
Vocal complexity in the long calls of Bornean orangutans  1 

 2 

 *Erb, W.M.1,2, Ross, W.1, Kazanecki, H.1, Mitra Setia, T.3,4, Madhusudhana, S.1,5, Clink, D.J.1 3 

*Corresponding author 4 

Email: erbivorous@gmail.com 5 

  6 

1 K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell 7 

University, Ithaca, New York, 14850, USA 8 

2 Department of Anthropology, Rutgers University, New Brunswick, New Jersey, 08901, USA 9 

3 Fakultas Biologi, Universitas Nasional Jakarta, Jakarta, Indonesia 10 

4 Primate Research Center, Universitas Nasional, Jakarta, Indonesia 11 

5 Centre for Marine Science and Technology, Curtin University, Perth, WA 6102, Australia 12 

  13 
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  15 

ABSTRACT 16 

Vocal complexity is central to many evolutionary hypotheses about animal communication. Yet, 17 

quantifying and comparing complexity remains a challenge, particularly when vocal types are highly 18 

graded. Male Bornean orangutans (Pongo pygmaeus wurmbii) produce complex and variable “long call” 19 

vocalizations comprising multiple sound types that vary within and among individuals. Previous 20 

studies described six distinct call (or pulse) types within these complex vocalizations, but none 21 

quantified their discreteness or the ability of human observers to reliably classify them. We studied 22 

the long calls of 13 individuals to: 1) evaluate and quantify the reliability of audio-visual classification 23 

by three well-trained observers, 2) distinguish among call types using supervised classification and 24 
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unsupervised clustering, and 3) compare the performance of different feature sets. Using 46 acoustic 25 

features, we used machine learning (i.e., support vector machines, affinity propagation, and fuzzy c-26 

means) to identify call types and assess their discreteness. We also used Uniform Manifold 27 

Approximation and Projection (UMAP) to visualize the separation of pulses using both extracted 28 

features and spectrograms. We found low inter-observer reliability and poor classification accuracy 29 

using supervised approaches, indicating that pulse types were not discrete. We propose a new pulse 30 

type classification scheme that is highly reproducible across observers and exhibits high classification 31 

accuracy using support vector machines. Although the low number of call types suggests long calls 32 

are fairly simple, the continuous gradation of sounds seems to greatly boost the complexity of this 33 

system. This work responds to calls for more quantitative research to define call types and measure 34 

the gradedness of animal vocal systems and highlights the need for a more comprehensive 35 

framework for studying vocal complexity vis-à-vis graded repertoires.  36 

 37 

HIGHLIGHTS 38 

● We used audio-visual (AV) analysis and machine-learning to discriminate pulse types.  39 

● AV and support vector machines (SVM) did not support the six published pulse types. 40 

● Hard and soft clustering algorithms showed a mixture of discrete and graded pulses. 41 

● We propose three pulse types that show high reproducibility and classification accuracy. 42 

● More work is needed to investigate the role of graded signals in vocal complexity.   43 

 44 
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INTRODUCTION 49 

 Vocal complexity, or the diversity of sounds in a species’ repertoire, is central to many 50 

evolutionary hypotheses about animal communication (Bradbury & Vehrencamp, 2011; Fischer et 51 

al., 2016; Freeberg et al., 2012; McComb & Semple, 2005). This complexity has been hypothesized 52 

to be shaped by a range of factors including predation pressure, sexual selection, habitat structure, 53 

and social complexity (Bradbury & Vehrencamp, 2011; Fischer et al., 2016). Two common measures 54 

of vocal complexity are: 1) the diversity (or number) of call types as well as 2) their discreteness. For 55 

instance, within black-capped chickadee (Poecile atricapillus) groups, individuals flexibly increase the 56 

diversity of note types when they are in larger groups, presumably increasing the number of 57 

potential messages that can be conveyed (Freeberg et al., 2012). When comparing across species, 58 

similar themes emerge in rodents and primates. Sciurid species with a greater diversity of social roles 59 

have more alarm call types (Blumstein & Armitage, 1997) and primate species in larger groups with 60 

more intense social bonding have larger vocal repertoires (McComb & Semple, 2005). Further, it has 61 

been proposed that while discrete repertoires facilitate signal recognition in dense habitats, graded 62 

calls allow more complexity in open habitats where intermediate sounds communicate arousal and 63 

can be linked with visual signals (Marler et al., 1975). 64 

Yet, quantifying vocal complexity in a standardized manner remains a challenge for 65 

comparative analyses. A primary aspect of this challenge is related to the identification and 66 

quantification of discrete call types, which is particularly vexing in repertoires comprising 67 

intermediate calls and in species that exhibit significant inter-individual variation (Fischer et al., 68 

2016). The most common approaches to identifying call types are: 1) manual (visual or audio-visual) 69 

classification of spectrograms by a human observer and 2) automated (quantitative or algorithmic) 70 

using features that are either manually or automatically measured from spectrograms (Kershenbaum 71 

et al., 2016). Audio-visual classification involves one or more observers inspecting spectrograms 72 
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visually while simultaneously listening to the sounds. This method has been applied to the 73 

vocalizations of numerous taxa (e.g., manatees, Trichechus manatus latirostris: Brady et al., 2020; spear-74 

nosed bats, Phyllostomus discolor: Lattenkamp, 2019; humpback whales, Megaptera novaeangliae: 75 

Madhusudhana et al., 2019; New Zealand kea parrots, Nestor notabilis: Schwing et al., 2012). Audio-76 

visual classification studies often rely on a single expert observer and only rarely quantify within- or 77 

between-observer reliability (reviewed in Jones et al., 2001). On one hand, when classification is 78 

done by a single observer, the study risks idiosyncratic or irreproducible results. On the other hand, 79 

when multiple observers are involved, the study risks inconsistent assessments among scorers. To 80 

assess the reproducibility of a human-based classification scheme, it is critical to evaluate the 81 

consistency of scores within and/or among the human observers using inter-rater reliability (IRR) 82 

statistics such as Cohen’s kappa (Hallgren, 2012). 83 

To compare and classify acoustic signals, researchers must make decisions about which 84 

features to estimate, as analyses of the waveform are generally too computationally costly. A 85 

commonly used approach for many classification problems is feature selection, in which a suite of 86 

selected time- and frequency-based characteristics of sounds are measured and compiled from 87 

manually annotated spectrograms (Odom et al., 2021). There is little standardization concerning the 88 

selection of acoustic variables across studies, which often include a combination of qualitative and 89 

quantitative measurements that are manually and/or automatically (i.e., using a sound analysis 90 

program, such as Raven Pro 1.6) extracted. As an alternative to feature selection, some researchers 91 

use automated approaches wherein the spectral content of sounds is measured using spectrograms, 92 

cepstra, multi-taper spectra, wavelets, or formants (reviewed in Kershenbaum et al., 2016). 93 

