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Abstract

When tracking fluorescently labeled molecules (termed “emitters”) under widefield
microscopes, point spread function overlap of neighboring molecules is inevitable in both
dilute and especially crowded environments. In such cases, superresolution methods
leveraging rare photophysical events to distinguish static targets nearby in space
introduce temporal delays that compromise tracking. As we have shown in a companion
manuscript, for dynamic targets, information on neighboring fluorescent molecules
is encoded as spatial intensity correlations across pixels and temporal correlations
in intensity patterns across time frames. We then demonstrated how we used all
spatiotemporal correlations encoded in the data to achieve superresolved tracking. That
is, we showed the results of full posterior inference over both the number of emitters
and their associated tracks simultaneously and self-consistently through Bayesian
nonparametrics. In this companion manuscript we focus on testing the robustness of
our tracking tool, BNP-Track, across sets of parameter regimes and compare BNP-
Track to competing tracking methods in the spirit of a prior Nature Methods tracking
competition. We explore additional features of BNP-Track including how a stochastic
treatment of background yields greater accuracy in emitter number determination and
how BNP-Track corrects for point spread function blur (or “aliasing”) introduced by
intraframe motion in addition to propagating error originating from myriad sources
(such as criss-crossing tracks, out-of-focus particles, pixelation, shot and camera artefact,
stochastic background) in posterior inference over emitter numbers and their associated
tracks. While head-to-head comparison with other tracking methods is not possible (as
competitors cannot simultaneously learn molecule numbers and associated tracks), we
can give competing methods some advantages in order to perform approximate head-
to-head comparison. We show that even under such optimistic scenarios, BNP-Track
is capable of tracking multiple diffraction-limited point emitters conventional tracking
methods cannot resolve thereby extending the superresolution paradigm to dynamical
targets.
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1 Introduction

Engineered fluorescent tags and their photophysical response to excitation light, have been
critical in localizing fluorescently labeled molecules (also referred to as “emitters”) below
light’s diffraction limit [1–3] often down to a resolution of 20 nm to 30 nm within individual
image frames [4–10] or better with structured excitation patterns [11]. The ability to
accurately localize emitters at this scale has contributed to the visualization of T-cell
antigen recognition [12], understanding the role of the plasma membrane structure in cell
communication [13], and is the basis for spatial transcriptomics [14, 15] and ensuing analysis
unraveling gene transcriptional models from RNA counts [16].

Despite progress in spatially localizing static emitters, tracking multiple emitters over
time (usually labeled proteins, or nucleic acids) with comparable resolution to that achieved
in widefield superresolution microscopy (SRM) remains an open challenge [4, 5]. Concretely,
while photophysical dynamics is leveraged as an asset to widefield SRM in successively
localizing nearby emitters in time, it is precisely a disadvantage in tracking as it naturally
results in emitters disappearing over several frames. Furthermore, longer data acquisition
times per frame (i.e., longer camera exposures), which otherwise improve the resolution of
static emitters within frames, reduce temporal resolution and introduce blurring artefacts
for moving emitters [4, 17]. Conversely, short exposures, while necessary in single-particle
tracking (SPT), amplify shot noise.

As a compromise allowing for rapid tracking while mitigating the uncertainty introduced
by excessive shot noise, it is common to track only a few emitters (or often just one) within a
volume roughly the size of a typical bacterium e.g., Ref. [18], which remains true even when
combining photodynamics with tracking in tools such as sptPALM [19]. This is particularly
important as small emitters (such as most fluorescent proteins roughly 2 nm in size [20])
result in a diffraction pattern of their visible emitted light over a large region, the point
spread function (PSF), within which emitter photons are detected; see Fig. 1a. Given typical
conditions under which emitters are tracked, the PSF width, as dictated by the numerical
aperture (NA) and the emission wavelength, is about two orders of magnitude larger than the
emitter itself, ≈250 nm. As a result of the PSF’s breadth, when tracking multiple emitters at
once in widefield applications, PSFs invariably overlap, obscuring the number and positions
of the underlying emitters; see Figs. 1a and 1b. Indeed, widefield SRM was precisely devised
to tackle this challenge albeit for static targets by stochastically (PALM/STORM [1–3])
inducing label photophysical transitions to momentarily generate contrast between emitters
and their immediate background.
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Figure 1: a, Three consecutive frames from data generated synthetically following the description provided in Section 3

involving three closely located emitters with the data generated using pixel size 133 nm, NA 1.45, exposure 0.03 s, emission rate

104 s−1, background flux 105 µm−2s−1 and a EMCCD camera; further details provided in Table S.1. b, Ground truth tracks

shown here in orange superposed to frames where we have removed background for visual appeal. PSF overlap is clear from

the three selected frames shown. c, Conventional SPT methods often treat the determination of the number of emitters (spot

detection) and the ensuing localization and linking of spots as completely or partially separate steps. d, BNP-Track leverages

all encoded spatiotemporal information to directly infer the number of emitters and their associated tracks across all frames.

e, A frame of synthetic data with background and a fast-diffusing emitter, all parameters are the same as before except that

the diffusion coefficient has now been raised to 1µm2s−1. f, This emitter’s ground truth track (orange) over the course of one

frame’s exposure period of duration 0.03 s plotted on top of the noiseless frame, highlighting a highly blurred or “aliased” PSF.

