

with a finite number of (epi)mutable sites (Figure 4). In a sample of several se-266

quences from a population, variation in the methylation status of individual CGs267

is known as single methylation polymorphism (SMP, Figure 4A) which could be268

used for demographic and divergence inference [65, 66]. However, CG methylation269

sites can also be organized in spatial clusters (of similar state) due to region level270

epimutation (Figure 4B, [70, 15, 44]. Region level epimutations can have differ-271

ent epimutation rates than individual CG sites. Population-level variation in the272

methylation status of these clusters is known as differentially methylated regions273

(DMRs). Furthermore, when integrating SMP and DMR epimutational processes274

(i.e. what we here call region level epimutation), the methylation status of CG275

sites is therefore affected by the superposition of both processes. Therefore the276

simulation and modeling of epimutational processes of SMPs is more complex than277

in our previous model as we need to account for the effect of region methylation278

as well as for methylation and demethylation epimutation rates to be different and279

asymmetrical [65, 15].280

281

Fig. 4. Schematic representation of site and region epimutations
Schematic representation of a sequence undergoing epimutation at A) the cyto-
sine site level, and B) at the region level. A methylated cytosine in CG context is
indicated in black and an unmethylated cytosine in white.

To make our simulations realistic, we use the A. thaliana genome sequence as282

a starting point, and focus on CG dinucleotides within genic regions. To that end,283

we selected random 1kb regions within genes and choose only those CG sites that284

are clearly methylated or unmethylated in A. thaliana natural populations based285

on whole genome bisulphite sequencing (WGBS) mesaurements from the 1001G286

project (SI text). Our simulator for CG methylation is build in a similar way as287

the one described above but the epimutation rates are allowed to be asymmetric288

with the per-site methylation rate (µSM ) and demythylation (µSU ). Region-level289

epimutations are also implemented, setting the region length to either 1kb [44] or290
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150 bp [15]. The region level methylation and demethylation rates are defined as291

µRM and µRU , respectively. We assume that site-level and region-level epimuta-292

tion processes are independent. Making this assumption explicit later allow us to293

test if it is violated in comparisons with actual data. Our simulator also assumes294

that DNA mutations and epimutations are independent of one another. That is,295

for simplicity we ignore the fact that methylated cytosines are more likely to tran-296

sition to thyamines as a result of spontaneous deamination [28]. We also ignore297

the possibility that new DNA mutations could act as CG methylation quantitative298

trait loci and affect CG methylation patterns in both cis and trans. Such events are299

extremely rare, and we therefore think that the above assumptions hold reasonably300

well over short evolutionary time-scales. As the goal is to apply our approach to A.301

thaliana, we simulate sequence data for a sample size n = 10 (but considering A.302

thaliana haploid) from a population displaying 90% selfing [55, 60] under a recent303

severe population bottleneck demographic scenario. We simulate data assuming304

previously estimates of the rates of recombination [49], DNA mutation [47], and305

site- and region-level methylation [65, 15].306

307

As guidance for future analyses of demographic inference using SNPs and DNA308

methylation data, the theoretical and empirical analysis of A. thaliana methylomes309

consist of the following five steps: 1) assessing the relevance of region-level methy-310

lation (DMRs) for inference, 2) inference of site and region epimutation rates, 3)311

comparing statistics for the SNPs, SMPs and DMRs distributions, 4) demographic312

inference using SNPs with SMPs or DMRS, and 5) demographic inference using313

SNPs with SMPs and DMRs.314

315

Step 1: assessing the relevance of region-level methylation (DMRs)316

for inference317

We determine our ability to detect the existence of spatial correlations between318

epimutations. That is, we asked if site-specific epimutations can lead to region-319

level methylation status changes. We assess this across a range of epimutation320

rates assuming two sequences of 100 Mb (r = µ1 = 10−8 per generation per bp)321

under a constant population size fixed to N = 10, 000 (results in Supplementary322

Table 1). If site-specific epimutations are independently distributed, the probabil-323

ity of a given site to be in a certain (methylated or unmethylated) state should324

be independent from the state of nearby sites (knowing the epimutation rate per325

site). Conversely, if there is a region effect on epimutation (DMRs), two consecu-326

tive sites along the genome would exhibit a positive correlation in their methylated327

states. We therefore calculate from the per-site (de)methylation rates µSM and328

