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Abstract 
There have been multiple attempts to predict the expression of the genes based on the 

sequence, epigenetics, and various other factors. To improve those predictions, we have 

decided to investigate adding protein-specific 3D interactions that play a major role in the 

compensation of the chromatin structure in the cell nucleus. To achieve this, we have used 

the architecture of one of the state-of-the-art algorithms, ExPecto (J. Zhou et al., 2018), and 

investigated the changes in the model metrics upon adding the spatially relevant data. We 

have used ChIA-PET interactions that are mediated by cohesin (24 cell lines), CTCF (4 cell 

lines), and RNAPOL2 (4 cell lines). As the output of the study, we have developed the 

Spatial Gene Expression (SpEx) algorithm that shows statistically significant improvements 

in most cell lines.  
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Introduction 
The advances in the field of Machine Learning have revolutionized other fields as well. With 

the increasing computational power and decreasing costs, the predictive power of modern-

day deep learning networks allows scientists to apply those methods to various tasks that 

would be impossible to solve otherwise. Those advances did not omit the genomics field as 

well. The first attempts to predict the expression solely on the DNA sequence have started 

just after The Human Genome Project (Lander et al. 2001) - however, they had a vast 

number of limitations (Beer and Tavazoie 2004; Yuan et al. 2007), and have mostly 

concentrated on the classical modelling approaches. However, with the expansion of deep 

learning models, those limitations started to disappear. One of the first major studies on the 

usage of CNNs (Fukushima 1980) and XGBoost (Chen and Guestrin 2016) started a new 

era in the prediction of the expression with the introduction of ExPecto (Zhou et al. 2018). 

Then it continued with the use of CNNs through multiple models, including Basenji2 (Kelley 

et al. 2018), and finally with the use of transformer-based models like Enformer (Avsec et al. 

2021). However, in our study we have decided to take standard approach that is available 

with the use of CNNs, and expand it further with the change of the input to include also 

spatial genomic infromation. The ExPecto model that we decided to advance takes 20kbp 

surrounding the TSS of a given gene and uses expression from that to train a deep neural 

network to predict the epigenetic factors. Using those factors, the tissue-specific expression 

is calculated, with a high spearman correlation score. In our study, we have investigated if 

the epigenetics marks alone are sufficient for the complex task of prediction of the 

expression - and have given a hypothesis that while they are greatly informative, there is still 

a place for improvement. We decided that we would like to investigate the effects of the 

spatial chromatin architecture inside cell nuclei on the expression by investigating the 

models created with 3D information available and without it. To do that, we have modified 

the ExPecto algorithm accordingly, so it uses not only the 20kbp region around the TSS but 

also regions that are linearly distal - but are, in fact, spatially close, thanks to the spatial 

interactions that are mediated by specific proteins of interest. The overview of the algorithm 

proposed by us, SpEx (Spatial Gene Expression), is shown in Figure 1. 
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Figure 1. Architecture of SpEx. 

 

To prove the validity of the model, we decided to create an empirical study on how specific 

protein-mediated interactions are helping in prediction of the gene expression. To do that, 

we have selected the three most important proteins for loop creation - cohesin, CTCF, and 
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RNAPOL2. The effects of those proteins being unable to bind or be created properly were 

shown in multiple studies and were the inspiration for asking the question of whether the 

machine learning models, provided we add 3D information (from interactions mediated by 

those proteins), will improve. 

Proteins of interest 

Cohesin is a protein complex discovered in 1997 (Guacci et al. 1997; Michaelis et al. 1997) 

by two separate groups of scientists. The complex is made out of SMC1, SMC3, RAD21, 

and SCC3. However, in human cell lines, SCC3 (present in yeast) is replaced by its 

paralogues - SA1 (Carramolino et al. 1997), SA2 (Tóth et al. 1999), and SA3 (Pezzi et al. 

