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Abstract

Assessing dynamic processes at single molecule scales is key toward capturing life at the level of its molec-
ular actors. Widefield superresolution methods, such as STORM, PALM, and PAINT, provide nanoscale
localization accuracy, even when distances between fluorescently labeled single molecules (“emitters”) fall
below light’s diffraction limit. However, as these superresolution methods rely on rare photophysical events
to distinguish emitters from both each other and background, they are largely limited to static samples. In
contrast, here we leverage spatiotemporal correlations of dynamic widefield imaging data to extend superres-
olution to simultaneous multiple emitter tracking without relying on photodynamics even as emitter distances
from one another fall below their diffraction limit. We simultaneously determine emitter numbers and their
tracks (localization and linking) with the same localization accuracy per frame in regimes where widefield
superresolution does for immobilized emitters (≈50 nm). We demonstrate our results for both in cellulo data
and, for benchmarking purposes, on synthetic data. To this end, we avoid the existing tracking paradigm
relying on completely or partially separating the tasks of emitter number determination, localization of each
emitter, and linking emitter positions across frames. Instead, we develop a fully joint posterior distribution
over the quantities of interest, including emitter tracks and their total, otherwise unknown, number within
the Bayesian nonparametric paradigm. Our posterior quantifies the full uncertainty over emitter numbers
and their associated tracks propagated from origins including shot and camera artefact, pixelation, stochastic
background, and out-of-focus motion. It remains accurate in more crowded regimes where alternative tracking
tools do not apply.

Keywords: Fluorescence microscopy, Superresolution microscopy, Nanoscopy, Single molecule tracking,
Image analysis, Bayesian nonparametrics
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Introduction

Characterizing macromolecular assembly kinetics [6], quantifying intracellular biomolecular motility [41, 21, 22],
or interrogating pairwise biomolecular interactions [47] requires accurate decoding of spatiotemporal processes at
the single molecule level, i.e., high, nm spatial and rapid, often ms, temporal scales. These tasks ideally require
superresolving positions of dynamic targets, typically fluorescently labeled molecules (light emitters), to tens of
nanometer spatial resolution [32, 52, 2] and, when more than one target is involved, discriminating between signals
from multiple targets simultaneously.

Assessments by means of fluorescence experiments at the required scales suffer from inherent limitations. Such
limitations often arise from the diffraction limit of light, ≈250 nm in the visible range, below which conventional
fluorescence techniques cannot achieve sufficient contrast between neighboring emitters of interest. To go beyond
the limitations of conventional tools and achieve superresolution, contrast can be created through structured
illumination [14], structured detection [24, 56, 55, 38], the photoresponse of fluorophore labels to excitation
light [32, 52, 2, 45], or combinations thereof [17, 30, 57, 1].

Here we focus on widefield superresolution microscopy (SRM), which typically relies on fluorophore photodynamics
to achieve superresolution. SRM is regularly used both in vitro [46, 25] and in cellulo [52, 2, 19, 51, 29, 37].
Specific widefield SRM image acquisition protocols, such as STORM [45], PALM [2], and PAINT [46], through
their associated image analyses, decode positions of light emitters separated by distances below the diffraction
limit, often down to the resolution of tens of nanometers [45, 2]. These widefield SRM protocols can be broken
down into three conceptual steps: (i) specimen preparation; (ii) imaging; and (iii) computational processing of
the acquired images (frames). The success of Step (iii) is ensured by both Steps (i)-(ii). In particular, in Step (i)
engineered fluorophores are selected that enable the desired photodynamics; e.g., photoswitching in STORM [45],
photo-activation/bleaching in PALM [2], or fluorophore binding/unbinding in PAINT [46]. Step (ii) is then
performed over extended periods, while awaiting rare photophysical (or binding-unbinding) events to manifest
and for sufficient photons to be collected to achieve superresolved localizations in Step (iii). For well-isolated
bright spots, Step (iii) achieves superresolved localization [27, 32, 52] while accounting for effects such as light
diffraction, resulting in spot sizes of roughly twice 0.61λ/NA (the Rayleigh diffraction limit), set by the emitter
wavelength (λ), the numerical aperture (NA) of the microscope’s objective [43], the camera and its photon shot
noise and spot pixelization.

In our work, we show that computation can be used to overcome both reliance on photophysics in Step (i) and for
a long acquisition time in Step (ii), which not only limit widefield SRM largely to spatiotemporally fixed samples,
but can also induce sample photodamage. In fact, while a moving emitter’s distribution, or smearing, of its photon
budget over multiple frames and pixels is a disadvantage in the implementation of Step (iii) above, we demonstrate
- conversely - that such a distribution of the photon budget in both space and time provides information that can
be leveraged to superresolve emitter tracks, determine emitter numbers, and help discriminate targets from their
neighbors, even in the complete absence of photophysical processes (fig. 1).

