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Abstract 

Retaining information in working memory (WM) is a demanding process that relies 

on cognitive control to protect memoranda-specific persistent activity from interference. 

How cognitive control regulates WM storage, however, remains unknown. We hypothe-

sized that interactions of frontal control and hippocampal persistent activity are coordi-

nated by theta-gamma phase amplitude coupling (TG-PAC). We recorded single neurons 

in the human medial temporal and frontal lobe while patients maintained multiple items in 

WM. In the hippocampus, TG-PAC was indicative of WM load and quality. We identified 

cells that selectively spiked during nonlinear interactions of theta phase and gamma am-

plitude. These PAC neurons were more strongly coordinated with frontal theta activity 

when cognitive control demand was high, and they introduced information-enhancing and 

behaviorally relevant noise correlations with persistently active neurons in the hippocam-

pus. We show that TG-PAC integrates cognitive control and WM storage to improve the 

fidelity of WM representations and facilitate behavior. 
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Introduction 

Working memory (WM), the ability to actively maintain and manipulate a limited 

amount of information in mind for a brief period of time (Baddeley 1992), is a crucial com-

ponent of cognition. Deficits in WM due to disease, age, developmental disruptions, fa-

tigue, or cognitive overload can have serious detrimental effects on neurotypical cognitive 

function. It is therefore of critical importance to develop a better understanding of the 

underlying mechanisms which remain far from understood. 

WM maintenance is an active process that retains information that is no longer 

available in the external world. One cellular mechanism that is thought to support this 

process is persistent neural activity (Fuster and Alexander 1971; Constantinidis and 

Klingberg 2016; Leavitt et al. 2017a; Zylberberg and Strowbridge 2017; Kamiński and 

Rutishauser 2020; Wang 2021). In humans, memoranda-specific persistent activity has 

been observed in cells of the human medial temporal lobe (MTL) but not frontal lobe 

(Kamiński et al. 2017; Kornblith et al. 2017; Boran et al. 2019). Accurately maintaining 

persistent activity is demanding and must resist interference introduced by distractors or 

high memory load. These are the conditions under which the MTL, in addition to its classic 

role in long-term memory, also becomes essential for short-term memories such as WM 

(Jeneson and Squire 2012). It is thought that cognitive control (variously referred to as 

top-down, executive, or attentional control by others), is needed to support the active 

maintenance of WM content (Cowan 2010; Baddeley 2012). Classic abstract cognitive 

models of WM assign the role of control to the ‘central executive’, suggested to be a 

function of the frontal lobes (Baddeley 2003; Badre 2008; Helfrich and Knight 2016; Badre 

and Nee 2018), and its interactions with temporal and parietal storage systems to support 

WM maintenance (Curtis and D’Esposito 2003; D’Esposito and Postle 2015; Lara and 

Wallis 2015; Scimeca et al. 2018). However, at the implementation level, little is known 

about how cognitive control and storage mechanisms interact.  

A ubiquitous macroscopic phenomenon that has been associated with both WM 

maintenance and frontal control over WM content-specific processing is theta-gamma 

phase amplitude coupling (PAC) (Lisman and Jensen 2013). PAC has been documented 

in a large number of tasks and brain areas at the level of the local field potential (LFP). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.05.535772doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535772
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Despite its ubiquity, however, the functional role of these interactions remains largely un-

known. A major hypothesis that has been advanced in recent years is that cross-fre-

quency interactions such as PAC enable the integration of local sensory information pro-

cessing with brain-wide cognitive control (Canolty and Knight 2010; Palva and Palva 

2018). Sensory processing leads to local increases in power in the gamma range (30–

140 Hz) (Colgin et al. 2009; Yamamoto et al. 2014; Fries 2015; Colgin 2016; Fernández-

Ruiz et al. 2021), whereas cognitive control regulates distant brain processes through 

long-range inter-areal interactions in the theta range (3-7 Hz) (Miller 2000; Fell and Ax-

macher 2011; Cavanagh and Frank 2014; Harris and Gordon 2015). Under this frame-

work, theta-gamma PAC serves as a tool to integrate these two processes. Supporting 

this idea, during WM maintenance, PAC has been observed in areas of the temporal lobe, 

in particular the hippocampus (Canolty et al. 2006; Axmacher et al. 2010; Yamamoto et 

al. 2014; Leszczyński et al. 2015; Reinhart and Nguyen 2019; Abubaker et al. 2021), 

where it co-occurs with long-range theta phase synchronization to frontal regions and 

thus reflects the theta-based frontal coordination of high-frequency WM content pro-

cessing in temporal areas (Daume et al. 2017b, a). Here, we test the hypothesis that 

neurons in the human MTL whose activity is modulated by both theta phase and gamma 

amplitude in ways predicted by PAC exist and that these neurons enable PAC-mediated 

inter-areal interactions that enhance the ability to maintain WM content by persistently 

active neurons.  

To study this question, we recorded single cell activity as well as LFPs from medial 

frontal and MTL areas while human neurosurgical patients performed a Sternberg WM 

task. We developed a new method to identify “PAC neurons”, which were common in 

areas of the MTL. PAC neurons were not tuned to WM content. In contrast, WM-selective 

category neurons remained persistently active when their preferred picture category was 

maintained in WM. Hippocampal PAC neurons coordinated their activity with frontal theta 

activity in trials with higher WM load and faster reaction times, indicating that they are 

related to cognitive control processes. PAC neurons shaped the population-level geom-

etry of WM representations and enhanced WM fidelity by introducing noise correlations 

with content-tuned category neurons in the hippocampus. Taken together, we show that 
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PAC neurons have a functional role in inter-areal cognitive control of WM content-specific 

persistent activity within the hippocampus.  

Results 

Task, behavioral results, and electrophysiology 

36 patients (44 sessions; Table S4) participated in a modified Sternberg WM task 

with pictures as stimuli. All pictures belonged to one of five different categories (people, 

animals, cars/tools (depending on variant), fruit, and landscapes). In each trial, patients 

were asked to maintain either one (load 1) or three (load 3) consecutively presented pic-

tures in their WM for 2.5-2.8 s (Fig. 1a). Following the maintenance period, patients were 

asked whether the probe stimulus shown was identical to one of the item(s) they were 

holding in WM. Patients performed well, with a mean accuracy of 93.66 ± 7.04 % (78.34 

± 20.09 % of all errors were false negative). Across all sessions, subjects responded 

slower (1.46 s vs 1.33 s; t(43) = 6.42; p < 0.001) and less accurate (91.60 % vs 95.71 %; 

t(43) = -4.45; p < 0.001) in load 3 as compared to load 1 trials (Fig. 1d). While patients 

performed the task, we recorded in total from 1452 single neurons across five brain re-

gions. 360 neurons were located in the hippocampus, 496 in the amygdala, 204 in the 

pre-supplementary motor area (pre-SMA), 188 in the dorsal anterior cingulate cortex 

(dACC), and 206 in the ventromedial prefrontal cortex (vmPFC; Fig. 1b, c). At the same 

time, we also recorded the broadband LFP from a total of 1911 microwires (a subset of 

which provided the single neuron data). Of the LFP channels, 586 channels were in the 

hippocampus, 416 in the amygdala, 283 in the pre-SMA, 319 in the dACC, and 307 in the 

vmPFC.  

Theta-gamma PAC differed as a function of WM load and correlated with reaction times 

in the hippocampus 

We first determined whether we observed PAC at the level of the LFP during WM 

maintenance and if so whether it differed as a function of WM load. For that purpose, we 
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estimated PAC for the LFP recorded on all micro wires using a modulation index that 

varied as a function of low frequency phase and high frequency power. We used all cor-

rect trials from both load conditions to do so. The raw modulations indices from each 

channel and frequency combination were normalized using a surrogate distribution to de-

rive a z-scored version (using 200 random shuffles, see Methods). Averaging the normal-

ized modulation indices across all recording channels (Fig. 2a) revealed that the strongest 

PAC was between the phase of the LFP in the theta range (3-7 Hz) and the amplitude in 

two different gamma frequency bands, a lower (30-55 Hz) and a higher gamma range 

(70-140 Hz), consistent with what has been found in earlier intracranial recordings from 

humans and rodents (Canolty et al. 2006; Colgin et al. 2009; Yamamoto et al. 2014). For 

each channel, we then separately averaged the normalized modulation indices in the 

theta to low gamma and the theta to high gamma combinations and assessed which of 

the channels exhibited significant PAC across both load conditions in the given frequency 

combination (averaged z-score > 1.64; p < 0.05; right-sided). The selected channels were 

then used to compare the within-condition normalized PAC estimates between the two 

load conditions in each brain area. For theta to high gamma PAC, 137 (23.38 %) out of a 

total of 586 hippocampal channels showed significant PAC across all correct trials from 

both load conditions. Comparing the PAC estimates between load conditions in the se-

lected channels revealed significantly weaker theta-high gamma PAC in load 3 compared 

to load 1 trials (t(136) = -4.26, p < 0.001; FDR corrected for the five brain regions of 

interest (Benjamini and Hochberg 1995); Fig. 2c shows the comodulogram for significant 

PAC channels from the hippocampus per load condition). In the amygdala, a substantial 

proportion of channels exhibited significant PAC across both conditions (130 (31.25%) 

out of 416 possible channels). However, in contrast to the hippocampus, theta-high 

gamma PAC did not differ significantly between the two load conditions in the amygdala 

(t(129) = 1.43, p = 0.38). Furthermore, in the three regions of the frontal lobe we recorded 

from, only a few channels were observed with significant theta-high gamma PAC (59 

(6.49%) out of 909 possible channels combined from all frontal areas) and within-condi-

tion estimates did not differ as a function of load (pre-SMA: t(4) = -0.16, p = 0.87; dACC: 

t(13) = -0.82, p = 0.73; vmPFC: t(39) = 0.16, p = 0.87). These observations were qualita-

tively comparable when significant channels were first averaged within each session, and 
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then tested across recording sessions between the two load conditions (see Fig. S2a), 

showing that the results were not driven by channels from a single session. There were 

no significant differences between load conditions in any of the regions for theta-low 

gamma PAC (30-55 Hz; Fig. S2b). We therefore focused on theta-high gamma (70-140 

Hz) PAC for the remainder of the paper.  