The black cross marks the emitter’s location at the end of the exposure. g, Conventional localization automatically fails as one

single emitter location is not sufficient to approximate a track segment. h, BNP-Track considers the emitters’ motion within

one exposure (by using information from the present, prior, as well as future exposures) and thereby infers much better tracks.

i, A frame of synthetic data with an out-of-focus emitter and background. j, Similar plot to (f). k, The frame in (i) after

performing the difference of Gaussians algorithm [21], a popular prefilter for SPT tools, which in this case removes signal from

the emitter, leading to the failure of detecting the only emitter in both (i) and (k). l, By treating the stochastic background

within a stochastic framework, BNP-Track manages to track the out-of-focus emitter.
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In a companion manuscript we described a tracking tool, BNP-Track, incorporating these
features and use it to analyze both in vivo and synthetic data motivated from the in vivo data
sets analyzed. In this manuscript, we focus on four inter-linked aspects of BNP-Track. The
first three are explored synergistically while the fourth is discussed in the Methods section
Section 4.1.

First, we explore unique features (highlighted in Fig. 1) such as the treatment of intraframe
motion over the course of a camera exposure making it possible to extend BNP-Track to longer
exposures and faster diffusing emitters. As another example, we also explore BNP-Track’s
stochastic treatment of background critical in beating the diffraction limit by capturing the
presence of out-of-focus emitters.

Second, related to the latter point, we provide robustness analyses for BNP-Track over
parameter regimes (such as variable number of emitters per unit area, diffusion coefficient
and photon emission rate) that go beyond the in vivo experiments previously explored. We
demonstrate on synthetic data (for which ground truth tracks are known) that over reasonable
parameter regimes, BNP-Track tracks diffraction-limited emitters with resolution approaching
or matching that of SRM for static emitters. Importantly, a recurring theme of our analyses
is that a moving emitter distributes its photons in a correlated fashion across both pixels and
frames. Thus, information gathered multiple frames ago or even future frames, say, is useful
in localizing an emitter in the present frame. Indeed, in our robustness analyses, we even
encounter counter-intuitive scenarios where more emitters are sometimes localized to higher
resolution than fewer emitters within a field of view (FOV) even when emitter distances
fall below the diffraction limit. This is because more emitters may help sharpen our overall
estimate for emitter diffusion coefficients.

Third, in the spirit of Ref. [22], we show how BNP-Track’s simultaneous assimilation of
the three modular steps of tracking of the existing tracking paradigm (determining emitter
numbers, localizing emitters, and linking emitters across frames) allows BNP-Track to
outcompete contest-leading localization and linking methods [23–26]. In doing so, we provide
approximate head-to-head comparison as exact comparison with other tracking tools is not
possible since no method currently simultaneously reports full distributions over emitter
numbers and their associated tracks as BNP-Track does. The synthetic data we use in
these comparisons includes all effects previously included in Ref. [22] that we also use in the
second point to test BNP-Track’s robustness. Naturally, the reason for being selective in
our comparison to other tracking tools is also clear. Tracking is a mature field [9, 22–73],
with many of the select tools cited reviewed here [5, 22, 74, 75] including by ourselves [4].
Despite employing multiple creative insights balancing computational burden with tracking
resolution, we demonstrate through numerical examples in our comparisons that no existing
tool can reliably track (below the diffraction limit averaged over the track) more than one
protein in a small volume, such as the size of a bacterium’s cytoplasm.

Fourth and finally, we explore the fundamental reason why the existing tracking paradigm
cannot beat the diffraction limit. For example, we mathematically demonstrate at a higher
level how BNP-Track generalizes statistically-grounded (likelihood-based) tracking meth-
ods [64, 66] that require as input the number of emitters (often done in the form of setting
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localization thresholds). Indeed, we discuss how the more limited assumptions of BNP-Track
allow us to extract emitter number which we know already to be encoded in the spatiotempo-
ral correlations across frames currently compromised by the modular, three-step, tracking
paradigm.

2 Results

Here, we present results on synthetic frame stacks (videos). Unless specified otherwise, the
FOV of these videos is about 2µm by 3µm for illustrative purposes as we move to denser
tracking, mimicking the size of a typical bacterium. Key parameters used in generating the
data are listed in Table S.1. Synthetic data generation follows the procedure set by Ref. [22].
For concreteness, the numerical values listed in Table S.1 are motivated by those used in
experiments (see citations therein) with widefield illumination using an electron multiplying
charge-coupled device (EMCCD) camera. BNP-Track can be readily adapted to any camera
by appropriate modification of the emission distribution later detailed in Eq. (8) and any
PSF shape by modification of Eq. (6).

After defining the comparison criteria just below, we begin the actual analysis with the
simplest scenario, a single emitter, in order to demonstrate that BNP-Track can track one
emitter with the same resolution in each frame as existing SRM for static emitters. In this
exercise, we use BNP-Track to simultaneously estimate parameters such as the number of
emitters (invariably found to be one), diffusion coefficient, background flux, and camera
gain. We then analyze a dataset involving three emitters demonstrating that our method can
simultaneously track all, even as these move closer to each other than the diffraction limit. The
results from these two datasets are then compared with those obtained using TrackMate [72]
for performance comparison as TrackMate combines contest-leading single-particle localization
and linking methods of Ref. [22].

In the last two sections, we demonstrate how BNP-Track performs over parameter ranges
listed in the fifth column of Table S.1. All videos analyzed herein are included in the
Supplementary Material.

As a final point, within the Bayesian framework, we do not just report point estimates, but
instead present full posterior probability distributions over all relevant quantities, including
the number of emitters, spatial tracks (both in and out of focus, to the degree allowed by the
PSF’s shape along the axial dimension), the diffusion coefficient, the background flux, and
the camera’s gain. To facilitate visual comparison, we also provide maximum a posteriori
(MAP) estimates for tracks and 95% credible intervals (CIs) for other learned parameters.