Although captured in more detail in the framework put forward in the Methods and expanded upon in a com-
panion manuscript, here, we briefly highlight how our tracking framework, Bayesian nonparametrics (BNP)-Track,
is fundamentally different from conventional tracking tools that determine emitter numbers, localize emitters, and
link emitter locations as sequential steps. In the language of Bayesian statistics, resolving emitter tracks as well as
emitter numbers amounts to constructing the probability distribution, P (links, locations, emitter numbers|data),
which reads as “the joint posterior probability distribution of emitter numbers, locations, and links given a dataset”.
The best set of emitter number and tracks are those globally maximizing this probability distribution. Without
further approximation, Bayes’ theorem allows us to decompose this probability distribution as this product:

P (links, locations, emitter numbers|data)
= P (links|locations, emitter numbers, data)P (locations|emitter numbers, data)P (emitter numbers|data) . (1)
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Single particle tracking tools that perform emitter number determination, emitter localization, and linking in
separate steps invariably approximate the maximization of the joint distribution as a serial maximization of three
terms. This process often involves additional approximations, such as using P (links|locations) to approximate
P (links|locations, emitter numbers, data). Approximations such as these are acceptable for well-isolated and in-
focus emitters, though they have fundamentally limited our ability to superresolve emitters especially as they
move closer than light’s diffraction limit. In contrast, BNP-Track avoids all such approximations and leverages all
sources of information through the joint posterior to draw samples as well as maximize the posterior probability
distribution, yielding superresolved emitter tracks.

The overall input to BNP-Track, includes both raw image sequences and known information on the imaging
system, including the microscope optics and camera electronics as further detailed in Methods. Using Bayesian
nonparametrics, we provide a means of estimating unknowns including the number of emitters and their associated
tracks. We demonstrate BNP-Track on experimental single particle tracking data, detailing how the simultaneous
determination of emitter numbers and tracks can be computationally achieved. We also benchmark BNP-Track’s
performance against a well-established diffraction-limited tracking tool (TrackMate) to which we must confer
some advantage (as direct comparison is not possible since existing tools do not simultaneously learn emitter
numbers and associated tracks). More detailed comparisons are presented in the companion manuscript.

a b c d e

Figure 1: Conceptual comparison between widely available tracking frameworks and BNP-Track. a and e, Four frames
from a dataset showing two emitters. b, Existing tracking approaches [48, 23, 59, 34, 4, 58, 7, 13, 33, 60, 20, 3] either
completely or partially separate the task of first identifying and then localizing light emitters in the field of view of each
frame independently. c, Conventional approaches then link emitter positions across frames. d, Our nonparametric approach
(BNP-Track) simultaneously determines the number of emitters, localizes them and links their positions across frames.
In b-d, circles denote correctly identified emitters, and crosses denote missed emitters. In c and d, scale bars indicate a
distance equal to the nominal diffraction limit given by the Rayleigh diffraction limit 0.61λ/NA.
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Results

To demonstrate our BNP-Track analysis approach, we first analyze single mRNA molecules diffusing in live U-2 OS
cells imaged under single-plane HILO illumination [49] on a fluorescence microscope as previously described [41,
39, 8], but using a beamsplitter to divide the single-color signal onto two cameras (figs. 2 and 3). The dual-camera
setup allows us to test for consistency of BNP-Track’s emitter number and track determination across cameras. In
subsequent tests, we employ noise-overlaid synthetic data for which ground truth is known [48, 5] (figs. 4 and 5),
and finally challenge BNP-Track with experimental data of crowded emitters (fig. 6).

As emitters evolve in 3D, it is possible, indeed helpful in more accurate lateral localization, for BNP-Track to
estimate emitter axial distance (|z|) from the focal plane from 2D images using the width of the emitter’s point
spread function (PSF) sensitive to axial distance [61]. For this reason, while axial distance from the focal plane
is always less accurately determined than lateral positions, we nonetheless report BNP-Track’s axial estimates for
experimental data in figs. 2 and 3 and, for synthetic data in figs. 5 and 6, compare our axial distance to the
ground truth.

As tracking tools, such as TrackMate [48], do not estimate axial locations or emitter numbers, direct head-to-
head comparison to other tracking tools is not possible and, for this reason, a detailed comparison of BNP-Track
to augmented tracking tools is relegated to a companion manuscript alongside detailed robustness analysis of
BNP-Track with detailed discussion of how both motion aliasing and stochastic background is treated. For
completeness, however, in figs. 5 and 6 we provide an approximate comparison of BNP-Track to TrackMate.