 Once features have been manually or automatically extracted, multivariate analyses can be 94 

used to classify or cluster sounds using supervised or unsupervised algorithms, respectively. In the 95 

case of supervised classification, users manually label a subset of representative sounds which are 96 
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used to train the statistical model that will subsequently be used to automatically identify those 97 

sound types in an unlabeled set of data (Cunningham et al., 2008). In contrast to supervised 98 

classification, clustering is an unsupervised machine learning approach in which an algorithm divides 99 

a dataset into several groups or clusters such that observations in the same group are similar to each 100 

other and dissimilar to the observations in different groups (Greene et al., 2008). Thus, in the case of 101 

unsupervised clustering, the computer – rather than the human observer – learns the groupings and 102 

assigns labels to each value (Alloghani et al., 2020). 103 

 Enumeration of call types in a repertoire is especially challenging when there are 104 

intermediate forms that fall between categories. These so-called graded call types have been well 105 

documented across primate taxa (Fischer et al., 2016; Hammerschmidt & Fischer, 1998). An 106 

alternative to “hard clustering” of calls into discrete categories (e.g., k-means, k-medoids, affinity 107 

propagation), “soft clustering” (e.g., fuzzy c-means) allows for imperfect membership by assigning 108 

probability scores for membership in each cluster, thereby making it possible to identify call types 109 

with intermediate values (Cusano et al., 2021; Fischer et al., 2016). So-called fuzzy clustering can be 110 

used in tandem with hard clustering by also quantifying the degree of ambiguity (or gradedness) 111 

exhibited by particular sounds and continuities across call types. Thus, soft clustering provides a 112 

means of quantifying gradedness in repertoires and can enable the identification of intermediate 113 

members. 114 

Across studies of animal vocal complexity, there is notable variation in the number and type 115 

of feature sets used, ranging from fewer than 10 to more than 100 parameters that are manually 116 

and/or automatically extracted. Table 1 provides a summary of 15 studies across mammalian and 117 

avian taxa that used supervised classification and unsupervised clustering approaches to identify call 118 

types across a range of mammalian and avian taxa. Though most studies paired audio-visual 119 

classification with an unsupervised clustering method, a few also included discriminant function 120 
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analysis (DFA) to quantify the differences among the human-labeled call types and/or computer-121 

identified clusters. Authors relied on a broad range of unsupervised clustering algorithms, though 122 

hierarchical agglomerative clustering was the most used method. Studies that aimed to provide an 123 

accurate classification of different call types often relied on a combination of supervised 124 

classification and unsupervised clustering methods to ensure results were robust and repeatable. 125 

However, those that compared feature sets or clustering methods often reported a lack of agreement 126 

on the number of clusters identified, highlighting the difficulty of the seemingly straightforward task 127 

of identifying and quantifying call types. 128 
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Table 1. Review of studies using supervised classification and unsupervised clustering approaches to identify vocal types. 129 

Authors (Date) Taxon Goals N 
Features 

Classification 
(N observers) 

Clustering Method 

Wadewitz et al. 
(2015) 

Chacma baboon (Papio 
ursinus) 

Compare hard & soft 
clustering, evaluate 
influence of features 

9, 38, 118 
(+ 19 PCA 
factors) 

A/V * K-means, Hierarchical 
agglomerative 
(Ward’s), Fuzzy c-
means 

Fuller (2014) Blue monkey (Cercopithecus 
mitis stulmanni) 

Catalog vocal signals 18 PCA 
factors 

A/V (1), DFA 
** 

Hierarchical 
agglomerative 

Fournet et al., 
(2015) 

Humpback whale (Megaptera 
novaeangliae) 

Catalog non-song 
vocalizations 

15  A/V (1), DFA Hierarchical 
agglomerative 

Brady et al. (2020) Florida manatee (Trichechus 
manatus latirostris) 

Catalog vocal repertoire 17  A/V (1) Maximum likelihood, 
CART 

Hammerschmidt & 
Fischer (2019) 

Chacma (Papio 
ursinus), olive (P. anubis), and 
Guinea baboon (P. papio) 

Catalog & compare vocal 
repertoires, Compare 
A/V to clustering  

9  A/V (multiple), 
DFA ** 

Two-step cluster 
analysis 

Sadhukhan et al. 
(2019) 

Indian wolf (Canis lupus 
pallipes) 

Catalog harmonic 
vocalizations 

8  DFA Hierarchical 
agglomerative 

Hedwig et al. (2019) African forest elephant 
(Loxodonta cyclotis) 

Catalog vocal repertoire  23  DFA ** PCA 

Huijser et al. (2020) Sperm whale (Physeter 
macrocephalus) 

Catalog coda repertoires 2 A/V (1) K-means, Hierarchical 
agglomerative  

Vester et al. (2017) Long-finned pilot whale 
(Globicephala melas) 

Catalog vocal repertoire  14  A/V (2), DFA Two-step cluster 
analysis 
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Soltis et al. (2012) Key Largo woodrat (Neotoma 
floridana smalli) 

Catalog vocal repertoire 6  A/V* Multidimensional 
scaling analysis (MDS) 

Elie & Theunissen 
(2016) 

Zebra finch (Taeniopygia 
guttata) 

Catalog vocal repertoire, 
determine distinguishing 
features 

22, 25 
(MFCCs) 

A/V (1), Fisher 
LDA, Random 
Forest 

PCA, Gaussian 
mixture 

Janik (1999) Bottlenose dolphin (Tursiops 
truncatus) 

Compare A/V to 
clustering  

20  A/V (5) K-means, Hierarchical 
agglomerative  

Cusano et al. (2021) Humpback whale (Megaptera 
novaeangliae) 

Differentiate discrete vs. 
graded call types 

25  A/V* Fuzzy k-means 

Garland et al. (2015) Beluga whale (Delphinapterus 
leucas) 

Catalog vocal repertoire 12  A/V*  CART, Random 
Forest 

Thiebault et al. (2019) Cape gannet (Morus capensis) Catalog repertoire of 
foraging calls 

12  A/V* Random Forest 

* Study did not report # of observers 130 

** leave-one-out 131 
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In the present study, we examine vocal complexity in the long calls of Bornean orangutans 132 

(Pongo pygmaeus wurmbii) by evaluating how the choice of classification or clustering methods and 133 

feature inputs affect the number of call types we recognize. Orangutans are semi-solitary great apes 134 

who exhibit a promiscuous mating system in which solitary adult males range widely in search of 135 

fertile females (Spillmann et al., 2017). Flanged males (i.e., adult males who have fully developed 136 

cheek pads, throat sacs, and body size approximately twice that of adult females) emit loud 137 

vocalizations, or long calls, which travel up to a kilometer and serve to attract female mates and 138 

repel rival males (Mitra Setia & van Schaik, 2007) In this social setting, long calls thus hold an 139 

important function for coordination among widely dispersed individuals. 140 

Long calls are complex and variable vocalizations comprising multiple call (or pulse) types 141 

that vary within and among individuals (Askew & Morrogh-Bernard, 2016; Spillmann et al., 2010). 142 

Long calls typically begin with a bubbly introduction of soft, short sounds that build into a climax of 143 

high-amplitude frequency-modulated pulses followed by a series of lower-amplitude and -frequency 144 

pulses that gradually transition to soft and short sounds, similar to the introduction (cf. MacKinnon, 145 