Estimates of PAC can be influenced by nuisance factors such as power or wave-

form shape differences between conditions (Kramer et al. 2008; Aru et al. 2015; Cole and 

Voytek 2017). In addition to normalizing PAC estimates within each condition using trial-

shuffled surrogates, which controls for confounds such as power differences across con-

ditions, we also directly tested for differences in those nuisance factors in significant PAC 

channels from the hippocampus (where we observed a significant difference in PAC as a 

function of load). Power did not differ significantly between the two load conditions in both 

the theta and the gamma band (all p > 0.05; Fig. S2c). Also, there were no significant 

differences in theta-gamma phase-phase coupling or theta waveform shape asymmetries 

between the two load conditions (see Fig. S2d, e). These control analyses confirm that 

the differences between theta-gamma PAC strength we found were not confounded by 

power or waveform shape differences. 

We next asked whether theta-gamma PAC at the LFP level in the MTL relates to 

WM behavior. We calculated single-trial estimates of theta-gamma PAC for all significant 

PAC channels of both MTL regions and then used mixed model GLMs to assess whether 

reaction time (RT) is related to PAC in a trial-by-trial manner (using only correct trials). To 

control for potential load differences, we included load as a confounder, and modelled 

random intercepts for each significant PAC channel. In the hippocampus, PAC was sig-

nificantly negatively correlated with RT, i.e., faster RTs were associated with stronger 

PAC (see table S1 for GLM results; Fig. 2d shows correlation coefficients between PAC 

and RT for each significant PAC channel per region for illustration only; all statistics and 

conclusions are based on the GLM results). There were no significant correlations be-

tween single-trial theta-gamma PAC and RT in the amygdala (see table S1; Fig. 2d). 

The above comparison revealed that theta-gamma PAC in the hippocampus was 

significantly weaker in load 3 as compared to load 1. One possible explanation for this 
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decrease in PAC is that higher WM loads are associated with longer gamma events so 

that more information per theta cycle can be maintained in WM (Lisman and Jensen 

2013). This, in turn, would lead to gamma amplitudes that are more uniformly distributed 

across the theta cycle and hence weaker levels of PAC (see also Heusser et al. 2016). 

We next tested this hypothesis in our data. We determined the duration of high-amplitude 

gamma events within each load condition in the hippocampal PAC channels that showed 

significant differences in PAC. In correct trials, load 3 trials contained significantly more 

gamma events than load 1 trials (t(136) = 2.4587, p = 0.01; Fig. 2e). To determine if longer 

durations of gamma were associated with lower levels of PAC, we next correlated the 

difference in PAC between the load conditions with the difference in gamma event dura-

tion separately for every channel. These two metrics were significantly negatively corre-

lated (r = -0.26; p = 0.002; Fig. 2f). Consistent with our hypothesis, this result suggests 

that PAC was lower in load 3 trials because the duration of gamma events increased as 

a function of WM load.  

In summary, we observed strong theta-gamma PAC in both hippocampus and 

amygdala. In the frontal lobe, in contrast, theta-gamma PAC was not prominent. Even 

more anatomically specific were PAC differences as a function of load and RT, which 

were significant only in the hippocampus. This finding suggests that PAC relates to on-

going WM processes during the maintenance period in the hippocampus, but not in the 

amygdala or frontal lobe. We further observed that longer gamma events were associated 

with weaker PAC estimates in load 3 as compared to load 1, which suggests that more 

WM information in higher loads was stored across a wider range of theta phases.  

Category neurons synchronize to the phase of gamma signals in the hippocampus 

We next sought to determine whether and how spiking activity of simultaneously 

recorded neurons relates to the LFP phenomena of PAC. Earlier work in humans found 

that memoranda-specific cells remain persistently active during the WM maintenance pe-

riod when their preferred stimulus was actively held in WM (Kamiński et al. 2017, 2020; 

Kornblith et al. 2017). It is believed that these cells are involved in the maintenance of 

information in WM (Kamiński and Rutishauser 2020). We reasoned that if PAC facilitates 
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interactions between the maintenance of WM content and cognitive control processes, 

memoranda-tuned neurons that show persistent activity during the maintenance period 

might be cells that are also related to theta-gamma PAC. Our first approach was hence 

to determine whether neurons that are tuned to one of the five presented picture catego-

ries in the MTL show persistent activity during the maintenance period, and, if so, how 

they relate to ongoing theta and gamma signals.  

We first selected for neurons whose firing rate was related to the visual category 

of the stimuli shown on the screen during the encoding periods (5-way ANOVA and post-

hoc t-test; both p < 0.05; 2,000 permutations). This way of selection leaves the firing rates 

during the maintenance period independent for later analyses. 89 (24.72 %) out of the 

360 neurons in the hippocampus and 181 (36.49 %) out of the 496 neurons in the amyg-

dala were selected as category neurons (see Fig. 3a for an example neuron from the 

hippocampus). Firing rates of category neurons from both areas were elevated during the 

maintenance period as compared to baseline across all correct trials (t(269) = 6.65, p < 

0.001). Crucially, firing rates were significantly higher in trials in which the preferred cat-

egory of a cell was held in mind relative to the non-preferred categories (t(269) = 2.93, p 

= 0.001; Fig. 3b). Category neurons in the MTL thus remained persistently active for their 

preferred sensory input, even after the sensory material was removed from the screen 

(areas were combined for simplicity since results were qualitatively similar in hippocam-

pus and amygdala; see Fig. S3a for statistics per area). We further observed a load effect 

for trials in which the preferred category was encoded, with FRs higher in load 1 than in 

load 3 (t(269) = 2.65, p = 0.004; Fig. 3c), but not for non-preferred trials (t(269) = -1.46, p 

= 0.14; Fig. S3b). Overall, FRs were higher in correct as compared to incorrect trials 

across both load conditions (Fig. 3d; t(245) = 2.4305, p = 0.0185; 24 neurons were ex-

cluded from this comparison due to insufficient data in the incorrect condition), further 

demonstrating their relevance to WM maintenance processes. 

Category cells thus showed persistent activity during the maintenance period of 

the task. Next, we asked how spike timing of category neurons relates to the phase of 

LFPs recorded within each area of the MTL (Fig. 3e). We computed spike-field coherence 

(SFC) for all category neuron to channel combinations within the same region in frequen-

cies between 2 and 150 Hz during the maintenance period and compared trials in which 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.05.535772doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535772
http://creativecommons.org/licenses/by-nc/4.0/


 10 

preferred or non-preferred stimuli were correctly maintained. Cluster-based permutation 

statistics revealed that high gamma-band SFC was significantly stronger in preferred trials 

than non-preferred trials across all neuron-to-channel combinations that involved signifi-

cant PAC channels in the hippocampus (cluster-p = 0.004; Fig. 3f). This data-driven ap-

proach thus revealed a gamma cluster that spanned roughly the same frequencies in-

volved in theta-high gamma PAC (70-140 Hz vs 86-134 Hz). We did not find similar effects 

for the theta band (Fig. 3f), non-PAC channels (Fig. S3e), or neuron-channel combina-

tions from the amygdala (Fig. 3f; S3e). To determine whether the observed gamma SFC 

difference between preferred and non-preferred trials was dependent on gamma ampli-

tude, we tested whether gamma SFC (averaged across 70-140 Hz) for category neurons 

in the hippocampus differed between preferred and non-preferred trials for high and low 

gamma amplitudes separately (median split). We observed a significant difference only 

for spikes that occurred during high gamma power (t(150) = 3.0601, p = 0.0015), not low 

power (t(150) = 0.26, p = 0.85; Fig. S3d). Therefore, specifically in periods where gamma 

amplitude was high, spikes of category neurons were more strongly synchronized to the 

phase of gamma signals when their preferred as compared to non-preferred category 

was maintained in WM. 

We next tested whether gamma SFC also differed as a function of WM load. We 

averaged SFC within the gamma band (70-140 Hz) and computed a 2x2 ANOVA with the 

factors load and preference for all category neuron to PAC channel combinations in the 

hippocampus. We observed a significant main effect for preference (F(1,150) = 16.23, p 

< 0.001), whereas there was no significant main effect of load (F(1,150) = 1.32, p = 0.25) 

nor a significant interaction between the two (F(1,150) = 0.93, p = 0.33). Confirming this 

result, gamma-band SFC was significantly elevated for preferred vs. non-preferred trials 

in load 1 (t(150) = 3.14, p = 0.003) as well as in load 3 (t(150) = 2.88, p = 0.004; Fig. 3g). 

Computing the same 2x2 ANOVA for SFC values averaged within the theta band (3-7 Hz) 

did not reveal any significant effects (Fig. S3c).  

Lastly, we determined whether spiking activity of category cells during the WM 

maintenance period correlates with PAC on a trial-by-trial manner in both areas of the 

MTL (only using correct trials). We again included load as confounder and modelled ran-

dom intercepts for each category neuron to significant PAC channel combination. In the 
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hippocampus, PAC was weakly but significantly positively correlated with FR of category 

neurons (see table S2 for GLM results; Fig. 3h shows correlation coefficients for illustra-

tion only; all conclusions are based on the GLM results). In the amygdala, there were no 

significant correlations between single-trial theta-gamma PAC and FR of category neu-

rons (see table S2; Fig. 3h). Together, these results show that category-selective neurons 

in the hippocampus were persistently active and more synchronized with gamma LFPs 

when their preferred category was held in WM. This effect was specific to channels that 

showed significant theta-gamma PAC during the maintenance period (Fig. S3e). FRs of 

hippocampal category neurons were moreover correlated with single-trial estimates PAC.  

Category neurons did not significantly overlap with PAC neurons 

While above result indicates a relationship between category neurons and PAC 

within the hippocampus, these results alone do not definitively demonstrate that spiking 

activity of category neurons was sensitive to the nonlinear interaction between theta 

phase and gamma amplitude as would be expected from a true “PAC neuron”.  

