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Abstract

Respiratory virus infections are a leading cause of disease worldwide with multiple viruses
detected in 20-30% of cases and several viruses simultaneously circulating. Some infections with
viral copathogens have been shown to result in reduced pathogenicity while other virus pairings
can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and
have only begun to be examined in the laboratory and clinic. To better understand viral-viral
coinfections and predict potential mechanisms that result in distinct disease outcomes, we first
systematically fit mathematical models to viral load data from ferrets infected with respiratory
syncytial virus (RSV) followed by influenza A virus (IAV) after 3 days. The results suggested
that IAV reduced the rate of RSV production while RSV reduced the rate of IAV infected
cell clearance. We then explored the realm of possible dynamics for scenarios not examined
experimentally, including different infection order, coinfection timing, interaction mechanisms,
and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined
by using human viral load data from single infections together with murine weight loss data from
IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results.
Similar to the results with RSV-IAV coinfection, this analysis showed that the increased disease
severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to slower
clearance of IAV infected cells by the other viruses. On the contrary, the improved outcome
when IAV followed RV could be replicated when the rate of RV infected cell clearance was
reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about
how viral-viral interactions can regulate disease severity during coinfection and yields testable
hypotheses ripe for experimental evaluation.

Introduction

During a respiratory infection, multiple viruses may be present and working in concert to cause

disease [1–5]. Several respiratory viruses, including rhinovirus (RV), respiratory syncytial virus

(RSV), influenza A and B viruses (IAV and IBV), human metapneumovirus (HMPV), human

parainfluenza viruses (PIV), adenoviruses (ADV), and coronaviruses (CoVs), have been found

concurrently within hosts with pneumonia [6–20]. Children are more likely to be infected with

multiple respiratory viruses concurrently, where up to 30% have more than one respiratory virus

present when admitted to the hospital for severe clinical disease [16, 19, 21–25]. Patients with

coinfection have shown diverse disease outcomes that ranged from mild to severe with severity

increasing compared to patients who were infected with a single virus.
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Data on viral-viral coinfections is somewhat limited, but some studies have begun evaluating

outcomes of coinfection with commonly observed viral pairs (e.g., IAV and RSV [26–31], IAV and

PIV [32], IAV and RV [28,33–35], RSV and RV [28], RSV and hMPV [36], IAV and severe acute

respiratory syndrome (SARS)-CoV-2 [37–43], RSV and SARS-CoV-2 [43], and RV and SARS-

CoV-2 [44]). Collectively, these studies observed diverse outcomes of viral-viral coinfections with

some interactions resulting in enhanced spread of one or both viruses within the respiratory tract

while other mechanisms seem to work in an inhibitory manner. For example, PIV-2 was shown

to enhance cell-to-cell fusion through expression of its surface glycoproteins, which boosted

viral spread between cells and increased IAV titers but not PIV titers [32]. On the contrary,

IAV was shown to limit a concurrent RSV infection by promoting intracellular competition

for proteins or amino acids needed for the successful replication of both viruses within cell

cultures [11, 26]. In vivo infections in animal models support the exclusion of RSV by IAV,

and suggest that RSV prior to IAV decreases disease severity [27,29,30]. A similar competitive

exclusion was observed in 3D tissue cultures during coinfection with RSV and hMPV, where

hMPV was inhibited without any effect on RSV [36]. The reduction was accompanied by higher

type I and III interferon (IFN) responses [36]. IFN-mediated effects were also implicated in

RV-IAV coinfection where RV-induced IFN protected against subsequent IAV infection within

differentiated airway cell cultures [34].

The relative timing between viruses and the order in which the viruses infect the host seem

to contribute to differing disease outcomes [27, 29, 33, 37, 39, 40, 42]. Interestingly, the exclusion

effect during RSV-HMPV coinfection was more robust during a concurrent infection compared

to an infection where HMPV followed RSV after two days. This is in contrast to other viral-

viral coinfections where infections separated by 2 to 5 d had more robust effects [33, 37, 42].

For example, RV was shown to attenuate IAV-mediated disease severity and reduce IAV titers

when RV infection occurred 2 d before IAV, but the effect was reduced during simultaneous

infection [33]. Conversely, animals coinfected with IAV 2 days before RV experienced greater

disease severity [33]. Similar outcomes occurred in animals coinfected with IAV 3 d before

SARS-CoV-2 [37].

These empirical studies illuminate the breadth of interactions that lead to diverse outcomes

of viral-viral coinfections and the need for mathematical methods that can dissect complex, time-

dependent, and potentially nonlinear mechanisms. Viral dynamics models have contributed sig-

nificantly to the understanding of biological mechanisms underlying respiratory virus infections.

Our study examining the resulting dynamics from two viruses competing for target cells [45]
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suggested that a faster replicating virus would outcompete other viruses. However, it is possible

that viruses infect different cells or infect different areas of the respiratory tract. In addition,

as noted above, they may also inhibit or enhance other processes (e.g., replication rates and/or

immune responses) and, ultimately, modulate disease. Unfortunately, current empirical studies

on viral-viral coinfections often lack quantitative information on viral loads and/or host immune

responses. This creates a challenge to define mechanisms and for use of mathematical model-

ing approaches, which typically include fitting a mechanistic model to data. However, in most

murine studies, weight loss, which is a measure of disease severity, is tracked, and our recent

work showed that mathematical models can accurately connect animal weight loss to infection

kinetics and lung inflammation in single infections and bacterial coinfections [46, 47]. These

links allow us to better interpret weight loss data and afford modeling studies that ability to

assess mechanisms with limited data.

To better understand the underlying mechanisms and determine how different virus orders,

timings, and pairings affect the infection dynamics and disease severity, we first paired two

mathematical models, which have differing hypotheses about whether viruses compete for target

cells, with viral load data from ferrets infected with RSV followed by IAV after 3 d [27]. Our

analyses suggested that IAV may reduce the production rate of RSV in addition to RSV reducing

the clearance rate of IAV infected cells. In addition, if the two viruses do not compete for

target cells, RSV may also reduce the infection rate of IAV. To evaluate how broad the realm of

potential mechanisms of viral coinfection with influenza, we then theoretically evaluated different

orders and mechanisms of viral interference and cooperation with varying degrees of interaction

for IAV-RV and IAV-SARS-CoV-2 coinfections. Qualitatively comparing the model results with

weight loss data from animal studies [33, 37] suggested that a reduction in IAV infected cell

clearance led to an increased disease phenotype when IAV infection occurred 2-3 d before RV

or SARS-CoV-2. In contrast, when IAV was initiated simultaneously with or <2 d after RV, a

reduction in the rate of clearance of RV infected cells led to reduced disease severity compared

to a single IAV infection. Examining how different mechanisms affect viral load and infected

cell dynamics during viral coinfection provides important insights into divergent outcomes in

addition to generating novel hypotheses regarding why certain virus orders enhance or reduce

disease severity.
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Methods

Data for RSV-IAV coinfection in ferrets

Viral load data were digitized from a study where ferrets monoinfected or coinfected with a long

strain of RSV and/or influenza A/Tasmania/2004/2009 (A[H1N1]pdm09; IAV) [27]. Briefly,

groups of 4 ferrets were intranasally infected with 3.5 log10 50% tissue culture infectious dose

(TCID50) of IAV, 5.0 log10 plaque-forming units (PFU) of RSV, or IAV followed 3 d later by

RSV. Viral RNA copy number per 100 µl of nasal wash was measured daily for 14 d post

infection (pi).