2.1 Comparison criteria

To better understand performance differences between tracking methods, we provide quanti-
tative metrics using the Tracking Performance Measures tool detailed in Ref. [22]. Here, we
provide a brief overview for conciseness. The main measure we report is the pairing distance
(per frame per emitter), a metric based on the total gated Euclidean distance between paired
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tracks averaged over frame number and the ground truth emitter number. When two tracks
are further apart than the gate (also referred to as penalty) value ϵ at any frame, or a track
has missing segments, the distance at that frame is set to be ϵ. In the context of this study,
ϵ is set to be five pixels or 665 nm, which is roughly twice the Rayleigh diffraction limit
(0.61λ/NA) 280 nm. As there are multiple ways of pairing when comparing two sets of tracks,
the final total pairing distance is defined as the minimum pairing distance among all possible
pairings of tracks.

It is important to note that the pairing distance metric penalizes linking errors, as it pairs
whole tracks during the calculation. Therefore, it should not be directly used to compare with
the diffraction limit, which is defined solely based on distinguishing point objects without
considering linking across frames. Additionally, as explained in the previous paragraph, the
pairing distance also depends on the gate value ϵ, which is arbitrarily set by users. When
comparing a method’s performance to the diffraction limit, a quantity entirely governed by
physics, the performance should not depend on an arbitrary parameter. Thus, the pairing
distance is not a suitable metric for comparing to the diffraction limit. Instead, we define
the localization resolution, or simply resolution, as the mean Euclidean distance between
paired emitter positions across all frames and all emitters. This resolution is equivalent to
the pairing distance only if all emitter positions can be paired without any linking errors.
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2.2 One emitter
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Figure 2: a and b, BNP-Track’s performance demonstrated using Supplementary Video 1 in terms of the x and y coordinates
of the ground truth tracks compared to BNP-Track’s outputs. The MAP tracks are included for sake of direct comparison. CIs
are depicted as shaded regions (which we refer to as CI bands), with darker shading indicating a higher level of confidence.
In addition, c, The distribution of BNP-Track’s localization resolution distribution (bin heights normalized as probabilities)
over all the sampled tracks. See the beginning of Section 2.1 for the definition of localization resolution. d-f, BNP-Track’s
estimate for the diffusion coefficient, background flux, and camera gain (in the case of an EMCCD camera), respectively. The
corresponding ground truths and prior probability distributions are also provided. g, Three consecutive frames of a selected
region from Supplementary Video 1.

The synthetic video we analyzed in this section, Supplementary Video 1, only has one emitter
present with results displayed in Fig. 2. To be clear, while we generated the data using one
emitter, we still ran BNP-Track which learned that only one emitter was warranted here with
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negligible probability ascribed to more emitters being present.
Figs. 2a and 2b shows MAP track estimates, ground truth tracks, and the distribution

of track samples in x and y, respectively (see Fig. S.1a for the same plot but for z). The
darker shaded regions indicate higher confidence and their sizes represent the widths of CI.
It is apparent from Fig. 2a that BNP-Track consistently returns a single continuous shaded
region surrounding the ground truth track, indicating that BNP-Track correctly identified
the emitter number. Additionally, most of the track samples are within ±100 nm of the
ground truth position in each frame. Figure 2b provides a summary metric of the localization
resolution. Among all track samples, 95% of the localization resolutions fall between 30.0 nm
and 40.0 nm per emitter per frame. This resolution is close to those of the SR localization
methods (around 20.0 nm) for static emitters having the same NA, 1.45, as the values of
parameters used in simulation, except that we typically use far fewer photons (with only about
250 photons per pixel per frame) [4–10]. Further numerical comparisons with conventional
SPT tools are provided in Section 2.4.

In addition to determining tracks, BNP-Track also has the ability to estimate various other
parameters, such as the diffusion coefficient, background flux, and camera gain, assuming
a EMCCD camera model (though the type of camera model can be generalized). This is
demonstrated in Figs. 2d to 2f. The ground truth values for each of these parameters fall
within their corresponding 95% confidence intervals. Specifically, the ground truth values and
confidence intervals are as follows: 0.05µm2s−1 vs. (0.039 to 0.075)µm2s−1 for the diffusion
coefficient; 105 µm−2s−1 vs. (0.966 to 1.003)×105µm−2s−1 for background flux; 0.3ADU−1

vs. (0.299 to 0.310)ADU−1 for the camera’s gain.
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2.3 Three emitters
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Figure 3: BNP-Track’s performance demonstrated using a synthetic dataset with three emitters (Supplementary Video 2).
The layout is similar to Fig. 2 but with two additional panels: g, The distribution of incorrect linking percentages; h, The spatial
separation between each emitter pair as a function of time and the Rayleigh diffraction limit, is marked by the black dashed line.

As highlighted earlier, the ability to handle multiple emitters within the FOV is crucial in
tracking. Figure 3 demonstrates BNP-Track’s performance sharing all the same parameters
as the single emitter case in Fig. 2 except for three emitters. The synthetic data is provided
in Supplementary Video 2. As shown in Fig. 3a, BNP-Track accurately learns the number of
emitters by returning track samples distributed as CI bands that we find to be centered at
the ground truth even as these move in and out of focus; see Fig. S.1b for the same plot but
for z.
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One unique challenge in tracking multiple emitters is the occurrence of criss-crossing
tracks, where the separation between emitters approaches or falls below their typical PSF
widths. For example, this is the case in Supplementary Video 2, where two out of the
three emitters move closer to each other than the diffraction limit; see Fig. 3h. As we will
explore shortly, these scenarios are especially challenging for the existing three-step tracking
paradigm.

As a benchmark for tracking multiple emitters, we counted the number of incorrect links
(across frames) over the entire video for all sampled tracks; the results are shown in Fig. 3g.
Here 95% of all tracks sampled from our joint posterior over emitter numbers and tracks had
between approximately 2.7% and 10.9% incorrect links; see Fig. S.2 for another three-emitter
video (Supplementary Video 3) but with emitters even closer to each other in space.