µSD the probability that two successive cytosine positions are identical in their329

methylation assuming they are independent. This probability can be compared330

to the one observed (here simulated) methylation data so that we obtain a sta-331
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tistical test for the existence of a positive correlation in the methylation status332

of nearby sites, interpreted as region-level epimutation process (p-value = 0.05)333

according to Figure 1A. If the test is non-significant, we validate the existence of a334

region effect for methylation/demethylation affecting neighbouring cytosines. We335

find that when region epimutation rates are higher than (or similar to) site-level336

epimutation rates, namely µRM ' µSM and µRU ' µSU ), the existence of regions337

of consecutive cytosines is detected with high accuracy. However, when site-level338

epimutation rates are higher (µSU > µRU and µSM > µRM ) than region-level339

epimutation rates, region-level changes cannot be readily detected (Supplementary340

Table 1). When methylated regions are detected, we can further determine their341

length using a specifically developed Hidden Markov Model (HMM) using all pairs342

of genomes (similarly to [57, 15, 61]). While the length of the methylated region is343

pre-determined in our simulations (1kb or 150bp) but site-level epimutation occur344

which can change the distribution of methylation states in that region and across345

individuals, thus DMR regions can vary in length along the genome and between346

pairs of chromosomes.347

348

Step 2: inference of site- and region-level epimutation rates349

As the epimutation rates of most plant species remain unknown, we assess the accu-350

racy of SMCm to infer epimutation rates at the site- and region-level directly from351

simulated data. We first assume that either only site- or only region epimutations352

can occur, and infer their respective rates (see Supplementary Table 2 and 3). Our353

SMCm approach can accurately recover these rates except when these are higher354

than 10−4. Next, we assess the accuracy of our approach to simultaneously infer355

site- and region-level epimutation rates assuming that region and site epimutation356

rates are equal (Supplementary Table 4). Similar to our previous observation, we357

find that when the epimutation rates are very high (e.g. close to 10−2), accuracy358

is lost compared to slower epimutation rates. Nonetheless, our average estimated359

rates are off from the true value by less than an factor 10. Hence, under our model360

assumptions, we are able to recover the correct order of magnitude for site- and361

region-level methylation and demethylation rates.362

363

Step 3: distribution of statistics for SNPs, SMPs and DMRs364

To gain insights on the distribution of epimutations under the assumptions de-365

scribed in the introduction, we look at key statistics from our simulations: the366

distribution of distance between two recombination events versus the distribution367

of the length of estimated DMR regions (Figure 5A), and the LD decay for SMPs368

(in genic regions) and SNPs (in all contexts) (Figure 5C and D). In our simulations369

DMRs regions have a maximum fixed size, but their length depends on the inter-370

action between the region- and site-level epimutation rates. As mentioned in step371
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1, the methylated/demethylated regions are detected using the binomial test and372

their length estimated by the HMM. Therefore, while variation exist for the length373

of these regions (Figure 5A), there are shorter than the span of genealogies along374

the genome, which are defined by the frequency of recombination events along the375

genome (r = 3.5× 10−8 as in A. thaliana). There is is virtually no linkage disequi-376

librium (LD) between epimutations due to the high epimutation rate (Figure 5C),377

while the LD between SNPs can range over few kbp (Figure 5D, as observed in378

A. thaliana [27, 52]). Note however, that the region methylation process in itself379

does not generate LD because this measure can only be computed if SMPs are380

present in frequency higher than 2/n in the sample, i.e. there is no LD measure381

defined for monomorphic methylated/unmethylated regions. In other words, our382

simulator generates SNPs, SMPs and DMRs which fulfil the three key assumptions383

of Figure 1A. We note that by using a constant population size N = 10, 000, the384

LD decay for SNPs is higher than in the A. thaliana data which exhibit an effective385

population size of ca. N = 250, 000 [27] and past changes in size.386

387
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B) Distribution of genealogy and DMR size in A.thaliana
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Fig. 5. Key statistics for epimutations and mutations. A) Histogram
of the length between two recombination events (genomic span of a genealogy)
and DMRs size in bp of the simulated data. B) Histogram of genealogy span
and DMRs size in bp from the A. thaliana data (10 German accessions). C)
Linkage desequilibrium decay of epimutations in our samples of A. thaliana (red)
and simulated data (blue). D) Linkage desequilibrium decay of mutations in our
A. thaliana samples (red) and simulated data (blue). The simulations reproduce
the outcome of a recent bottleneck with sample size n = 5 diploid of 100 Mb, the
rates per generation per bp are r = 3.5× 10−8, µ1 = 7× 10−9, µSM = 3.5× 10−4,
µSU = 1.5× 10−3, and per 1kb region µRM = 2× 10−4 and µRU = 1× 10−3.