We thus next selected for PAC neurons, which we defined as neurons whose firing 

rate was sensitive to both theta phase and gamma amplitude. We then examined whether 

the selected neurons were significantly overlapping with the population of category neu-

rons. To select for PAC neurons, we fit three different models (Poisson GLMs) to each 

neuron-to-channel combination within a region and session. We extracted the theta phase 

and gamma amplitude for each spike of a given neuron during the maintenance period of 

correct trials in each corresponding channel and used them as predictors for the spike 

count of the corresponding neuron binned into 20 bins (see Methods). We reasoned that 

if a neuron’s spiking activity is correlated with theta-gamma PAC, the interaction term 

between theta phase and gamma amplitude should explain significant amounts of vari-

ance in the spike count of a given neuron. This is because the activity of a PAC neuron 

should not only be related to theta phase or the gamma amplitude alone (explained by 

the main effects of the model), but specifically also to the interaction of the two, i.e., a 

gamma amplitude that is differentially distributed across theta phase, hence PAC. To test 

this hypothesis, we performed a model comparison (likelihood-ratio test) of the full model 
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that included both the two main effects theta phase and gamma amplitude as well as their 

interaction against a model that included the two main effects but no interaction term. We 

also tested the full model against a model that did not include the main term for gamma 

but only the main term for theta and their interaction (see Methods for the reasoning be-

hind this comparison, Fig. S4 for illustrations, and Fig. 4a for an example). We selected 

a neuron as a PAC neuron if the full model explained the spike count variance significantly 

better than both other models for at least one of the channel combinations (p < 0.01; FDR 

corrected for all possible channel combinations; if a neuron had more than one significant 

LFP-spike channel combination, we selected the one with the highest R2 in the full model 

for later within-region SFC analyses). A substantial proportion of neurons in the MTL qual-

ified as PAC neurons: In the hippocampus, 79 (37.29 %) out of 212 available neurons (p 

< 0.005; 200 permutations, see Methods; pre-processing steps removed broadband LFPs 

for some of the neurons and those were therefore not part of this analysis) qualified as 

PAC neurons. In the amygdala, 163 (45.53 %) out of 358 neurons (p < 0.005) qualified 

as PAC neurons.  

Next, we determined whether the selected PAC neurons were also category neu-

rons. In the hippocampus, 28 (35.44 %) out of the 79 PAC neurons were both PAC neu-

rons as well as category neurons. In the amygdala, this was the case for 68 (41.72 %) 

out of the 163 PAC neurons (Fig. 4b). We compared these proportions to 10,000 random 

selections of the same number of neurons from all available neurons in each region and 

found that the proportion of category neurons among PAC neurons was not significantly 

higher than expected by independent sub-populations in any of the two regions (both p > 

0.05). This suggested that the probabilities of a neuron being a PAC or a category neuron 

were independent, therefore not confirming our initial hypothesis.  

To further corroborate this finding, we trained a linear decoder to differentiate be-

tween the five different picture categories based on the firing rates extracted during pic-

ture presentation (encoding). While, as expected, the decoder was able to differentiate 

between the picture categories when trained on FR from the category neurons with high 

accuracy (hippocampus: 72.77 %; p = 0.001; amygdala: 88.71 %, p = 0.001; significance 

assessed by comparing original decoding accuracy to a distribution of 1,000 decoding 

accuracies after randomly shuffling category labels; Fig. 4c, d), it could not differentiate 
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the categories when trained on FRs from PAC neurons that were not also category neu-

rons in both MTL areas (hippocampus: 26.06 %, p = 0.16; amygdala: 25.86 %, p = 0.15; 

chance level = 20 %). Thus, PAC neurons were not differentially active for the five picture 

categories and therefore differed in their response from category neurons. 

Properties of PAC neurons 

We next sought to characterize PAC neuron activity and its relation to WM mainte-

nance processes within the MTL during the maintenance period. We first asked whether 

the FR of PAC neurons correlates with the LFP-based estimates of theta-gamma PAC on 

a trial-by-trial manner. Trial-by-trial correlations are independent from the selection pro-

cedure since PAC neurons were selected based on trial-averaged theta-gamma interac-

tions, irrespective of their trial-by-trial variance. For this purpose, we again computed a 

mixed-model GLM, including load as a confounder and modelling a random intercept for 

each PAC neuron-to-channel combination (using only correct trials and the LFP channel 

selected for each neuron; see Methods). We found that FRs of PAC neurons in the hip-

pocampus were positively correlated with estimates of single-trial PAC (see table S3 for 

GLM results; Fig. 4e,f shows univariate correlation coefficients for illustration only). In 

terms of FR, PAC neurons in the hippocampus showed elevated activity throughout the 

maintenance period as compared to baseline (t(78) = 2.43, p = 0.01), had significantly 

higher FRs for correct as compared to incorrect trials (t(62) = 3.82, p < 0.001; Fig. 4g; 16 

neurons were excluded from this comparison due to insufficient data in the incorrect con-

dition), and were elevated as compared to baseline in correct (t(62) = 2.67, p = 0.01) but 

not in incorrect trials (t(62) = -0.98, p = 0.33). FRs were not significantly different between 

the two load conditions (load 3 - load 1: t(78) = 1.38, p = 0.20), but FRs were elevated as 

compared to baseline in each condition considered separately (load 1: t(78) = 2.14, p = 

0.03; load 3: t(78) = 2.45, p = 0.01; Fig. 4i). In the amygdala, FRs of PAC neurons were 

not significantly correlated with single-trial estimates of theta-gamma PAC (Table 3; Fig. 

4f). PAC neurons in the amygdala also showed higher FRs during the maintenance period 

as compared to baseline (t(162) = 6.40, p < 0.001), but we did not observe significant 

differences between correct and incorrect WM trials (t(156) = -0.77, p = 0.45; Fig. 4h) or 
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loads (load 3 - load 1: t(162) = 0.26, p = 0.80: Fig. 4j). These results show that PAC 

neurons in the hippocampus, despite not being tuned to WM content, were actively con-

tributing to WM maintenance because their FRs were elevated during the WM mainte-

nance period as compared to baseline and higher in correct as compared to incorrect 

trials. 

We further asked whether the SFC of PAC neurons differed with respect to local 

theta or gamma between the two load conditions. We computed theta and gamma SFC 

for all neuron-to-channel combinations determined during the selection process for PAC 

neurons. While SFC was significantly stronger as compared to shuffled surrogate data in 

each load condition in the hippocampus in the theta (load 1: t(78) = 5.1505, p < 0.001, 

load 3: t(78) = 4.4853, p < 0.001; Fig. 4k) and the gamma band (load 1: t(78) = 4.4915, p 

< 0.001; load 3: t(78) = 3.5826, p < 0.001), we did not observe significant differences 

between the two load conditions (load 3 – load 1: theta: t(78) = -1.54, p = 0.13; gamma: 

t(78) = -1.12, p = 0.27). PAC neurons in the amygdala showed comparable results (com-

parisons within load conditions: all p < 0.001; load 3 – load 1: theta: t(162) = -0.71, p = 

0.47; gamma: t(162) = 0.76, p = 0.45: Fig. 4l). 

PAC neuron activity in the hippocampus is related to frontal theta LFPs 

Above analysis shows that unlike category neurons, the firing rate of PAC neurons 

in the MTL does not seem to be related to the content of WM. However, the activity of 

PAC neurons was predictive of WM quality because it differed between correct and in-

correct trials in the hippocampus. We therefore hypothesized that PAC neurons might be 

involved in cognitive control of WM maintenance processes. While it has long been the-

orized that long-range theta connectivity might be the substrate underlying this control 

process (Miller 2000; Fell and Axmacher 2011; Daume et al. 2017b, a), no single cell 

correlate of this mechanism is known. We thus asked whether the activity of PAC neurons 

is related to activity recorded in frontal regions (Minxha et al. 2020). 

We computed cross-regional SFC between spiking activity of PAC neurons in the 

MTL and the phase of LFPs between 2 and 150 Hz recorded in the three frontal regions 

pre-SMA, dACC and vmPFC (Fig. 5a). We then tested for differences in cross-regional 
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SFC between the two WM load conditions. If PAC neuron activity is related to frontal 

cognitive control, we expected cross-regional SFC in the theta range to be stronger in 

load 3 than in load 1 since higher levels of cognitive control are required for higher WM 

loads. The data supports this hypothesis: SFC was significantly stronger in load 3 than in 

load 1 between spiking activity of PAC neurons in the hippocampus and theta-band LFPs 

recorded in the vmPFC (cluster-based permutation statistics, cluster-p < 0.001; Fig. 5b; 

for analysis separate for narrow- and broad-spiking neurons, see Fig. S5). We did not 

observe significant differences for other frequency bands, nor for the other two frontal 

brain areas (see Fig. S5a). To determine if this effect was specific to PAC neurons, we 

repeated the same analysis for the category neurons and did not observe any significant 

differences (Fig. 5c). Similarly, PAC neurons from the amygdala did not show significant 

cross-regional SFC differences in any of the tested frequencies (Fig. 5d) or regions.  

To further corroborate whether the observed difference in cross-regional theta SFC 

was specific to PAC neurons, we compared the strength of cross-regional SFC between 

the load conditions for SFC values averaged in the observed theta range for 10,000 ran-

dom selections of hippocampal neurons (same number of connections as for PAC neu-

rons). None of the random selections yielded a stronger difference between the two load 

conditions than the PAC neurons from the hippocampus (p < 0.001; Fig. 5e).  

If cross-regional SFC reflects levels of cognitive control during WM maintenance, 

theta SFC should not only be stronger for higher loads but also for faster RTs. Thus, we 

asked whether cross-regional theta SFC between PAC neurons and LFPs in the vmPFC 

differed between fast and slow RTs. We performed a median split of RTs for all correct 

trials within each load condition and compared cross-regional SFC for PAC neurons and 

theta in the vmPFC between fast and slow RTs (averaged across both load conditions). 

Theta SFC was stronger for fast as compared to slow RTs for PAC neurons from the 

hippocampus (t(166) = 2.10, p = 0.03; Fig. 5f), but not from the amygdala (t(705) = 1.40, 

p = 0.16).   
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PAC neurons shape representations of WM content and facilitate WM behavior through 

noise correlations 

Above results show that PAC neurons are involved in cognitive control by orches-

trating long-range fronto-temporal interactions. However, this leaves open the question 

of how this PAC-neuron mediated control process might shape WM representations at 

the local level, thereby facilitating WM maintenance. We hypothesized that PAC neurons 

could serve to stabilize WM content representations by introducing information-enhancing 

noise correlations. Noise correlations among a group of simultaneously recorded neurons 

can significantly modify the information content of the population because correlations 

can shape representations such that they can become easier or harder to read out (Aver-

beck et al. 2006; Panzeri et al. 2022). Notably, even cells that by themselves carry no 

information in their firing rate (they are untuned) can influence the decodability of varia-

bles at the population level if their activity is correlated trial-by-trial with cells that are tuned 

(Leavitt et al. 2017b; Stefanini et al. 2020). We hypothesized that PAC neurons might 

play this role during WM maintenance, during which cognitive control is needed to hold 

information in memory.  