Similar to the one-emitter case, we also calculated the 95% CI for the localization resolution,
which was found to be 22.7 nm to 27.3 nm, and thus on par with SRM for static emitters
under similar exposure, emission rate, background, and gain (see Fig. 3c). Perhaps initially
counter-intuitive, we note that this range is actually lower than the localization resolution CI
calculated in the one-emitter video (Supplementary Video 1), 30.0 nm to 40.0 nm. Indeed, one
might expect higher uncertainty when more emitters are present in the FOV. In general more
precise localization in the presence of more emitters is possible, fortuitously, if these emitters
happen to spend more time on the focal plane where they are localized more accurately.
This is not the case here; we verified that the average distances between emitters and the
focal plane in Video 1 and 2 are not substantially different. Rather, we found that with
more tracks, we have more spatiotemporal correlation that BNP-Track leverages to refine
the estimate of some parameters, say diffusion coefficients. This hypothesis is supported by
the fact that BNP-Track’s output in the three-emitter video (Fig. 3d) shows a narrower 95%
CI for the diffusion coefficient, (0.039 to 0.059)µm2s−1, compared to the one-emitter video,
(0.039 to 0.075)µm2s−1.

While gathering more spatiotemporal correlation from tracks can help us infer emitter
tracks (by improving diffusion coefficient estimates), estimating (homogeneous) background
flux and gain remains unaffected as they are assumed time-independent here. Indeed,
consistent with this expectation, in Figs. 3d and 3e we present BNP-Track’s estimates of
these two parameters: (0.967 to 1.001)×105µm−2s−1 for background flux’s 95% CI; (0.300 to
0.310)ADU−1 for camera’s gain’s 95% CI.

It is worth noting here that BNP-Track actually explored the possibilities of assigning
different number of emitters. This can not be seen directly from the number of CI bands in
Fig. 3 as the corresponding chances remain almost negligible, see Fig. S.3h which involves
Supplementary Videos 1, 2, and 4.

2.4 Comparison with TrackMate

It is difficult to directly compare BNP-Track to other SPT methods head-to-head as no
existing method currently estimates (full distributions over) both emitter number, alongside
their associated tracks. Thus, we necessarily must provide an advantage to existing methods
by providing them with correct emitter numbers ahead of time. As we will see, even under
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this optimistic scenario, BNP-Track still exceeds the resolution of existing tools and yields
reduced error rates (percentage of wrong links).

With this proviso, we now compare the tracking performance of BNP-Track and Track-
Mate [72], the standard SPT tool which houses several detection and tracking modules tested
in Ref. [22], by analyzing the same datasets and subsequently comparing the inferred tracks
against the ground truth using the Tracking Performance Measures tool [22] in Icy [76].

To prepare the benchmark data, we used both one- and three-emitter videos from
Supplementary Videos 1 and 2. In order to compare both methods, as BNP-Track provides
a full posterior over tracks and emitter numbers while TrackMate provides only best track
estimates (according to criteria we discuss shortly), we selected as point of comparison
BNP-Track’s MAP tracks. The latter tracks maximize the full joint posterior probability
distribution and can therefore be considered the overall “best” tracks.

On the other hand, what is chosen as the best track according to conventional SPT tools
depends on the application at hand. This arises for two main reasons: 1) without a numerical
criterion like a posterior, decisions as to which track is better depends on pre-selected metrics
(e.g., tracks with minimal spurious detections or tracks with the fewest missed links); 2)
although it is generally desirable to have tracks with no false positives (spurious detections
or tracks) and no false negatives (missed detections or tracks), it is often difficult to optimize
both, as most of these methods do not allow frame-specific thresholds. Therefore, when false
negatives and false positives cannot be reduced to zero simultaneously, we use TrackMate to
generate two sets of single-particle tracks: Set A which prioritizes minimizing false positives in
the localization (spot detection) phase, followed by minimizing false negatives in the linking
phase, while Set B prioritizes minimizing false negatives in the localization phase, followed
by minimizing the other type of errors in the linking phase.

For more information on the TrackMate specific input parameters (such as PSF width
estimate and gap closing distance), see Section 4.4. We also note that, in order to maximally
challenge BNP-Track, we provided strong advantages to TrackMate by performing both
aforementioned error minimization steps using ground truth emitter number in the localization
step and ground truth diffusion coefficient in the linking step.
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Figure 4: A comparison of tracking performance among BNP-Track, TrackMate, and u-track using two synthetic datasets
with one emitter (Supplementary Videos 1) and three emitters (Supplementary Videos 2) in the y coordinate. See Fig. S.4
for the same figure but with the x coordinate. a, BNP-Track’s MAP estimates compared with the one-emitter ground truth.
b, TrackMate’s estimates compared with the one-emitter ground truth. c, u-track’s estimates compared with the one-emitter
ground truth. d, BNP-Track’s MAP estimates compared with the three-emitter ground truth. e and f, TrackMate’s estimates
compared with the three-emitter ground truth with high and low localization quality thresholds, respectively. In (d-f), the
top ground truth track is the same as the ground truth in (a-c). The boxed regions in (e) and (f) highlight where TrackMate
performs relatively poorly.

