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Abstract

Pangenome graphs can represent all variation between multiple genomes,
but existing methods for constructing them are biased due to reference-
guided approaches. In response, we have developed PanGenome Graph
Builder (PGGB), a reference-free pipeline for constructing unbi-
ased pangenome graphs. PGGB uses all-to-all whole-genome align-
ments and learned graph embeddings to build and iteratively refine
a model in which we can identify variation, measure conservation,
detect recombination events, and infer phylogenetic relationships.

Keywords: pangenomes, genome alignment, variant detection, comparative
genomics, chromosome evolution, phylogenetics, population genetics
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Pangenome graphs are powerful models that can represent all genetic varia-
tion between multiple genomes in a population [1–4]. They allow us to identify
variation, measure conservation, detect recombination events, and infer phy-
logenetic relationships, making them valuable tools for studying sequence
evolution and variation in diverse species [5, 6]. However, existing methods
for constructing pangenome graphs [7, 8] are biased due to their reference
and tree-guided approaches [5, 9], which can lead to incomplete and unstable
representations of genetic variation [10]. Meanwhile, although approaches for
unbiased pangenome graph construction have been proposed [10, 11], these
have been limited to the graph induction step, while experience shows that
specialized techniques for pangenome alignment and refinement are required to
obtain high-quality pangenome builds [12]. Bias results from attempts to tackle
the inevitable computational complexity that arises when building pangenome
graphs, which imply all-to-all comparisons that scale quadratically with the
number of included genomes [5, 7], or from a goal to structure the resulting
graphs so that they are easier to use during read alignment [8].

To overcome these limitations, we propose the PanGenome Graph Builder
(PGGB), a reference-free pipeline to construct unbiased pangenome graphs. Its
output presents a base-level representation of the pangenome, including vari-
ants of all scales from single nucleotide polymorphisms (SNPs) to structural
variants (SVs). The graph is unbiased—all genomes are treated equivalently,
without input order or phylogenetic dependencies, and any genome may
be used as a frame of reference in downstream analysis. PGGB makes no
assumptions about phylogenetic relationships, orthology groups, or evolution-
ary histories, allowing data to speak for itself without risk of implicit bias that
may affect inference made on the graph. PGGB is implemented as a modu-
lar shell script, integrating independent components via standard text-based
file formats, and in this provides a template for future pangenome construc-
tion methods. The method is practical, scalable to hundreds of genomes,
and has been proven accurate through years of development in the Human
Pangenome Reference Consortium (HPRC) [12, 16] and in the broader bioin-
formatics community [17–19]. Here, we describe the specific innovations in the
three main phases of the algorithm—alignment, graph creation, and graph
normalization—which unlock this result. We then use cross-validation with
MUMMER4 [20] to demonstrate the accuracy of our approach across a wide
range of species and problem sizes.