2000). However, SA3 appears only in cohesin during mitosis (Garcia-Cruz et al. 2010), and 

we will concentrate in this review mostly on SA1 and SA2 since they are forming cohesin in 

somatic cells. The complex is extremely important in the proper functioning of the cell 

nucleus - as is fundamental for the loop extrusion (Davidson et al. 2019), it stabilises the 

topologically associating domains (cohesin-SA1) (Kojic et al. 2018), allows interactions 

between enhancers and promoters (cohesin-SA2) (Kojic et al. 2018). The depletion of 

cohesin in a nucleus removes all the domains (Rao et al. 2017), and completely destroys the 

spatial organisation of the chromatin. Mutations of cohesin have negative effects on the 

expression of the genes - e.g. in Cornelia de Lange syndrome (Takahashi et al. 2004; 

Deardorff et al. 2012) and cancer (Rocquain et al. 2010), where the altered complex is 

incapable of sustaining its proper function, leading to diseases. 

 

CTCF (CCCTC-binding factor) is 11-zinc finger protein. Its primary function is the 

organisation of the 3D landscape of the genome (Phillips and Corces 2009). This regulation 

includes: creating topologically associated domains (TADs) (Guo et al. 2015; Phillips-

Cremins et al. 2013; Fudenberg et al. 2016), loop extrusion (Hansen 2020), and alternative 

splicing (Alharbi et al. 2021). The protein very often works with the previously mentioned 

cohesin complex, allowing loop formation. CTCF, as a regulator of the genome, binds to 

specific binding motifs and regulates around that loci. That is why, in case of mutations in the 

motifs, it might bind improperly, thus allowing disease development. However, not only 

mutations in the binding sites are disease prone. Mutations in the CTCF protein itself have 

proven to have a major influence on development of multiple diseases. Some of the 

examples of diseases inducted by a mutation in the CTCF proteins include MSI-positive 

endometrial cancers (Zighelboim et al. 2014), breast cancers (Aulmann et al. 2003; Zhou et 

al. 2004), head and neck cancer (Bornstein et al. 2016). 
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In eukaryotic organisms, there are 3 common RNA Polymerase complex proteins - I, II, and 

III (Roeder and Rutter 1969). In this study, we will focus mostly on RNAPOL2, as that is 

responsible for the transcription of the DNA into messenger RNA (Sims et al. 2004; 

Orphanides and Reinberg 2002), thus having the biggest impact on the expression of the 

genes. The mechanisms responsible for creating the RNAPOL2 loops are complex and 

require not only RNAPOL2 protein but also a number of other transcription factors 

(Orphanides et al. 1996; Conaway and Conaway 1997). The mutations in those transcription 

factors have been shown to be linked to various diseases (Aso et al. 1996), including acute 

myeloid leukaemia (Thirman et al. 1994; Mitani et al. 1995; Rabbitts 1994), Von Hippel–

Lindau disease (Whaley et al. 1994; Duan et al. 1995), sporadic cerebellar 

hemangioblastomas (Kanno et al. 1994), benign mesenchymal tumours (Schoenmakers et 

al. 1995), xeroderma pigmentosum, Cockayne syndrome, trichothiodystrophy (Scriver 1995), 

and Rubenstein-Taybi syndrome (Petrij et al. 1995). 

Protein-mediated Interactions 

There have been multiple studies showing the spatial landscape created by cohesin-

mediated chromatin loops. The first major cohesin ChIA-PET study from 2014 (Dowen et al. 

2014) showed the internal organisation of chromatin in the chromosomes. For example, the 

study provided a list of enhancer-promoter interactions, which can be a starting point for 

gene expression study. 

 

The next study from 2020 (Grubert et al. 2020) extended the 2014 study and showed that 

among 24 human cell types, 72% of those loops are the same; however, the remaining 28% 

are correlated to the gene expression in different cell lines. Those loops are mostly 

connecting enhancers to the promoters, thus regulating the gene expression. Another 

interesting insight from this study is that those different profiles of interactions are effective in 

clustering the cell types depending on the tissue they were taken from. 

 

CTCF, as mentioned above, is responsible for loop extrusion. That is why it is very popular 

to investigate CTCF-mediated interactions. Once again, like with the cohesin complexes, 

ChIA-PET is used for obtaining the interactions mediated by CTCF. One of the major studies 

from 2015 (Tang et al. 2015) shows the genomic landscape among 4 cell lines. They 

discovered that SNPs occurring in the motif of the CTCF-binding site can alter the existence 

of the loop - and by that, contribute towards the disease development. They assessed the 
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SNPs residing in the core CTCF motifs and found 70 of those SNPs. Of those, 32 were 

available from the previously done GWAS studies, and 8 were strongly associated (via 

linkage disequilibrium) with disease development.  