Fig. 4 provides a direct visual comparison between the ground truth, BNP-Track MAP
track and TrackMate tracks for the benchmark videos. In the one-emitter case, both BNP-
Track (Fig. 4a) and TrackMate (Fig. 4b) successfully track the single emitter throughout the
entire video with similar resolution (34.6 nm vs. 35.4 nm). In order to further demonstrate
that conventional SPT tools would typically work for this relatively simple scenario, we also
include the track obtained with u-track [25] using the point source particle detection process
(Fig. 4c), which again, achieves a similar resolution at 32.1 nm. We note that in Figs. 4a
to 4c, resolution is equal to pairing distance as there is no missing segments or incorrect links
in tracks.

Predictably, as we begin encountering PSF overlap in multiple emitters for the three-
emitter dataset, BNP-Track and TrackMate’s performance diverge (we note that u-track’s
performance is not shown here as the current FOV is too small for running its algorithm).
While BNP-Track remains capable of tracking all three emitters throughout the entire video
with a resolution of 27.1 nm from the MAP tracks, even as these move below diffraction limit
in frames 2 to 13 and 34 to 47 (see Fig. 3h), several issues arise for the TrackMate tracks
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(Figs. 4e and 4f). For instance, diffraction limited emitters get interpreted as one emitter
(solid boxes), incorrect links with large jumps (dashed boxes), and spurious detections (the
dotted box) from TrackMate set B. These issues indicate that TrackMate can no longer
resolve the emitters in this dataset, and hence no resolution is calculated. Therefore, for the
sake of a quantitative comparison, we calculated the pairing distance, defined in Section 2.1,
between the ground truth tracks and each SPT method’s output: BNP-Track’s MAP tracks
have a pairing distance of 66.9 nm while both TrackMate track sets yield pairing distances no
less than 300 nm.

Two additional points should be noted here: 1) as illustrated in Fig. 4d, BNP-Track’s
pairing distance is larger than its resolution, which is due to linking error. Nevertheless,
we argue this is not a major concern since it only occurs near frame 35 where two emitters
are less than 40 nm apart (Fig. 3h), and hence, potential further analyses (such as learning
diffusion dynamics) are not affected; 2) Even though the three-emitter dataset contains the
same track as the one-emitter dataset, BNP-Track actually achieves a better resolution in
the more complicated three-emitter dataset. We attribute this to the fact that BNP-Track
leverages all spatiotemporal correlation detailed in the next section.
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2.5 Benefits of leveraging all spatiotemporal correlation
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Figure 5: BNP-Track’s performance as the length of the video increases. a, The second frame of Supplementary Video 5. b,
The same frame without noise, with the ground truth position of the emitter marked as the orange dot. c, The localization
resolution in this frame versus the number of frames considered in the analysis. d, The diffusion coefficient’s MAPs and 95% CIs
as a function of the frame number used in the analysis, compared with the values inferred by TrackMate and mean squared
displacement (TM+MSD in the legend). The diffusion coefficient estimate also improves as more frames are analyzed. Note
that, as TrackMate was manually tuned to obtain the best track, the performance of TM+MSD in (d) is artificially improved.
Even in this case, BNP-Track still produces more accurate and consistent estimates. e, The diffusion coefficient’s posterior
probability distribution inferred by BNP-Track with only the first two frames, indicating a lack of information as the prior and
posterior are similar. f, The diffusion coefficient’s posterior probability distribution inferred by BNP-Track with all 200 frames
in Supplementary Video 5.

To showcase the advantages of utilizing all spatiotemporal correlation, we generated another
one-emitter dataset intentionally consisting of a large number of frames (200) for illustrative
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purposes, which can be viewed in Supplementary Video 5. We initially applied BNP-Track to
only the first two frames and then progressively incorporated more frames into the analysis.
We monitored BNP-Track’s performance at each iteration for the arbitrarily chosen frame 2,
and this procedure can be repeated for any other frame of interest.

BNP-Track’s resolution at frame 2 improves with the inclusion of more future frames in
the analysis, as depicted in Fig. 5b. This is in contrast to any SPT method that separates
localization and linking as modular steps [9, 23–53, 72]. The outcome suggests that BNP-
Track can obtain spatiotemporal correlation from “future” (and “past”) frames, thereby
enhancing the resolution at the “current” frame. The additional information is transmitted
through the system’s diffusion dynamics, also better assessed by taking more frames into
account, as shown in Fig. 5c. Including more frames is not the only way to increase the
amount of information contained in a dataset: the presence of more emitters has the same
effect. This explains why BNP-Track’s resolution improves from Fig. 4a to Fig. 4d. In
other words, frames and numbers of emitters all provide information and, as such, similar
information may be gathered by considering more emitters even in the presence of far fewer
frames than 200 (as would be typical for most tracking experiments).

Leveraging all spatiotemporal correlations also results in more efficient information
utilization. This is demonstrated in Fig. 4c, where it can be observed that BNP-Track’s
estimate of the diffusion coefficient converges more rapidly with respect to the number of frames
analyzed than that obtained using TrackMate combined with mean squared displacement.

2.6 Robustness tests

In this section, we evaluate the robustness of BNP-Track under different parameter ranges,
including emitter numbers, diffusion coefficients, (photon) emission rates, and background
flux. That is, we start with default parameter values set in the fourth column of Table S.1
motivated from literature values and vary one parameter at a time over the ranges listed
in the last column of the same table. We note that the tests with the standard parameter
values are already illustrated in Figs. 2 and 3.

We first test BNP-Track’s ability to handle multiple emitters by introducing seven emitters
within the same FOV (2µm × 3µm) as before (Supplementary Video 4); see Fig. S.3. Despite
this dramatic increase in complexity, BNP-Track assigns over 94% probability to seven
emitters with a pairing distance of 55.5 nm, much smaller than TrackMate’s 323 nm.
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Figure 6: BNP-Track’s performance under various diffusion coefficients. a-c, BNP-Track’s analysis for Supplementary Video
6 with 0.01µm2s−1. d-f, BNP-Track’s analysis for Supplementary Video 2 with 0.05µm2s−1. g-i, BNP-Track’s analysis for are
from Supplementary Video 7 with 0.25µm2s−1.