The first step in the PGGB pipeline is sequence alignment. To avoid
reference and order bias, PGGB uses an all-to-all alignment of the input
sequences. This approach aligns sequences directly to each other, enabling each
sequence in the pangenome to serve as a potential reference for exposing all
related variation. To obtain alignments, PGGB applies WFMASH [21], which
applies a generalization of the bidirectional Wavefront Algorithm (BiWFA)
[22, 23] to generate base-level alignments for homology mappings obtained
with an extension of MASHMAP [24]. MASHMAP provides highly efficient,
accurate detection of homologies among genomes [24] and even across whole
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Fig. 1 PGGB and its immediate downstream applications. (A) Visualization of
PGGB’s algorithms and data flows. The primary data flow (red) progresses from FASTA
to alignment, graph induction, and graph “smoothing”, then normalization with GFAFFIX,
yielding the final graph (orange). Optional downstream outputs (blue) include statistics,
variant calls (on multiple references), and graph visualizations in 1D and 2D. (B) A 1D
visualization of a pangenome graph built from 14 haplotype-resolved, complete (T2T) pri-
mate assemblies homologous to human chromosome 6 (all-vs-all alignments shown above
in A). Regions of paths that are oriented in the same direction as T2T-CHM13 shown in
black, while those in the reverse complement orientation are shown in red. T2T-CHM13
annotations of the MHC, p-arm, centromere, q-arm have been injected into the graph as
paths, highlighting features of the structural evolution of this chromosome. The p-arm region
containing the MHC is inverted in Gibbon relative to other species. Centromeric regions
appear largely non-homologous among many species, with the exception of chimpanzee and
bonobo and between the orangutans. (C) A 2D visualization, rendered with the same human
chromosomal annotations in GFAESTUS [13], suggests that structural variation involving
subtelomeric ends has caused the graph to circularize. (D) Using ODGI [6], we extract a
pairwise distance matrix based on in-graph Jaccard metrics over shared base pairs. This dis-
tance matrix yields a phylogenetic tree that matches previous results based on SNPs [14]. We
posit that the greater phylogenetic distances reflect the inclusion of the centromeres—which
tend to evolve rapidly by near-clonal evolution [15]—in our distance computation.
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pangenomes [16]. However, the use of WFMASH is not required, and PGGB
supports the use of any user-defined input alignment set in PAF format.

Pangenome graph induction takes a collection of genomes and alignments
between them and converts them into an equivalent variation graph. We
achieve this with SEQWISH [10], an approach that scales graph induction to
terabase-pair scales via a series of disk-backed processing steps. Any single
input genome is faithfully and fully embedded in a graph and can be completely
extracted by tracing labeled paths through the nodes. The SEQWISH graph
recovers transitive homology relationships that may not be present in the ini-
tial alignment set. This property allows us to apply random sparsification to
reduce the computational complexity of very large alignment problems.

For large inputs, PGGB can use a heuristic based on the Erdős–Rényi
model of random graphs to set a sparsification threshold for initial mappings.
This model leads us to expect a giant component—or connected subgraph that
contains a significant portion of the nodes in the graph—to arise in a ran-
dom graph of N nodes when the probability of edges between two nodes is
Pcritical = 1/(N−1) [25]. Considering the SEQWISH alignment graph (Figure
1A), where nodes correspond to subsequences and edges to mappings, we seek
to ensure that a giant component exists for all homologous collections of nodes
in all regions of the pangenome. This will let us reconstruct all transitive
relationships in the variation graph without needing to directly compute all
pairwise alignments. We thus set a sparsification parameter than ignores map-
pings with a probability Psparse ≫ Pcritical, allowing us to avoid the expected
O(N2) costs implied when P = 1. This allows us to dramatically reduce the
runtime of alignment and graph induction with negligible effect on accuracy
(Table 1), e.g. 10× increase in genomes requires only 20× increase in runtime.

Pangenome Size (bp) Compr. Time (m) Mem. (GB) SNVs F1-score
athaliana7.chr1 210174177 5.12 28.51 9.71 129374 0.877267
ecoli50 249520474 12.56 89.35 12.97 56915 0.947041
ecoli500* 2572341327 23.99 1816.66 134.59 58259 0.936551
hsapiens90.chr6 15508376475 81.17 1183.33 135.52 143972 0.971475
mouse17.chr19 994731502 11.52 203.80 29.48 223951 0.907288
primate14.chr6 2635610277 6.18 1742.37 61.38 2886064 0.909077
scerevisiae8 96255507 6.47 8.78 3.53 53742 0.968729
scerevisiae142 1702093905 55.29 1021.81 112.98 62796 0.955988
scerevisiae142* 1702093905 41.41 562.89 75.91 62580 0.955650
soy37.chr18 2240871558 20.50 599.66 29.17 101907 0.907878
tomato23.chr2 1280460312 20.69 78.53 43.84 39243 0.948173