1977, Table S1). Although Davilla Ross and Geissmann (2007) first attempted to classify and name 146 

the different elements of these calls, they noted a “wide variety of call elements do not belong to any 147 

of these note types” (Davila Ross & Geissmann, 2007 p. 309).  148 

Spillmann and colleagues (2010) presented the most detailed description of orangutan long 149 

calls in which they identified six different pulse types (Table 2), but thus far there has been no 150 

attempt to systematically classify pulses or quantify how discrete these sounds are. Further, no 151 

studies have described the process for or the number of observers classifying sound types nor the 152 

reliability of classifications within or among observers. Thus, it is presently unclear how well pulse 153 

types can be discriminated by human observers or quantitative classification tools, thereby limiting 154 

our ability to repeat, reproduce, and replicate these studies.  155 
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Table 2. Names and descriptions of sound labels used in previous studies, using Spillmann et al. 156 

(2010) labels as reference. 157 

Sound 
Type 

MacKinnon 1974 Davila Ross & 
Geissmann 2007 

Spillmann et al. 2010 

Grumbles bubbly introduction bubbling “preceding bubbling-like elements that 
are low in loudness” 

Bubbles n/a bubbling “low amplitude, looks like a cracked 
sigh” 

Roar “climax of full roars” roar “more rounded and lower in 
frequency” 

Low Roar n/a n/a “half the fundamental frequency at the 
highest point than roar” 

Volcano 
Roar 

n/a n/a “sharp tip and higher frequency than 
roar” 

Huitus n/a huitus “high amplitude with steeply ascending 
and descending part that are not 
connected” 

Intermediary n/a intermediary “low amplitude, frequency modulation 
starts with a rising part followed by a 
falling part that changes again into a 
rising and ends with a falling part” 

Sigh “tails off gradually 
into a series of sighs” 

sigh “low amplitude, starts with a short 
rising part and changes in a long falling 
part” 

 158 

The present study aims to evaluate vocal complexity in orangutan long calls to compare 159 

different approaches to identifying the number of discrete calls and estimating the degree of 160 

gradedness in a model vocal system. Specifically, the objectives of our study are to: 1) evaluate and 161 

quantify the reliability of manual audio-visual (AV) classification by three well-trained observers, 2) 162 

classify and cluster call types using supervised classification (support vector machines) and 163 

unsupervised hard (affinity propagation) and soft (fuzzy c-means) clustering methods, and 3) 164 
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compare the results using different feature sets (i.e., feature engineering, complete spectrographic 165 

representations). Based on these findings, we will make explore and assess alternative classification 166 

systems for identifying discrete and graded call types in this system. 167 

  168 

METHODS 169 

Ethical Note 170 

This research was approved by the Institutional Animal Care and Use Committee of Rutgers, 171 

the State University of New Jersey (protocol number 11-030 granted to Erin Vogel). Permission to 172 

conduct the research was granted to WME by the Ministry of Research and Technology of the 173 

Republic of Indonesia (RISTEK Permit #137/SIP/FRP/SM/V/2013-2015). The data included in 174 

the present study comprise recordings collected during passive observations of wild habituated 175 

orangutans at distances typically exceeding 10 m. The population has been studied since 2003 and 176 

individual orangutans were not disturbed by observers in the execution of this study.  177 

 178 

Study Site and Subjects  179 

         We conducted our research at the Tuanan Orangutan Research Station in Central 180 

Kalimantan, Indonesia (20 09’ 06.1” S; 1140 26’ 26.3” E). Tuanan comprises approximately 900 181 

hectares of secondary peat swamp forest that was selectively logged prior to the establishment of the 182 

study site in 2003 (see Erb et al., 2018 for details). For the present study, data were collected 183 

between June 2013 and May 2016 by WME and research assistants (see Acknowledgments) during 184 

focal observations of adult flanged males. Whenever flanged males were encountered, our field team 185 

followed them until they constructed a night nest and we returned to the nest before dawn the next 186 

morning to continue following the same individual. All subjects were individually recognized on the 187 

basis of unique facial features, scars, and broken or missing digits. Individuals were followed 188 
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continuously for five days, unless they were lost or left the study area. During 316 partial- and full-189 

day focal observations, we recorded 1,013 long calls from 23 known individuals.  190 

 191 

Long Call Recording 192 

During observations, we used all-occurrences sampling (Altmann, 1974) of long calls noting: 193 

time, GPS location, stimulus (preceded within 15 minutes by another long call, tree fall, approaching 194 

animal, or other loud sounds), and any accompanying movements or displays. Recordings of long 195 

calls were made opportunistically, using a Marantz PMD-660 solid-state recorder (44,100 Hz 196 

sampling frequency, 16 bits: Kanagawa, Japan) and a Sennheiser directional microphone (K6 power 197 

module and ME66 recording head: Wedemark, Germany). Observers made voice notes at the end of 198 

each recording noting the date and time, orangutan’s name, height(s), distance(s), and movement(s), 199 

as well as the gain and microphone directionality (i.e., directly or obliquely oriented). 200 

 201 

Long Call Analysis 202 

For the present study, we selected a subset of recordings from 13 males from whom we had 203 

collected at least 10 high-quality long call recordings. When more than 10 long call recordings were 204 

available for a given individual, we randomly selected 10 of his recordings, stratified by study year, to 205 

balance our dataset across individuals and years. The final dataset comprised 130 long calls, 10 from 206 

each of 13 males.  207 

Prior to annotating calls, we used Adobe Audition 14.4 to downsample recordings to 5,100 208 

Hz (cf. Hammerschmidt & Fischer, 2019). We then generated spectrograms in Raven Pro 1.6 (K. 209 

Lisa Yang Center for Conservation Bioacoustics, 2019) with a 512-point (92.9 ms) Hann window (3 210 

dB bandwidth = 15.5 Hz), with 90% overlap and a 512-point DFT, yielding time and frequency 211 

measurement precision of 9.25 ms and 10.8 Hz. Three observers (WME, WR, HK) annotated calls 212 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.535487doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535487
http://creativecommons.org/licenses/by-nc-nd/4.0/


by drawing selections that tightly bounded the start and end of each pulse (Fig. S1) and assigned call 213 

type labels using the classification scheme outlined in Table 2. Except for huitus pulses (for which 214 

the rising and falling sounds are broken by silence), we operationally defined a pulse as the longest 215 

continuous sound produced on a single exhalation. Because most long calls are preceded and/or 216 

followed by a series of short bubbling sounds, we used a threshold duration of > 0.2 seconds to 217 

differentiate pulses from these other sounds. Most selections were drawn with a fixed frequency 218 

range from 50 Hz to 1 kHz; however, in cases where the maximum fundamental frequency exceeded 219 

1 kHz (e.g., huitus and volcano roars), selections were drawn from 50 Hz to 1.5 kHz. Occasionally, 220 

we manually reduced the frequency range of selections if there were disturbing background sounds, 221 

but only if this did not affect measures of the fundamental frequency contour or high-energy 222 

harmonics. We noted whether selections were tonal (i.e., the fundamental frequency contour was 223 

fully or partially visible) and whether they contained disturbing background noises such as birds, 224 

insects, or breaking branches. 225 

Our selected feature set comprised 25 extracted measurements made in Raven (Table S1) as 226 

well as an additional 19 measurements estimated using the R package warbleR (Araya-Salas & Smith-227 