Prior to showing results of BNP-Track, an important note on Bayesian inference is warranted. Developed within
the Bayesian paradigm [50, 12, 53], BNP-Track not only provides point estimates over unknown quantities of
interest, such as numbers of emitters and their associated tracks, but also distributions over them, which includes
uncertainty. As we cannot easily visualize the output of multidimensional posteriors over all candidate emitter
numbers and associated tracks, we often report estimates for emitters which coincide with the number of emitters
which maximize the posterior termed maximum a posteriori (MAP) point estimates. Then, having determined
the MAP number of emitters, we collect their associated tracks in figures such as figs. 2 to 4.

BNP-Track superresolves sparse single-emitter tracks in cellulo

No ground truth is known for tracks from experimental single particle tracking data. For this reason, we employed
two separate camera cameras behind a beamsplitter. Following image registration due to unavoidable camera mis-
alignment, this allowed us to independently process two datasets for subsequent comparison and error estimation
knowing that, in principle, both cameras should have the same ground truth tracks though the noise realizations
on both cameras is different.

In figs. 2a and 2b, we show, for illustrative purposes alone, time averages of a sequence of 22 successive frames
spanning ≈2.5 s of real time in both detection channels. In the data processing, we analyze the underlying frames
without averaging. All raw data are provided in the Supporting information.

From these frames, we track well separated or dilute emitters, i.e., having their PSFs always be well separated
in space, in a 5 µm wide square region of interest (ROI), named ROI-1. Figure 2a also zooms in on ROI-1.
The BNP-Track derived track estimates are shown in fig. 2c while, in fig. 2e, all samples from the posterior are
superposed. As, due to fundamental optical limitations, we cannot determine whether the emitter’s axial position
lies above or below the focal plane, we only report the absolute value of the emitters’ axial position. As evident
from fig. 2c, BNP-Track successfully identifies and localizes the same tracks within the selected ROI in the two
parallel camera datasets of ROI-1 despite different noise realizations on each camera and background. Of note,
the two square ROI-1’s are rotated relative to one another based on careful image registration in post-processing.
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Figure 2: Testing BNP-Track’s performances on two 5 µm-wide regions of interest with different emitter densities based
on an experimental dataset from fluorophore-labeled mRNA molecules diffusing in live U-2 OS cells onto a dual-camera
microscope. a and b, For convenience only, we show time-averages of all 22 frames analyzed from camera A and B,
respectively. The selected ROIs are boxed. We zoom in on ROI-1 and ROI-2 in the subpanels. The other ROI, ROI-3,
is zoomed in on and analyzed later in the text (fig. 6). c and d, Estimated tracks within the selected ROIs from both
cameras with solid boxes indicating the corresponding ROIs after image registration. e and f, Reconstructed time courses
for individual tracks from the selected ROIs. The dotted boxes in d highlight two emitter tracks only detected by camera
A. g, Time course reconstruction by combining (e, top) and (e, middle). h, Time course reconstruction by combining (f,
top) and (f, middle).

fig. 2e shows tracks of all well separated emitters identified within this field of view. We note that despite the
fact that the center of the PSF of the emitter near the top of ROI-1 in fig. 2c is outside ROI-1 from both cameras
for all 22 frames, it is still surprisingly independently picked up in the analysis of the data from both cameras.
However we exclude this unique track outside the field of view from fig. 2e and further analysis.

The agreement between tracks across both cameras within their field of view is quantified according to the
pairing distance; further details in appendix J.2. This reveals a localization error of 73 nm in the lateral direction.
Consequently, BNP-Track’s average error from the underlying ground truth is one half of the localization error,
or about ≈37 nm, consistent with prior superresolution values [32, 52, 2].

As BNP-Track provides estimates of the lateral as well as the magnitude of the axial emitter position (see details
in Methods), we can also assess the full localization error in 3D. This results in a 3D pairing distance of 97 nm
and thus a ≈48 nm localization error from ground truth. Having shown that we can track emitters in a dilute
regime similar to ROI-1 of figs. 2c and 2d, we next analyze a more challenging ROI, ROI-2, (figs. 2e and 2f) where
emitter PSFs now occasionally overlap.

As before, for illustrative purposes alone, in figs. 2a and 2b we show time averages of a sequence of 22 successive
frames spanning ≈2.5 s of real time. Figures 2e, 2f and 2h reflect the same information described for ROI-1.
Also, just as in ROI-1, BNP-Track can track emitters even when they diffuse away from a camera’s field of view.
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Figure 3: Testing BNP-Track’s performance for ROI-2 of figs. 2e and 2f. The color scheme here is the same as in fig. 2
(cyan for camera A and magenta for camera B). a, Localization estimates in the lateral and axial directions at a selected
frame of a selected emitter. Dots indicate individual positions sampled from the joint posterior distribution (as detailed in
Methods) and blue and red crosses indicate average values for cyan and magenta, respectively. The black line segments
mark the diffraction limit in the lateral direction. b and c, Estimated background photon fluxes and emitter brightnesses
for both cameras throughout the course of imaging. Dotted lines represent median estimates and dashed lines map the
1%-99% credible interval. d and e, The posterior distributions of diffusion coefficient and number of emitters for both
cameras.