Step 4: demographic inference based on SNPs with SMPs or DMRs388

We test the usefulness of either SMPs or DMRS for demographic inference. Simula-389

tions under the demographic model from steps 1-3 assume DNA mutations (SNPs)390

and only site epimutations (SMPs), i.e. no region-level methylation (µRM = µRU =391

0). We perform inference of past demographic history under different amount392

of potentially methylated sites with and without a priori knowing the methyla-393

tion/demythylation rates (Figure 6A, B). When the site epimutation rates are a394

priori known, the sharp decrease of population size can be accurately detected.395

When epimutation rates are unknown, the shape of the past demographic history396

is also well inferred except for a scaling issue (a shift along the x- and y-axes sim-397

ilar to that in Figure 6D). When we vary the amount of potentially methylated398

sites (2%, 10% and 20%) our inference results remain largely unchanged. This399

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535252
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggests that having methylation measurements for as low as 2% of all CG sites400

being epimutable in the genome is entirely sufficient to improved SNP-based de-401

mographic inference (eSMC2 in Figure 6A).402

403

The amount of sequence data used in Figure 4A and B is fairly large com-404

pared to real datasets (10 haploid genomes of length 100 Mb). We therefore ran405

the SMCm and eSMC2 on sequence data simulated under the same scenario but406

with a reduced sequence length of 10 Mb (n = 5 diploid, Figure 6C and D, only407

3 repetitions are presented for visibility). In this case, we found that inference408

is significantly affected when using only SNPs (eSMC2 in blue), as we are un-409

able to correctly recover the demographic scenario. However, incorporating SMPs410

with known site-level epimutations into the model leads to substantial inference411

improvements (Figure 6C and D).412

413
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Fig. 6. Performance of SMC approaches using site epimutations
(SMPs) and mutations (SNPs) under a bottleneck scenario. Estimated
demographic history by eSMC2 (blue) and SMCm assuming the epimutation rate
is known (B and D) or not (A and C) where the percentage of CG sites with
methylated information varies between 20% (red), 10% (orange) and 2% (green)
using 10 sequences of 100 Mb in A and B (with 10 repetitions) and 10 sequences
of 10 Mb in C and D (three repetitions displayed) under a recent severe bottleneck
(black). The parameters are: r = 3.5× 10−8 per generation per bp, mutation rate
µ1 = 7 × 10−9, methylation rate to µSM = 3.5 × 10−4 and demethylation rate to
µSU = 1.5× 10−3 per generation per bp.

We then simulate data under the same demographic scenario, but assume only414

region level epimutations (DMRs, µSM = µSU = 0). The results for DMR region415

sizes 1kb and 150bp are displayed in Supplementary Figure 4 and 5, respectively.416

As in Figure 6, we observed a gain of accuracy in inference when region-level epimu-417

tation rates are known, while the length of the region (1kb or 150bp) does not seem418
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to affect the result. However, no significant gain of information is observed when419

integrating DMR data with unknown epimutation rates (Supplementary Figure 4420

and 5). In summary, CG methylation SMPs and to a lesser extend DMRs, can be421

used jointly with SNPs to improve demographic inference.422

423

Step 5: demographic inference based on SNPs with SMPs and424

DMRs425

Since site- and region-level methylation processes occur in real data, we run SMCm426

on simulated data under the same demographic scenario, but now using both site427

(SMPs) and region (DMRs) epimutations and accountig for both mutation pro-428

cesses. Inference results are displayed in Supplementary Figure 6. When epimu-429

tation rates are a priori known (in our simulations the rates are fixed and thus430

known), we find the counter-intuitive result that integrating epimutations decreases431

the accuracy of inference (compared to SMPs alone, Figure 4). However, when the432

epimutation rates are set to be inferred by SMCm, integrating SMP and DMR data433

slightly restores the accuracy of inference (Supplementary Figure 6). Finally, we as-434

sess the inference accuracy when using SNPs and SMPs but ignoring in SMCm the435

region methylation effect (DMRs), even though this latter process takes place (Sup-436

plementary Figure 7). Interestingly, the inference accuracy decreases compared to437

the previous results (Supplementary Figure 4-6). While the sudden variation of438

population is somehow recovered, the estimates of the time and magnitude of size439

change are not well recovered in recent time.440

441

We demonstrate that our SMCm exhibits an improved statistical power for442

demographic inference using SNPs and SMPs while accounting for site and region-443

level methylation processes under the assumptions of Figure 1A. We show that444

1) using SMPs we can unveil past demographic events hidden by limitations in445

SNPs, 2) the correct demography can be uncovered irrespective of knowing a pri-446

ori the epimutation rates, 3) ignoring site or region-level processes can decrease447

the accuracy of inference, and 4) knowing the epimutation rates may improve the448

estimate of demography compared to simultaneously estimating them with SMCm.449

450

Joint use of SNPs and SMPs improves the inference of451

recent demographic history in A. thaliana452

Step 1: assessing the strength of region-level methylation process453

in A. thaliana454

We apply our inference model to genome and methylome data from 10 A. thaliana455

plants from a German local population [27]. We start by assessing the strength of456

a region effect on the distribution of methylated CG sites along the genome. As457
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expected from [15], for all 10 individual full methylomes we reject the hypothesis of458

a binomial distribution of methylated and unmethylated sites along the genomes,459

suggesting the existence of region effect methylation (yielding DMRs) meaning460

that CG are more likely to be methylated if in a highly methylated region, and461

conversely for unmethylated CG. This is consistent with the autocorrelations in462

mCG found in [15, 11]. As a first measure of methylated region length, we test463

the independence between two annotated CG methylation given a minimum ge-464

nomic distance between them (within one genome). We observe an average p-value465

smaller than 0.05 for distances up to 2,000bp but then the p-value rapidly increases466