Data for IAV, RV, and SARS-CoV-2 infections in humans

Viral load data were digitized from studies where humans were experimentally or naturally

infected with IAV [48], RV [49], or SARS-CoV-2 [50]. For IAV, human volunteers were ex-

perimentally infected intranasally with 4.2 log10 TCID50 of influenza A/Hong Kong/123/77.

Nasal washes were collected daily for 7 d and infectious viral titers determined by TCID50.

The data used herein were from the patient 4 due to this individual having clear viral growth,

peak, and decay phases. For RV [49], 14 human volunteers were intranasally infected with

2.4 log10 TCID50 of RV and was reported as geometric mean. Nasal washes were collected daily

for 5 d. For SARS-CoV-2 [50], the data were from naturally infected patients. Viral loads were

sampled from throat swabs and measured in RNA copies/ml. All samples were taken approxi-

mately 2-4 d after symptoms. We used patient 8 due to clear viral load dynamics and assumed

that the infection was initiated 5 d before the onset of symptoms.

Data for IAV coinfection with RV or SARS-CoV-2 in mice

Weight loss data were digitized from a study where BALB/c mice were intranasally infected with

7.6× 106 TCID50 of RV1B and/or 100 TCID50 of influenza A/Puerto Rico/8/1934 (PR8) [33].

Coinfections were initiated simultaneously or sequentially at a 2 d interval (IAV-RV or RV-

IAV) [33]. Weight loss was measured daily for 14 d.

Weight loss data were digitized from a study where K18-hACE2 mice were intranasally

infected with 1 × 102 PFU of influenza A/HKx31 (H3N2) and/or 1 × 104 PFU of hCoV-

2/human/Liverpool/REMRQ0001/2020 (SARS-CoV-2) [37].Coinfections were examined where

IAV was given first followed by SARS-CoV-2 after 3 d. Weight loss was measured daily for 10

d.
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Mathematical model of viral monoinfection

To describe the dynamic interactions between epithelial cells and virus during monoinfection,

we used the viral kinetic model in Equations (1)-(4) (reviewed in [51,52]). Briefly, in the model,

target cells (T ) are infected by the virus (V ) at a rate βV per day. Once virus is internalized,

the cell undergoes an eclipse phase (E), where infected cells do not yet produce virus. The

cells then transitions to infectious phase (I) at a rate k per day. Productively infected cells are

cleared at a rate δ per day. Virus is produced at rate p per cell per day and cleared at rate c

per day.

dT

dt
= −βTV (1)

dE

dt
= βTV − kE (2)

dI

dt
= kE − δI (3)

dV

dt
= pI − cV (4)

Mathematical model of viral coinfection

Target cell competition

To model viral-viral coinfections, we expanded the model in Equations (1)-(4) using two hy-

potheses. The first hypothesis assumes that two viruses (V1 and V2) compete for target cells (T )

(‘target cell competition model’; Equations (5)-(8)) [45]. In this model, a single equation for

target cells (T ) was used where each virus can infect these cells at rates β1V1 per day and β2V2

per day. All other equations are equivalent to those in the monoinfection model. The subscripts

i = 1, 2 denote each virus.

dT

dt
= −β1TV1 − β2TV2 (5)

dEi
dt

= βiTVi − k1Ei (6)

dIi
dt

= kiEi − δiIi (7)

dVi
dt

= piIi − ciVi (8)
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Target cell partitioning

The second hypothesis assumes that each virus has its own pool of cells to infect (T1 and T2)

because viruses may preferentially infect certain cell types [53–57] or be present in a different

areas of the respiratory tract (‘target cell partitioning model’; Equations (9)-(12)). All other

equations remain the same but are distinct for each virus, resulting a total of 8 equations. The

subscripts i = 1, 2 denote each virus.

dTi
dt

= −βiTiVi (9)

dEi
dt

= βiTiVi − kiEi (10)

dIi
dt

= kiEi − δiIi (11)

dVi
dt

= piIi − ciVi (12)

Modeling viral-viral interactions

To assess the affect of one virus on another, we used functions that enhance (α(Vi); Equa-

tion (13)) or inhibit (ζ(Vi); Equation (14)) a particular infection process (i.e., rates of virus

infection (βi), virus production (pi), infected cell clearance (δi), or virus clearance (ci)).

α(Vi) = 1 + κVi (13)

ζ(Vi) =
1

1 + κVi
(14)

The parameter κ is the strength of the interaction.

Quantifying the relative change in total virus

To quantify changes in the viral loads and the total viral burden as a consequence of an inter-

action during coinfection, we calculated the relative change in total virus (i.e., the area under

the curve [AUC]) of viral load using Equation (15),

∆VAUC =
V coinf
AUC − V

single
AUC

V single
AUC

, (15)

where V coinf
AUC is the AUC for the coinfection and V single

AUC is the AUC for the monoinfection. The

AUC was calculated using the Python function scipy.integrate.trapz.
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Quantifying disease severity

To quantify the percent of the lung infected by the virus, which relates to animal weight loss [46],

we calculated the cumulative area under the curve (CAUC) of the infected cell dynamics [46]

using the Python function scipy.integrate.cumtrapz.

Parameter estimation

For model fits to the ferret data, parameters were estimated using a nonlinear mixed-effect

modeling (NLME) and stochastic approximation expectation minimization (SAEM) algorithm

implemented in Monolix 2019R1 [58]. For model fits to the human data, parameters were

estimated using scipy.optimize.minimize in Python. In the NLME approach, each individual

parameter is written as θi = θeηi , ηi = N (0, ω2
i ), where θ denotes the median value of the pa-

rameter in the population and ηi denotes the random effect that accounts for the inter-individual

variability of the parameter within the population. Inter-individual variability was allowed for

all the estimated parameters with the assumption of no correlation and applying an additive

residual error model for log10 viral loads.

The initial number of target cells (T0) was set to 5 × 107 cells for ferrets and 2 × 108 cells

for humans. Similar to our previous studies [46, 59, 60], we fixed the initial number of infected

cells (E0) to 3.1×103 cells for IAV infection and 1.0×105 cells for RSV infection in ferrets [27]

and 1×102 cells for all infections in humans. We considered other values of E0 and found

no significant differences in estimated parameters, which is consistent with our prior studies

[46, 59, 60]. The initial number of productively infected cells (I0) and the initial free virus (V0)

were set to 0.

The duration of eclipse phase (1/k) for each virus was kept within a biologically feasible

value and set to 4.8 h for IAV [59] and to 8.0 h for RSV [61], RV [62], and SARS-CoV-2 [63–65].

For the monoinfection model (Equations (1)-(4)), estimated parameters included the rates of

virus infection (β), virus production (p), virus clearance (c), and infected cell clearance (δ).

The rate of virus infection (β) was allowed to vary between 1×10−9 and 1.0 RNA−1 d−1 or

TCID−1
50 d−1, and the rate of virus production (p) was allowed to vary between 1×10−3 and

1×103 RNA/cell/d or TCID50/cell/d. The rate of infected cell clearance (δ) was given a lower

limit of 1×10−2 d−1 and an upper limit of 1 × 103 d−1. For the coinfection models, we first

simulated the monoinfection until the day of coinfection then employed the coinfection models

(Equations (5)-(8) or Equations (9)-(12)) while incorporating the enhancement or inhibition

functions (Equation (13) and/or Equation (14)). The strength of interaction (κ) was estimated
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for each scenario.