Table 1 Performance of PGGB with pangenomes of difference species.
For each pangenome, we report its size, the compression ratio (pangenome sequence length
divided by graph size), the PGGB runtime, the maximum memory usage of PGGB, the
average number of SNVs (across all haplotypes except the one used as reference) identified
with MUMMER4 that we used to evaluate SNVs identified with PGGB, and the average
F1-score (across all haplotypes except the one used as reference) computed using
MUMMER4’s SNVs as ground truth. The name of each pangenome indicates the species
and the number of haplotypes. All runs were performed on machines equipped with AMD
EPYC 7402P 24-Core, 378 GB of RAM, and a 1 TB Solid-State Drive. All PGGB runs
were executed with 48 threads. *Erdős–Rényi random sparsification activated
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We finish our graph building with SMOOTHXG, an iterative post-
processing step that locally compresses and simplifies the pangenome graph,
a new tool specifically designed for PGGB. Although the SEQWISH graph
presents a complete, lossless model of the input genomes and their homologies,
in our experience it often presents spurious local complexity that can cause
problems for diverse types of downstream analysis. A key issue is that pair-
wise alignments derived across our input are not mutually normalized, leading
to different representations of small variants like indels in low-complexity
sequences, which in turn generate complex looping motifs that are difficult
to process. We partly mitigate this issue by removing short matches from
SEQWISH’s input alignments. This reduces complexity, but also creates a
graph that can be locally “under-aligned” and does not represent all local
pairwise relationships. To resolve this, we apply a local realignment kernel,
partial order alignment (POA) [26], across all parts of the graph. We do so
at a scale of around 1 kbp, which is smaller than the size of most nonlin-
ear patterns of structural variation found in genomes [12, 27]. This allows the
PGGB graph to represent complex structurally-variable loci as simple loops
through a single copy of duplicated sequences [12]. The kernel is applied to
regions that are extracted from a 1-dimensional graph embedding [6]. This
embedding orders nodes in the graph so that their distance in the order best-
approximates their distance in the genomic paths of the graph. SMOOTHXG
first learns this embedding, then obtains partially overlapping segments of the
graph (blocks) to which it then applies POA. The realigned blocks are “laced”
back into a complete variation graph. We iterate the entire SMOOTHXG step
multiple times (3 by default) to limit edge effects that can occur near block
boundaries, progressively refining the learned graph embedding. As a final nor-
malization step, we apply GFAFFIX to compress redundant nodes [28], and
sort the resulting graph using ODGI.

Downstream applications of pangenome graphs are diverse. PGGB inte-
grates common steps that help to provide immediate feedback on graph build
quality. Using ODGI [6], it produces basic graph statistics, such as size, node
count, and base content. ODGI creates 1D and 2D visualizations that provide
intuition about the structure of the entire graph, with the 1D view showing the
relative alignment of paths into the graph structure, and the 2D view show-
ing high-level features of the graph topology. Both can be applied at the scale
of multi-gigabasepair graphs. Optionally, the graph statistics and diagnostic
plots are summarized in a MultiQC [29] report. We also provide an option
to call variants from the graph in the variant call format (VCF), and down-
stream normalization can be applied to decompose complex nested variation
into a minimal reference-relative representation using BiWFA [30]. This allows
PGGB to provide input to analyses based on small variants, leading to com-
patibility with virtually all downstream biological applications. PGGB is thus
a multi-sample variant caller for whole genome assemblies.



6 Building pangenome graphs

PGGB has been applied and validated at large scale in projects in the
HPRC [12], where it additionally has provided the first sequence-based evi-
dence for systematic recombination between heterologous acrocentric human
chromosomes [16]. Here, we present results from its application to a variety
of diverse pangenome and comparative genomic contexts (Table 24). We pro-
vide information on runtime and resource requirements, showing that even for
hundreds of (small) eukaryotic whole genomes, PGGB can provide a variation
graph within hours. Due to lack of ground truth, quality evaluation on real
data can be difficult. Here, we compare PGGB’s output with SNPs detected by
MUMMER4 [20]. These show cross validation F-scores >90% across all tested
contexts, indicating that the method performs equivalently to existing stan-
dards. However, while MUMMER4 provides only pairwise comparisons with
a target reference, PGGB yields a full all-to-all comparison between genomes
that leads to completely new bioinformatic analysis modalities.