(>0.4) (Supplementary Figure 8). As a second measure, our HMM (based on pairs467

of genomes) yields a DMR average length of 222 bp (distribution in Figure 5B).468

469

We conclude that the minimum distance for epimutations to be independent470

along a genome is over 2kb and spans larger distance than the typically proposed471

DMR size (ca. 150 bp in [15] and 222bp in our analysis) and can therefore cover the472

size of a gene (see [44]). The simulations and data from A. thaliana indicate that473

the epimutation processes that produces DMRs at the population level in plants474

cannot simply results from the cumulative action of single-site epimutations. This475

insights is consistent with recent analyses of epimutational processes in gene bodies,476

which seems to indicate that the autocorrelation in CG methylation is a function of477

cooperative methylation maintenance and the distribution of histone modifications478

[11].479

Step 2: site- and region-level epimutation rates480

We used the known rates empirically estimated in A thaliana and used in simula-481

tions above (µSM = 3.5 × 10−4 and µSU = 1.5 × 10−3 per bp per generation and482

µRM = 2× 10−4 and µRU = 1× 10−3 per region per generation, [65, 15].483

484

Step 3: distribution statistics for SNPs, SMPs and DMRs in A.485

thaliana486

Since our SMC model assumes that DNA, SMP and DMR polymorphisms are de-487

termined by the underlying population/sample genealogy, DMR which span long488

genomic regions may spread across multiple genealogies and thus violates our as-489

sumptions. We thus further investigate the potential discrepancies between the490

data and our model (Figure 5). We infer the DMR sizes from all 10 A. thaliana491

accessions using our ad hoc HMM, and measure the bp distance between a change492

in the expected hidden state (i.e. coalescent time) along the genome, which we493

interpret as recombination events (called the genomic span of a genealogy). The494

resulting distributions are found in Figure 5B. We observe that both distributions495

have a similar shape but DMRs are on average twice as large as the inferred ge-496

nomic genealogy span: average length of 222 bp (DMR) vs 137 bp (genealogy) and497
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median length of 134 bp (DMR) vs 62 bp (genealogy). This means that on average498

DMRs are larger than the average distance between two recombination events, thus499

violating the homogeneous distribution of epimutations along the genome (Figure500

1C).501

502

To further unveil potential non-homogeneity of epimutations distribution, we503

assess the decay of LD of mutations (SNPs) and epimutations (SMPs) (Figure 5C504

and D) confirming the results in [52]. We find the LD between SMPs in the data505

to be high (and higher than LD between SNPs) for distance smaller than 100 bp506

(red line in Figure 5C and D). The LD decay of SMPs is much faster than for507

SNPs (no linkage between epimutations for distances > 100bp), likely stemming508

from 1) epimutation rates being much higher than the DNA mutation rate, and509

2) the high per site recombination rate in A. thaliana. Moreover, the LD between510

SMPs at distance smaller than 100bp in A. thaliana being much higher compared511

to our simulations (Figure 5C), we suggest that additional local mechanisms of512

epimutation processes may not be accounted for in our model of the region-level513

methylation process.514

515

Step 4: demographic inference for A. thaliana based only on SNPs516

and SMPs517

Finally, we apply the SMCm approach to data from the German accessions of A.518

thaliana. When using SNP data only, the demographic results are similar to those519

previously found [55, 60] (Figure 7 purple lines), with no strong evidence for an520

expansion post-Last Glacial Maximum (LGM) [27]. We then sub-sample and ana-521

lyze segregating SMPs, which exhibit both methylated and unmethylated states in522

our sample (as in [65]). Here we ignore DMRs and account only for SMPs. When523

we use as input the methylation and demethylation rates that have been inferred524

experimentally [65], a mild bottleneck post-LGM is followed by recent expansion525

(Figure 7 blue lines). By contrast, letting our SMCm estimate the epimutations526

rates, we find in recent times a somehow similar but stronger demographic change527

post-LGM. We find a strong bottleneck event occurring between ca. 5,000 and528

10,000 generations ago followed by an expansion until today (Figure 7 green lines).529