Fit quality was assessed using the Akaike Information Criteria with small sample size cor-

rection (AICc). The model with the lowest AICc was considered the best, and ∆AICc ≤ 2 was

considered statistically equivalent [66].

Results

Model-predicted mechanisms of RSV-IAV coinfection

We used data from ferrets infected with a long strain of RSV and/or influenza A/Tasmania/2004/2009

(A[H1N1]pdm09; IAV) that had their viral loads measured until 14 d postinfection (pi) [27].

When ferrets were inoculated with RSV followed by IAV 3 d later, morbidity was reduced and

IAV titers were slightly lower. To begin examining the interactions between RSV and IAV dur-

ing coinfection that resulted in these dynamics and establish the baseline parameter values for

use in our mathematical models, we first fit the monoinfection model (Equations (1)-(4)) to the

data from IAV- or RSV-infected ferrets (Table 1, Figure 2A). This showed a robust fit to each

data set and yielded a faster rate of infection (β; 1.0 × 10−5 (RNA/100 µl)−1 d−1 [RSV] versus

3.3 × 10−6 (RNA/100 µl)−1 d−1 [IAV]) and slower rate of virus production (p; 3.0 × 10−2

RNA/100 µl/cell/d [RSV] versus 2.5 × 101 RNA/100 µl/cell/d [IAV]) for RSV.

Table 1. Best-fit parameters for the monoinfection model. Best-fit parameters obtained
from fitting the monoinfection model (Equations (1)-(4)) to viral titers from ferrets intranasally
infected with IAV at 3.5 log10 TCID50 or with RSV at 5.0 log10 PFU [27]. Parameters are
reported as the population median and the standard deviation of the associated random effect (ω).
The initial numbers of target cells (T0) and infected cells (E0) were fixed to the indicated values,
and the initial number of productively infected cells (I(0)) and the initial virus amount (V (0)) were
set to 0.

Parameter Description Units IAV (ω) RSV (ω)

β Virus infectivity (RNA/100 µl)−1 d−1 3.3×10−6 (0.6) 1.0×10−5 (0.04)
k Eclipse phase d−1 5.0 3.0
δ Infected cell clearance d−1 0.9 (0.02) 1.1 (1.8)
p Virus production (RNA/100 µl) cell−1 d−1 2.5×101 (0.2) 3.0×10−2 (0.03)
c Virus clearance d−1 2.0 (0.06) 1.7 (0.5)
T0 Initial target cells cells 5×107 5×107

E0 Initial eclipse cells cells 3.2×103 1×105

I0 Initial infected cells cells 0 0
V0 Initial virus (RNA/100 µl) 0 0

Using the single infection parameters, we simulated the ‘target cell competition’ model
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(Equations (5)-(8)) and the ‘target cell partitioning’ model (Equations (9)-(12))(Figure 1) by

first assuming that there were no direct interactions (κ = 0). Under this assumption, the target

cell partitioning hypothesis performed better than the target cell competition hypothesis (i.e.,

lower AICc; 185.3 [‘partitioning’] versus 189.0 [‘competition’]; Table 2), but the data were not

precisely replicated.
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Figure 1. Coinfection model schematic. Schematic of the coinfection models in Equations (5)-
(8) and Equations (9)-(12). In the ‘target cell competition’ model, two viruses (V1,2) interact
indirectly by competing for target cells (T ) [45]. In the ‘target cell partitioning’ model, two viruses
do not interact and each have their own pool of target cells (T1,2). In each model, target cells
become infected by virus at rates βiVi, where the subscript i = 1, 2 denotes the rates specific to V1
and V2, respectively. Infected cells enter an eclipse phase (Ei) and transition to producing virus at
rate ki. Productively infected cells (Ii) produce virus at rate pi and are cleared at rate δi. Virus
is cleared at rate ci. Direct interactions were implemented by increasing and/or decreasing one or
more of the rates using the functions α(Vi) and/or ζ(Vi), respectively, due to the other virus.

Thus, to examine whether increases or decreases in the rates of virus infection, production,

clearance, or infected cell clearance could better explain the data, we re-fit the models together

with Equation (13) and/or Equation (14). In total, we evaluated 16 scenarios for a single

interaction and, based on those results, up to 18 scenarios for dual interactions where each virus

affected the other (Table S1-S2). When assuming that the two viruses compete for target cells

(Equation (5)-(8)), single interactions that resulted in improved fits (i.e., lower AICc) included

an RSV-induced reduction in the rate of IAV infected cell clearance (δ−IAV) or in the rate of

IAV clearance (c−IAV) (Table 2; Figure S1A-B). Comparatively, some interactions within the

target cell partitioning model (Equations (9)-(12)) led to a rebound of RSV (Figure S2), which

were excluded from consideration. The best suggested mechanisms under this hypothesis were

either a decrease in the IAV infection rate (β−
IAV) by RSV together with a decrease in the RSV
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production rate (p−RSV) by IAV (Table 2, Figure 1C) or an increase in the rate of RSV infected

cell clearance by IAV (δ+RSV; Table S2, Figure S1C).

When allowing for dual interactions, the target cell competition model suggested that there

were two sets of mechanisms that provided fits with similar AICc values as the case when a

single interaction was considered (Table 2). Similar to the single interaction results, both sets

of mechanisms included a RSV-induced reduction in the rate of IAV infected cell clearance

(δ−IAV). This was paired with either an IAV-induced reduction in the rate of RSV production

(p−
RSV; AICc value of 175.7 (lowest); Figure 2B) or an IAV-induced increase in the rate of RSV

clearance (c+RSV; AICc value of 175.8; Figure S1B). Allowing for dual interactions in the target

cell partitioning model suggested an RSV-mediated reduction in the rate of IAV infectivity

(β−
IAV) coupled with an IAV-mediated reduction in rate of RSV production (p−

RSV; AICc value

of 139.3; Table 2, Figure 2C). The remaining single and double interactions for both models

provided fits were not statistically justifiable (Tables S1-S2).

Table 2. Best-fit parameters of predicted mechanisms of RSV-IAV coinfection. Best-fit
parameters from simulating the coinfection models with no interactions (‘no interaction’) or fitting
the target cell competition model (‘competition’; Equations (5)-(8)) or the target cell partitioning
model (‘partitioning’; Equations (9)-(12)) with the Equation (13) and/or Equation (14) to viral
loads from animals infected with RSV followed by IAV after 3 d. An NLME modeling approach
was used and only the strength of interaction (κ) was estimated. Parameters are reported as the
population median (κ) with standard deviation of the associated random effect (ωκ). Fit quality
is reported as log-likelihood (-2LL), AICc, and standard deviation of the residual error (σ). The
resulting relative change in total virus (∆VAUC) is provided for each scenario.