We first tested whether pairs of PAC and category cells that were recorded in the 

same session and brain area had significantly correlated firing rates. In each trial and 

neuron, we counted spikes in windows of 200 ms, sliding across the maintenance period 

in steps of 25 ms. We then correlated spike counts for pairs of neurons across all time 

bins and averaged correlation coefficients for all correct trials. We excluded pairs of neu-

rons that were recorded on the same channel to avoid potentially spurious correlations 

due to misclustered spikes. In both the hippocampus (162 pairs; t(161) = 5.26; p < 0.001) 

and the amygdala (892 pairs; t(891) = 15.51; p < 0.001), we found significant on average 

positive single-trial co-fluctuations of spike counts among pairs of category neurons and 

PAC neurons (Fig. 6a). To further corroborate this finding, we shuffled trial labels within 

each pair and recomputed the GLMs for 1,000 times. The correlation coefficients aver-

aged across all PAC and category neuron pairs with intact trial labels was significantly 

stronger than for shuffled trials (see Fig. 6b for hippocampal pairs; for noise correlations 

computed across trials, see Fig. S6). 
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As a next step, we sought to determine whether PAC cells contribute to the de-

codability of image category during the WM maintenance period through structuring noise 

correlations. We used the approach introduced by (Leavitt et al. 2017b), which consists 

of iteratively adding neurons to the population through greedy selection of the neuron that 

adds most decodability above and beyond that provided by the already included neurons. 

First, the unit that is most informative for stimulus category is determined by decoding the 

category from each recorded neuron by itself. Second, all possible pairs of this best neu-

ron and all remaining neurons are individually used for decoding, picking the best second 

neuron. Third, this procedure is repeated iteratively till all neurons are added to the pop-

ulation (see Fig. 6c for an example from a single session). Previous work using this 

method has observed that neurons that by themselves provide no information are added 

to the population (Leavitt et al. 2017b; Stefanini et al. 2020) . We performed this analysis 

with intact noise correlations among neurons (by using original trial labels) and after noise 

correlations were removed (by shuffling trials within each category to preserve correct 

decoding labels but destroy correlations across trials).   

We determined each PAC neuron’s contribution to category decodability after it 

was added to the optimized decoding ensemble (difference to decoding accuracy before 

that PAC neuron was added) and compared their contributions when noise correlations 

were intact or removed within each brain area (for all neurons added before peak de-

codability; see (Leavitt et al. 2017b)). In the hippocampus, adding PAC neurons to the 

optimized decoding ensemble significantly enhanced category decoding during the WM 

maintenance period when noise correlations were intact (t(20) = 3.16, p < 0.001) but not 

when they were removed (t(20) = -0.12, p = 0.91; Intact vs. Removed: t(20) = 3.33, p = 

0.003; Fig. 6d left). In the amygdala, PAC neurons contributed to category decodability 

not only when noise correlations were intact (t(27) = 5.90, p < 0.001) but also when noise 

correlations were removed (t(27) = 2.04, p = 0.04; Intact vs Removed: t(27) = 4.31, p = 

0.0011; Fig. 6d right). These results show that PAC neurons in the hippocampus contrib-

uted to the encoded WM content only through noise correlations to tuned cells during the 

WM maintenance period. When noise correlations were removed, these contributions 

were abolished.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.05.535772doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535772
http://creativecommons.org/licenses/by-nc/4.0/


 18 

 We next sought to determine whether noise correlations among PAC and category 

neurons benefited WM-based behavior. If noise correlations are beneficial to WM pro-

cesses, they should be stronger in correct fast RT trials as compared to correct slow trials, 

specifically when the category neurons’ preferred categories were maintained in WM. We 

thus compared noise correlations between fast and slow RT trials (median split; sepa-

rately computed in each load condition and then averaged to avoid a bias of load in RTs) 

for the category neurons’ preferred trials. In the hippocampus, we observed significantly 

stronger noise correlations for fast as compared to slow RT trials (t(161) = 2.15; p = 0.028; 

Fig. 6e left). Noise correlations were on average significantly positive only in fast (t(161) 

= 4.10, p < 0.001;), but not in slow trials (t(161) = 1.94, p = 0.06). For non-preferred trials, 

we did not observe a significant difference between fast and slow RT trials (see Fig. S6d). 

Separating trials into the two load conditions, we only observed a significant difference 

between fast and slow trials in load 3 (t(161) = 2.60, p = 0.009; Fig. 6e right), not load 1 

(t(161) = 0.96, p = 0.34; Fig. 6e middle). In the amygdala, comparing fast to slow RT trials 

in preferred trials did not reveal a significant difference (t(891) = -1.00, p = 0.33; Fig. 6f). 

Lastly, we asked whether the effect of noise correlations on RTs in the hippocam-

pus was specific to PAC-to-category neuron pairs or a common feature across the entire 

population of simultaneously recorded neurons. For this purpose, we randomly paired 

category neurons with any other non-PAC neuron recorded in the hippocampus within 

the same session and compared noise correlations between fast and slow RT trials (for 

n = 162 randomly selected pairs; same n as for PAC-to-category neuron pairs). Repeating 

this analysis for 10,000 times, we observed that PAC-to-category neuron pairs showed a 

significantly stronger effect than most randomly selected cell pairs (p = 0.016; Fig. 6g). 

This result shows that, in particular, the noise correlations between category and PAC 

neurons within the hippocampus contributed to enhanced WM fidelity.  

Discussion 

Our data reveal a PAC-mediated mechanism for the control of WM maintenance. 

We identified “PAC neurons”, whose spiking activity followed the interactions between 

theta phase and gamma amplitude during the maintenance period of a Sternberg WM 
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task. Unlike category neurons, which displayed memoranda-specific persistent activity, 

the activity of PAC neurons was not related to WM content per se. Rather, the activity of 

PAC neurons in the hippocampus was related to the cognitive control processes that en-

able the efficient and accurate maintenance of WM. Firing patterns of hippocampal PAC 

neurons were more strongly synchronized with the phase of frontal theta signals in trials 

with higher load and faster RT. Moreover, trial-by-trial co-fluctuation in FR between PAC 

and category neurons in the hippocampus shaped the population-level geometry of WM 

representations such that WM fidelity was improved, with stronger pair-wise noise corre-

lations resulting in faster RTs. We conclude that these interactions between PAC and 

category neurons are a reflection of the interplay between top-down control and the local 

processing of WM content that make WM maintenance possible.  

In line with earlier studies (Tort et al. 2008; Cabral et al. 2014; Yamamoto et al. 

2014), activity in the high gamma (70-140 Hz) frequency range was reflective of pro-

cessing and WM maintenance of sensory information. Yamamoto and colleagues (Yama-

moto et al. 2014) found that in mice, the activity of high gamma oscillations (65-140 Hz) 

in the hippocampal-entorhinal system was related to the successful execution of WM 

maintenance. Synchronization in the high gamma band between the entorhinal cortex 

and hippocampus was stronger in correct than incorrect trials, and appeared shortly be-

fore a reversal of a decision when the animal initially made a wrong choice. The authors 

suggested that high gamma activity thus contributes to the explicit awareness of WM 

content. They did not find a relation of WM processes to activity in the lower gamma band 

(25-50 Hz). Similarly, Tort et al. (Tort et al. 2008) reported that PAC between theta and 

high gamma oscillations in the rat hippocampus, which was especially strong in time pe-

riods after a sensory cue has been represented, presumably involving processes of WM 

maintenance and decision making. They also did not observe PAC between theta and 

low gamma. Based on those and other results, the high gamma band has thus been 

suggested to signal the routing of encoded sensory information into and within the hippo-

campus (Colgin et al. 2009; Colgin 2016; Fernández-Ruiz et al. 2021). In favor of this 

hypothesis, PAC in our study differed as a function of WM load only for frequencies in-

volving the high gamma range, signaling that the processing of WM content affected neu-

ral activity specifically in those frequencies. High-amplitude events in the high gamma 
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range were more abundant in load 3 as compared to load 1 trials, and their difference in 

duration between the load conditions was negatively correlated with the difference in PAC 

estimates across channels. In line with earlier reports (Heusser et al. 2016), this suggests 

that storing more information in WM leads to lower estimates of theta-high gamma PAC 

since longer high gamma events are more broadly distributed across the theta cycle. 

Studies in rats observed an increase in the number of gamma cycles specifically in the 

high gamma range, not the low range, when the length of a running track increased 

(Gupta et al. 2012; Zheng et al. 2016), potentially signaling an increase in WM load during 

spatial navigation. Moreover, in our study persistently active category neurons were more 

strongly phase locked to signals in the high gamma range when their preferred stimulus 

was maintained. No effects were observed for frequencies involving the low gamma band 

(30-55 Hz). Our study thus provides evidence for a specific role of the high gamma band 

in the processing and maintenance of WM content in the hippocampus.  

Although we observed significant theta-gamma PAC in the amygdala as well, ac-

tivity in the high gamma band in the amygdala was not related to WM processes because 

theta-gamma PAC differed neither as a function of WM load nor was it related to WM-

based behavior. Also, unlike in the hippocampus, category cells in the amygdala were not 

more strongly coupled to gamma when their preferred stimulus was maintained in WM. 

Earlier reports indicated that the amygdala plays a role in the maintenance of information 

in WM (Schaefer and Gray 2007; Kamiński et al. 2017). Our observation of stimulus-

specific persistent activity of category neurons in the amygdala provides further evidence 

for this claim. However, our results indicate that the amygdala supports WM through a 

different mechanism than the hippocampus. Note that the absence of a role of PAC in the 

amygdala was not due to an absence of PAC cells, which were common in the amygdala. 

Whether PAC and high gamma in the amygdala serve a different role than that of the 

hippocampus during WM maintenance remains an open question.  

We identified “PAC neurons” in the medial temporal lobe, whose spiking activity 

was predicted by the interaction between theta phase and gamma amplitude. Up until 

now it was unclear how observations of theta-gamma PAC at the LFP level translated to 

single neuron activity or whether those interactions were visible at the single neuron level 

at all. Here, we now show for the first time that theta-gamma PAC has a direct relation to 
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the spiking activity of individual neurons. While, by definition, these PAC neurons were 

related to local gamma activity, they were not directly involved in the processing of the 

current memoranda per se. PAC neurons did not significantly overlap with the population 

of category cells more than expected by independence and were not preferably active for 

certain picture categories during stimulus presentation. Their FR was not informative 

about the current WM memoranda such that a linear classifier failed to decode the cur-

rently presented picture category from their spiking activity. Importantly, however, the ac-

tivity of PAC neurons was coordinated with frontal theta LFPs in the vmPFC. This phase 

locking was stronger for higher WM load and faster RTs, indicating a role in cognitive 

control. Relatedly, Liebe and colleagues (Liebe et al. 2012) observed enhanced cross-

regional phase coupling in the theta range between single neurons in macaque V4 and 

LFPs recorded in lateral prefrontal cortex during a WM maintenance period. While this 

prior study shows that phase locking of V4 neurons to frontal theta activity was stronger 

in successful as compared to error trials, this study left it unclear whether such phase 

coupling was related to the cognitive control of WM content. Also, in this prior study, theta 

coupling was not related to modulations of WM load nor to interactions with local mainte-

nance processes of WM content in higher frequencies. Together, our data show for the 

first time that hippocampal PAC cells specifically play a role in engaging cross-regional 

theta phase locking as a way to control the hippocampal processing of WM content.  