The inferred site epimutation rates are 10,000 faster than the DNA mutation rate530

(Supplementary Table 5) which is close to the expected order of magnitude from531

experimental measures with and without DMR effects [65, 15]. Both estimates532

thus yield a post-LGM bottleneck followed by a recent population expansion.533

534

These results indicate that the inclusion of DNA methylation data can aid in535

the accurate reconstruction of the evolutionary history of populations, particularly536

in the recent past where SNPs reach their resolution limit. This is made possible by537

the fact that the DNA methylation status at CG dinucleotide undergoes stochastic538
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changes at rates that are several orders of magnitude higher than the DNA muta-539

tion rate, and can be inherited across generations similar to DNA mutations.540

541
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Fig. 7. Integrating epimutations and mutations on German accessions
of A. thaliana. Estimated demographic history of the German population by
eSMC2 (only SNPs, purple) and SMCm when keeping polymorphic methylation
sites (SMPs) only: green with epimutation rates estimated by SMCm, blue with
epimutation rates fixed to empirical values. The region epimutation effect is ig-
nored. The parameters are r = 3.6 × 10−8, µ1 = 6.95 × 10−9, and when assumed
known, the site methylation rate is µSM = 3.5 × 10−4 and demethylation rate is
µSU = 1.5× 10−3.

Step 5: demographic inference accounting for DMRs in A. thaliana542

To assess the robustness of our inference results, we run SMCm using all cytosines543

(CG) sites with an annotated methylation status (segregating or not) while ac-544

counting or not for DMRs (Supplementary Figure 9). We fix epimutation rates to545

the empirically estimated values, and confirm the estimates from Figure 7. When546

the region-level methylation process is ignored the inferred demography (blue lines547

in Supplementary Figure 9) is similar to the estimates from SMPs with fixed rates548

in Figure 7 (blue lines). When the region-level methylation process is taken into549

account (orange lines in Supplementary Figure 9), the inferred demography is simi-550

lar to that of the Figure 7 (green lines). In the case where we infer the epimutation551
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rates (sites and region) the demographic history inference is not improved com-552

pared to that estimated using SNPs only (Supplementary Figure 9, green and red553

lines) while the inferred epimutation rates are smaller than expected (Supplemen-554

tary Table 5 and 6), but the ratio of site to region epimutation rates is consistent555

with empirical estimates [15].556

557

Discussion558

Current approaches analyzing whole genome sequences rely on statistics derived559

from the distribution of ancestral recombination graphs [23, 56, 36, 60, 10, 72,560

58, 34]. In this study we present a new SMC method that combines SNP data561

with other types of genomic marker (e.g. TE, microsatallites, DNA methylation).562

We focus mainly on the inclusion of genomic markers whose mutation rates ex-563

ceed the DNA point mutation rate, as such (hyper-mutable) markers can provide564

increased temporal resolution in the recent evolutionary past of populations, and565

aid in the identification of demographic changes (e.g. population bottlenecks).566

We demonstrate that by integrating multiple heritable genomic markers, the ARG567

can be more accurately recovered (outperforming any other methods given the568

amount of data used in this study [63, 58]). Our simulations demonstrate that569

if the SNP mutation rate is known, the mutation rate of other markers can be570

recovered. Moreover, our method accounts for the finite site problem that arises at571

reversible (hyper-mutable) markers and/or effective population size is high [62, 64].572

Because model inferences are based on a Baum-Welch algorithm, the accuracy of573

the method depends on the HMM’s capacity to correctly recover the true hidden574

states [39, 50, 23, 56]. The simulator and SMC methods presented here therefore575

pave the way for a rigorous statistical framework to test if a common ARG can576

explain the observed diversity patterns under the model hypotheses laid out in577

Figure 1. We find that comparisons of LD for different markers along the genome578

is a useful way to assess violations of our model assumptions.579

As proof of principle, we apply our approach on data originating from whole580

genome and methylome data of A. thaliana natural accessions (focusing on CG581

context in genic regions, as in [66, 75, 76]). Our model-based approach provides582

strong evidence that DMRs cannot simply emerge from site-level epimutations that583

arise according to a Poisson processes along genome. Instead, stochastic changes584

in region-level methylation states must be the outcome of spontaneous methyla-585

tion and demethylation events that operate at both the site- and region-level. Our586

epimutation model cannot fully describe the observed diversity of epimutations587

along the genome, meaning that the epimutation processes may indeed be more588

complex than expected [15, 25]. We observe non-independence between annotated589

methylation sites spanning genomic regions larger than the span of the underly-590

ing genealogy (determined by recombination events) which no model can currently591
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describe. Additionally, we find high LD between SMPs over short distances which592

does not appear in our simulations. Thus, methylation likely violate the assump-593

tions of a Poisson process distribution along the genome and in time, in line with594

recent functional studies [25, 41]. We thus further caution against conclusions on595

the role of natural (purifying) selection [44] or its absence [66] based on population596

epigenomic data due to the above mentioned assumptions violation. We suggest597

a possible way forward for modeling epimutations would be to use an Ising model598