Using the pairing distance to quantify the localization error in the lateral direction between the two cameras, for
ROI-2 the localization error is slightly higher at 128 nm with an error from the ground truth of about 64 nm, which
remains under the nominal diffraction limit of 231 nm. Additionally, the localization error in 3D is now slightly
elevated compared to the one from ROI-1, to 159 nm, resulting in the error from ground truth of about 80 nm.

BNP-Track also estimates other dynamical quantities including the background photon fluxes (photon per unit
area per unit time), the emitter brightness (photon per unit time), the diffusion coefficient, and the number of
emitters. Estimates for these quantities are summarized in fig. 3. It is worth noting that figs. 3b and 3c show
that both the system’s background flux and emitter brightness vary over time, making ROI-2 more challenging.
Despite the agreement between tracks deduced from both cameras below light’s diffraction limit, discrepancies
in some quantities (such as diffusion coefficient in fig. 3d) highlight the sensitivity of these quantities to small
track differences below light’s diffraction limit. Similarly, small discrepancies in the emitter brightness estimates
(fig. 3c) may be induced by minute dissimilarities in the optical path leading to each camera.

Finally, the number of emitters detected in the two cameras are different (fig. 3e), with the additional tracks
detected by camera A highlighted by dotted boxes in fig. 2d. This is unsurprising for three reasons. First, the two
cameras have slightly different fields of view. Second, as highlighted by the dotted boxes in fig. 2d, a significant
portion of the two extra tracks lie outside the fields of view of either cameras and thus are difficult tracks to detect
under any circumstance. Third, as background noise can be mathematically modeled by out-of-focus emitters,
and since two cameras draw slightly different conclusions on background photon emission rates and molecular
brightnesses (figs. 3b and 3c), this may also naturally lead to slightly different estimates of the number of emitters
especially out-of-focus. That is, BNP-Track not only detects in-focus emitters, but uses what it learns from in-
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focus emitters to extrapolate outside the field of view or the focal plane. In such regions the number of photons
used by BNP-Track to draw inferences on tracks is naturally limited.

Benchmarking BNP-Track with synthetic data

Figure 4: BNP-Track’s performance using synthetic data. Through all panels, BNP-Track’s samples are in cyan and ground
truths are in magenta. a, BNP-Track’s reconstructions of time courses for all emitters’ tracks. b, The track reconstructions
of an out-of-focus emitter. This emitter’s ground truth track is highlighted in a with thicker lines. c, Posterior distributions
of individual localizations corresponding to the time level highlighted in b with black vertical lines. The black line segments
mark the lateral diffraction limit in c. d, Sampled emitter locations in the lateral and axial directions. Again, crosses show
estimate means and black line segments mark the lateral diffraction limit.

We next validate our method using synthetically generated data where the ground truth is known a priori. In order
to generate realistic data, we start from the estimated tracks of the MAP joint sample of camera A’s ROI-2 as
our ground truth. We then add optical artifacts and noise according to Methods. Parameters (NA, pixel size,
frame rate) used in the simulations are either identical to those of our experiments or, in the case of brightness
and background photon flux, identical to those estimated from experiment (fig. 3).

Figure 4a shows the ground truth in magenta and the estimated tracks in cyan with a unique track highlighted
as a wider magenta line. The total pairing distance with ground truth in 2D amounts to a localization error
of 76 nm, and in 3D amounts to 145 nm, both remain under the nominal diffraction limit. It is important to
note that these numbers are calculated with several out-of-focus emitters included, as shown in fig. 4a bottom
panel. Figure 4b focuses on the highlighted magenta track. It is important to note that the selected emitter is
out-of-focus as its ground truth axial distance (|z|) fluctuates between 200 nm to 400 nm. To provide a detailed
demonstration of BNP-Track’s performance, we further quantify the localization at 0.5 s (indicated by a black
vertical line in fig. 4b) in fig. 4c. The lateral and axial localization error determined from the pairing distance with
ground truth are shown in fig. 4c, where the lateral localization error is compared to the nominal diffraction limit.
We also quantify co-localization in all three spatial directions fig. 4d. Both figs. 4c and 4d show that BNP-Track
is capable of beating the diffraction limit even for out-of-focus emitters.