 

Another study from 2019 (Liu et al. 2019) analysed mutations using 1962 WGS data with 21 

different cancer types. Such an analysis, enhanced with the usage of CTCF ChIA-PET data, 

showed that disruptions of the insulators (that are creating the domains) by motif mutations 

and improper binding of CTCF (and by that, diminish of the loop) lead to cancer 

development. Using a computational approach, they have found 21 insulators that are 

potentially cancerous. 

 

The transcription chromatin interactions, such as the ones mediated by RNAPOL2, are of 

great interest as well - they control the transcription directly, after all. The study from 2012 

(Zhang et al. 2012) showed the RNAPOL2-mediated ChIA-PET interactions on 5 different 

cell lines, to show the transcriptional genomic landscape. Another study from 2020 

(Ramanand et al. 8 2020) performed the same experiments on RWPE-1, LNCaP, VCaP, and 

DU145 cancer cell lines. They have shown, similarly to in the 2012 study, the spatial 

interactions based on RNAPOL2, but this time in cancer cell lines. Furthermore, they 

showed that cohesin and CTCF interactions provide a stable structural framework for the 

RNAPOL2 interactions to regulate the expression, thus making all of the proteins that we 

describe in this section crucial for the proper expression of the genes. 

 

Those findings were the main motivation for our analysis - as based on the evidence, the 

cohesin, CTCF, and RNAPOL2 interactions should give us more information on the genetic 

expression, thus improving the metrics for the machine learning models. In this work, we 

present an extension of the ExPecto (Zhou et al. 2018) deep learning model that is enriched 

with spatial information, thus, as expected, improving the statistical metrics. 

 

Results 
To study those changes, we have gathered the aforementioned 24 cell lines for the cohesin 

ChIA-PET and 4 cell lines for CTCF and RNAPOL2 binding factors (Dekker et al. 2017; Reiff 

et al. 2022). They were all mapped to the closest tissue from the GTEx database, where the 

expressions were taken. The training of the model was performed 1000 times to ensure the 

statistical significance of the findings. The results for each experiment can be seen in 

Supplementary Figure 1. The highest improvements in the spearman correlation score can 
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be seen in the models that use heatmaps from RNAPOL2 ChIA-PETs. In that case, the 

metric's improvement was up to even 0.042 (in RNAPOL2 ChIA-PET GM12878), and the 

average improvement was 0.016. In the case of CTCF, the highest improvement was also in 

GM12878, with an improvement of 0.025, with the average improvement over the CTCF 

study of 0.009. In the case of the cohesin ChIA-PETs, the highest improvement was seen in 

the K562 cell line, as it totalled 0.020, with an average increase of the correlation score of 

0.004. Furthermore, all of the tests were found to be statistically significant, with all the p-

values < 10e-11, with exception of two tests: cohesin ChIA-PET KU19, which obtained a p-

value of 0.000103, and cohesin ChIA-PET H1, which obtained p-value of 0.01014. The 

average improvement over the whole dataset was established at 0.0058, and all the grouped 

sets (cohesin, CTCF, RNAPOL2) were statistically significant at p-value < 10e-31. The 

cumulative results can be seen in Figure 2. 

 

 

Figure 2. Statistical analysis of the spearman correlation score between the baselines and 

the experiments grouped by the factor of interest (cohesin, CTCF, RNAPOL2). 
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Further, to investigate the model in more detail, we compared the residuals of the baseline 

model with the ones obtained from SpExfor all the proteins. The value of residuals is defined 

as the difference between observed and predicted values of data, therefore, addressing the 

quality of the model. We calculated the residuals in the testing set of 990 genes from chr8 for 

all the models. For the practical analysis, we plotted the density of genes with their 

associated residual value, which follows gaussian distribution, satisfying the assumption of 

the normality of the residuals (Figure 3). The data is also cross-checked using statistical 

tests (such as the IFCC-recommended Anderson-Darling test) to ensure it fits a Gaussian 

distribution. The residual distribution shows the highest improvement in the RNA-POL II 

compared to the CTCF and Cohesin (Figure 3. i). 