Interaction

Effect on IAV Effect on RSV

-2LL AICc σRSV σIAV ∆VAUC ∆VAUC

Strength of Strength of Strength of Strength of
enhancement, inhibition, enhancement, inhibition,

κ (ωκ) κ (ωκ) κ (ωκ) κ (ωκ) IAV RSV
RNA−1 RNA−1 RNA−1 RNA−1

C
o
m

p
e
ti

ti
o
n No interaction 0 0 0 0 185.0 189.0 0.79 0.81 -0.54 -0.48

δ−IAV – 7.1×10−6 (0.1) – – 166.2 174.2 0.79 0.65 -0.20 -0.48
c−IAV – 6.0×10−5 (0.1) – – 167.8 175.8 0.79 0.66 0.74 -0.49

δ−IAV and p−RSV – 1.2×10−5 (0.1) – 8.7×10−9 (0.2) 163.7 175.7 0.76 0.65 -0.18 -0.66
δ−IAV and c+RSV – 1.1×10−5 (0.1) 4.2×10−9 (0.2) – 163.8 175.8 0.76 0.65 -0.19 -0.63

P
a
rt

it
io

n
in

g

No interaction 0 0 0 0 181.3 185.3 0.88 0.72 0 0

δ+RSV – – 1.9×10−8 (0.04) – 131.0 139.0 0.40 0.72 0 -0.51

β−IAV and p−RSV – 9.6×10−5 (0.04) – 8.8×10−8 (0.1) 127.3 139.3 0.45 0.63 0 -0.53
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Effect of infection timing and interaction strength in RSV-IAV coinfec-

tion

Because the order, infection interval, and strength of interaction can influence coinfection dy-

namics and result in diverse disease phenotypes, we sought to better understand how these

metrics alter RSV-IAV coinfection. To do this, we evaluated the relative change in total viral

burden for each virus (i.e., ∆VAUC; Equation (15)) across a wide range of infection intervals (0

to 11 d) and interaction strengths (κ; 1×10−9 to 1×102 (RNA/100 µl)−1) in each model. Here,

we focused on the best-fit models with the lowest log-likelihood (Table 2; i.e., δ−IAV and p−RSV

in the target cell competition model and β−
IAV and p−RSV in the target cell partitioning model).

For the predicted interactions from the earlier analyses, differing the interaction strength (κ)

had the strongest effect when the two infections were separated by shorter intervals (i.e., <3

d; Figure 2). When the interval was <3 d in the target cell competition model, a reduction

in the RSV burden (up to ∆VAUC=-1) was observed along with a prolonged IAV infection (up

to ∆VAUC=15) for an interaction strength higher than the best fit δ−IAV value (white stars in

Figure 2B). In the target cell partitioning model, the RSV burden was again reduced but the

range of interaction strengths was narrower (Figure 2C). Consistent with the data when the IAV

infection was initiated 5 or 7 d after RSV [27], the simulations showed that intervals >3 to 4 d

after RSV infection resulted in minimal changes in both models (Figure 2B-C). However, only

the target cell partitioning led to uninterrupted IAV infection or unchanged IAV viral burden

for longer intervals between IAV and RSV infection (Figure 2C).

IAV coinfection with RV

Animals infected with IAV and RV at the same time or RV two days before IAV yielded

lower weight loss and milder disease severity compared to animals infected with IAV alone

(Figure 3) [67]. On the contrary, animals infected with IAV 2 d before RV underwent sig-

nificantly higher weight loss that led to death of all animals by 7 d pi (Figure 3; [67]). To

assess the potential mechanisms during IAV coinfection with RV that could lead these empirical

observations and provide potential translation to human infection, we first fit the monoinfec-

tion model (Equations (1)-(4)) to viral loads from human volunteers infected with IAV [48]

or RV [49] (Table 3, Figure 3A). The model fit resulted in different infection kinetic rates for

each virus where rate of IAV infection was lower (βIAV = 2.5 × 10−6 (TCID50)−1 d−1

versus βRV = 1.6 × 10−3(TCID50)−1 d−1) and the rate of IAV production was higher

(pIAV = 3.0 × 10−1/TCID50/cell/d versus pRV = 2.9 × 10−3/TCID50/cell/d [RV]).
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We next used these parameters in the coinfection models (Equations (5)–(8) or Equations (9)-

(12)) with or without interaction (Equation (13) or/and Equation (14)) to predict which mech-

anisms can lead to the distinct disease outcomes observed in the experimental study. Because

viral loads were not measured but weight loss in the infected animals was measured for IAV-RV

and RV-IAV coinfections, we compared the estimated cumulative area under the curve (CAUC)

of the infected cell dynamics to the weight loss [46], qualitatively matching the magnitude and

timing of change. The CAUC of the combined infected cells dynamics of each virus from the

coinfection models without any interactions could not recapitulate the weight loss dynamics for

any interval or order, confirming that interactions were occurring.

Simultaneous or sequential RV-IAV coinfection

When testing different interaction mechanisms that enhanced or inhibited one virus within

the target cell competition model, the model predicted that the mechanism that could lead to

the reduced disease severity observed in RV-IAV coinfection (simultaneous or separated by 2

d) was an IAV-mediated decrease in the rate of RV infected cell clearance (δ−RV; Figure 3B-

C). An intermediate signal strength was required for the simultaneous infection (κδ−RV
=7 ×

10−5/(TCID50/ml); Figure 3B) and a larger signal strength was required for a coinfection sep-

arated by 2 d (κδ−RV
=1/(TCID50/ml); Figure 3C). In both scenarios, this could produce similar

reductions in the CAUC of the infected cells as the weight loss patterns in coinfected animals

(Figure 3B-C). In addition, when IAV and RV were initiated simultaneously, the model-predicted

kinetics showed significant reductions in IAV titers compared to IAV monoinfection (Figure 3B).

This was accompanied by a small increase in RV titers around the peak that was due to the

IAV-mediated decrease in the rate of RV infected cell clearance. However, in contrast to the

simultaneous infection, the model indicated that RV significantly reduced IAV titers when RV

was initiated two days before IAV (Figure 3C).

The reduced rate of RV infected cell clearance (δ−RV) was also identified by the target cell

partitioning model (Figure 4A-B). However, for a simultaneous infection, this needed to be

coupled with an RV-mediated increase in the rate of IAV infected cell clearance (δ+IAV; κδ+IAV

= 1×102/(TCID50/ml); Figure 4A), an increase in the rate of IAV clearance (c−IAV; κc+IAV
=

1×10−3/(TCID50/ml); Figure S3A), a decrease in the rate of IAV production (p−IAV; κp−IAV
=

6×101/(TCID50/ml); Figure S3B), or a decrease in the rate of IAV infectivity (β−
IAV; κβ−

IAV
=

6×101/(TCID50/ml); Figure S3C) to achieve a CAUC of the infected cells consistent with the

reduced weight loss. In all cases, the combined CAUC of the infected cells was reduced to a
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level below that of an IAV single infection and accompanied with a complete suppression of IAV

titers without affecting RV titers.

For RV-IAV coinfection, no single interaction could reproduce the reduced disease severity.

Thus, we did not consider dual interactions. However, because virus infections can initiate

and/or modify host responses (e.g., type I interferon, macrophages, and neutrophils) that are

not included in our model and this can translate into a reduced number of susceptible cells,

which is not automatically created by the target cell partitioning hypothesis, we examined the

effect indirectly by reducing the initial number of target cells, as done in prior studies [46, 60],

that were available for the second virus. For RV-IAV coinfection, reducing the initial number

of target cells by 1 log10 (i.e., T0 = 2×107 cells for IAV compared to T0 = 2×108 cells for RV;

Table 3) was sufficient to reduce the combined CAUC of the infected cells compared to IAV

monoinfection (Figures 4B). However, the estimated CAUC of the infected cells deviated from

the experimental results at later time points, where the model suggested similar but delayed

IAV titers (Figure 4B).