Long-range theta phase locking between frontal and temporal/occipital areas has 

been suggested to reflect frontal cognitive control exerted over task-relevant brain pro-

cesses in widespread sensory and association areas (Miller 2000; Fell and Axmacher 

2011; Helfrich and Knight 2016). In WM maintenance, fronto-temporal interactions are 

crucial, especially when involving the hippocampus (Harris and Gordon 2015), and often 

involve the theta and gamma frequency range (Sauseng et al. 2004; Liebe et al. 2012; 

Spellman et al. 2015; Hallock et al. 2016; Daume et al. 2017a, b; Johnson et al. 2017; 

Tamura et al. 2017; Malik et al. 2022). Theta-based prefrontal coordination of posterior 

WM content-specific processes could ensure efficient information processing at phases 

that are optimal for network-wide communication within the memoranda-processing pop-

ulation of neurons (Fell and Axmacher 2011; Fries 2015). According to this model, higher 

levels of cognitive control are indicated by stronger phase locking between regions to 
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facilitate faster and more efficient readout of WM content. Our results support this model 

and provide, for the first time, evidence for a specific mechanism to implement it. Spike-

field coherence between hippocampal PAC neurons and theta LFPs in the vmPFC was 

stronger in load 3 than in load 1, i.e., in periods where more cognitive control was required 

to coordinate a higher load of WM information. We note that while vmPFC is known to be 

involved in top-down control processes (Badre and Nee 2018; Chai et al. 2018; Yin et al. 

2021), especially in interaction with the hippocampus (Gluth et al. 2015; Jin and Maren 

2015; Günseli and Aly 2020), we are the first to show that it is engaged in the long-range 

cognitive control of the maintenance of WM information in the hippocampus. Cross-re-

gional hippocampus-vmPFC SFC was enhanced for fast as compared to slow RT trials, 

which signals a more efficient read-out of WM content with stronger levels of control. 

These results thus indicate that prefrontal-hippocampal communication in the theta band 

reflects cognitive control routed to WM content-processing areas such as the hippocam-

pus during WM maintenance. 

One way by which cognitive control is exerted is thought to be via monosynaptic 

projections from PFC to inhibitory interneurons in the hippocampus (Malik et al. 2022). 

Malik et al. observed that more top-down control led to enhanced signal to noise ratios of 

object-related spatial encoding and, at the same time, reduced overall network activity 

and inhibited feedforward processing in the hippocampus. Relatedly, we observed cogni-

tive control related signals between hippocampal PAC neurons and vmPFC specifically 

for narrow-spiking neurons (see Fig S5), which are thought to likely reflect inhibitory in-

terneurons (Barthó et al. 2004; Mosher et al. 2020). This therefore suggests the new 

specific hypothesis that the hippocampal PAC neurons we described are inhibitory inter-

neurons that receive monosynaptic projections from PFC. Further supporting this hypoth-

esis is our finding that category neurons reduce their firing rate in load 3 compared to load 

1 trials. It is possible that this is due to increased inhibition exerted as a function of in-

creased need for cognitive control.  

MEG studies of WM maintenance indicate that in the human temporal lobe, local 

PAC co-exists together with long-range theta phase synchronization to the frontal lobe 

(Daume et al. 2017a, b). These interactions were taken as evidence for an interplay be-

tween cognitive control and local WM content-specific processing. However, these non-
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invasive studies leave the mechanism by which these interactions could occur unclear – 

and, in particular, whether PAC at the EEG level has functional consequences at the 

single cell level. Here, we now provide direct evidence that PAC neurons are related to 

both local processing and long-range interactions, thereby providing a single-neuron 

mechanism for bridging these two levels of processing so commonly seen at the macro-

scopic level. We show that the ongoing WM content-specific processes of WM mainte-

nance by memoranda-selective persistently active category neurons is accompanied by 

phase coupling to local gamma rhythms in the hippocampus. Gamma activity, in turn, was 

coordinated by the phase of theta activity. Crucially, single neurons that followed the local 

interactions between theta phase and gamma amplitude played a functional role in re-

ceiving cognitive control signals from vmPFC, reflected by stronger cross-regional theta 

phase coupling in trials with higher WM load and faster RT. This effect was specific to 

PAC neurons. Together with our noise correlation results (see below), we thus suggest 

that PAC neurons facilitate the temporal coordination of hippocampal processes of WM 

maintenance with frontal cognitive control processes.  

Ultimately, cognitive-control related increased fronto-temporal coordination has to 

lead to increased fidelity of the retained memories. Here, we showed that this was indeed 

the case, albeit in a way that is only visible when examining the structure of population 

level activity. We show that one result of this type of cognitive control is noise correlations 

among cells that enhance information content. This led to pairs of simultaneously rec-

orded PAC and category neurons with positively correlated spike counts across times 

within single trials. These noise correlations shaped the geometry of stimulus category 

information such that decodability of WM content improved. These decodability enhance-

ments were abolished when noise correlations among neurons were destroyed. This 

shows that PAC neurons did not contain information about the stimulus category in isola-

tion, which would have improved decodability even when noise correlations were re-

moved. These findings demonstrate a functional role of PAC neurons in shaping the ge-

ometry of category representations among tuned neurons, which results in enhanced fi-

delity of WM memoranda representations. 

Our report is, to our knowledge, the first to describe a functional role for noise 

correlations between neurons in humans. In particular, here we for the first time show that 
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noise correlations among PAC and category neuron pairs predict WM-related behavior, 

thereby showing their behavioral relevance. This is in contrast to earlier work in ma-

caques, which showed increased decodability of WM content but did not provide a link 

with WM-dependent behavior (Leavitt et al. 2017b). Of note, noise correlations are clas-

sically thought to be detrimental because they can be information limiting (Moreno-Bote 

et al. 2014; Bartolo et al. 2020). However, recent work reveals scenarios in which noise 

correlations can be beneficial (Zylberberg et al. 2016; Shahidi et al. 2019; Stefanini et al. 

2020; Valente et al. 2021; Panzeri et al. 2022). We conclude that cognitive control exerted 

through PAC neurons can stabilize WM representations and thereby enhance the readout 

of WM content, leading to faster RTs. This finding suggests that noise correlations among 

PAC and memoranda-selective persistently active neurons might be a mechanism for 

stabilizing WM representations and their underlying persistent neural activity against 

noise or distractors. In line with this interpretation, noise correlations in our study were 

especially beneficial to behavior in load 3 where competing WM representations co-exist 

in the neural population. A hypothesis from our work that remains for further exploration 

is that noise correlations become stronger in the presence of distractors to enhance con-

trol over neural activity. 

Taken together, our results are in agreement with a multicomponent view of WM 

(Cowan 2010; Baddeley 2012), where frontal control processes regulate and manage 

maintenance of WM content in more posterior storage-related areas (Curtis and D’Espos-

ito 2003; Lara and Wallis 2014, 2015; D’Esposito and Postle 2015). Here, we now provide 

insights into the previously unknown cellular mechanisms involved in the interplay of the 

different components that support WM. By analyzing how single neuron activity relates to 

interactions of theta and gamma signals in the human brain, we provide mechanistic in-

sights into how brain processes of cognitive control and WM content processing interact 

when stimulus information needs to be actively maintained through persistent activity for 

a short period of time. We show that ‘PAC neurons’ exist, thereby revealing a single cell 

correlate of the widespread macro-scale phenomena of theta-gamma PAC. The theta-

gamma interactions mediated by such PAC cells play a role in cognitive control and shape 

WM fidelity through noise correlations with memoranda-selective persistently active neu-

rons. PAC-mediated interareal interactions might serve as a general mechanism for top-
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down control to influence bottom-up processes, a hypothesis that we confirm here for 

WM, but which remains to be tested for other high-level cognitive functions such as at-

tention, decision making, and LTM retrieval. 

Methods 

Patients 

36 patients (44 sessions; 21 females; age: 40.47 ± 13.76 years; see Table S4) 

participated in the study. All patients had Behnke-Fried hybrid electrodes (AdTech Inc.) 

implanted for intracranial seizure monitoring and evaluation for surgical treatment of drug-

resistant epilepsy. Their participation was voluntary, and all patients gave their informed 

consent. This study was part of an NIH Brain consortium between three institutions (Ce-

dars-Sinai Medical Center, Toronto Western Hospital, and Johns Hopkins Hospital) and 

approved by the Institutional Review Board of the institution at which the patient was 

enrolled. A pre-operative MRI together with either MRI or CT post-operative images were 

used to localize the electrodes as previously described (Minxha et al. 2020). Electrode 

positions are plotted on the CITI168 Atlas Brain (Tyszka and Pauli 2016) in MNI152 co-

ordinates for the sole purpose of visualization (Fig. 1b). The 3D plot was generated using 

FieldTrip and the Brainnetome atlas (Oostenveld et al. 2011). Coordinates appearing in 

white matter or outside of the target area is due to usage of a template brain. 9 electrodes 

that were localized outside of the target area in native space were excluded from analysis 

(8 out of a total of 265 recording sites).  

Task 

The task is a modified Sternberg task with a total of 140 trials and 280 novel pic-

tures. Each trial started with a fixation cross presented for 0.9 to 1.2 s (see Fig. 1a). 

Depending on the load condition, the fixation cross was followed by either one (load 1; 70 

trials) or three (load 3; 70 trials) consecutively presented pictures, each remaining on the 

screen for 2 s. In load 3 trials, pictures were separated by a blank screen randomly shown 
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for 17 to 200 ms. Picture presentation was followed by a 2.55 to 2.85 s long maintenance 

period in which only the word “HOLD” was presented on the screen. The maintenance 

period was terminated by the presentation of a probe picture, which was either one of the 

pictures shown earlier in the trial (match) or a picture already presented in one of the 

previous trials (non-match; see below). The task was to indicate whether the probe picture 

matched on of the pictures shown earlier in the same trial or not. The probe picture was 

shown until patients provided their response via button press. The response mapping 

switched after half the trials, which was communicated to patients during a short half-time 

break. Responses were provided using a Cedrus response pad (RB-844; Cedrus Inc.). 