BNP-Track is also robust when tested on videos generated with different diffusion coeffi-
cients, as shown in Fig. 6. Here, BNP-Track can accurately track all emitters, as determined
by localization resolution discussed shortly, and determine the correct diffusion coefficient,
even when the diffusion coefficient is five times higher or lower than the reference value. As
observed in Fig. 6, the distribution of emitter positions becomes broader as the diffusion
coefficient increases. This is supported by the 95% confidence intervals of the localization
resolutions, which range from (15.2 to 18.8) nm in the first row, (22.8 to 27.3) nm in the
second row, (47.8 to 65.4) nm in the third row. One major factor contributing to this trend is
motion blur introduced by fast diffusion coefficients. Another important factor is that faster
diffusing species have less time to remain within the field view or move away from the in
focus plane, resulting in fewer informative frames (frames with more detected photons). To
further understand the impact of motion blur on BNP-Track’s results, we also conducted
further testing illustrated in Fig. S.5.

We performed similar robustness tests by varying the photon emission rate of the emitters
and background photon flux. These two parameters both affect the signal-to-noise ratio
and, as such, we present their results together. As shown in Figs. S.6 and S.7, BNP-Track
successfully tracks all three emitters. As expected, low emission rates and high background
flux worsen both resolution and pairing distance. Once again, the localization resolution 95%
CIs are provided as an overview: (22.7 to 27.3) nm for emission rate 104 s−1, background flux
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105 µm−2s−1; (54.7 to 76.7) nm for emission rate 0.2× 104 s−1, background flux 105 µm−2s−1;
(8.5 to 10.3) nm for emission rate 5× 104 s−1, background flux 105 µm−2s−1; (16.8 to 19.9) nm
for emission rate 104 s−1, background flux 0.2× 105 µm−2s−1; (34.6 to 43.6) nm for emission
rate 104 s−1, background flux 5× 105 µm−2s−1.

Additionally, in order to demonstrate the necessity of using BNP-Track’s feature to infer
emitter numbers, we also performed two tests where the emitter number was fixed albeit
to incorrect values. See Figs. S.9 and S.10 for how this impacts BNP-Track’s performance.
Briefly, forcing BNP-Track to run with an emitter number below that set by ground truth
naturally causes jumps between tracks, resulting in over estimating diffusion coefficient by a
factor of ten. On the other hand, running with more emitters typically is less problematic as
BNP-Track will treat the extra emitters as out of the FOV.

More than its robustness across various parameter ranges, it is worth examining whether
BNP-Track can be applied to systems with different motion models, given that it currently
only considers the Brownian motion model. We address this concern in our companion
manuscript, where we analyze an experimental dataset with an unknown motion model.

3 Discussion

Here, we introduced BNP-Track, a tracking tool capable of superresolved tracking. That is,
BNP-Track tracks moving emitters with approximately as few as 250 photons per pixel in
each frame (with localization resolution comparable to SRM) and tracks individual emitters
even as these come closer to one another than light’s diffraction limit.

To achieve this, BNP-Track abandons the existing tracking paradigm which relies on three
separate/modular operations: emitter number determination, single-emitter localization, and
linking. Rather, BNP-Track leverages all spatiotemporal correlation available in order to
simultaneously obtain a full joint posterior over emitter numbers, their associated tracks,
diffusion coefficients, background photon flux, and camera gain (assuming EMCCD).

The capability to track as many as ten or more small molecules within an area of about
5µm2 may help provide direct insight on transient co-localization of emitters [77], as well as
biomolecular cluster (dis)assembly [78] beyond the reach of existing tracking paradigm.

In addition to its robust tracking resolution over a range of reasonable parameters, BNP-
Track’s software suite is tailored for a graduate student end-user in mind. Here users need as
their only input calibrated parameters including the objective’s NA, refractive index, emission
wavelength, photon emission rate, pixel size, and exposure time. Other tracking tools such as
TrackMate require a significant amount of fine-tuning and thresholding.

While BNP-Track has the ability to achieve high tracking performance and simultaneously
infer relevant parameters, it does have higher associated computational time. For example, in
the three-emitter video discussed in this paper, while TrackMate takes only a few seconds to
complete localization and linking, BNP-Track requires approximately a day on a mid-range
desktop computer. Additionally, BNP-Track’s time consumption increases roughly linearly
with the number of emitters. However, we argue here that this is not a significant drawback
for these reasons: First, users must often spend considerable time tuning the system to use
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TrackMate or similar tools, which exceeds the computation time. More tuning is then required
for slightly different imaging conditions. In contrast, BNP-Track requires more computational
time (wall time) but less manual effort. Second, for systems with well-calibrated background
flux and/or gain, BNP-Track can use these values as input and save the time that would be
required to learn these (which would reduce the computational time for the three emitter
case by about 30%). Finally, BNP-Track can also take the outputs of other SPT tools as a
starting point (i.e., the initial Monte Carlo seed) and perform analysis on top of it, reducing
the computational time required from a day to several hours and sometimes even less.

BNP-Track, in itself, is a first and foremost a mathematical and conceptual framework and
the framework highlighted in Section 4 can be generalized to include various camera models
(e.g., sCMOS versus EMCCD) or any pre-calibrated form of the PSF however aberrated. Other
generalizations include extending the camera model to accommodate different experimental
setups, including multicamera imaging for improved lateral resolution, multiplane imaging
for improved axial resolution, or multicolor imaging for Förster resonance energy transfer
labels. Similarly, we may incorporate the effects of a vanishing illumination field from total
internal reflection fluorescence microscopy or techniques such as HILO microscopy [79].