Next, in fig. 5, we test how closely two emitters can come together while retaining BNP-Track’s ability to enumerate
the number of emitters and track them. To this end, a pair of estimated tracks from ROI-2 of fig. 2 were used
as ground truth for the simulation of synthetic data (shown in figs. 5a to 5f) using the same parameters as in
fig. 4. Then, the mean displacement between emitters is gradually decreased. Figures 5g to 5l show reconstructed
tracks and comparison with the ground truth. Remarkably, the localization error estimated from the total pairing
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g h i j k l

m n o p q r

Figure 5: Benchmarks of BNP-Track on the mean displacement between two tracks. TrackMate tracks are also provided
for comparison. a-f, The time-averaged images for the synthetic scenarios. The mean displacements are 724 nm (a),
579 nm (b), 434 nm (c), 289 nm (d), 145 nm (e), and 0 nm (f). g-l, BNP-Track’s reconstructed tracks for all coordinates.
Reconstructed tracks are in cyan and the ground truths are in magenta. Lateral localization errors are listed at the top
right of each panel. m-r, TrackMate’s estimated tracks (green) of the same datasets with the ground truths (magenta).
Lateral localization errors are listed at the top right of each panel, with missing segments excluded. Also, no axial results
are plotted in (m-r) as TrackMate does not provide axial tracks for 2D images.

distance remains ≈40 nm in 2D and slightly increases (by ≈50 nm) in 3D throughout the synthetic scenarios,
below the diffraction limit.

Next, in figs. 5m to 5r, we benchmarked BNP-Track against TrackMate [48] as a well-established single par-
ticle tracking software which combines and is built upon contest leading tracking methods [5]. We also show
characteristic estimates on the same datasets as figs. 5a to 5f, including comparison against the ground truth
using localization errors. In using TrackMate, we note that: (i) The program is manually tuned (for instance,
the number of emitters is adjusted to obtain the best matching tracks); and (ii) the lateral localization errors
are calculated without taking into account missing segments or whole tracks. Both of these factors provide
TrackMate with significant advantages. Even so, we find BNP-Track’s localization error to be smaller under most
circumstances. Detailed quantitative comparisons generated by the Tacking Performance Measures plugin [5] in
Icy [9] are provided in tables A.1 to A.6 and more extensive comparisons are given in a companion manuscript.

It is not unexpected that we find existing tracking methods, such as TrackMate, failing to resolve emitters with
separations close to or below the diffraction limit (figs. 5p to 5r). However, TrackMate also misses track segments
when the mean lateral displacements between tracks lie well above the diffraction limit (figs. 5m to 5o). Emitter
tracks moving out-of-focus contributes to these missing segments. This is most clearly evidenced by noting that
in figs. 5a to 5c, one emitter’s average intensity is lower and broader. More quantitatively, this is because this
emitter, as seen in figs. 5g to 5i, has a |z| position at a distance 200 nm from the focal plane. In contrast, by
leveraging spatiotemporal information, BNP-Track can still track these out-of-focus emitters. In the companion
manuscript, we detail this point in greater depth.
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BNP-Track’s performance in increasingly crowded environments

Figure 6: BNP-Track can track in more crowded environment. a, Time-averaged images over 22 frames from both
cameras show that there are many diffraction-limited emitters within the ROI, ROI-3. b, BNP-Track’s tracking results
after registering fields of view. c, A comparison between BNP-Track’s result and TrackMate’s result with a high localization
quality threshold for the data from camera A. TrackMate tracks are in black; see [48] for the definition of quality. d, A
comparison between BNP-Track’s result and TrackMate’s result with a low localization quality threshold for the data from
camera A. TrackMate tracks are in black.

So far, we have evaluated the performance of BNP-Track on two distinct ROIs from an experimental dataset and
confirmed its resolution using synthetic data. To further test the limits of BNP-Track, we analyzed a densely-
packed ROI, ROI-3, selected from the same data set. See figs. 2a and 2b for where ROI-3 lies.

Here in fig. 6a, similar to figs. 2a and 2b, we first present time-averaged images from both cameras. These images
reveal that ROI-3 contains tens of closely positioned as well as out-of-focus emitters, as evidenced by the irregular
shapes and lower intensities of certain bright regions in fig. 6a. Furthermore, within ROI-3, cameras A and B
observe different fields of view, offset by approximately 1.5 µm and rotated by 5◦, thereby introducing additional
challenges. To provide an assessment of BNP-Track’s performance to compare with TrackMate, we selected
the in-focus emitters in the overlapping region and calculated the pairing distance between tracks. We define
“in-focus” emitters as emitters whose estimated z position is within 150 nm of the in-focus (z = 0) plane. The
results show a localization error derived from this pairing distance of approximately 136.4 nm, which corresponds
to a localization error of 68.2 nm compared to the ground truth. These results are consistent with the performance
for ROI-2 in fig. 2.