[77] to account for the heterogeneous methylation process along the genome. How-599

ever, our preliminary work indicates that this model generates non-homogeneous600

mutation process in space and time which violate strongly our SMC assumptions601

(Figure 1C and D).602

Interestingly, the distance of LD decay for SMPs matches quite well the estimated603

distance between recombination events (Figure 5). In addition to our theoretical604

results in Table 2, this observation reinforces the usefulness of using SMPs (or any605

hyper-mutable marker) to improve estimates of the recombination rate along the606

genome in species where the per site DNA mutation rate (µ) is smaller than the607

per site recombination rate (r) as in A. thaliana. As far as we are aware, our SMC608

method is the first one to use the forward algorithm output to provide estimates609

of the position where a change in the expected hidden state (i.e. coalescent time)610

occurs (here interpreted as a recombination event). Future work is needed to im-611

prove the accuracy of this algorithm based on several markers.612

613

Nonetheless, we find that a restricted focus on segregating SMPs meets our614

model assumptions reasonably well, and thus provides a promising way forward.615

Using these segregating SMPs, we recover a past demographic bottleneck followed616

by an expansion which could fit the post- Last Glacial Maximum (LGM) coloniza-617

tion of Europe, a scenario which could not be clearly identified using SNPs only618

from European (relic and non-relic) accessions [27]. This scenario has been long619

speculated in A. thaliana [21] but strong evidence from inference methods was620

lacking ([27], Figure 5 in [18]). Furthermore, the absence of highly conflicting de-621

mography inferred from SNPs and from methylation confirm that, at the time scale622

of thousands of generations, CG methylation sites are mainly heritable and can be623

modeled using population genetics theory [13, 66] and used to estimate divergence624

between lineages [76, 75]. In other words fast ecological local adaptation [51] and625

response to stresses [59] may likely not be prominent forces reshaping endlessly CG626

methylation patterns (non-heritability in Figure 1B).627

628

With the release of new sequencing technology [38], long and accurate reads are629

becoming accessible, leading to the availability of high quality reference genomes630

for model and non-model species alike [46, 7]. Additionally, the quality of re-631

sequencing (population sample) genome data and their annotations is enhanced so632

that additional markers such as transposable elements, insertion, deletion or mi-633

crosatellites can be called with increasing confidence. These accurate genomes will634
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provide access to new classes of genomic markers that span the entire mutational635

spectrum. We therefore suspect in the near future an improvement in our under-636

standing of the heritability of many markers besides SNPs. Adding other genomic637

markers besides SNPs will improve full genome approaches, which are currently638

limited by the observed nucleotide diversity [34, 58, 54]. We predict that our re-639

sults pave the way to improve the inference of 1) biological traits or recombination640

rate through time [14, 60], 2) multiple merger events [36], and 3) recombination641

and mutation rate maps [5, 4]. Our method also should help to dissect the effect of642

evolutionary forces on genomic diversity [32, 31], and to improve the simultaneous643

detection, quantification and dating of selection events [1, 8, 30].644

645

Hence, there is no doubt that extending our work, by simultaneously integrat-646

ing diverse types of genomic markers into other theoretical framework (e.g. ABC647

approaches), likely represents the future of population genomics. We believe our648

approach helps to develop more general classes of models capable of leveraging649

information from any type and amount of diversity observed in sequencing data.650

Only by doing so can we challenge our current understanding of genomes and unify651

under a common theory the complex evolution of genomes through generations.652

653

Materials and Methods654

Simulating two genomic markers655

The sequence is written as a sequence of markers with a given state. Each site is656

annotated as MXSY , where X indicates the marker type and Y the current state657

of that marker: for example M1S1 indicate at this position a marker of type 1 in658

the state 1.659

To simulate sequence of theoretical marker we start by simulating an ARG660

which is then split in a series of genealogies (i.e. a sequence of coalescent trees)661

along the chromosome and create an ancestral sequence (based on equilibrium662

probability of marker states). Mutation events (nucleotides or epimutations for663

methylable cytosine) are then added when going along the sequence, i.e. along the664

series of genealogies. The ancestral sequence is thus modified by mutation event665

assuming a finite site model [74] conditioned to the branch length and topology of666

the genealogies. Each leaf of the genealogy is one of the n sample. Our model has667

thus two important features: 1) markers are independent from one another, and668

2) a given marker has a polymorphism distribution between samples (frequencies669

of alleles) determined by one given genealogy. The simulator can be found in the670

latest version of eSMC2 R package (https://github.com/TPPSellinger/eSMC2).671
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Simulating methylome data672