As a demonstration of the transformative utility of our approach, we note
that many downstream applications that are typically based on polarization
of variants (e.g. SNPs) relative to a single reference genome may be directly
implemented in the space of variation graphs built with PGGB and related
methods. This follows from two basic concepts: in the variation graph, nodes
are alleles, while genomes can be simply understood as vectors of allele counts.
Methods based in this vector space allow us to simultaneously consider all
classes of variation in downstream analyses, without reference bias, an objec-
tive, which to our knowledge has never before been achieved in bioinformatics
with the practical generality provided by PGGB. As proof of principle, we
put forward a phylogenetic tree constructed directly from distances measured
within a pangenome graph of 14 complete assemblies of chromosome six from
the great ape family (Figure 1D), which matches established phylogenies of
the Hominoidea clade based on manually curated sets of SNPs that exclude
structurally variable regions [14].

In summary, we present PGGB, a new, modular, and conceptually straight-
forward approach to understanding sequence relationships between many
complete genomes in both pangenomic and comparative genomics settings.
Our approach provides a general framework for genome graph building tech-
niques which we expect researchers will upgrade and extend in the future. By
making it easy to build variation graphs, PGGB opens the door to diverse
downstream population and evolutionary genetic methods that can consider all
classes of sequence variation simultaneously. This will allow us to develop con-
clusive understanding of the links between genome, phenotype, and evolution
in an era where the complete assembly of genomes becomes routine.

Online content. PGGB is available at https://github.com/pangenome/
pggb. Code used for experiments can be accessed at https://github.com/
pangenome/pggb-paper.

https://github.com/pangenome/pggb
https://github.com/pangenome/pggb
https://github.com/pangenome/pggb-paper
https://github.com/pangenome/pggb-paper
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Appendix A Methods

Here we provide details about components which are not described in other
publications. Our primary focus is on SMOOTHXG, which is the main “glue”
that ties together the PGGB pipeline into a coherent system. Through a series
of passes over the pangenome, SMOOTHXG reshapes the graph to reduce
local complexity and underalignment. This resolves key problems encountered
in earlier attempts to implement all-vs-all alignment based graph construc-
tion [10, 31], which typically resulted in very complex, looping, graph motifs
at small scales, and redundancy caused by match filtering. We additionally
provide a description of the evaluation method we use in our cross-validation
experiments where PGGB graphs are compared with SNPs determined by
MUMMER4.

A.1 SMOOTHXG

SMOOTHXG requires a GFA pangenome graph as input, for example output
from SEQWISH. The raw SEQWISH graph is globally unsorted and might
be locally unaligned. SMOOTHXG sorts and normalizes the graph preserving
nonlinear complex global structural variation. Detailed steps are described
subsequently.

Preprocessing. A Path-Guided Stochastic Gradient Descent (PG-SGD)
algorithm optimizes the one-dimensional (1D) node order of the graph to
best match the nucleotide positions in the embedded paths. A grooming step
ensures that for each node, the node orientation follows the consensus node
orientation of all path steps visiting the node. A 1D topological sorting of the
graph completes the overall sorting steps. Finally, the graph is chopped so that
each node does contain a relatively little number of nucleotides (SMOOTHXG
default: 100), preserving node topology and order. This prepares the graph for
more exact cut points during the block creation process described in the next
section.

Create blocks. The smoothable blocks are discovered by iterating over all
nodes following the previously calculated order. A node is added to a block if
its addition does not exceed the 1. total path length limit of a block, 2. the max-
imum edge jump limit of a block, or 3. the maximum block length. Blocks are
broken at likely Variable Number of Tandem Repeat (VNTR) boundaries and
to ensure that the path ranges within each block do not exceed the maximum
sequence input size for the POA step described in the next section.