Vidaurre, 2017). Prior to analyzing sounds in warbleR, we filtered out all pulse selections that were 228 

atonal or contained disturbing background noise, resulting in 2,270 clips. Two additional 229 

measurements (minimum and maximum) of the fundamental frequency (F0) were made using the 230 

“freq_ts” function in warbleR with the following settings: wavelength = 512, Hanning window, 70% 231 

overlap, 50 - 1,500 Hz, threshold = 85%. We then saved printed spectrograms depicting the F0 232 

contours for each. One observer (WME) visually screened the minimum and maximum values of 233 

the F0 contours and scored them as accurate or inaccurate. After removing those pulses for which 234 

one or both F0 measures were inaccurate, the final full dataset comprised 1,033 pulses from 117 235 

long calls for which all 46 parameters were measured. 236 
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 237 

Audio-Visual Analysis 238 

To assess the inter-rater reliability (IRR) of the audio-visual analysis, we randomly selected 239 

300 pulses (saved as individual .wav files). We included this step to remove any bias that may be 240 

introduced by information about the position or sequence of a pulse-type within a long call. Using 241 

the spectrograms and descriptions of pulse types published by Spillmann and colleagues (Spillmann 242 

et al., 2010), three observers (WME, WR, HK) labeled each sound as one of six pulse types (Fig. 1). 243 

Prior to completing this exercise, all observers had at least six months’ experience classifying pulse 244 

types, which involved routine feedback and three-way discussion. We used the R package irr (Gamer 245 

et al., 2012) to calculate Cohen’s kappa (a common statistic for assessing IRR for categorical 246 

variables) for each pair of observers, and averaged these values to provide an overall estimate of IRR 247 

(Light’s kappa) across all pulse types (cf. Hallgren, 2012; Light, 1971). 248 
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 249 

Figure 1. Spectrogram depicting long call pulse types. Pulses include HU = huitus, VO = 250 

volcano, HR = (high) roar, LR = low roar, IN = intermediary, SI = sigh. Spectrograms produced in 251 

Raven Pro 1.6. 252 

 253 

Supervised Classification  254 

For the supervised classification analysis, one observer (WME) manually classified all pulses 255 

(N=1,033). We then used support vector machines (SVM) in the R package e1071 (Meyer et al., 256 

2021) to evaluate how well pulse types could be discriminated using a supervised machine learning 257 

approach. SVMs are commonly used for supervised classification and have been successfully applied 258 

to the classification of primate calls (Clink & Klinck, 2020; Fedurek et al., 2016; Turesson et al., 259 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.535487doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535487
http://creativecommons.org/licenses/by-nc-nd/4.0/


2016). We used the sigmoidal kernel as previous research using SVM has found the most robust 260 

results using this kernel type (Clink & Klinck, 2020) and we estimated the best values for the gamma 261 

and cost parameters using the “tune” function. Following this, we calculated our classification 262 

accuracy using 10 iterations of leave-one-out cross-validation. Lastly, we used SVM recursive feature 263 

elimination to rank variables in order of their importance for classifying call types (cf. Clink et al., 264 

2018). For each of the top five most influential variables identified by recursive feature elimination, 265 

we used Kruskal-Wallis nonparametric tests due to the non-normal distribution of the residuals 266 

when applying linear models. We followed these with Dunn's test of multiple comparisons to 267 

examine differences among pulse types and unsupervised clusters (described below) – applying the 268 

Benjamini-Hochberg adjustment to control the false discovery rate – using the R package FSA 269 

(Ogle et al., 2022). 270 

 271 

Unsupervised Clustering 272 

For the unsupervised analysis, we used both hard- and soft-clustering approaches. For hard 273 

clustering, we used affinity propagation, which has the advantage that it does not require the user to 274 

identify the number of clusters a priori; further, because all data points are considered 275 

simultaneously, the results are not influenced by the selection of an initial set of points (Frey & 276 

Dueck, 2007). Using the R package apcluster (Bodenhofer et al., 2011), we systematically varied the 277 

value of ‘q’ in 0.25 increments from 0 to 1. By comparing the mean silhouette coefficient for each of 278 

the cluster solutions (Wang et al., 2008), we found that q = 0 produced the optimal number of 279 

clusters and thus we report the results from this model.  We used silhouette coefficients to quantify 280 

the stability of the resulting clusters (cf. Clink & Klinck, 2020).  281 

For the soft clustering analysis, we used C-means fuzzy clustering. In this analysis, each pulse 282 

is assigned a membership value (m ranges from 0 = none to 1 = full accordance) for each of the 283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.535487doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535487
http://creativecommons.org/licenses/by-nc-nd/4.0/


clusters. We first determined the optimal number of clusters (c) by evaluating measures of internal 284 

validation and stability generated in the R package clValid (Brock et al., 2008) when c varied from 2 285 

(the minimum) to 7 (one more than the previously described number of pulse types). We then 286 

systematically varied the fuzziness parameter μ from 1.1 to 5 (i.e., 1.1, 1.5, 2, 2.5, etc.: cf. Zhou et al., 287 

2014)) using the R package ‘cluster’ (Maechler et al., 2021). When μ = 1, clusters are tight and 288 

membership values are binary; however, as μ increases, cases can show partial membership to 289 

multiple clusters, and the clusters themselves thereby become fuzzier and can eventually merge, 290 

leading to fewer clusters (Fischer et al., 2016). We used measures of internal validity (connectivity, 291 

silhouette width, and Dunn index) and stability (average proportion of non-overlap = APN, average 292 

distance = AD, average distance between means = ADM, and figure of merit = FOM) to evaluate 293 

the cluster solutions in the R package clValid (Brock et al., 2008). Once we had identified the best 294 

solution, we calculated typicality coefficients to assess the discreteness of each pulse, wherein higher 295 

values indicate pulses that are well separated from other clusters and lower values indicate pulses 296 

that are intermediate between classes (cf. Cusano et al., 2021; Wadewitz et al., 2015).  297 

   Non-linear dimensionality reduction techniques have recently emerged as fruitful 298 

alternatives to traditional linear techniques (e.g., principal component analysis) for classifying animal 299 

sounds (Sainburg et al., 2020). Uniform Manifold Approximation and Projection (UMAP) is a state-300 

of-the-art unsupervised machine learning algorithm (McInnes et al., 2018) that has been applied to 301 

visualizing and quantifying structures in animal vocal repertoires (Sainburg et al., 2020). Like 302 

ISOMAP and t-SNE, UMAP constructs a topology of the data and projects that graph into a lower-303 

dimensional embedding (McInnes et al., 2018; Sainburg et al., 2020) UMAP has been shown to 304 

preserve more global structure while achieving faster computation times (McInnes et al., 2018) and 305 

has been effectively applied to meaningful representations of acoustic diversity (reviewed in 306 
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Sainburg et al., 2020). This approach removes any a priori assumptions about which acoustical 307 

features are most salient or easily measured by humans.  308 

We applied UMAP separately to the 46-feature set and to time-frequency representations of 309 

extracted pulses. In the latter case, we used as inputs power density spectrograms of 0.9-s duration 310 

audio clips centered at the temporal midpoint of annotated pulses. The chosen duration was fixed 311 

irrespective of the selection duration. This means that, for short selections, the spectrograms also 312 

included sounds outside of the original selection. Short-time Fourier transforms of the clips were 313 

computed, using SciPy’s (https://scipy.org/) spectrogram function, with a Hann window of 50 ms and 314 