We now focus on methylation data located at cytosine in CG context within genic673

regions. Only, CG sites in those regions are considered "methylable", and CG674

sites outside those defined genic regions do not have a methylation status and675

are considered "unmethylable". We vary the percentage of CG site with methyla-676

tion state annotated from 2 to 20% of the sequence length. The simulator can in677

principle simulate epimutations in different methylation context and different rates678

[40, 17, 78, 20]. We simulate epimutations as described above but with asymmetric679

rates: the methylation rate per site is µSM = 3.5 × 10−4, and the demethyla-680

tion rate per site is µSM = 1.5 × 10−3 [65, 15]. For simplicity and computational681

tractability, we assume that when an epimutation occurs, it occurs on both DNA682

strands which then present the same information. In other words, for a haploid683

individual, a cytosine site can only be methylated or unmethylated (as in [61]).684

For region level epimutations, the region length is either 1kbp [44] or 150 bp [15].685

The region level methylation and demethylation rates are set to µRM = 2 × 10−4
686

and µRU = 10−3 respectively (similar to rates measured in A. thaliana, [15]). In687

addition to this, unlike for theoretical marker described above, mutations, site and688

region epimutations can occur at the same position of the sequence.689

690

To simulate methylation data, we start with an ancestral sequence of random691

nucleotide and then randomly select regions in which CG sites have their methy-692

lation state annotated (representing the genic regions). Cytosine in CG context693

in those regions are either methylated or unmethylated (noted as M or U). Cy-694

tosine in other context or regions are considered as unmethylabe (and noted as695

C). The ancestral methylation state is then randomly attributed according to the696

equilibrium probabilities. Our simulator then introduces DNA mutations, site- and697

region-epimutations in a similar way as described above.698

SMC Methods699

All three methods (eSMC2, SMCtheo and SMCm) are based on the same mathe-700

matical foundations and implemented in a similar way within the eSMC2 R package701

( https://github.com/TPPSellinger) [60, 36, 56]. This allows to specifically quan-702

tify the accuracy gained by accounting for multiple genomic markers.703

SMC optimization function704

All current SMC approach rely on the Baum-Welch (BW) algorithm for parameter705

estimation in order to reduce computational load. Yet, the Baum-Welch algorithm706

is an Expectation-Maximization algorithm, and can hence fall in local extrema707

when optimizing the likelihood. We alternatively extend SMCtheo to estimate708

parameters by directly optimizing the likelihood (LH) at the greater cost of com-709

putation time. We run this approach on a sub-sample of size six haploid genomes710
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to limit the required computational time.711

eSMC2 and MSMC2712

SMC methods based on the PSMC’ [50], such as eSMC2 and MSMC2, focus on the713

coalescent events between two individuals (i.e. two haploid genomes or one diploid714

genome). The algorithm moves along the sequence and estimates the coalescence715

time at each position by assessing whether the two sequences are similar or different716

at each position. If the two sequences are different, this indicates a mutation took717

place in the genealogy of the sample. The intuition being that the absence of718

mutations (i.e. the two sequences are identical) is likely due to a recent common719

ancestor between the sequences, and the presence of several mutations likely reflects720

that the most recent common ancestor of the two sequences is distant in the past.721

In the event of recombination, there is a break in the current genealogy and the722

coalescence time consequently takes a new value according to the model parameters723

[42, 50]. A detailed description of the algorithm can be found in [19, 55].724

SMCtheo based on several genomic markers725

Our SMCtheo approach is equivalent to PSMC’ but take as input a sequence of726

several genomic markers. The algorithm goes along a pair of haploid genomes and727

checks at each position which marker is observed and then if both states of the728

marker are identical or not. The approach is identical to the one described above,729

except that the probability of both sequences to be identical at one site depends730

on the mutation rate of the marker at this site (equation 1 and Figure 2). While731

the mutation rates for many heritable genomic markers are unknown, there is an732

increasing amount of measures of the DNA (SNP) mutation rate for many species.733

Our SMCtheo approach is able to leverage the information from the distribution of734

one theoretical marker (e.g. mutations for SNPs) to infer the mutation rate of the735

other marker 2 (assuming both mutation rates to be symmetrical). If more than 1%736

of sites are polymorphic in a sequence we use the finite site assumption. If not, then737

from the diversity observed, the different mutation rates can be recovered by simply738

comparing Waterson’s theta (θW ) between the reference marker (i.e. with known739

rate) and the marker with the unknown rates. For example, if the diversity (θW )740

at marker 2 is smaller by a factor ten than the reference marker 1 (and no marker741

violates the infinite site hypothesis), the mutation rate of marker 2 is inferred to742

be ten times smaller (corrected by the number of possible states). However, if the743

marker 2 violates the infinite site hypothesis, a Baum-Welch algorithm is run to744

infer the most likely mutation rates under the SMC to overcome this issue (the745