4 Method

4.1 Conceptual basis

Before we describe details of BNP-Track, we provide a discussion on the fundamental design
reasons why BNP-Track surpasses conventional tracking methods.

To do this, we first establish some basic notation. Consistent with our companion
manuscript, the set of emitter positions of all M emitters across N frames are denoted as
X1:M

1:N , and the measurements of all pixels across all frames are denoted as w̄1:N . The ultimate
goal of single-particle tracking methods is to determine the optimal set of X1:M

1:N as well as
M given w̄1:N (or, better yet, the full distribution over these quantities given experimental
uncertainty). In all tracking methods, an optimization criterion is defined by a function
dependent on tracks and measurements, expressed as p

(
X1:M

1:N ,M
∣∣w̄1:N , θ

)
, where θ includes

all relevant parameters such as the emitters’ diffusion coefficient.
In a Bayesian framework, p

(
X1:M

1:N ,M
∣∣w̄1:N , θ

)
is referred to as the posterior probability

distribution and represents “the probability distribution of X1:M
1:N and M given w̄1:N and θ”.

The set of tracks globally maximizing the posterior is the “best”. In the following paragraphs,
we demonstrate how conventional tracking methods, treating localization and linking as
separate steps, approximate p, while BNP-Track does not. This feature ultimately limits the
resolution of existing methods.

We begin by factorizing p for each frame. Bayes’ theorem allows for the following
factorization without approximation

p
(
X1:M

1:N ,M
∣∣w̄1:N , θ

)
= p

(
X1:M

1 ,M
∣∣w̄1:N , θ

) N∏
n=2

p
(
X1:M

n

∣∣w̄1:N ,M, θ,X1:M
1:n−1

)
. (1)
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Writing p
(
X1:M

n

∣∣w̄1:N , θ,X
1:M
1:n−1

)
means that localizing emitters on frame n in the Bayesian

framework takes not only measurements but also emitter positions at every frame from the
past into account, as all positions are correlated through the emitters’ motion model. In fact,
emitter positions from all future frames contribute in the same way. If this is not immediately
clear, p can be exactly refactored as

p
(
X1:M

1:N ,M
∣∣w̄1:N , θ

)
= p

(
X1:M

N ,M
∣∣w̄1:N , θ

)N−1∏
n=1

p
(
X1:M

n

∣∣w̄1:N ,M, θ,X1:M
n+1:N

)
. (2)

Another common factorization is

p
(
X1:M

1:N ,M
∣∣w̄1:N , θ

)
= p

(
X1:M

1:N

∣∣w̄1:N ,X1:N ,M, θ
)
p (X1:N ,M |w̄1:N , θ) (3)

where Xn represents all detected emitter positions at frame n before they are assigned
an emitter label. This means that p

(
X1:M

1:N

∣∣w̄1:N ,X1:N ,M, θ
)
treats linking conditioned on

localization while p (X1:N ,M |w̄1:N , θ) treats localization alone.
The factorization methods described in Eqs. (1) to (3) are equivalent and retain all

spatiotemporal information, enabling them to achieve the highest possible tracking resolution
if global optimization is performed which, so far, has remained a longstanding challenge.
BNP-Track addresses this issue by utilizing novel computational statistics techniques, while
conventional tracking methods resort to approximations in order to proceed.

A common approximation used is to separate localization and linking into separate steps [9,
23–53, 72]. Using notation established in Eq. (3), this is equivalent to first identifying those
X∗

1:N and M∗ optimizing p (X1:N ,M |w̄1:N , θ), and then optimizing p
(
X1:M

1:N

∣∣w̄1:N ,X∗
1:N ,M

∗, θ
)
.

In other words, separating localization and linking within the framework of a greedy algorithm
not guaranteed to identify global optima.

Moreover, as the total number of emitters, M , is necessarily determined by jointly
considering all frames, optimizing p (X1:N ,M |w̄1:N , θ) by itself becomes difficult. Therefore,
most emitter localization methods [80–82] further approximate

p (X1:N ,M |w̄1:N , θ) ≈
N∏

n=1

p (Xn,Mn|w̄n, θ) , (4)

allowing frames to support different emitter numbers. However, in order to incorporate dif-
ferent Mn’s, the optimization of p

(
X1:M

1:N

∣∣w̄1:N ,X1:N ,M, θ
)
must also be modified accordingly,

for example, by allowing gap closing [9, 25, 26, 29, 39–41, 43, 46–48, 50, 53, 64, 72]. All
these (generally difficult to control) approximations and modifications, absent in BNP-Track,
eventually degrade tracking resolution.

4.2 Data synthesis

Briefly summarizing the companion manuscript, we consider N frames in each synthetic
video and, for each frame, we select equally spaced time points within the exposure period
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between the previous frame and the current one. For example, for frame n, we have time
points {tn,1, tn,2, . . . , tn,K}, where K is the total number of time points. We also assume that
there are B (a priori unknown) emitters undergoing Brownian motion with constant diffusion
coefficient D. The spatial position of emitter m at tn,k, x

m
n,k, is determined by sampling from

the following multivariate Normal distribution denoted as Normal3{
xm
n,k

∣∣xm
n,k−1, D ∼ Normal3 (xn,k−1, 2D (tn,k − tn,k−1)) , if k > 1,

xm
n,k

∣∣xm
n−1,K , D ∼ Normal3 (xn−1,K , 2D (tn,k − tn−1,K)) , if k = 1.