50% frame overlap (20 Hz frequency resolution, 25 ms time resolution). Spectral levels were 315 

converted to the decibel scale by applying 10×log10. The bandwidth of the resulting spectrograms 316 

was limited to 50-1000 Hz prior to UMAP computation to suppress the influence of low-frequency 317 

noise on clustering. We used the UMAP function from the Python package umap-learn (McInnes et 318 

al., 2018) to compute the low-dimensional embeddings. Finally, we calculated Hopkin’s statistic of 319 

clusterability on the resultant UMAP using the R package factoextra (Kassambara & Mundt, 2020).  320 

Finally, we reviewed the outputs of our unsupervised clustering approaches to assess the 321 

putative number of pulses and graded variants. To identify a simple, data-driven, repeatable method 322 

for manually classifying pulse types, we began by pooling the typical pulses that belonged to each of 323 

the clusters identified by fuzzy clustering. Because F0 is a highly salient feature in long call 324 

spectrograms, our approach focused on the shape and height (or maximum frequency) of this 325 

feature. Using our revised definitions, we repeated the 1) audio-visual analysis and calculated IRR 326 

using manual labels from the same 300 pulses reviewed by the same three observers as before, and 327 

2) SVM classification of 500 randomly selected pulses scored by a single observer (WME) following 328 

the methods described above. 329 

 330 
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RESULTS 331 

Audio-visual analysis 332 

Based on manual labels from three observers using audio-visual classification methods, we 333 

calculated Light’s kappa κ = 0.599 (i.e., the arithmetic mean of Cohen’s Kappa for observers 1-2 = 334 

0.48, 1-3 = 0.60, and 2-3 = 0.60), which indicated only moderate agreement among observers 335 

(Landis & Koch, 1977). Classification agreement varied widely by pulse type (Fig. 2, Table 3). 336 

Whereas huitus and sigh pulse types showed high agreement among observers (mean 2.88 and 2.77, 337 

respectively, where 3 indicates full agreement), low roar and volcano pulse types showed very low 338 

agreement (mean 2.08).  339 

 340 
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 341 

Figure 2. Audio-visual classification agreement across observers. Stacked barplots indicating 342 

(top) classification agreement by pulse type between observer 1-2 and observer 1-3 and (bottom) the 343 

number of observers who agreed on the pulse types assigned by observer 1; the average agreement 344 

index is indicated below each pulse type and demonstrates high agreement for HU and SI (>2.77), 345 

but low agreement for VO and LR (2.08). 346 

 347 

Table 3. Mean values for A/V agreement index, SVM pulse classification accuracy, typicality 348 

coefficient, and frequency measures by pulse type. 349 

Pulse  
A/V 
index SVM Typicality Center Peak Mean 

peak 
3rd 

quart 1st quart 

HU 2.88 77% 0.90 443.3 421.0 436.4 585.3 370.3 
VO 2.08 41% 0.98 483.1 442.3 505.6 592.6 376.7 
HR 2.37 61% 0.94 440.0 409.9 450.1 533.8 358.7 
LR 2.08 54% 0.81 266.3 252.2 271.8 312.0 231.4 
IN 2.13 52% 0.84 249.7 242.7 244.6 288.8 225.5 
SI 2.77 81% 0.97 203.0 201.1 194.6 239.1 172.5 

 350 

 351 

 352 
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Supervised classification using extracted feature set: support vector machines   353 

We tested the performance of SVM for the classification of orangutan long call pulse types 354 

using our full acoustic feature dataset. Using leave-one-out cross-validation, we found the average 355 

classification accuracy of pulse types was 64.8% (range: 64.28 – 65.44 + 0.10 SE). SVM classification 356 

accuracy was higher than IRR agreement scores for most pulse types, though human observers were 357 

better at discriminating huitus and sigh pulses (Fig. 3). Classification accuracy was highly variable 358 

across pulse types. Whereas sighs and huituses were classified with the highest accuracy (81 and 359 

77%, respectively), volcanoes were classified with the lowest accuracy (41%: Fig. 3, Table 3). 360 

Recursive feature elimination revealed that center frequency, peak frequency, mean peak 361 

frequency, and third and first frequency quartiles were the most influential variables (Table 3). In all 362 

five influential features, high roars, huituses, and volcanoes overlapped, and in four of five features, 363 

intermediaries overlapped low roars (Fig. S2, Table S2). All other pairwise comparisons of pulse 364 

types showed significant differences in all features. 365 
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 366 

Figure 3. Barplot of classification accuracy for original pulse scheme. Comparison of 367 

classification accuracy of audio-visual classification (AV), calculated as the average agreement 368 

between three observer pairs compared to supervised machine learning classification (SVM).  369 

 370 

Unsupervised clustering using extracted feature set: hard and soft clustering 371 

Affinity propagation resulted in four clusters with an average silhouette coefficient of 0.32 372 

(range: -0.22 – 0.61). Of these four clusters, two (clusters 616 and 152: Fig. 4) had relatively high 373 

silhouette coefficients (0.45 and 0.29, respectively) and separated the higher-frequency pulses (i.e., 374 

HU, VO, and HR pulses) from lower-frequency ones (i.e., LR, IN, and SI). The remaining two 375 

clusters had low silhouette coefficients (cluster 16 = 0.19, cluster 812 = 0.21) and both contained 376 
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calls from all six pulse types (Fig. 4). We analyzed the separation of unsupervised clusters using the 377 

influential features identified from recursive feature elimination (Fig. S2). Two of the four clusters 378 

(16 and 152) overlapped in four of five features. These clusters primarily comprised high roars, 379 

volcanoes, and huituses.  380 

 381 

 382 

Figure 4. Stacked barplots of affinity propagation clusters showing the number of calls in each 383 

cluster classified by pulse type. 384 

 385 

In a final approach to clustering our extracted feature set, we used c-means fuzzy clustering 386 

to provide another estimate of the number of clusters in our dataset and quantify the degree of 387 

gradation across pulse types. All three internal validity measures (connectivity, Dunn, and silhouette) 388 

and three of four stability measures (APN, AD, and ADM) indicated that the two-cluster solution 389 

was optimal. Only FOM indicated a 3-cluster solution was marginally more stable (0.855 for 2 vs. 390 

0.860 for 3 clusters). We found that mu = 1.1 yielded the highest average silhouette width (0.312); 391 

silhouette widths decreased as mu increased. 392 
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Typicality coefficients were high overall (mean: 0.92 + 0.006 SE, Fig. 5) but varied widely by 393 

pulse type. Whereas volcanoes and sighs had the highest typicality coefficients (0.98 and 0.97, 394 

respectively) and intermediaries and low roars had the lowest coefficients (0.84 and 0.81, 395 

respectively, Table 3). Pairwise comparisons of typicality coefficients showed that typicality 396 

coefficients for low roars and intermediaries were significantly lower than those of all other pulse 397 

types but did not significantly differ between these two pulses (Fig. S2, Table S2).  398 