 

The architectural proteins - CTCF, Cohesin and RNA POL II, play a diverse role in 

contributing to gene expression either alone or working together to instruct gene accessibility 

and expression (Valton et al. 2022; Nora et al. 2012). Therefore, considering that fact, we 

focused on the residual value of a gene closest to zero by comparing all three proteins 

named “SpEx-Best”. There is a high density of points close to the origin and a low density of 

points away from the origin for SpEx-Best compared with the baseline model, which signifies 

that the gene expression is majorly controlled by the three-dimensional genome structures 

(Figure 3. i). 

 

To investigate the impact of 3D information on gene expression, we conducted a statistical 

analysis to determine the mean and standard deviation (SD) of the SpEx Best values. We 

then used this analysis to identify genes that showed the most significant improvement in 

their expression levels as a result of incorporating 3D information. Specifically, we 

considered genes within 0.5 SD of the SpEx-Best distribution, which corresponded to a 

cutoff range of -1.2667 to +1.2667 (Supplementary Figure 2). We utilized this cutoff to 

evaluate the efficacy of our model and found that out of 990 genes, 427 were within this 

range. Among these genes, 272 were improved in both models, 144 were specific to SpEx, 

and only 11 were specific to the baseline model (Figure 3. ii). Our results emphasize the 

regulatory role of 3D information in gene expression, which is not captured in the baseline 

model. 

 

Moreover, we assessed the individual impact of each protein on gene expression and 

observed that their contributions varied. In particular, RNA POL II showed the highest 

number of improved genes and thus significantly impacted model performance (Figure 3. ii). 

To further demonstrate the differences, we plotted the value of residuals for each gene for all 

protein factors and SpEx-Best, highlighting only those genes that fall within the cutoff. We 
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also mapped these highlighted genes (i.e., those within the cutoff of protein factor and SpEx-

Best) to the residual of the baseline model (Figure 3. iii). As expected, many genes in the 

baseline are far from the cutoff and have very high residual values. Therefore we conclude 

that the proposed model has better efficiency in prediction expression over the baseline 

model. 
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Figure 3. (i) Distribution of residuals for all the protein factors and SpEx-Best, along with the 

comparison of residual pf baseline. (ii) Venn Diagram of the genes (within cutoff) that are 

improved by a specific model (iii) Scatter plot of genes (n = 990) with respect to their residual 

value; highlighted genes are within cutoff (0.5 SD of SpEx), same genes mapped on the 

baseline. 

To investigate the improvement of the model, we decided to take an example loop that is 

significant in all three datasets - CTCF, Cohesin, and RNA POL II ChIA-PET. The loop was 

also required to target gene that had improved prediction score in SpEx over the baseline. 

The example shows that the gene is spatially close to an enhancer, which plays a key role in 

altering gene expression. For instance, the enhanced prediction score of the expression of 

the TTI2 gene in all three protein factors is due to the fact that the TTI2 gene interacts with 

subsequent enhancers that are 20kb apart but close in 3D orientation (Figure 4). 

 

Figure 4. Visualization of the gene TTI2, gene body is interacting with the enhancers that 

are 20kb apart from the TTS in spatial orientation.  
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Discussion 
In this study, we have shown that chromatin's spatial structure significantly influences gene 

expression. To demonstrate that, we have created an algorithm based on the previous work 

(ExPecto), and added the processing of the spatial heatmaps created by the ChIA-PET 

experiments. The experiments were performed using 3 different mediating proteins, thus 

giving us the maps of the interactions involving those proteins. In all 3 cases, the algorithm 

improved the baseline model, providing us with up to a 0.042 increase in the spearman 

correlation score. The whole study created 32 experiments, out of which, in 27, we could see 

improvements. Those findings contribute to the rapid-changing field of three-dimensional 

genomics, showing that the interactions are indeed required for the proper prediction of the 

expression - linearly available data, even if we take as many epigenetics factors as in the 

base ExPecto model (2002), can be still improved with the usage of the spatial data. The 

next step in the field of prediction of the gene expression is usage of more modern deep 

learning architectures - e.g. the ones using transformers, like Enformer - and connecting 

them with the spatial information for the improvement over the baseline models. 