As illustrated in figs. 6a and 6b, ROI-3 presents a challenge for emitter number estimation due to crowding which
inherently increases the number of out-of-focus emitters in addition to overlapping PSFs. This poses serious issues
for conventional tracking tools relying on manually setting thresholds to fix the number of emitters especially dim
ones out-of-focus. To demonstrate this point, we again used TrackMate to analyze the dataset from ROI-3. The
analysis results for camera A are illustrated in figs. 6c and 6d. Specifically, for fig. 6c we set a relative high
localization quality threshold at 5 to minimize spurious detection, resulting in a total of 18 tracks. Each of these
tracks can be paired with one of BNP-Track’s 78 emitter tracks using the Tracking Performance Measures tool [5]
in Icy [9] with the maximum paring distance set at two pixels or 266 nm (which is close to the nominal diffraction
limit of 231 nm). Even with a high localization threshold TrackMate produced significantly fewer emitter tracks
than BNP-Track due to out-of-focus dim emitters in addition to overlapping PSFs. In contrast, for fig. 6d, we
lowered the quality threshold in TrackMate to 0 to detect more emitters, which increased the total number of
TrackMate tracks to 64. Using the same pairing distance threshold, 41 of these tracks can be paired with a subset
of BNP-Track’s emitter tracks. However, there are also 23 spurious tracks, which contaminate further analyses.
These results underscore the importance of inferring the number of emitters simultaneously while tracking rather
than determining emitter numbers independently.
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Discussion

We present here an image processing framework, BNP-Track, superresolving particles in cellulo without the
need for complex fluorophore photodynamics. Our framework analyzes continuous image measurements from
diffraction-limited light emitters throughout image acquisition. BNP-Track thereby extends the scope of widefield
SRM by leveraging spatiotemporal information encoded across frames and pixels. Additionally, BNP-Track unifies
many existing approaches to localization microscopy and single-particle tracking and extends beyond them by
decoupling image acquisition from image processing by computationally estimating emitter numbers; see fig. 5.

By operating in three interlaced stages (preparation, imaging, processing) existing approaches to widefield SRM
estimate locations of individual static emitters with a generally accepted resolution of ≈ 50 nm or less [32, 52,
2]. Such resolution for widefield applications is a significant improvement relative to the diffraction limit of
conventional microscopy, ≈ 250 nm. Although our processing framework cannot lift the limitations imposed by
optics, nor eliminate the degradation induced by noise, it can significantly extend our ability to estimate emitter
numbers and tracks from existing images with uncertainty both for easier in-focus cases and more challenging cases
out-of-focus and partly out of the field of view. In particular, because our framework provides full distributions
over unknowns, it readily computes error bars (credible intervals) associated with emitter numbers warranted by
images (e.g., figs. 3 and 4), localization events for both isolated emitters and emitters closer than light’s diffraction
limit, and other parameters including diffusion coefficients.

It is well known that any tracking method will face challenges in certain circumstances, such as out-of-focus
motion, crowded environments, or camera saturation. In some cases, the available frames may be insufficient for
tracking purposes. Although quantifying when BNP-Track fails is highly dependent on the specific circumstance,
we contend that its performance can serve as a measure of whether a dataset provides enough information for
emitter tracking. As mentioned in the Introduction and discussed in the companion manuscript, this is because
BNP-Track incorporates spatiotemporal information by modeling the entire process from emitter motion to photon
detection, thus maximizing the amount of information extracted from frames. If BNP-Track fails to track in a
particular system, conventional tracking methods are also very likely to fail, indicating the need for an alternative
experimental protocol.

The analysis of a field of view like those shown in Results (5 µm × 5 µm or about 1500 pixels, and 22 frames)
requires about 300 min of computational time on an average laptop computer. The computational cost of our
analysis scales linearly with the product of the number of frames, total pixel number, and the total number of
emitters. Larger scale applications are within the realm of existing computational capacity; however, algorithmic
improvements and computational optimization will be required to speed up execution time. Despite its higher
computational cost compared to current single-particle tracking methods, we argue two points. Firstly, as demon-
strated in figs. 5 and 6, cheaper conventional tracking methods not only fail to surpass the diffraction limit, but
they also do not learn emitter numbers. Yet learning emitter numbers is especially critical in correctly linking
emitter locations across frames, especially in crowded environments. Secondly, our method’s time of execution
is primarily computational wall-time as BNP-Track is unsupervised and largely free from manual tuning. This
stands in contrast to methods such as TrackMate used in the generation of figs. 5 and 6 requiring manual tuning
and thresholding for proper execution, as detailed more extensively in a companion manuscript and, even so, are
limited by diffraction.

While we have focused on the conceptual basis for how to beat the diffraction limit computationally, with more
extensive changes to our processing framework, the methods herein can also be adapted to accommodate spe-
cialized illumination modalities including TIRF [10] and light-sheet [44], or even multi-color imaging. All of these
adaptations are compatible with Bayesian nonparametric tracking, which relies on the joint assessment of three
steps characteristic of traditional single-particle tracking (emitter number determination, emitter localization and
linking). Along these same lines, in Methods, we made many common modeling choices and used parameters
common in experiments. For example, we used an EMCCD camera model and assumed a Gaussian PSF. Other
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choices can be made by simply changing the mathematical form of the camera model or the PSF provided these
assume known, pre-calibrated, forms. None of these changes break the conceptual features of BNP-Track.