We determined the thresholds for typical (>0.976) and atypical calls (<0.855) (cf. Wadewitz 399 

et al., 2015). Overall, 69% of calls were ‘typical’ for their cluster and 17% were ‘atypical’; however, 400 

pulse types varied greatly (Fig. 6). Whereas sighs and volcanoes had a high proportion of typical calls 401 

(85% and 80% respectively), low roars and intermediaries had a high proportion of atypical calls 402 

(44% and 40% respectively).  403 

Typical calls were found in both clusters (Fig. 6). Typical calls in cluster one included high 404 

roars, huituses, low roars, and volcanoes and those in cluster two included sighs, low roars, and 405 

intermediaries. Whereas typical sighs, huituses, and volcanoes were found in only one cluster (and 406 

only 1-2 intermediaries and high roars were typical for a secondary cluster), 24% of low roars 407 

belonged to a secondary cluster. Overall, cluster one comprised 189 typical and 99 atypical calls 408 

(53% and 28% of 353 calls, respectively) and cluster two comprised 526 typical and 75 atypical calls 409 

(77% and 11% of 680 calls, respectively), indicating that calls in cluster two were better separated 410 

from other call types than those in cluster one. We compared typical calls in each cluster and found 411 

that calls in different clusters significantly differed from each other in all five influential features (Fig. 412 

S2, Table S2a).  413 
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 414 

Figure 5. Typicality coefficients for each pulse type a) Histogram showing the distribution of 415 

coefficients and b) boxplot showing typicality values for each pulse type. Typicality thresholds were 416 

calculated following (Wadewitz et al., 2015). Typical calls were those whose typicality coefficients 417 

exceeded 0.976 and atypical calls were those below 0.855. 418 

 419 

 420 

 421 
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Figure 6. Stacked barplots of typical calls a) the proportion of each pulse type that was typical 422 

for each cluster and b) the number of typical calls in each cluster classified by pulse type. 423 

 424 

UMAP visualization of extracted features and spectrograms 425 

We used UMAP to visualize the separation of individual pulses using our extracted feature 426 

set, comparing the cluster results from affinity propagation and fuzzy clustering with manual 427 

classification (Fig. 7). We also used UMAP to visualize the separation of pulses based on the power 428 

density spectrograms (Fig. 7). For both datasets, it appears that there are two loose and incompletely 429 

separated clusters as well as a smaller number of pulses that grade continuously between the two 430 

clusters. The Hopkins statistic of clusterability for the extracted feature set was 0.940 and 0.957 for 431 

the power spectrograms, both of which indicate strong clusterability of calls. 432 
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 433 

Figure 7. UMAP projection of 46-feature dataset. Colors indicate four clusters identified using 434 

unsupervised affinity propagation (upper left), two clusters and typical calls identified by fuzzy 435 

clustering (upper right), six pulse types labeled by human observer using the extracted feature set 436 

(lower left), and raw power density spectrograms (lower right). 437 

 438 

Identification and evaluation of a new classification scheme 439 

Collectively, our unsupervised clustering approaches showed broad agreement for a two-440 

cluster solution with graded pulses occurring along a spectrum between the two classes. In fuzzy 441 

typical cluster 1, the mean value for F0 max was 764.3 Hz + 351.5 SD Hz (range = 320-1,500); 442 

whereas for those pulses belonging to fuzzy typical cluster 2, the mean value of F0 max was 225.3 + 443 
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SD 67.9 SD Hz (range = 80-440). Pulses that were not typical for either cluster had a mean F0 max 444 

of 345.8 + 159.9 SD Hz. Based on these patterns, as well as the shape of the F0 (a feature that was 445 

commonly used to distinguish among pulse types in previous studies), we distinguished among 446 

pulses as follows: Roar (R) = F0 ascends and reaches its maximum (>350 Hz) at or near the 447 

midpoint of the pulse before descending, Sigh (S) = F0 descends and reaches its  maximum 448 

(typically, but not always < 350 Hz) at start of the pulse (i.e., no ascending portion of F0), and 449 

Intermediate (I) = either a) maximum F0 value occurs at the start of the pulse but with an 450 

ascending portion later in pulse, or b) F0 ascends and reaches its maximum (<350 Hz) at or near the 451 

midpoint of the pulse.  452 

These revised definitions yielded Light’s kappa κ = 0.838 (i.e., the arithmetic mean of 453 

Cohen’s Kappa for observers 1-2 = 0.84, 1-3 = 0.86, and 2-3 = 0.78), indicating near-perfect 454 

agreement among observers (Landis & Koch, 1977). Classification agreement varied only slightly by 455 

pulse type, with roars showing the highest agreement among observers (mean 2.92, where 3 456 

indicates full agreement), and intermediaries and sighs showing slightly lower agreement (mean 2.79 457 

and 2.72, respectively). Using leave-one-out cross-validation, we found the average classification 458 

accuracy of pulse types using SVM was 82.1% (range: 80.8 – 85.0 + 0.47 SE). SVM classification 459 

accuracy was lower than IRR agreement scores for most pulse types (Fig. 8) but both roars and sighs 460 

were classified with high agreement using both methods.    461 

 462 
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 463 

Figure 8. Barplot of classification accuracy for revised pulse scheme. Comparison of 464 

classification accuracy of audio-visual classification (AV), calculated as the average agreement 465 

between three observer pairs compared to supervised machine learning classification (SVM). 466 

 467 

DISCUSSION 468 

Here we present an extensive qualitative and quantitative assessment of the vocal complexity 469 

of the long-call vocalizations of Bornean orangutans. Relying on a large dataset comprising 46 470 

acoustic measurements from 1,033 pulses from 117 long calls recorded from 13 males, we compared 471 

the ability of human observers and supervised and unsupervised machine-learning techniques to 472 

discriminate unique call (or pulse) types. Three human observers performed relatively well at 473 
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discriminating two pulse types – huitus and sigh – but our inter-rater reliability score (i.e., Light’s 474 

kappa) showed only moderate agreement across the six pulse types. Although support vector 475 

machines (SVM) performed better than human observers in classifying most pulse types (except for 476 

huitus and sigh pulses), the overall accuracy was less than 65%. Like humans, SVM’s were best at 477 

discriminating huitus and sigh pulse types but performed relatively poorly for the others. Poor 478 

classification accuracy across audio-visual and supervised machine learning approaches indicates that 479 

these six pulse types are not discrete. This finding suggests that attempting comparisons of different 480 

pulse types (cf. Davila Ross & Geissmann, 2007; Spillmann et al., 2010) across observers or studies 481 

is not advisable, since these classes are not reliably reproduced by different observers or well 482 

separated by a robust set of acoustic features.  483 

Having demonstrated that these six pulse types were not well discriminated, we turned to 484 

unsupervised clustering to characterize and classify the diversity of pulses comprising orangutan long 485 

calls. Whereas hard clustering, such as affinity propagation, seeks to identify a set of high-quality 486 

exemplars and corresponding clusters (Frey & Dueck, 2007), soft, or fuzzy, clustering is an 487 

alternative or complementary approach to evaluate and quantify the discreteness of call types within 488 

a graded repertoire (Cusano et al., 2021; Fischer et al., 2016; Wadewitz et al., 2015). Although the 489 

hard and soft unsupervised techniques yielded different clustering solutions – four clusters for 490 

affinity propagation and two for fuzzy c-means – both methods showed relatively poor separation 491 

across pulse types. Importantly, both hard and soft clustering solutions separated high-frequency 492 

pulses (i.e., HU, VO, and HR) from low-frequency ones (i.e., LR, IN, SI), but low roars and 493 

intermediaries showed low typicality coefficients and occurred in both fuzzy clusters. Together, the 494 

results of unsupervised clustering support our interpretation of the manual and supervised 495 

classification analysis in demonstrating that orangutan long calls contain a mixture of discrete and 496 

graded pulse types.  497 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.535487doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535487
http://creativecommons.org/licenses/by-nc-nd/4.0/