Methods 

SpEx architecture 

SpEx, as an extension to ExPecto (Zhou et al. 2018) uses the models described by the 

authors to generate linear tensors (that are a matrix, where we have 2002 epigenetics 

features x 10 features showing closeness to the TSS). However, we have added additional 

spatial information. At the step of generating the final tensors for each of the genes, an 

additional spatial tensor is added to the linear one. To create it, a number of steps are 

executed. First, all the contacts that fall out of the linear scope (20 000 base pairs) are taken 

into consideration. Then, we filter out only the contacts starting or ending near the TSS of 

the gene, between (TSS, TSS+HiC_resolution), and any other site. Then, only the contacts 

with a count of at least 0.5 are considered. After getting the regions to predict, that are 

spatially close to the TSS in an aforementioned way; the ExPecto prediction is run upon 

those regions. The predicted signal in the regions is summed to ensure that the tensors are 

uniform in size. That way, we created the tensors that include not only linear information 

(<20 000 bp) but also consider the signal from the regions spatially close to the TSS of the 

gene. That way, we are getting a matrix with 2002 epigenetics features x (10 features 
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showing closeness to the TSS + 1 feature representing the regions that are close to TSS in 

a spatial sense). 

 

The tensors created in that way are saved, as it is computationally expensive to calculate all 

of them, as both ExPecto and SpEx are calculating them for each of the genes, totalling in 

22827 tensors for each of the cell lines. The second step is an actual prediction of the 

expression. For that, we have used, as in the ExPecto paper, XGBoost (Chen and Guestrin 

2016) library. However, we have used different models and parameters. In the case of 

ExPecto, the model used was GBLinear with reg: linear objective, and we decided to use 

GBTree with reg:squarederror objective. In the case of SpEx (as the model uses a tree), we 

have used the tree method of gpu_hist. The full list of parameters used in our model can be 

found in the code repository. 

Performing the experiments 

All the experiments were performed using NVIDIA DGX A100 systems. For each cell line, 

22827 tensors were created using one A100 GPU, 8 CPUs, and 128GB physical memory. 

All the tensors took less than 24 hours to complete with such settings. Following that, each 

of the cell lines was subjected to the final training 1000 times to ensure statistical 

significance of the results, meaning that total 53 000 training were completed (32 cell lines + 

21 baselines, without spatial information). Individual training operations, in most cases, took 

up to 5 minutes, and each of the training was assigned one A100 GPU unit, 8 CPUs, and 

16GB of physical memory. 

Statistical analysis of the results 

From all the experiments was gathered together, and triple statistical testing was performed 

for each cell line/factor/tissue. We have used welch's t-test with independent samples with 

Bonferroni correction from package statannotations (Charlier et al. 2022). The results were 

also tested for the significance in factor-dependent groups (cohesin, CTCF, RNAPOL2) and 

all together. The residual analysis was done using an example iteration described in the 

previous section. 

CTCF & RNAPOL2 datasets 

The ChIA-PET CTCF & RNAPOL2 processed data was taken from the 4DNucleome 

consortium data page (https://data.4dnucleome.org/). The data was obtained there using 4 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.06.535849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535849
http://creativecommons.org/licenses/by/4.0/


14 

replicates (2 biological x 2 technical). The pairs were obtained using the ChIA-PIPE (Lee et 

al. 2020) workflow, which produced pairs for each of the replicates. Then, the pairs were 

merged and processed using a cooler and juicer to obtain the final .mcool files that were 

downloaded from the database and used in the SpEx algorithm. 

Processing of cohesin dataset 

We gathered the Cohesin ChIA-PET dataset from Encode Portal 

(https://www.encodeproject.org/) with accession number ENCSR129LGO submitted by 

Grubert et al. The dataset contains 24 diverse human cell types (Grubert et al. 2020). We 

merged the replicates and then processed them with the ChIA-PIPE pipeline (Lee et al. 

2020) using the default parameters (Linker Sequence = GTTGGATAAG and Peak-calling 

Algorithm = MACS2). The pipeline generated a high-resolution 2D contact matrix (in .hic file 

format) along with the annotated chromatin loops with their binding peak overlap. These .hic 

files were then converted into .mcools files using the hic2cool tool (https://github.com/4dn-

dcic/hic2cool) developed by 4DNucleome to obtain the final input for the SpEx algorithm. 
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