Similarly, another assumption made in this study is that BNP-Track considers only a Brownian motion model,
and one may question its performance when emitters evolve according to alternative motion models. However,
throughout Results, we have demonstrated that BNP-Track yields accurate tracking results consistent across
two cameras for an experimental dataset with an unknown emitter motion model, despite assuming Brownian
motion. This suggests that BNP-Track remains robust under other motion models. We may thus conceive of the
Brownian motion model instead as simply providing a reason to invoke Gaussian transition probabilities, following
from the central limit theorem, between locations across frames. What is more, if we have reason to believe that
a specific motion model is warranted that may not be accommodated by Gaussian transition probabilities, we may
also incorporate this change into our framework.

Currently, post-processing tools are frequently utilized to extract useful information from single-particle tracks,
such as diffusion coefficients and diffusive states. These tools range from simple approaches, such as mean square
displacement, to more complex methods, such as Spot-On [15] and SMAUG [26]. Since our framework produces
tracks, these tracks can be analyzed by these tools and our ability to produce full distributions over tracks may
also be helpful in estimating errors over post-processed parameters. It is also conceivable that our output could
be used as a training set for neural networks [31] or be used to make predictions of molecular tracks in dense
environments [11], such as fig. 6, previously considered outside the scope of existing tools.

Taken together, the framework we present is the first proof-of-principle demonstration that computation feasibly
achieves superresolution of evolving targets by avoiding the modular approximations of the existing tracking
paradigm which has thus far limited tracking to dilute and in-focus samples.

Methods

Image processing

As we demonstrate in Results, our analysis’ goal is the determination of the probability distribution termed the
posterior, p(θ|W ). In this distribution, we use θ to gather the unknown quantities of interest, for instance emitter
tracks and photon emission rates, and W to gather the data under processing, for instance timelapse images.
Below we present how this distribution is derived as well as its underlying assumptions.

To facilitate the presentation, we follow a description in two parts. First, we present a detailed formulation of the
physical processes involved in the formation of the acquired images necessary in quantitative analysis discussed
earlier. This formulation captures microscope optics and camera electronics and can be further modified to
accommodate more specialized imaging setups. In the formulation, the unknowns of interest are encoded by
parameters. Second, we present the mathematical tools needed to estimate values for such unknown parameters.
That is, we address the core challenge in SRM arising from the unknown number of emitters and their associated
tracks and, to overcome this challenge specifically, we apply Bayesian nonparametrics. Our approach in the second
part is different from likelihood-based approaches, currently employed in localization microscopy, and is ultimately
what allows us to relax SRM’s photodynamical requirements.

As several of the notions involved in our description are stochastic, for example parameters with unknown val-
ues and random emitter dynamics, we use probabilistic descriptions. Although our notation is standard to the
statistics community, we provide an introduction more appropriate for a broader audience in the Supporting
information.
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Model description

Our starting point consists of image measurements obtained in a SRM experiment denoted by wp
n, where subscripts

n = 1, . . . , N indicate the exposures and superscripts p = 1, . . . , P indicate pixels. For example, w3
2 denotes the

raw image value, typically reported in ADU or counts and stored in TIFF format, measured in pixel 3 during
the second exposure. Similarly, w1:P

2 denotes every image value (i.e., entire frame) measured during the second
exposure. Since the image values are related to the specimen under imaging, our goal from now on is to develop
a mathematical model encoding the physical processes relating the specimen under imaging with the acquired
measurements.

Noise The recorded images mix electronic signals that depend only stochastically on an average amount of
incident photons [42, 28, 18, 16]. For commercially available cameras, the overall relationship, from incident
photons to recorded images, is linear and contaminated with multiplicative noise that results from shot noise,
amplification and readout. Our formulation below applies to image data acquired with cameras of EMCCD type, as
commonly used in superresolution imaging [32, 18], though the expression below can be modified to accommodate
other camera types. Here, in our formulation

wp
n|up

n ∼ Normal
(
µ + ξup

n, υ + fξ2up
n

)
where up

n is the average number of photons incident on pixel p during exposure n. The parameter f is a camera
dependent excess noise factor and ξ is the overall gain that combines the effects of quantum efficiency, pre-
amplification, amplification and quantization. The values of µ, υ, ξ, and f are specific to the camera that
acquires the images of interest and their values can be calibrated as we describe in Supporting information.