We used a final approach, UMAP, to visualize the separation and quantify the clusterability 498 

of call types. Because the number and type of features selected can have a strong influence on the 499 

cluster solutions and their interpretations (Fischer et al., 2016; Wadewitz et al., 2015), we compared 500 

the results of our extracted 46-feature dataset with raw power density spectrograms as inputs. Both 501 

datasets yielded similar and high Hopkin’s statistic values, indicating strong clusterability of calls. At 502 

the same time, both datasets generated a V-shaped cloud of points showing two large loose clusters 503 

with a spectrum of points lying along a continuum between them.  504 

Based on our comprehensive evaluation of orangutan pulse types, we have proposed a 505 

revised approach to the classification of orangutan pulses that we hope provides improved 506 

reproducibility for future researchers. We recommend using the following terms to categorize the 507 

range of pulse types comprising orangutan long calls: 1) ‘Roar’ for high-frequency pulses, 2) ‘Sigh’ 508 

for low-frequency pulses, and 3) ‘Intermediate’ for graded pulses that fall between these two 509 

extremes. We have provided detailed descriptions of each of these pulse types and demonstrated 510 

that they can be easily and reliably identified among different observers and exhibit high 511 

classification accuracy using SVM. 512 

Thus, we find that orangutan calls can be clustered into three pulse types (two discrete and 513 

one graded). The low diversity of call types suggests that these vocalizations are not particularly 514 

complex. Like the long-calls of other apes (chimpanzees, Pan troglodytes schweinfurthii: Arcadi, 1996; 515 

Marler & Hobbett, 1975; gibbons, Hylobates spp: Marshall & Marshall, 1976), orangutan long calls 516 

typically comprise an intro and/or build-up phase (quiet, staccato grumbles, not analyzed in the 517 

present study), climax (high-energy, high-frequency roars), and a let-down phase (low-energy sighs). 518 

The low number of discrete pulse types could be interpreted as support for the hypothesis that long-519 

distance signals have been selected to facilitate signal recognition in dense and noisy habitats (Marler 520 
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et al., 1975). Yet, there is a spectrum of intermediate call types that yield a continuous gradation of 521 

sounds across phases and pulses, that seems to greatly boost the complexity of this signal.  522 

Unfortunately, only a handful of studies have quantified the gradedness of animal vocal 523 

systems (but see Cusano et al., 2021; Fischer et al., 2017; Taylor et al., 2021; Wadewitz et al., 2015). 524 

Consequently, we are still lacking a comprehensive framework through which to quantify and 525 

interpret vocal complexity vis-à-vis graded repertoires (Fischer et al., 2017). Future research will 526 

explore the production of graded call types across individuals and call types to examine the sources 527 

of variation and the potential role of graded call types in orangutan communication.  528 

In summary, we evaluated a range of supervised and unsupervised approaches to classifying 529 

and clustering sounds in animal vocal repertoires. We used a combination of traditional audio-visual 530 

methods and modern machine learning techniques that relied on human eyes and ears, a set of 46 531 

features measured from spectrograms, and raw power density spectrograms to triangulate diverse 532 

datasets and methods to answer a simple question: how many pulse types exist within orangutan 533 

long calls, how can they be distinguished, and how graded are they? While each approach has its 534 

strengths and limitations, taken together, they can lead to a more holistic understanding of call types 535 

within graded repertoires and contribute to a growing body of literature documenting the graded 536 

nature of animal communication systems.   537 
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SUPPLEMENTARY MATERIALS 538 

Table S1. Table describing features measured in Raven Pro and warbleR (Specan and freq_ts) 539 

No Program Feature Description 
1 Raven Delta.Time.s  difference between Begin Time and End Time for the selection (s) 
2 Raven Freq.5%.Hz frequency at which summed energy exceeds 5% of total energy 
3 Raven Freq.95%.Hz frequency at which summed energy exceeds 95% of total energy 
4 Raven Agg.Entropy.bits aggregate entropy measures the disorder in a sound by analyzing the energy distribution (pure tone ~ 0) 
5 Raven Avg.Entropy.bits average entropy measurement describes the amount of disorder for a typical spectrum within the selection  
6 Raven BW.50% difference between the 25% and 75% frequencies (Hz) 
7 Raven BW.90%  difference between the 5% and 95% frequencies (Hz) 
8 Raven Center.Freq frequency that divides the selection into two frequency intervals of equal energy (Hz) 
9 Raven Center.Time.Rel. proportion of selection at which 50% of the sound energy has an earlier time  

10 Raven Dur.50% difference between the 25% and 75% times (s) 
11 Raven Dur.90% difference between the 5% and 95% times (s) 
12 Raven Freq.25% frequency at which summed energy exceeds 25% of total energy (Hz) 
13 Raven Freq.75% frequency at which summed energy exceeds 75% of total energy (Hz) 
14 Raven Peak.Freq frequency at which Peak Power occurs within the selection (Hz) 
15 Raven PFC.Avg.Slope Mean of the Peak Frequency Contour Slope Series of numbers (Hz/ms) 
16 Raven PFC.Max.Freq Maximum of the Peak Frequency Contour Series of numbers (Hz) 
17 Raven PFC.Max.Slope Maximum of the Peak Frequency Contour Slope Series of numbers (Hz/ms) 
18 Raven PFC.Min.Freq Minimum of the Peak Frequency Contour Series of numbers (Hz) 
19 Raven PFC.Min.Slope Minimum of the Peak Frequency Contour Slope Series of numbers (Hz/ms) 
20 Raven PFC.Num.Inf.Pts Number of times the slope changes sign in Peak Frequency Contour Slope Series of numbers 
21 Raven Peak.Time.Rel. proportion of selection at first time in a selection at which amplitude equal to Peak Amplitude occurs 
22 Raven Time.25%.Rel. proportion of selection at which 25% of the sound energy has an earlier time  
23 Raven Time.5%.Rel. proportion of selection at which 5% of the sound energy has an earlier time  
24 Raven Time.75%.Rel. proportion of selection at which 75% of the sound energy has an earlier time  
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25 Raven Time.95%.Rel. proportion of selection at which 95% of the sound energy has an earlier time  
26 specan meanfreq mean of frequency spectrum (kHz) 
27 specan sd standard deviation of frequency (kHz) 
28 specan skew skewness: asymmetry of the spectrum 
29 specan kurt kurtosis: peakedness of the spectrum  
30 specan sp.ent energy distribution of the frequency spectrum (pure tone ~ 0) 
31 specan time.ent energy distribution on the time envelope (pure tone ~ 0) 
32 specan entropy spectrographic entropy: product of time x spectral entropy 
33 specan sfm spectral flatness (pure tone ~ 0) 
34 specan meandom average of dominant frequency measured across the acoustic signal 
35 specan mindom minimum of dominant frequency measured across the acoustic signal 
36 specan maxdom maximum of dominant frequency measured across the acoustic signal 
37 specan dfrange range of dominant frequency measured across the acoustic signal 
38 specan modindx modulation index: cumulative difference between adjacent dominant frequencies / dominant frequency range 
39 specan startdom dominant frequency measurement at the start of the signal 
40 specan enddom dominant frequency measurement at the end of the signal 
41 specan dfslope slope of the change in dominant frequency through time 
42 specan meanpeakf frequency with highest energy from the mean frequency spectrum 
43 specan Freq_IQR interquartile frequency range. Frequency range between 'freq.Q25' and 'freq.Q75' (kHz) 
44 specan Time_IQR interquartile time range. Time range between 'time.Q25' and 'time.Q75' (s) 
45 freq_ts F0_min frequency at which F0 contour is at its minimum value (kHz) 
46 freq_ts F0_max frequency at which F0 contour reaches its maximum value (kHz) 