IAV-RV coinfection

The mechanism that could lead to the increased disease severity observed in IAV-RV coinfection

(separated by 2 d) within the target cell competition model was an RV-mediated decrease in

the rate of IAV infected cell clearance (δ−IAV; Figure 3D). The required signal strength was large

(κδ−IAV
= 3/(TCID50/ml)). Despite the model-predicted significant reduction in RV titers,

the small increase in IAV titers was sufficient to create an increase in the combined CAUC of

the infected cells, which aligned with the increased weight loss observed in coinfected animals

(Figure 3D).

In contrast, the target cell partitioning hypothesis alone (i.e., no interactions) led to a higher

combined CAUC of the infected cells and alignment with the observed increase in disease severity

(Figure 4C). This resulted similar viral loads as the monoinfection for both viruses. However,

including an IAV-mediated increase in the rate of RV production (κp+RV
= 1×10−6/(TCID50/ml);

Figure 4C) or the rate of RV infectivity (κβ+
RV

= 1×10−6/(units/ml); Figure S3D) resulted in

an earlier increase in the CAUC of infected cells, which matched the timing of the deviation in

weight loss slightly better. In both scenarios, the predicted IAV titer dynamics were similar and

unchanged from a monoinfection, and the predicted RV titer dynamics had a similar shape but

were much higher when the production rate was increased (5.51 log 10 TCID50/ml versus 4.63

log 10 TCID50/ml). Other possible mechanisms identified by this model included a reduction
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Table 3. Parameters estimates for human infection with IAV, RV, or SARS-CoV-2.
Parameter estimates from fitting the single virus model in Equations (1)-(4) to viral load data from
humans experimentally infected with 4.2 log10 TCID50 IAV [68] or 2.4 log10 TCID50 RV [49], or
naturally infected with SARS-CoV-2 [50]. The initial number of target cells (T0) and infected cells
(E0) were fixed to the indicated values, and the initial number of productively infected cells (I0)
and the initial virus (V0) were set to 0.

Parameter Description Units IAV RV SARS-CoV-2

β Virus infectivity [V]−1 d−1 2.5×10−6 1.6×10−3 1.4×10−7

k Eclipse phase d−1 5.0 3.0 3.0
δ Infected cell clearance d−1 3.9 5.7 4.5
p Virus production [V] cell−1 d−1 3.0×10−1 2.9×10−3 18.8
c Virus clearance d−1 3.9 5.6 1.8
T0 Initial target cells cells 2×108 2×108 2×108

E0 Initial eclipse cells cells 100 100 100
I0 Initial infected cells cells 0 0 0
V0 Initial virus [V] 0 0 0
κ Strength of interaction [V]−1 See text See text See text

[V] indicates TCID50/ml for IAV and RV, and RNA/ml for SARS-CoV-2.

in the initial number of target cells (i.e., T0 = 2× 107 cells for RV compared to 2×108 cells for

IAV; Table 3) coupled with either a reduction in the rate of IAV infected cell clearance by RV

(c−IAV; κ=10/(TCID50/ml); Figure S3E) or in the rate of RV infected cell clearance by IAV (δ−RV;

κ=10/(TCID50/ml); Figure S3F). In the first scenario, the model suggested IAV titers would

remain high for an extended period of time, which created an extended, flat viral load peak. In

the latter case, the model indicated that there would be no changes to IAV titers and that RV

had a slower increase with a lower peak.

IAV coinfection with SARS-CoV-2

Animals infected with IAV followed 3 d later by SARS-CoV-2 resulted in increased weight loss

and more severe disease severity compared to animals infected with IAV or SARS-CoV-2 alone

(Figure 3) [37]. To examine the potential interactions between these two viruses, we employed

the same approach as above. The results suggested the similar mechanisms for enhanced disease

severity for both coinfection models, although the quantitative dynamics were distinct between

the models. That is, the target cell competition model predicted a slightly higher combined

CAUC of the infected cells when SARS-CoV-2 reduced the rate of IAV infected cell clearance

(δ−IAV) at the signal strength κδ−IAV
=2×10−2/(RNA/ml) (Figure 3E) where as the target cell

partitioning without any interaction led to a significantly higher combined CAUC of the infected
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Table 4. Summary of model-predicted mechanisms resulting in increased or decreased
disease severity during viral-viral coinfection. Summary of model-predicted mechanisms
that resulted in altered viral loads (RSV-IAV [27]) or disease severity as quantified by the CAUC
of the infected cells [46, 47] and measured by animal weight loss (IAV-RV and RV-IAV [33] and
IAV-CoV2 [37]).

Model First Virus Second Virus
Infection
Interval (d)

Observed Disease
Severity [ref]

Potential Mechanisms Figure

C
o
m

p
e
ti

ti
o
n RSV IAV 3 Decreased [27]

IAV infected cell clearance reduced by RSV
and RSV production reduced by IAV

Fig. 2B

IAV infected cell clearance reduced by RSV Fig. S1A
IAV clearance reduced by RSV Fig. S1A
IAV infected cell clearance reduced by RSV
and RSV clearance increased by IAV

Fig. S1B

IAV RV 0 Decreased [33] RV infected cell clearance reduced by IAV Fig. 3B
RV IAV 2 Decreased [33] RV infected cell clearance reduced by IAV Fig. 3C
IAV RV 2 Increased [33] IAV infected cell clearance reduced by RV Fig. 3D
IAV SARS-CoV-2 3 Increased [37] IAV infected cell clearance reduced by SARS-CoV-2 Fig. 3E

P
a
rt

it
io

n
in

g

RSV IAV 3 Decreased [27]
IAV infectivity reduced by RSV and RSV
production reduced by IAV

Fig. 2C

RSV-infected cell clearance increased by IAV Fig. S1C

IAV RV 0 Decreased [33]

RV infected cell clearance reduced by IAV and
IAV infected cell clearance increased by RV

Fig. 4A

RV infected cell clearance reduced by IAV and
IAV clearance reduced by RV

Fig S3A

RV infected cell clearance reduced by IAV and
IAV production reduced by RV

Fig S3B

RV infected cell clearance reduced by IAV and
IAV infectivity reduced by RV

Fig S3C

RV IAV 2 Decreased [33] Reduced number of target cells for IAV Fig. 4B

IAV RV 2 Increased [33]

RV production increased by IAV Fig. 4C
No interaction Fig. 4C
RV infectivity increased by IAV Fig. S3D
Reduced number of target cells for RV and
IAV infected cell clearance reduced by RV

Fig. S3E

Reduced number of target cells for RV and RV
infected cell clearance reduced by IAV

Fig. S3F

IAV SARS-CoV-2 3 Increased [37]

SARS-CoV-2 production increased by IAV Fig. 4D
No interaction Fig. 4D
SARS-CoV-2 infectivity increased by IAV Fig. S4A
Reduced number of target cells for SARS-CoV-2 and
IAV infected cell clearance reduced by SARS-CoV-2