Pixelization As shot-noise is already captured, up
n depends deterministically on the underlying photon flux

up
n =

∫ tmax
n

tmin
n

dt

∫∫ xp
max,yp

max

xp
min,yp

min

dxdy U(x, y, t)

where tmin
n , tmax

n mark the integration time of the nth exposure; xp
min, xp

max, yp
min, yp

max mark the region monitored
by pixel p; and U(x, y, t) is the photon flux at position x, y and time t. We detail our spatiotemporal frames of
reference in the Supporting information.

Optics We model U(x, y, t) as consisting of background Uback(x, y, t) and fluorophore photon contributions,
i.e., flux, from every imaged light emitter Um

fluor(x, y, t). These are additive

U(x, y, t) = Uback(x, y, t) +
B∑

m=1
Um

fluor(x, y, t).

Specifically, for the latter, we consider a total of B emitters that we label with m = 1, . . . , B. Each of our
emitters is characterized by a position Xm(t), Y m(t), Zm(t), all of which may change through time. Here, we
use uppercase letter X, Y , and Z to for random variables and lowercase letter x, y, and z for general variables.
Since the total number B of imaged emitters is a critical unknown quantity, in the next section we describe how
we modify the flux U(x, y, t) to allow for a varying number of emitters and in the Supporting information
we describe how this flux is related to Xm(t), Y m(t), Zm(t).

Model inference

The quantities that we are interested in estimating, for example the positions X1:B(t), Y 1:B(t), Z1:B(t), are
unknown variables in the preceding formulation. The total number of such variables depends upon the number of
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imaged emitters B, which in SRM remains unknown thereby prohibiting processing of the images under the flux
U(x, y, t). Since B has such subtle effect, we modify our formulation to make it compatible with the nonparametric
paradigm of Data Analysis that allows for processing under an unspecified number of variables [54, 36, 50, 12, 35].

In particular, following the nonparametric latent feature paradigm [50, 12], we introduce indicator parameters bm

that adopt only values 0 or 1 and recast U(x, y, t) in the form

U(x, y, t) = Uback(x, y, t) +
M∑

m=1
bmUm

fluor(x, y, t).

Specifically, with the introduction of the indicators, we increase the number of emitters represented in our model
from B to a number M > B that may be arbitrarily large. The critical advantage is that now the total number
of model emitters M may be set before processing in contrast with the total number of actual emitters B that
remains unknown. With this formulation we infer the values of b1:M during processing, simultaneously with
the other parameters of interest. This way, we can actively recruit, i.e., bm = 1, or discard, i.e., bm = 0,
light emitters consistently avoiding under/overfitting. Following image processing, our analysis recovers the total
number of imaged emitters by the sum B =

∑M
m=1 bm and the positions of the emitters Xm(t), Y m(t), Zm(t)

by the estimated positions of those model emitters with bm = 1. However, a side-effect of introducing M is that
our analysis results may depend on the particular value chosen. To relax this dependence, we use a specialized
nonparametric prior on bm that we describe in detail in the Supporting information. This prior specifically
allows for image processing at the formal limit M → ∞.

Our overall formulation also includes additional parameters, for example background photon fluxes and fluorophore
brightness, that may or may not be of immediate interest. To provide a flexible computational scheme, that works
around both unknowns types, i.e., parametric and nonparametric, and also allows for future extensions, we adopt
a Bayesian approach in which we prescribe prior probability distributions on every unknown parameter beyond
just the indicators bm. These priors, combined with the preceding formulation, lead to the posterior probability
distribution p(θ|w1:P

1:N ), where θ gathers every unknown, on which our results rely. We describe the full posterior
distribution and its evaluation in the Supporting information.

Image acquisition

Experimental timelapse images

Fluorescence timelapse images of U-2 OS cells injected with chemically labeled firefly luciferase mRNAs were ac-
quired simultaneously on two cameras. Cell culture and handling of U-2 OS cells prior to injections were performed
as previously described [40]. Firefly luciferase mRNAs were in vitro transcribed, capped and polyadenylated, and
a variable number of Cy3 dyes were non specifically added to the polyA tail using CLICK chemistry [8]. Cells were
injected with a solution of Cy3 labeled mRNAs and Cascade Blue labeled 10 kDa dextran (Invitrogen D1976) using
a Femtojet pump and Injectman NI2 micromanipulator (Eppendorf) at 20 hPa for 0.1 s with 20 hPa compensation
pressure. Successfully injected cells were identified by the presence of a fluorescent dextran and were imaged
30 minutes post injection. Cells were continuously illuminated with the 532 nm laser in HILO mode, and Cy3
fluorescence was collected using a 60x 1.49 NA oil objective. Images were captured simultaneously on two Andor
X-10 EMCCD cameras by using a 50:50 beamsplitter, with a 100 ms exposure time.

Synthetic timelapse images

We acquire the validation and benchmarking data through standard computer simulations. We start from ground
truth as specified in the captions of figs. 4 and 5 and then added noise with values we estimated from the
experimental timelapse images according to appendix E.
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