Baum-Welch algorithm description can be found in [55]).746
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SMCm747

When integrating epimutations, the number of possible observations increases com-748

pare to eSMC2. As in eSMC2, if the two nucleotides (DNA mutation) at one749

position are identical at a non methylable site, we indicate this as 0. If the two nu-750

cleotides are different, it is indicated as 1 (i.e. a DNA mutation occurred). When751

assuming site-level epimutation only, three possible observations are possible at a752

given methylable posisiton: 1) if the two cytosines from the two chromosomes are753

unmethylated, it is indicated as a 2, 2) if the two cytosines are methylated, it is754

indicated as a 3, and 3) if at a position a cytosine is methylated and the other755

one unmethylated, it is indicated as a 4. Depending on the mutation, methyla-756

tion and, demethylation rates, different frequencies of these states are possible in757

the sample of sequences, which provide information on the emission rate in the758

SMC method. When both site- and region-level methylation processes occur, the759

methylation state is conditioned by the region level methylation state (increasing760

the number of possible observation to 9)761

To choose the appropriate settings for SMCm (i.e. if there are region level762

epimutations), we test if the methylation state are distributed independently from763

one another along one genome. In absence of region methylation effect, the prob-764

ability at each site (position) to be methylated or unmethylated should be inde-765

pendent from the previous position (or any other position). Conversely, if there766

is a region effect on epimutation, two consecutive sites along one genome would767

exhibit a positive correlation in their methylated states (and across pairs of se-768

quences). We therefore calculate the probability that two successive positions with769

an annotated methylation state would be identical under a binomial distribution770

of methylation along a given genome. We then compare theoretical expectations771

to the observed data and build the statistical test based on a binomial distribution772

of probabilities. If existence of region level epimutation is detected, the regions773

level methylation states are recovered through a hidden markov model (HMM)774

similarly to [57, 15, 61]. The complete description of the mathematical models and775

probabilities are in the supplementary material Text S1.776

We postulate that the epimutation rates remain unknown in most species, while777

the DNA mutation rate may be known (or approximated based on a closely related778

species). Hence, we develop an approach based on the SMC capable of leverag-779

ing information from the distribution of DNA mutations to infer the epimutation780

rates (similar to what is described above). Our approach first tests if epimutations781

violates or not the infinite site assumptions. If less than 1% of sites with their782

methymation state annotated are polymorphic in a sequence we use the infinite site783

assumption: the site and region level epimutation rates can be recovered straight-784

forwardly from the observed diversity (θW , see above) . Otherwise, a Baum-Welch785

algorithm is run to infer the most likely epimutation rates (site rate for SMP, and786

region rates for DMRs) [65, 66, 61].787
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Sequence data of A. thaliana788

We download genome and methylome data of A. thaliana from the 1001 genome789

project [27]. We select 10 individuals from the German accessions respectively790

corresponding to the accession numbers: 9783, 9794, 9808, 9809, 9810, 9811, 9812,791

9816, 9813, 9814. We only keep methylome data in CG context and in genic regions792

[66, 15]. The genic regions are based on the current reference genome TAIR 10.1.793

The SNPs and epimutations are called according to previously published pipeline794

[61, 15]. As in previous studies [55, 22, 18], we assume A. thaliana data to be795

haploid due to high homozygosity (caused by high selfing rate). The resulting796

files are available on GitHub at https://github.com/TPPSellinger. To perform797

analysis we chose µ = 6.95 × 10−9 per generation per bp as the DNA mutation798

rate [47] and r = 3.6× 10−8 as the recombination rate [49] per generation per bp.799

In order to have the most realistic model, we assume that the methylome of A.800

thaliana undergoes both region (RMM) and site (SMM) level epimutations [15].801

When fixed, we respectively set the site methylation and demethylation rate to802

µSM = 3.48 × 10−4 and µSU = 1.47 × 10−3 per generation per bp according to803

[65]. We additionally set the region level methylation and demethylation rate to804

µRM = 1.6× 10−4 and µRU = 9.5× 10−4 per generation per bp according to [15].805

Because we do not account for the effect of variable mutation or recombination rate806

along the genome, we cut the five chromosome of A. thaliana into eight smaller807

scaffolds [4, 5]. By doing this we remove centromeric regions and limit the effect808

the variation of mutation and recombination rate along the genome. The selected809

regions and the SNP density (from the German accessions) are represented in810

Supplementary Figures 11 to 15.811
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