Fig. S4B

Reduced number of target cells for SARS-CoV-2 and
SARS-CoV-2-infected cell clearance reduced by IAV

Fig. S4C

cells (Figures 4E). Reducing the initial number of target cells (i.e., a log10 reduction [T0 = 2×107

cells]) available to SARS-CoV-2 coupled with a reduction in the rate of SARS-CoV-2-infected

cell clearance (δ−CoV2) by IAV (κδ−CoV2
=10/(RNA/ml)) or a reduction in the rate of IAV infected

cell clearance (δ−IAV) by SARS-CoV-2 (κδ−IAV
=1e-2/(RNA/ml)) led to a higher combined CAUC

of infected cells. The predicted viral load dynamics were distinct between the two models. In

the target cell competition model, there was a significant reduction in SARS-CoV-2 titers and a

delay in resolution of IAV titers. In contrast, the target cell partitioning model suggested that

the SARS-CoV-2 infection was simply delayed.
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Discussion

Respiratory coinfections with multiple viruses are becoming more recognized clinically, partic-

ularly in light of the SARS-CoV-2 pandemic. Experimental studies have begun illuminating

the outcome heterogeneity, which seems to rely on numerous factors like virus pairing, order

and timing of each infection, and specific immune factors. Although the viral and immune

dynamics during viral-viral coinfections are only beginning to be defined, mathematical models

are useful to predict and narrow the spectrum of potential mechanisms, guide new experiments,

and help interpret clinical, experimental, and epidemiological observations. Our analysis on

different viral coinfection scenarios suggested that only a small subset of mechanisms could lead

to the alterations in viral loads and/or disease severity observed in animal models (summarized

in Table 4).

Early regulation of type I IFNs, macrophages, and/or neutrophils, among other innate im-

mune responses, by a virus could impact the dynamics of subsequent infections. Although we

did not assess these immune responses directly, we modeled this indirectly in various ways. The

target cell competition model automatically assumes that fewer cells are available for infection

by the second virus, which could emulate a protective mechanism that reduces the possible

infection size by the coinfecting virus. In the target cell partitioning model, we decreased the

number of target cells available for the second virus was reduced, which has been used to mimic

lower doses [46,60]. Both approaches assume that some cells are protected or otherwise unavail-

able for infection, which can be interpreted as IFN-mediated protection of susceptible cells or

an immediate clearance of virus upon infection due to activation of macrophages and/or neu-

trophils by the first virus. We observed the latter phenomenon in an experiment where CD8

T cells were depleted before infection [46]. In that case, the partial clearance of the inoculum

emulated a reduced dose and led to fewer infected cells and, thus, less virus. This automatically

reduced inflammation and weight loss [46]. Although we did not examine neutrophils at later

time points in that experiment, we would have expected them to be in lower numbers. We did

show in separate experiments that neutrophils and macrophages were log-linearly correlated to

inflammation [46,47]. Here, allowing for fewer susceptible cells within the target cell partitioning

model was sufficient to explain the reduced weight loss in RV-IAV coinfected animals, indicating

a similar mechanism. While neither our model nor the data were sophisticated enough to specify

the exact mechanism, higher IFN-β was detected at 2 d post-coinfection and IAV titers trended

slightly lower compared to monoinfection [33]. A follow-up study suggested that the protection

of IAV-mediated disease severity by RV was dependent on IFN and that this contributed to
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the control of neutrophilic inflammation [35]. These data align nicely with our predictions,

which may help to connect the underlying reasoning (i.e., fewer cells becoming infected) with

downstream consequences (i.e., reduced immune activation and inflammation).

One of the most common mechanisms defined by our analysis was altered rates of infected

cell clearance, which may indicate an effect on virus-specific CD8 T cell responses. Variation

in the number and composition of epitope-specific T cells following viral coinfection has been

observed for other viral pairs (e.g., lymphocytic choriomeningitis (LCMV) and Pichinde (PICV)

viruses) [69]. Here, both models predicted modulation of infected cell clearance rates during

coinfection with IAV and RV. When these two viruses were given simultaneously, the results

suggested that this rate was reduced in all possible mechanisms for RV. Our analysis also

predicted that the rate of IAV infected cell clearance was reduced during RSV-IAV coinfection

when assuming viruses compete for target cells. While this may indicate negative regulation of

the CD8 T cell response either in number or function, it could also indicate that the reduced

number of available target cells from RSV pre-infection would have automatically reduced the

number of T cells needed to clear the infection. We previously showed that the ratio of infected

cells to CD8 T cells drives infection dynamics [46]. Thus, finding increased or reduced quantities

of cells without context of other entities (e.g., virus) could result in misinterpretation of the data.

Our analysis detected alterations to the rates of virus infectivity or production for some coin-

fection scenarios, although this was rarely the sole mechanism. Only in IAV-RV and IAV-CoV2

coinfections within the target cell partitioning model were these potential single interactions,

which resulted in similar viral load dynamics (Figures 4C-D; Figures S3D and S4A). This is

because the type of model used here cannot typically distinguish between the effects of these

processes [70]. There is some evidence that infectivity of SARS-CoV-2 is increased by IAV but

not RSV within cell cultures [41,43]. The underlying mechanism driving this remains unknown,

but other studies with IAV and PIV have shown enhanced infection rates with PIV increasing

cell-to-cell fusion and, thus, spread of IAV [32]. During IAV-CoV2 coinfection in mice, SARS-

CoV-2 titers were decreased while IAV titers were increased [42]. The discrepancy between this

coinfection resulting in more infected cells but less virus may be due to the results being ob-

tained in vitro versus in vivo or to another interaction (e.g., IFN suppression of SARS-CoV-2).

Our analyses suggested that SARS-CoV-2 viral loads would be reduced within the target cell

competition model (Figure S3E-F) or when the number of susceptible cells was reduced within

the target cell partitioning model (Figure S4B-C). This may indicate a role for the IAV-activated

innate immune response and/or a lower effective dose of SARS-CoV-2.
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In this work, we used several data sets with various types of data (i.e., viral loads or weight

loss) to predict potential mechanisms during viral coinfection. The type of data used is im-

portant because altered viral loads, immune cells, or cytokines do not always directly equate

to differences in disease severity. We previously showed this phenomenon, which is due to un-

derlying nonlinearities, while experimentally validating a model of CD8 T cell responses during

influenza [46]. In that work, depleting these cells resulted in reduced weight loss, which was

counterintuitive given that infection resolution was delayed. However, as mentioned above, the

early immune activation led to a predicted lower effective dose (i.e., fewer cells becoming in-

fected) and, thus, reduced disease severity. Similarly in RSV-IAV coinfection, IAV titers were

slightly increased yet less weight loss occurred [27]. This could be due to a similar phenomenon,

where the higher viral loads later in infection are insignificant with respect to severity. This

highlights that while some mechanisms may occur and alter viral loads, they could be distinct

from those that yield distinct outcomes. Our results from matching the qualitative differences

in weight loss data, which is a measure of disease severity, for IAV coinfection with RV or

SARS-CoV-2 may better represent potential mechanisms with measurable consequences. Many

of these also led to predicted differences in viral loads. Some information about mechanism

may be able to be deduced from the timing of when weight loss begins to deviate from the

monoinfection. In several scenarios, this occurred directly after the initiation of the secondary

infection, which suggests that the environment created by the first virus has immediate effects.