All pictures were novel (i.e., the patient had never seen this particular image) and were 

drawn from five different visual categories: faces, animals, cars (or tools depending on 

the version), fruits, and landscapes. Images (width x height: 10.5 x 7 visual degrees) were 

presented in the center of the screen and never more than twice (i.e., when serving as 

the probe picture). Pictures were only repeated when presented as the probe stimulus. 

To make sure that also the non-match probe pictures were never completely new to pa-

tients (as were the matching probe pictures), which could have been used as a strategy 

to solve the task without utilizing WM, we always used a picture that patients had seen 

already in one of the earlier trials, randomly drawn from one of the categories not used 

during encoding. If a patient participated in more than one session, we used a completely 

new set of pictures in each session to ensure that all pictures were novel in all sessions.  

Spike sorting 

Each hybrid depth electrode contained eight microwires from which we recorded 

the broadband LFP signal between 0.1 and 8,000 Hz at a sampling rate of 32 kHz (ATLAS 

system, Neuralynx Inc.; Cedars-Sinai Medical Center and Toronto Western Hospital) or 

30 kHz (Blackrock Neurotech Inc.; Johns Hopkins Hospital) depending on the institution. 

All recordings were locally referenced within each recording site by using either one of 

the eight available micro channels or a dedicated reference channel with lower imped-

ance provided in the bundle, especially when all channels contained recordings of neu-

ronal spiking. To detect and sort spikes from putative single neurons in each wire we used 
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the semiautomated template-matching algorithm Osort (Rutishauser et al. 2006). Spikes 

were detected after bandpass filtering the raw signal in the 300- 3,000 Hz band (see Fig. 

S1 for single cell quality metrics). All analysis in this paper (including the LFP) is based 

on signals recorded from micro wires. 

LFP preprocessing 

Before analyzing the LFPs, we removed spike waveforms (action potentials) and 

excluded trials with inter-ictal discharges and high-amplitude noise. First, to avoid leakage 

of spiking activity into lower frequency ranges (Zanos et al. 2011; Anastassiou et al. 

2015), we removed the waveforms of detected spikes from the raw signal by linear inter-

polating the raw data from -1 to 2 ms around each spike onset in the raw recording before 

downsampling. Since the same spike can, in rare instances, be recorded on more than 

one wire, we not only interpolated the data for the wire on which the neuron was detected 

but also for all other wires in the same wire bundle. We then lowpass filtered the raw 

signal using a zero phase-lag filter at 175 Hz and downsampled to 400 Hz. Line noise 

was then removed between 59.5 and 60.5 Hz as well as between 119.5 and 120.5 Hz 

using zero phase-lag band-stop filters.  

Artifact and inter-ictal discharge detection was performed on a per trial and wire 

basis using a semiautomated algorithm together with subsequent visual inspection of the 

data. To detect high-amplitude noise events as well as inter-ictal discharges, we z-sored 

the amplitude in each channel across all trials. To avoid artifactual amplitude biasing, we 

first capped the data at 6 SD from the mean and re-performed the z-scoring on the capped 

data (see, Stark et al. 2014; Norman et al. 2019). If a single time sample in each trial and 

wire exceeded a threshold of 4 SD, the trial was removed from the analysis for that wire. 

Jumps in the signal were detected by z-scoring the difference between every fourth sam-

ple of the capped signal. Trials in which any jump exceeded a z-score of 10 SD were 

removed. The result of this cleaning process was visually inspected in every recording 

and any remaining artifactual trials were removed manually. If a wire or brain region 

showed excessive noise or epileptic activity, it was entirely removed from the analysis. 

On average, 20.4 ± 13.9 trials (14.6% of the data) were removed per wire.     
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Phase-amplitude coupling 

We measured the strength of phase-amplitude coupling for a wide set of frequency 

combinations in all recorded micro channels (except those excluded, see above) using 

the modulation index (MI) as introduced by (Tort et al. 2010). Since the cleaning process 

described above produced a different set of available trials for each channel, we first 

randomly sub-sampled from all correct trials in each channel such that the number of 

trials were the same for both load 1 and load 3. We then extracted the LFP starting at -

500 till 3,000 ms following the maintenance period onset in each selected trial. We then 

filtered (using pop_eegfiltnew.m from EEGLAB) (Delorme and Makeig 2004) each trial 

separately within the respective frequency bands of interest (see below for more details). 

We then extracted the instantaneous phase from the lower frequency signal and the am-

plitude from the higher frequency signal using the Hilbert transform. Lastly, we cut each 

trial to the final time window of interest of 0 – 2,500 ms relative to maintenance period 

onset. This last step ensures that filter artifacts that arise at the edges of the signal are 

removed. Next, we concatenated the phase and the amplitude signal across trials and 

computed the MI as described in (Tort et al. 2010) (18 phase bins). We computed MIs 

separately for load 1 and load 3 trials, as well as across all selected trials (both loads) to 

select for significant PAC channels in an unbiased fashion (see below).  

To standardize the MI in each channel and condition, we computed 200 surrogate 

MIs by randomly combining the phase and amplitude signals from different trials (trial-

shuffling), again separately for load 1, load 3, and for all trials. We fit a normal distribution 

to these surrogate data (normfit.m) to obtain the mean and standard deviation of each 

distribution. These values were then used to z-transform the raw MI values in each con-

dition and channel. Standardizing MI values separately for each load eliminates potential 

systematic differences between load conditions that might arise due to load-related power 

or phase-differences, which could drive observed differences in PAC between conditions 

(Aru et al. 2015). Significant PAC channels were selected if the normalized MI computed 

across all selected trials (both loads) exceeded a z-score of 1.64 (p < 0.05, right-sided). 

We repeated the above procedure for all frequency combinations. The phase sig-

nals were extracted for center frequencies between 2 and 14 Hz in steps of 2 Hz (2 Hz 
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fixed bandwidth). The amplitude signals were extracted for frequencies between 30 and 

150 Hz in steps of 5 Hz. The bandwidth of the amplitude signals was variable and de-

pended on the center frequency of the low-frequency signal. It was chosen such that it 

constituted twice the center frequency of the phase signal (for instance, if combined with 

an 8 Hz center frequency for the phase signal, the bandwidth of the amplitude signal was 

chosen to be 16 Hz). This procedure ensures that the side peaks that arise if the ampli-

tude signal is modulated by a lower-frequency phase signal are included (Aru et al. 2015).  

Duration of high-amplitude gamma events 

To extract high-amplitude gamma events from significant PAC channels, we fol-

lowed a similar rationale as described in (Norman et al. 2019). We used the same set of 

sub-sampled trials as used for the PAC analysis in each channel (see above). First, in 

each channel we extracted the raw data from each selected trial between -500 and 3,000 

ms around maintenance period onset, filtered the data between 70 and 140 Hz (pop_ee-

gfiltnew.m), and extract the instantaneous amplitude using the Hilbert transform for each 

trial. The data were then re-cut to 0 – 2,500 ms after the maintenance period onset, con-

catenated across trials within each condition and z-scored. To avoid biases introduced by 

extreme amplitude values, we capped the data at z-values of 3 SD and re-computed the 

z-transformation on the capped data (Stark et al. 2014; Norman et al. 2019). We then 

extracted the number and duration of events that reached a z-score of 3. The timestamps 

when the signal crossed a z-score of 2 were selected as the start or the end of an event, 

respectively. Only events that lasted at least 6 samples (15 ms, i.e., at least one full cycle 

of the lowest frequency of 70 Hz) were included for the analysis. Gamma event duration 

was then averaged across all channel and condition.  

Category cell selection 

We selected for neurons whose response following stimulus onset differed sys-

tematically between the picture categories of the stimuli shown. To do so, for each trial 

we counted the number of spikes a neuron fired in a window between 200 to 1,000 ms 

after stimulus onset (all encoding periods and the probe period). We then grouped spike 
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counts based on the category of the picture shown in that trial. For each neuron, we 

computed a 1x5 ANOVA with visual category as the grouping variable, followed by a post-

hoc one-sided t-test between the category with maximum spike count and all other cate-

gories. We classified a given neuron as a category neuron if both tests were significant 

(p < 0.05, 2,000 permutations (see below)). We refer to the category with the maximum 

firing rate as the preferred category of a cell.  

Spike-field coherence 

To measure how strongly the spiking activity of a neuron followed the phase of an 

LFP in a certain frequency, we computed the spike-field coherence. Here, we measured 

SFC as the mean vector length (MVL) across spike-phases for all neuron-to-channel com-

binations available within a bundle or across regions (within the same hemisphere) in 

correct trials (Minxha and Daume 2022). To estimate the instantaneous phase from LFPs 

in different frequency ranges during the WM maintenance period, we first extracted data 

between -500 and 3,000 ms around the maintenance period onset from all clean trials in 

each channel and computed a Morlet wavelet convolution for 40 logarithmically spaced 

frequencies between 2 and 150 Hz in each trial. The trials were then cut to the final time 

window of interest of 0 to 2,500 ms after the maintenance period onset to remove filter 

artifacts at the edges of each trial. To further avoid a bias of the MVL based on differences 

in spike count, we subsampled spikes such that an equal number of spikes was available 

in each condition. We included neurons that had at least 50 spikes available in each con-

dition (we used a minimum of 10 spikes for the preferred vs non-preferred analysis in 

category neurons due to a potentially low spike count in the non-preferred condition (Ka-

miński et al. 2020)). Next, we extracted the phase in the LFP closest to the timestamp of 

each spike, averaged across all spike-phases in polar space, and computed the MVL for 

each of the 40 frequencies. We repeated this subsampling 500 times and averaged the 

resulting MVLs across all repetitions within conditions. To avoid potential bias of load 

within the preferred vs non-preferred (category neurons, Fig. 3) or fast vs slow RT SFC 

comparison (cross-regional analysis, Fig. 5), we computed the SFC estimates within each 

load condition and then averaged across the loads.  
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The resulting MVL in each neuron-to-channel combination was further normalized 

using a surrogate distribution, which was computed after adding random noise to the 

timestamps of all spikes within a condition for 500 times. Potential biases of the MVL 

based on systematic differences between the conditions (such as power differences be-

tween conditions within a given frequency band) were thereby reduced. Like for the meas-

ure of PAC (see above), we fit a normal distribution to the surrogate data and used the 

mean and the standard deviation of that distribution to z-score the raw MVL within each 

condition.  