Smooth each block. For each block, padding extends each block to the
left and right. This improves the local alignment at the boundaries of each
block. The k-mer plus min-hash approach ensures that only unique sequences
are passed to the POA step, which can significantly reduce runtime. POA
is applied to each block. Optionally, this step generates a multiple sequence
alignment in MAF format for each block. The padding is removed, and the
block is saved for later integration into a full graph.
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Lace blocks into smoothed graph. The smoothed blocks are laced
together to the final pangenome graph following their initial input order. As
a final step, the graph is unchopped, preserving the maximum possible node
lengths in the graph.

A.2 Validation experiments

To evaluate the accuracy and reliability of our pangenome graph construc-
tion and variant calling methods, we designed a cross-validation approach
that allowed us to compare the results obtained from the graph-based method
(PGGB) against those generated by the widely-used pairwise alignment tool,
NUCMER, in MUMMER4 [20].

The cross-validation process begins with the extraction of FASTA
sequences from the pangenome graph GFA and preparation of reference
sequences. Next, variants are identified using both PGGB (with VG) and
nucmer (via a MUMMER4 script), generating a VCF file for each haplotype
to ease comparison using the RealTime Genomics toolkit.

These variant files are then compared and evaluated, focusing on regions
where both methods are able to call variants—an aspect that we found to be
important in the HPRC cross-validation studies, wherein DIPCALL was used
to find consistently-alignable regions in which comparisons were conceptually
sound [12]. Finally, we collect metrics and statistics for further analysis and
visualization. To simplify reproducibility, here we provide a detailed summary
of the evaluation process:
1. Extract FASTA file: The script starts by extracting the FASTA

sequences from the pangenome graph (GFA format) using the odgi paths

tool.
2. Take reference sequences: The script extracts the reference paths in

the GFA file and creates a new FASTA file containing these sequences.
3. Identify variants with PGGB: The script then identifies variants in

the pangenome graph using the vg deconstruct tool with appropriate
options for haplotype-based variant calling from the graph and complex
allele decomposition with BiWFA and VCFLIB. The final variants are
saved in a VCF format file.
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4. Pre-process the PGGB-based VCF files: The script pre-processes
the VCF files, including normalizing alleles, removing insertions and dele-
tions larger than 1 base pair, and removing the ALT allele if it is not
present in the haplotype.

5. Identify variants with NUCmer: The script performs a pairwise
sequence alignment between the reference and each contig in the
pangenome using NUCmer. The script extracts SNPs from the NUCmer
delta file using the show-snps command and generates VCF files for each
aligned contig.

6. Merge variants by haplotype: The script then merges all VCF files
for each haplotype generated by NUCmer to create a single VCF file per
haplotype.

7. Variant evaluation: RTG Tools’ vcfeval is used to evaluate the
performance of PGGB-based variants and NUCmer-based variants by
comparing true positives, false positives, and false negatives in shared
callable regions. This is done for both non-waved and waved PGGB-based
VCF files, allowing for a direct comparison of the performance of these
variant calling methods.

8. Collect statistics: The script computes summary statistics, such as pre-
cision, recall, and F1 scores for each haplotype and writes them to TSV
files. It also calculates the total number of variants called and the ratio
of evaluated variants for both NUCmer and PGGB-based methods.

9. Organize output: Finally, the script organizes the output data, includ-
ing VCF files, evaluation results, and statistics, into a specified output
directory.

Although imperfect due to our lack of ground truth in the context of
whole genome alignment, this method provides a way to approximately com-
pare the existing standard for whole genome pairwise alignment, MUMMER4,
with PGGB. We focus on SNPs and omit comparison of structural variation
for diverse reasons. First, we found extracting SVs from MUMMER4 output
to be problematic and poorly-supported. Second this issue remains difficult
in genomics due to the multiple near-equivalent representations that a given
structural variant allele may have. However, we have addressed these topics
in the context of the HPRC paper [12], where significant resources were avail-
able to drive an independent evaluation of PGGB and other graph building
methods.
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