The timing and strength of different mechanisms can influence the ensuing dynamics. Al-

tering these variables during RSV-IAV coinfection agreed with experimental results that the

most robust effects occur when RSV was initiated within 0-3 days and that later timings were

similar to a monoinfection (Figure 2) [27, 29, 30]. It is likely but unknown whether different

mechanisms act only on certain time scales and with varying degrees (i.e., signal strengths, κ),

but knowledge of this should occur naturally as more data arises and more detailed models are

developed.

The mechanisms suggested by the analysis occasionally differed depending on the underlying

model hypothesis (i.e., whether viruses compete for epithelial cells) and, in some cases, resulted

in different predicted viral load kinetics. Because most respiratory viruses can infect various

types of airway epithelial cells and replicate in the upper and lower respiratory tracts, it is

conceivable that each virus would have ample cells to infect. However, by chance or due to

airway structure, they may enter the same region and interact on a local level. This may lead to

cells coinfected with both viruses, which we did not model explicitly. We indirectly modeled the
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potential effects of coinfected cells by assuming that the rates of infection and/or production

could be different. Interestingly, cellular coinfection was detected during simultaneous infection

with RSV and HMPV, where coinfected cells were possible but less likely in the presence of

IFN [36]. The same may be true during other coinfections with viruses that are sensitive to IFN

antiviral responses. To model the impact of coinfected cells and potential heterogeneity in their

prevalence, agent-based models may be better suited than those used here.

Using mathematical models to examine data from viral-viral coinfections allowed us to reduce

the number of possible underlying mechanisms that could result in altered viral load kinetics

and/or disease severity. Although the models were relatively simple and lacked investigation

into specific host immune responses, the analysis provided the infrastructure to integrate im-

munological models of higher complexity once data becomes available. Models for some immune

responses during respiratory virus infections are already being developed and validated with ex-

perimental data [46,52,71]. Some of the insight from those studies was integrated here and aided

our ability to interpret the small amount of experimental data currently available. However,

establishing better methods that can predict disease severity (e.g., as in [46]) will be critical.

Our ability to assess the contribution and timescales of different mechanisms to infection ki-

netics and outcome should increase as more temporal viral load, immunologic, and pathologic

data become available. In addition, the hypotheses generated should aid experimental design,

ultimately leading to a more complete understanding of respiratory virus coinfection.
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A, et al. Viral co-infections in pediatric patients hospitalized with lower tract acute

respiratory infections. PloS one. 2015;10(9):e0136526.

22. Zhong P, Zhang H, Chen X, Lv F. Clinical characteristics of the lower respiratory tract

infection caused by a single infection or coinfection of the human parainfluenza virus in

children. Journal of Medical Virology. 2019;91(9):1625–1632.

23. Goka E, Vallely P, Mutton K, Klapper P. Influenza A viruses dual and multiple infections

with other respiratory viruses and risk of hospitalization and mortality. Influenza and

Other Respiratory Viruses. 2013;7(6):1079–1087.

24. Zhang G, Hu Y, Wang H, Zhang L, Bao Y, Zhou X. High incidence of multiple viral

infections identified in upper respiratory tract infected children under three years of age

in Shanghai, China. Plos One. 2012;7(9):e44568.

25. Brand HK, de Groot R, Galama JM, Brouwer ML, Teuwen K, Hermans PW, et al.

Infection with multiple viruses is not associated with increased disease severity in children

with bronchiolitis. Pediatric Pulmonology. 2012;47(4):393–400.

26. Shinjoh M, Omoe K, Saito N, Matsuo N, Nerome K. In vitro growth profiles of respiratory

syncytial virus in the presence of influenza virus. Acta Virologica. 2000;44(2):91–97.

27. Chan KF, Carolan LA, Korenkov D, Druce J, McCaw J, Reading PC, et al. Investigating

viral interference between influenza A virus and human respiratory syncytial virus in a

ferret model of infection. The Journal of Infectious Diseases. 2018;218(3):406–417.

28. Essaidi-Laziosi M, Geiser J, Huang S, Constant S, Kaiser L, Tapparel C. Interferon-

dependent and respiratory virus-specific interference in dual infections of airway epithelia.

Scientific Reports. 2020;10(1):1–9.

29. Drori Y, Jacob-Hirsch J, Pando R, Glatman-Freedman A, Friedman N, Mendelson E,

et al. Influenza A virus inhibits RSV infection via a two-wave expression of IFIT proteins.

Viruses. 2020;12(10):1171.

30. Hartwig SM, Miller AM, Varga SM. Respiratory Syncytial Virus Provides Protec-

tion against a Subsequent Influenza A Virus Infection. The Journal of Immunology.

2022;208(3):720–731.

31. Haney J, Vijayakrishnan S, Streetley J, Dee K, Goldfarb DM, Clarke M, et al. Coinfec-

tion by influenza A virus and respiratory syncytial virus produces hybrid virus particles.

Nature Microbiology. 2022; p. 1–12.

22/29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.04.05.535744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535744


32. Goto H, Ihira H, Morishita K, Tsuchiya M, Ohta K, Yumine N, et al. Enhanced growth

of influenza A virus by coinfection with human parainfluenza virus type 2. Medical

Microbiology and Immunology. 2016;205(3):209–218.

33. Gonzalez AJ, Ijezie EC, Balemba OB, Miura TA. Attenuation of influenza A virus disease

severity by viral coinfection in a mouse model. Journal of Virology. 2018;92(23).

34. Wu A, Mihaylova VT, Landry ML, Foxman EF. Interference between rhinovirus and

influenza A virus: a clinical data analysis and experimental infection study. The Lancet

Microbe. 2020;1(6):e254–e262.

35. Van Leuven JT, Gonzalez AJ, Ijezie EC, Wixom AQ, Clary JL, Naranjo MN, et al.

Rhinovirus reduces the severity of subsequent respiratory viral infections by interferon-

dependent and-independent mechanisms. Msphere. 2021;6(3):e00479–21.

36. Geiser J, Boivin G, Huang S, Constant S, Kaiser L, Tapparel C, et al. RSV and HMPV

Infections in 3D Tissue Cultures: Mechanisms Involved in Virus-Host and Virus-Virus

Interactions. Viruses. 2021;13(1):139.

37. Clark JJ, Penrice-Randal R, Sharma P, Kipar A, Dong X, Davidson AD, et al. Se-

quential infection with influenza A virus followed by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) leads to more severe disease and encephalitis in a mouse

model of COVID-19. bioRxiv. 2020;.

38. Huang Y, Skarlupka AL, Jang H, Blas-Machado U, Holladay N, Hogan RJ, et al. SARS-

CoV-2 and Influenza A virus Co-infections in Ferrets. Journal of Virology. 2021; p.

JVI–01791.

39. Zhang AJ, Lee ACY, Chan JFW, Liu F, Li C, Chen Y, et al. Coinfection by Severe

Acute Respiratory Syndrome Coronavirus 2 and Influenza A (H1N1) pdm09 Virus En-

hances the Severity of Pneumonia in Golden Syrian Hamsters. Clinical infectious diseases.

2021;72(12):e978–e992.