 540 
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Figure S1. Example of annotated spectrogram 542 

 543 
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Figure S2. Boxplots of features that differed across human-labeled pulses (upper left), affinity 544 

propagation clusters (upper right), and typical calls in fuzzy clusters (lower left) for each of the 545 

following influential features: a) center frequency, b) peak frequency, c) mean peak frequency, d) 546 

third quartile frequency, e) first quartile frequency. 547 

 548 

 549 
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Table S2a. Table summarizing results of Kruskal-Wallis tests for differences among pulses or clusters identified by human observers, 553 

affinity propagation, and fuzzy clustering for each of the top five influential variables. 554 

 A/V AFFINITY FUZZY 
Variable χ² df p χ² df p χ² df p 
Center 557.81 5.00 0.00 738.53 3.00 0.00 417.16 1.00 0.00 
Peak 425.31 5.00 0.00 588.78 3.00 0.00 406.49 1.00 0.00 
Mean peak 528.18 5.00 0.00 677.78 3.00 0.00 421.95 1.00 0.00 
Third quart 570.30 5.00 0.00 777.79 3.00 0.00 416.69 1.00 0.00 
First quart 536.72 5.00 0.00 684.50 3.00 0.00 414.47 1.00 0.00 

  555 
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Table S2b. Table summarizing results of Dunn tests for pair-wise differences among pulses identified by human observers for each of the 556 

top five influential variables. 557 

A/V Center Peak Mean peak Third quart First quart 

Pair Z P.unadj P.adj Z P.unadj P.adj Z P.unadj P.adj Z P.unadj P.adj Z P.unadj P.adj 

HR-HU -0.21 0.84 0.84 -0.54 0.59 0.63 0.12 0.90 0.90 -0.60 0.55 0.64 -0.54 0.59 0.68 

HR-IN 10.29 0.00 0.00 9.12 0.00 0.00 10.59 0.00 0.00 10.52 0.00 0.00 9.04 0.00 0.00 
HR-LR 9.80 0.00 0.00 9.81 0.00 0.00 9.68 0.00 0.00 9.97 0.00 0.00 9.35 0.00 0.00 
HR-SI 19.72 0.00 0.00 17.10 0.00 0.00 19.35 0.00 0.00 19.86 0.00 0.00 19.26 0.00 0.00 
HR-VO -0.67 0.50 0.58 -0.84 0.40 0.50 -0.44 0.66 0.71 -0.55 0.58 0.62 -0.50 0.62 0.66 
HU-IN 7.12 0.00 0.00 6.65 0.00 0.00 7.00 0.00 0.00 7.65 0.00 0.00 6.60 0.00 0.00 
HU-LR 6.31 0.00 0.00 6.66 0.00 0.00 5.90 0.00 0.00 6.81 0.00 0.00 6.37 0.00 0.00 
HU-SI 11.40 0.00 0.00 10.27 0.00 0.00 10.83 0.00 0.00 11.90 0.00 0.00 11.49 0.00 0.00 
HU-VO -0.36 0.72 0.77 -0.23 0.82 0.82 -0.44 0.66 0.76 0.04 0.97 0.97 0.04 0.97 0.97 
IN-LR -1.83 0.07 0.08 -0.57 0.57 0.66 -2.26 0.02 0.03 -1.91 0.06 0.07 -0.91 0.36 0.45 
IN-SI 5.60 0.00 0.00 4.63 0.00 0.00 4.91 0.00 0.00 5.46 0.00 0.00 6.70 0.00 0.00 
IN-VO -7.70 0.00 0.00 -7.06 0.00 0.00 -7.67 0.00 0.00 -7.74 0.00 0.00 -6.67 0.00 0.00 
LR-SI 9.44 0.00 0.00 6.48 0.00 0.00 9.18 0.00 0.00 9.38 0.00 0.00 9.51 0.00 0.00 
LR-VO -6.92 0.00 0.00 -7.09 0.00 0.00 -6.60 0.00 0.00 -6.90 0.00 0.00 -6.45 0.00 0.00 
SI-VO -12.16 0.00 0.00 -10.83 0.00 0.00 -11.70 0.00 0.00 -12.12 0.00 0.00 -11.71 0.00 0.00 
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Table S2c. Table summarizing results of Dunn tests for pair-wise differences among clusters identified by affinity propagation for each of 559 

the top five influential variables. 560 

AFFINITY Center Peak Mean peak Third quart First quart 
Pair Z P.unadj P.adj Z P.unadj P.adj Z P.unadj P.adj Z P.unadj P.adj Z P.unadj P.adj 

152-16 0.84 0.40 0.40 -0.43 0.66 0.66 0.24 0.81 0.81 2.33 0.02 0.02 0.20 0.84 0.84 
152-616 16.64 0.00 0.00 14.23 0.00 0.00 15.60 0.00 0.00 18.09 0.00 0.00 15.68 0.00 0.00 
16-616 22.88 0.00 0.00 21.43 0.00 0.00 22.33 0.00 0.00 22.56 0.00 0.00 22.51 0.00 0.00 
152-812 7.95 0.00 0.00 7.59 0.00 0.00 7.57 0.00 0.00 8.88 0.00 0.00 7.73 0.00 0.00 
16-812 9.94 0.00 0.00 11.37 0.00 0.00 10.31 0.00 0.00 8.97 0.00 0.00 10.60 0.00 0.00 
616-812 -15.61 0.00 0.00 -11.83 0.00 0.00 -14.41 0.00 0.00 -16.52 0.00 0.00 -14.26 0.00 0.00 

561 
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