(5)

For concreteness here, the contribution of each xm
n,k to pixel p is calculated using a circular

Gaussian Lorentzian PSF [83] though any pre-calibrated form is easily accommodated. The
total photon contribution from emitter m to pixel p within frame n is denoted as gm,p

n and is
obtained by integrating m’s PSF over the area and exposure time of pixel p

gm,p
n =

∫ tn

tn−1

dt

∫ xp
max

xp
min

dxp

∫ ypmax

ypmin

dyp PSF (xp, yp;xm(t)) . (6)

The calculation of this integral is described in Section 3. The total number of photons received
by pixel p within frame n, denoted as up

n, is then given by

up
n = FApτ + h

B∑
m=1

gm,p
n . (7)

Here, F represents the background photon flux, Ap is the area of pixel p, and h is the photon
emission rate. In this study, we consider an electron-multiplying charge-coupled device
(EMCCD) camera, whose readout is modeled by

wp
n|up

n, G ∼ Gamma

(
βup

n

f
, fG

)
(8)

where f is the noise excess factor (equals 2 for EMCCDs), β is the quantum efficiency, and
G is the gain. A more detailed description of these parameters can be found in Section 3.

4.3 Inference model

As previously mentioned in this manuscript and the companion manuscript, our goal is to
estimate the collection of emitter tracks, represented as

x1:B
1:N,1:K ≡

{
xm
n,k

∣∣m = 1, . . . , B, n = 1, . . . , N, k = 1, . . . , K
}

, as well as the number of emitters B, the diffusion coefficient D, the background flux F , and
the EMCCD gain G if necessary, provided all measurements

w1:P
1:N ≡ {wp

n|n = 1, . . . , N, p = 1, . . . , P}
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. Within a Bayesian framework, this implies that we wish to sample from the posterior
probability distribution P

(
x1:B
1:N,1:K , B,D, F,G

∣∣w1:P
1:N

)
.

However, this nonparametric posterior does not assume a simple form and must be
simulated computationally. Rather than inferring B directly, we consider a total M emitters
with M ≫ B. Here each emitter is labeled with a binary value, bm, known as the load. A
value of bm = 0 indicates that the emitter does not emit any photons (i.e., the load is inactive
or, equivalently, the emitter is unnecessary in explaining the data), while bm = 1 signifies
that the load is active (again, equivalently, that the emitter is warranted by the data). This
allows us to compute B as the sum of all bm values. Therefore, the target posterior becomes
P
(
b1:M ,x1:M

1:N,1:K , D, F,G
∣∣w1:P

1:N

)
.

Using Bayes’ theorem, we construct the posterior from the product of the observation

likelihood, P
(
w1:P

1:N

∣∣∣b1:M ,x1:M
(1:L), D, F,G

)
, and prior, P

(
b1:M ,x1:M

(1:L), D, F,G
)
. Both terms are

detailed in Section D.1. From the posterior constructed from this product, we may start
sampling the posterior to deduce appropriate values over the parameters.

In order to sample this high dimensional posterior, we develop a specialized Markov
Chain Monte Carlo (MCMC) scheme. In particular, a global Gibbs sampling [84] scheme
is combined with Metropolis-Hastings (MH) algorithm [85, 86] and ancestral sampling to
sample the posterior. Within the Gibbs sampler of BNP-Track, the parameters are updated
in the following order:

1. Update G by sampling from its marginal posterior P
(
G
∣∣∣w1:P

1:N , b
1:M ,x1:M

(1:L), F
)

(Sec-

tion D.2);

2. Update F by sampling from P
(
F
∣∣∣w1:P

1:N , b
1:M ,x1:M

(1:L)

)
using the MH algorithm (Sec-

tion D.3);

3. Update b1:M by sampling from P
(
b1:M

∣∣∣w1:P
1:N ,x

1:M
(1:L), F,G

)
(Section D.4);

4. Update x1:M
(1:L) and D by sampling from P

(
x1:M
(1:L), D

∣∣∣w1:P
1:N , b

1:M , F,G
)

using the MH

algorithm and ancestral sampling (Section D.5);

5. Update xM1

(1:L) again by sampling from P
(
xM1

(1:L)

∣∣∣w1:P
1:N , D, F,G

)
(Section D.6).

These steps are repeated until the sampler has reached convergence.
All algorithms describe above are implemented in MATLAB R2022b. Figures are generated

by Makie [87] v0.19.2 using Julia [88] v1.8.5.

4.4 TrackMate and tracking performance measures

Besides its widespread use, ongoing maintenance and updates, and being built upon leading
methods in Ref. [22], we opted for TrackMate specifically because it offers various localization
and linking methods, as well as multiple thresholding options.
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To generate tracks for comparison in 2.4, we first exported synthesized videos to TIFF
files and imported them in Fiji [89] v1.54b for analysis with TrackMate [72] v7.9.2. As part
of implementing TrackMate, the Laplacian of Gaussian detector with sub-pixel localization
and the linear assignment problem (LAP) mathematical framework [25] were used in spot
detection. Spots were then filtered based on quality, contrast, sum intensity, and radius. For
the LAP tracker, we allowed gap closing and tuned the parameters of max distance, max
frame gap, and number of spots in tracks to find the best tracks. No extra feature penalties
were added.

The benchmarks in Tables S.4 and S.5 were created using the Tracking Performance
Measure plugin in Icy 2.4.3.0. To generate these benchmarks, we exported the TrackMate
track, the BNP-Track MAP estimates, and ground truth tracks as XML files. All tracks were
imported into Icy’s TrackManager using the “Import TrackMate track file” feature, and the
Tracking Performance Measure plugin was initiated using the “add Track Processor” option.
The only required input for this plugin is the “maximum distance between detections”, which
we kept at a default value of five as this value is large enough for the diffusion coefficient in
the synthetic data (0.04µm2s−1).
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