40. Bao L, Deng W, Qi F, Lv Q, Song Z, Liu J, et al. Sequential infection with H1N1

and SARS-CoV-2 aggravated COVID-19 pathogenesis in a mammalian model, and co-

vaccination as an effective method of prevention of COVID-19 and influenza. Signal

Transduction and Targeted Therapy. 2021;6(1):1–8.

41. Bai L, Zhao Y, Dong J, Liang S, Guo M, Liu X, et al. Coinfection with influenza A virus

enhances SARS-CoV-2 infectivity. Cell Research. 2021;31(4):395–403.

23/29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.04.05.535744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535744


42. Achdout H, Vitner EB, Politi B, Melamed S, Yahalom-Ronen Y, Tamir H, et al. Increased

lethality in influenza and SARS-CoV-2 coinfection is prevented by influenza immunity but

not SARS-CoV-2 immunity. Nature Communications. 2021;12(1):5819.

43. Fage C, Hénaut M, Carbonneau J, Piret J, Boivin G. Influenza A (H1N1) pdm09 Virus

but Not Respiratory Syncytial Virus Interferes with SARS-CoV-2 Replication during

Sequential Infections in Human Nasal Epithelial Cells. Viruses. 2022;14(2):395.

44. Dee K, Goldfarb DM, Haney J, Amat JA, Herder V, Stewart M, et al. Human rhinovirus

infection blocks severe acute respiratory syndrome coronavirus 2 replication within the

respiratory epithelium: implications for COVID-19 epidemiology. The Journal of infec-

tious diseases. 2021;224(1):31–38.

45. Pinky L, Dobrovolny HM. Coinfections of the respiratory tract: viral competition for

resources. PLoS One. 2016;11(5):e0155589.

46. Myers MA, Smith AP, Lane LC, Moquin DJ, Vogel P, Woolard S, et al. Dynamically

linking influenza virus infection with lung injury to predict disease severity. eLife. 2021;

p. 10:e68864.

47. Smith AP, Lane LC, Ramirez Zuniga I, Moquin DM, Vogel P, Smith AM. Increased

virus dissemination leads to enhanced lung injury but not inflammation during influenza-

associated secondary bacterial infection. FEMS Microbes. 2022;3.

48. Murphy BR, Rennels MB, Douglas Jr RG, Betts RF, Couch RB, Cate Jr TR, et al. Eval-

uation of influenza A/Hong Kong/123/77 (H1N1) ts-1A2 and cold-adapted recombinant

viruses in seronegative adult volunteers. Infection and Immunity. 1980;29(2):348–355.

49. Hendley JO, Gwaltney Jr JM. Viral titers in nasal lining fluid compared to viral titers

in nasal washes during experimental rhinovirus infection. Journal of Clinical Virology.

2004;30(4):326–328.

50. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological

assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–469.

51. Smith AM, Perelson AS. Influenza A virus infection kinetics: quantitative data and

models. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2011;3(4):429–

445.

52. Smith AM. Host-pathogen kinetics during influenza infection and coinfection: Insights

from predictive modeling. Immunological Reviews. 2018;285(1):97–112.

24/29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.04.05.535744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535744


53. Matrosovich M, Herrler G, Klenk HD. Sialic acid receptors of viruses. SialoGlyco Chem-

istry and Biology II. 2013; p. 1–28.

54. Johansen M, Irving A, Montagutelli X, Tate M, Rudloff I, Nold M, et al. Animal and

translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology.

2020;13(6):877–891.

55. Kogure T, Suzuki T, Takahashi T, Miyamoto D, Hidari KI, Guo CT, et al. Human trachea

primary epithelial cells express both sialyl (α2-3) Gal receptor for human parainfluenza

virus type 1 and avian influenza viruses, and sialyl (α2-6) Gal receptor for human influenza

viruses. Glycoconjugate Journal. 2006;23(1):101–106.
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61. González-Parra G, Dobrovolny HM. Assessing uncertainty in A2 respiratory syncytial

virus viral dynamics. Computational and Mathematical Methods in Medicine. 2015;2015.

62. Harris JM, Gwaltney Jr JM. Incubation periods of experimental rhinovirus infection and

illness. Clinical Infectious Diseases. 1996;23(6):1287–1290.
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Figure 2. Fit of the RSV-IAV coinfection models. (A) Fit of the single virus model
(Equation (1)-(4)) to viral titers from ferrets infected with IAV (black squares) or RSV (black
circles). (B-C) Comparison of the single infection model fit (dashed lines) and fit of the coinfection
models (solid lines; (B) Equations (5)-(8) or (C)) Equations (9)-(12) with the interaction functions
(Equations (13)-(14)) to viral titers from ferrets infected with RSV followed by IAV after 3 d
(IAV, white squares; RSV, white circles). Heatmaps are the relative change in total viral burden
(i.e., ∆VAUC; Equation (15)) evaluated for a range of interaction strengths (κ = 1×10−9 to 1×102

(RNA/100 µl)−1) and infection intervals (0 to 11 d). The best-fit κ for a coinfection at 3 d is
denoted by a white star. Dynamics of the (B) target cell competition model (δ−IAV and p−RSV) or
(C) target cell partitioning model (β−IAV and p−RSV).
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Figure 3. Model predictions coinfection with IAV and RV or SARS-CoV-2 using the
target cell competition model. (A) Fit of the monoinfection model (Equation (1)-(4)) to viral
titers from humans infected with IAV (red; solid line) [48], RV (green; solid line) [49], or SARS-CoV-
2 (yellow; solid line) [50]. (B-E) Model simulations of the dynamics for monoinfection (solid line) or
IAV coinfection with RV or SARS-CoV-2 using the target cell competition model (Equations (5)-(8))
without interaction (dotted line) or with interaction (dashed line). The predicted viral loads and
CACU of the infected cells are shown alongside the percent weight loss from infected animals [33,37].
(B-C) Dynamics of simultaneous coinfection with IAV and RV or RV-IAV with an IAV-mediated
decrease in the rate of RV infected cell clearance (δ−RV). (D) Dynamics of IAV-RV coinfection
with an RV-mediated decrease in the rate of IAV infected cell clearance (δ−IAV). (E) Dynamics of
IAV-CoV2 coinfection with a CoV2-mediated decrease in the rate of IAV infected cell clearance
(δ−IAV).
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Figure 4. Model predictions for coinfection with IAV and RV or SARS-CoV-2 using the
target cell partitioning model. Model simulations of the dynamics for monoinfection (solid line)
or IAV coinfection with RV or SARS-CoV-2 using the target cell partitioning model (Equations (9)-
(12)) without interaction (dotted line) or with interaction (dashed line). The predicted viral loads
and CACU of the infected cells are shown alongside the percent weight loss from infected animals
[33,37]. (A) Dynamics of simultaneous coinfection with IAV and RV with an RV-mediated increase
in the rate of IAV infected cell clearance (δ+IAV) and an IAV-mediated decrease in the rate of RV
infected cell clearance (δ−RV). (B) Dynamics of RV-IAV coinfection with reducing the initial number
of target cells (T0) by 1 log10 for the second infection. (C) Dynamics of IAV-RV coinfection with an
IAV-mediated increase in the rate of RV production (p+RV). (D) Dynamics of IAV-CoV2 coinfection
with IAV-mediated increase in the rate of SARS-CoV-2 production (p+CoV2).
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