Selection of PAC cells 

We selected for neurons whose firing rate was correlated with both theta phase 

and gamma amplitude during the maintenance period of the task. For all neuron-to-chan-

nel combinations within a bundle of micro wires, we extracted the data from correct trials 

between -500 to 3,000 ms relative to the maintenance period onset and estimated the 

phase of theta signals by filtering between 3 and 7 Hz and computing a Hilbert transform 

in each trial. Gamma amplitude was determined by computing wavelet convolutions for 

frequencies between 70 and 140 Hz in frequency steps of 5 Hz. Trials were cut to 0 to 

2,500 ms after maintenance period onset to remove edge artifacts and then concate-

nated. The extracted amplitudes in each gamma frequency were z-scored across all trials 

and averaged across all frequencies. Computing wavelet convolutions in 5 Hz steps and 

z-scoring the data before averaging avoided biasing power estimates to lower frequencies 

due to the power law. Next, for each neuron-channel pair, we performed a median split 

of gamma amplitudes and binned all amplitudes into low and high gamma, respectively. 

In each of the two gamma groups, we further binned the corresponding theta phases into 

10 groups (36º bins), resulting in a total of 20 bins (see Fig. 4a). In each of those bins, we 

then counted the number of spikes that occurred in each theta-gamma bin.   

We fit three Poisson generalized linear models (GLMs) for each neuron-to-channel 

combination. In model 1, spike count (SC) was a function of theta phase (10 levels; sep-

arately as cosine and sine due to the circularity of phase values (Al-Daffaie and Khan 

2017)), gamma amplitude (2 levels), and the interaction between theta phase and gamma 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.05.535772doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535772
http://creativecommons.org/licenses/by-nc/4.0/


 32 

amplitude. Model 2 included the theta phase and gamma amplitude as main effects but 

not the interaction term. Model 3 included a main effect for theta phase and an interaction 

term but no main effect for gamma amplitude: 

𝑴𝒐𝒅𝒆𝒍	𝟏:	𝑆𝐶	~	1 + 𝑇ℎ𝑒𝑡𝑎!"# +	𝑇ℎ𝑒𝑡𝑎#$% + 𝐺𝑎𝑚𝑚𝑎 + (𝑇ℎ𝑒𝑡𝑎!"# +	𝑇ℎ𝑒𝑡𝑎#$%) ∗ 𝐺𝑎𝑚𝑚𝑎 

𝑴𝒐𝒅𝒆𝒍	𝟐:	𝑆𝐶	~	1 + 𝑇ℎ𝑒𝑡𝑎!"# +	𝑇ℎ𝑒𝑡𝑎#$% + 𝐺𝑎𝑚𝑚𝑎 

𝑴𝒐𝒅𝒆𝒍	𝟑:	𝑆𝐶	~	1 + 𝑇ℎ𝑒𝑡𝑎!"# +	𝑇ℎ𝑒𝑡𝑎#$% + (𝑇ℎ𝑒𝑡𝑎!"# +	𝑇ℎ𝑒𝑡𝑎#$%) ∗ 𝐺𝑎𝑚𝑚𝑎 

We next compared pairs of models using a likelihood-ratio test between model 1 

and the two other models (using compare.m). A neuron qualified as a “PAC neuron” if 

model 1 explained variance in spike counts significantly better than both of the other two 

models (p < 0.01, FDR corrected for all possible channel combinations). The rationale 

behind each model comparison was the following. First, we were specifically interested 

in neurons that followed the interaction of theta phase and gamma amplitude, i.e., PAC, 

and not just theta phase or gamma amplitude alone. Selecting neurons for which model 

1, including the interaction term, explained spike count variance of a given neuron signif-

icantly better than model 2, lacking the interaction term, ensured extracting those neu-

rons. Second, we additionally compared model 1 to model 3, lacking the gamma term, for 

the following reason. Assume that a given neuron-channel combination has an LFP with 

strong PAC at the field potential level, i.e., strong interactions between theta phase and 

gamma amplitude, and a neuron whose firing rate is not related to neither theta phase 

nor gamma amplitude. Nevertheless, this situation would result in a significant interaction 

term in model 1 because the spikes that fall into the low and high gamma amplitude 

groups will have different theta phases (due to PAC). This is only the case if the underlying 

PAC in the LFP is very strong (see Fig. S4 for illustration and further discussion). In this 

scenario, however, the gamma amplitude term (nor the theta phase term) would not be 

significant. Comparing model 1 to model 2 and model 3 therefore ensures that only cells 

were selected at PAC cells in which the interaction term explained variance above and 

beyond the main effects and interactions alone.  

Since at the LFP level we did not observe strong PAC in frontal regions, we re-

stricted this analysis to channels from the MTL regions and performed this analysis sep-

arately in each load condition. If spike count variance was significantly better explained 
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by model 1 than the two other models in either of the load conditions for at least one 

neuron-to-channel combination, we included this neuron as a PAC neuron. If a neuron 

was selected in more than one neuron-to-channel combination, we selected the combi-

nation with the highest R-squared in the full model (model 1). This combined channel was 

later used for within-region SFC as well as FR correlation analyses. Lastly, to determine 

whether the number of selected PAC neurons per area was significantly higher than 

chance, we repeated the entire selection process for 200 times after randomly scrambling 

spike timestamps and thus destroying their relationship with theta phase and gamma am-

plitude. The p-values indicate the proportion of repetitions that resulted in a higher number 

of selected neurons using the shuffled data than the original number of PAC neurons 

determined using the unshuffled data. 

Noise correlations and optimized population decoding 

We investigated the effect of noise correlations among groups of simultaneously 

recorded neurons on population decoding accuracies for the image category currently 

hold in mind and on WM behavior during the maintenance period. To estimate noise cor-

relations among pairs of category and PAC neurons, for each neuron we counted spikes 

in bins of 200 ms that slided across the maintenance period (0-2.5 s after the last picture 

offset) in steps of 25 ms. We then computed the correlation coefficient across all 101 

time-bins in each single trial for each pair of neurons and averaged across all considered 

trials within each condition. We only used correct trials for this analysis, and only paired 

neurons that were recorded in the same session and within the same brain region. Pairs 

of neurons recorded on the same channel were not considered as a pre-caution against 

spurious correlations caused by spike sorting inaccuracies. 

To investigate the contribution of PAC neurons on the population category decod-

ing accuracy when noise correlations among neurons were intact or removed, we utilized 

the approach introduced by (Leavitt et al. 2017b). To measure how much a single neuron 

affects the decoding accuracy of an ensemble of neurons, this approach finds optimized 

neuron ensembles that have maximal decoding accuracy by adding each single neuron 

to the ensemble in a stepwise manner. Each neuron’s contribution to the ensemble can 
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thereby be determined. In more detail, using a linear decoder, first the decoding perfor-

mance for each single neuron in each region is determined from all correct trials. The 

neuron with the best decoding performance is then paired with each remaining neuron to 

determine which pair yields the best decoding accuracy. This most informative pair of 

neurons is then again combined with each remaining neuron to determine the most in-

formative trio of neurons, and so on. These steps were repeated until all neurons were 

part of the decoding ensemble. 

Since we were most interested in decoding picture category from firing rates in the 

maintenance period, we used trials from load 1 only. This is because the maintenance 

period in load 3 trials contains intermixed information about the three different categories 

maintained in WM. We trained a linear support vector machine (SVM) decoder 

(fitcecoc.m; ‘one-vs-one’) on 80% of trails and tested it on the remaining 20% using z-

scored firing rates. To ensure equal amount of data for all five categories, we subsampled 

trials to match the lowest number of trials available in each stimulus category. Noise cor-

relations among neurons were left intact by using the same trials for each neuron or re-

moved by shuffling trials per neuron within each category. Shuffling trials within each cat-

egory ensures that the label in each trial was still correct but the correlations among neu-

rons were removed. We repeated each decoding analysis 500 times and averaged the 

results to generalize across trial selections. Since we were interested in how much a given 

PAC neuron contributed to the decoding performance, we tested contributions between 

intact and removed noise correlations only for PAC neurons that were added to the en-

semble before maximal decoding performance was reached in each session and area 

(Leavitt et al. 2017b). 

Statistics 

Throughout the manuscript, we use t-tests, ANOVAs, or mixed-model GLMs 

(fitglme.m in MATLAB) to assess statistical differences between conditions. T-tests and 

ANOVAs were calculated using permutations statistics (statcond.m as implemented in 

EEGLab), i.e., a non-parametric test that does not make assumptions about the underly-

ing distributions, with 10,000 permutations unless stated otherwise. The corresponding t 
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and F estimates, which are computed based on a normal distribution, are provided as 

reference only. SFC estimates tested across several frequencies were corrected for mul-

tiple comparisons using cluster-based permutation statistics as implemented in FieldTrip 

(Maris and Oostenveld 2007) with 10,000 permutations and an alpha level of 0.025 for 

each one-sided cluster, which was additionally Bonferroni corrected for the number of 

tests involved. Depending on whether we used z-scored firing rates or spike counts, we 

used mixed model GLMs based on a normal or Poisson distribution, respectively. Lastly, 

error bars shown in figures reflect standard errors of the mean, unless stated otherwise. 
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Figures 

 

Figure 1. Task, recordings sites, and behavior. (a) Example trial. Each trial be-

gan with a fixation cross followed by either one (load 1) and three (load 3) consecutively 

presented pictures, each presented for 2 s (separated by a variable blank screen of up to 

200 ms as indicated by a small dot). After a variable maintenance period of on average 

2.7 s duration, a probe picture was presented. The task was to decide whether the probe 

picture has been part of the pictures shown during encoding in this trial (correct answer 

“No” in the example shown). Pictures were drawn from five categories: people, animals, 

cars/tools, fruit, landscapes. (b) Recording locations. Each colored dots represent the 

location of a micro-wire bundle across all 44 sessions shown on a standardized MNI152 

brain template (left) and in a 3D model using the brainnetome atlas (right). (c) Proportions 
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of neurons recorded in each brain area. The three frontal areas (pre-SMA, dACC, 

vmPFC) are jointly referred to as medial frontal cortex (MFC). (d) Behavioral results. Pa-

tients made fewer errors and responded faster in load 1 as compared to load 3 trials. 

Each line connects the two dots belonging to the same session. RT was measured rela-

tive to probe stimulus onset. *** p < 0.001, permutation-based t-test. 
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Figure 2. Assessment of theta-gamma phase amplitude coupling. (a) Average 

normalized modulation indices for all phase-amplitude pairs across all n=1949 channels. 

The strongest phase-amplitude coupling was observed for phases in the theta range (3-

7 Hz) and amplitudes from two gamma bands: a low (30-55 Hz) and a high gamma band 

(70-140 Hz). (b) Theta-gamma PAC differed by load. Log-normalized modulation indices 

were averaged within the theta-high gamma band and compared between the two load 

conditions in each significant PAC channel (p < 0.05) in each region. PAC channels were 

common in the hippocampus and amygdala (23% and 31%, respectively) but not in the 

three frontal areas (6.5%, combined and labeled as MFC (medial frontal cortex)). Only in 

1 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
od

ul
at

io
n 

in
de

x 
(lo

g(
z+

1)
)

Memory load
2 4 6 8 10 12 14

Frequency for phase (Hz)

40

60

80

100

120

140

Fr
eq

ue
nc

y 
fo

r a
m

pl
itu

de
 (H

z)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
odulation index (z)

Grand average Hippocampus Amygdala MFC
***

50

100

150

G
am

m
a 

ev
en

t c
ou

nt

1 3
Memory load

*

-10 -5 0 5
MI load 3 - 1 (z)

-2

0

2

4

6

Du
ra

tio
n 

lo
ad

 3
 - 

1 
(m

s)

r = -0.26
p = 0.002

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3
Memory load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3
Memory load

ns ns

Hippocampus Amygdala

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
co

rre
la

tio
n 

co
ef

fic
ie

nt

*** ns

single trial PAC ~ RT

a b

c d e

f

137 (23.38%) out of 586 
channels in that area

130 (31.25%) out of 
416 channels

59 (6.49%) out of 
909 channels

2 4 6 8 10 12

40

60

80

100

120

140

Fr
eq

ue
nc

y 
fo

r a
m

pl
itu

de
 (H

z)

Frequency for phase (Hz)
2 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
M

odulation index (z)

Hippocampus
Load 1 Load 3

Area

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.05.535772doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535772
http://creativecommons.org/licenses/by-nc/4.0/


 46 

the hippocampus did theta-high gamma PAC differ significantly as a function of load, with 

PAC higher in load 1 vs. load 3 (left). Z-scored PAC values were shifted into a positive 

range by an offset of 1 and log-transformed for illustrative purposes only. All statistics are 

based on non-transformed z-values. (c) Average normalized modulation indices for sig-

nificant PAC channels from the hippocampus separately for each load condition. (d) 
Theta-gamma PAC was significantly negatively correlated with reaction times in the hip-

pocampus, but not in the amygdala. See Table S1 for GLM results that controls for load 

differences in RT. (e) High-amplitude gamma events were more frequent in load 3 than 

in load 1 within PAC channels from the hippocampus. (f) The longer the gamma events, 

the weaker was PAC. Shown is the relationship between gamma event duration and PAC. 

The difference between the durations of high-amplitude gamma events between load 3 

and load 1 was negatively correlated with the difference in the modulation index between 

the two loads across all hippocampal PAC channels.  *** p < 0.001; * p < 0.05; ns = not 

significant, permutation-based t-tests; mixed-model GLMs.  
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Figure 3. Firing rates and local SFC of category neurons in the MTL. (a) Ex-

ample category neuron recorded in the hippocampus. Category neurons were selected 

based on higher firing rates for one category than for all other categories during encoding 

period 1 (ANOVA + post-hoc t-test, both p < 0.05). The preferred category of this neuron 

was ‘animals’. (b) Firing rates averaged across the maintenance period separately for 

preferred and non-preferred categories for all category neurons from hippocampus and 

amygdala. Category neurons remained active as compared to baseline and retained their 

selectivity during the maintenance period of the task, with FR persistently higher for pre-

ferred than non-preferred categories. Each dot is a neuron (n=270). Firing rates are 

shown as percent change to baseline (-0.9 to -0.3 s prior to the first picture onset). (c) 
Firing rates of category neurons during the maintenance period were higher in load 1 as 

compared to load 3 when their preferred category was held in WM. Each dot is a neuron 

(n=270). (d) In correct trials, FR of category neurons was higher as compared to incorrect 

trials across both load conditions. Each dot is a neuron (n=246). 24 neurons were ex-

cluded due to insufficient data in the incorrect condition. (e) We computed local spike-

field coherence between spikes and LFPs recorded in the same area for all category 

neurons and compared preferred versus non-preferred trials. (f) When paired with local 

PAC channels, spikes of category neurons in the hippocampus were significantly more 
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strongly phase-locked to local gamma LFPs in the high gamma range during the mainte-

nance period when the preferred category of a neuron was held in WM. No significant 

differences were found for the amygdala or non-PAC channels (see Fig. S3e). (g) Gamma 

(70-140 Hz) SFC for hippocampal category neurons was significantly stronger for pre-

ferred vs non-preferred trials in both load conditions. No main effect of load or interaction 

was found. Each dot is a neuron-LFP channel pair (n=151). (h) Theta-gamma PAC was 

significantly positively correlated with firing rates of category neurons in the hippocampus, 

but not in the amygdala. See Table S2 for GLM results that control for load differences in 

PAC. *** p < 0.001; ** p < 0.01; * p < 0.05; ns = not significant; (cluster-based) permutation 

t-test/ANOVA; mixed-model GLMs. 
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Figure 4. PAC neuron selection and local activity. (a) Example showing binning 

used for PAC neuron selection for a neuron from the hippocampus. Theta phase, binned 

into ten groups, and gamma amplitude, median split into low and high, were used to pre-

dict spike counts of each neuron from the MTL during the maintenance period. Only if the 

model containing the two factors and their interaction predicted spike counts significantly 

better than two other models that lacked the interaction or the gamma amplitude main 

effect term, respectively, a given neuron was selected as PAC neuron. In this example 

neuron from the hippocampus, spike count was higher during high gamma amplitudes 

(gamma main effect) and differed in their theta phase distribution between high and low 

gamma amplitudes (interaction effect), resulting in selecting this neuron as a PAC neuron. 

In the analysis, we separated the theta phase into sine and cosine terms to account for 

the circularity of phase values, which is not shown here for simplicity. (b) Proportions of 

all recorded neurons that qualified as PAC neurons (yellow, green). (c,d) PAC neurons 

were not selective for category. Even during picture presentation (encoding), image cat-

egory could not be efficiently decoded from firing rates of “PAC only” neurons. Error bars 

reflect the standard deviation of 1,000 decoding repetitions. Black horizontal lines indicate 

mean decoding accuracy of 1,000 randomly shuffled category labels. Decoding was per-

formed for pseudo-populations of category or PAC neurons, respectively. (e,f) Firing rates 
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of PAC neurons were positively correlated with single-trial estimates of theta-gamma PAC 

in the hippocampus, not the amygdala (see Table S3 for GLM results). (g,h) Firing rates 

of PAC neurons during the maintenance period differed between correct and incorrect 

trials in the hippocampus but not amygdala. Firing rates are shown as percent change to 

baseline (-0.9 to -0.3 s prior to the first picture onset). (i-l) Firing rates as well as theta, 

gamma SFC between PAC neurons and local LFP recordings did not differ as a function 

of load in both MTL areas. Theta and gamma SFC, however, were both significantly 

stronger than shuffled surrogates in the hippocampus as well as the amygdala. In (e-l), 

each dot is a neuron. *** p < 0.001; ** p < 0.01; * p < 0.05; ns = not significant; permutation-

based t-tests; mixed-model GLMs. 
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Figure 5. Remote connectivity of PAC neurons in the MTL to frontal theta 
LFPs. (a) We computed long-range SFC between MTL spiking activity and LFPs rec-

orded from all three frontal regions. (b) Spikes of PAC neurons in the hippocampus were 

more strongly synchronized with theta-band LFPs recorded in the vmPFC during the 

maintenance period during load 3 compared to load 1 trials. This was not the case for 

pre-SMA and dACC (see Fig. S5a). (c) Category neurons from the hippocampus, or (d) 
PAC neurons from the amygdala did not show significant SFC differences between loads 

relative to vmPFC LFP. (e) Hippocampal PAC cells (n=175 connections, cyan line) 

yielded the strongest long-range theta SFC difference between load 3 and load 1 trials 

among 10,000 random selections of hippocampus-vmPFC connections. T-values corre-

spond to comparisons between load 3 and 1 for an average of SFC values in the signifi-

cant theta range (2.5-4.3 Hz). (f) Remote theta-band SFC between spiking activity of PAC 

neurons and LFPs recorded in the vmPFC was significantly stronger for fast than for slow 
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RT trials. Each dot is a neuron-channel connection (n=167; some neuron-channel pairs 

were excluded due to inefficient spike count in at least one of the conditions). *** p < 

0.001; * p < 0.05, H = Hippocampus; A = Amygdala; (cluster-based) permutation t-tests. 
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Figure 6. Noise correlations of PAC neurons within MTL. (a) Trial-averaged, 

bin-wise correlation coefficients for all possible pairs of category and PAC neurons in the 

hippocampus and amygdala. In both regions, correlation coefficients were significantly 

higher than zero on average. (d) Repeat of the correlation analysis for all possible PAC-

category neuron pairs in the hippocampus. Shuffling trial labels for 1,000 times resulted 

in far lower correlations between pairs of neurons than unshuffled trial labels (cyan line; 

mean of correlation coefficients across all pairs. (c) Single-session example for optimized 

decoding accuracies for firing rates during the maintenance period for hippocampal neu-

rons. Category decoding accuracies were computed with intact or removed noise corre-

lations among neurons. Purple dots indicate when a category cell, yellow dots when a 

PAC neuron was added to the optimized decoding ensemble. White dots show decoding 

accuracies for each individual neuron. (d) (left side) Adding hippocampal PAC neurons 

to the optimized decoding ensemble significantly enhanced decoding performance of WM 

content when noise correlations were kept intact. When noise correlations were removed, 

in contrast, PAC cells did not improve decoding performance. This indicates that, for PAC 

cells, noise correlations rather than individual firing rates shaped the geometry of category 
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representations. (right side) Amygdala PAC neurons contributed more to decoding 

memory content with intact noise correlations. Note, however, that amygdala PAC cells 

contributed to decoding also after removing noise correlations during the maintenance 

period. Each dot represents a neuron. (e) Noise correlations among hippocampal PAC 

and category neurons were stronger in fast than slow RT trials (median split) for trials in 

which the category neuron’s preferred category was correctly maintained (left). This effect 

was especially strong in load 3 trials (right), not in load 1 trials (middle). (f) In the amyg-

dala, we did not observe a significant difference in noise correlations between fast and 

slow trials when the preferred category was maintained for pairs of PAC and category 

neurons. In (e,f) each dot represents a cell pair. (g) Pairs of PAC and category neurons 

in the hippocampus (pink line) showed a significantly stronger difference in noise corre-

lations between fast and slow RT trials than randomly selected pairs of any recorded 

neuron (from the same session) and category neurons in 10,000 repetitions. *** p < 0.001; 

** p < 0.01; * p < 0.05; ns = not significant; H = Hippocampus; permutation-based t-tests. 
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