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Summary / Abstract
Even high-performing machine learning models can have problems when deployed in a
real-world setting if the data used to train and test the model contains biases. TCR–epitope
binding prediction for novel epitopes is a very important but yet unsolved problem in
immunology. In this article, we describe how the technique used to create negative data for the
TCR–epitope interaction prediction task can lead to a strong bias and makes that the
performance drops to random when tested in a more realistic scenario.

Main article
Unexpected or unknown biases within machine learning datasets are a common issue that has
hindered many well-designed approaches from translating to real-world applications, despite
seemingly generalizable performance achieved during model development and evaluation. A
well-known example of this issue is a classifier that was trained to identify malignant skin
lesions, but ended up relying on the presence of a measuring ruler in the images due to the bias
present in the training data1,2. However, the presence of data bias is not always obvious.
Multiple cases have been reported where specific demographics, such as gender, skin type,
ethnicity, or socio-economic status, were underrepresented in the data, leading to unexpected
performance differences between different subpopulations and potentially delaying access to
care3,4. Indeed, as algorithmic approaches become increasingly more advanced and datasets
grow larger and are necessarily compiled using less curation, these issues are becoming more
and more commonplace. Even small biases within a dataset often suffice for a machine learning
model to overfit on bogus data characteristics and drive its predictive behavior. Crucially, if the
same bias persists in any held-out test data, this issue will remain undetected.

The same is true for the T-cell epitope prediction challenge, as recently tackled by Gao et al.5

T-cells are a critical part of the adaptive immune system, as they recognize intruders from self,
induce immune responses, and retain memory. The recognition of foreign intruders is mediated
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by their T-cell receptor (TCR). When antigen-presenting cells display short peptides (called
epitopes) from pathogens or malignant cells, such as cancer cells, on their cell surface, this
TCR is able to bind with them in a specific manner, upon which the T-cell will be activated and
the immune response will be triggered.

If we would be able to annotate TCR sequences with their targets, this would unlock myriad
applications, ranging from vaccine design and cancer treatments to diagnostics. Because of the
central role that T-cells play in the immune system, the TCR repertoire of an individual contains
valuable information about the past, present, and future immune state. Using high-throughput
sequencing technologies, it is possible to map the sequences of the TCRs within a biological
sample, for example from blood of an individual with a specific disorder. However, the number of
possible TCR sequences is incredibly large, with a conservative estimate in the range of 1015

unique sequences6. Consequently, the epitope targets of the vast majority of TCRs are
unknown. On the other hand, it is known that the specificity of a T-cell is fully driven by its TCR
and its static co-receptors7. Therefore, the entire recognition event must be encoded within the
TCR sequence and is seemingly a straight-forward prediction problem where the right TCR has
to be matched with the right target.

Several methods have shown significant potential in extrapolating from a set of TCRs known to
bind a specific epitope, to other TCRs targeting the same epitope8. However, the number of
epitopes with known TCRs is counted in the hundreds, which is just a drop in the ocean of
possible TCR targets. Therefore, zero-shot TCR–epitope annotation—i.e. predicting
TCR–epitope binding for novel, unseen epitopes—is currently seen as the ‘holy grail’ of
immunology6. This requires machine learning methods to actually learn the underlying
recognition code of the TCRs, which has turned out to be a substantially harder problem.

An important issue that complicates this challenge is the lack of high-quality negative data.
While the experimental methods to determine TCR–epitope pairs have a high specificity, they
are hindered by a low sensitivity with a high false negative rate9,10. For example, the most
common approach using tetramers is well-known to only capture a subset of true TCR–epitope
interactions11. As a result, the number of true negative pairs in TCR–epitope databases is a
small fraction of the known positive pairs, and consequently, negative instances are often
generated artificially during the development of TCR–epitope prediction models.

There are two approaches commonly used for generating negative data in the context of
TCR–epitope annotation (Fig. 1), neither of which are a perfect representation of the real-world
scenario. The first is shuffling the known positive pairs, where each TCR is matched with an
epitope to create random combinations that differ from those in the positive data. This relies on
the principle that a TCR known to be specific for one epitope is unlikely to be specific for
another unrelated epitope. However, because of the limited number of epitopes with known
TCRs, it is complex to design a held-out negative dataset using this approach. The second
strategy, applied by Gao et al.5, is using background TCR data. In this case, epitopes from
known positive samples are paired with random TCRs from a background set, which is often
obtained from a broad sequencing experiment without epitope specificity. However, multiple
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studies have shown that this second approach confers a substantial bias in the dataset. The
study by Moris et al. used a decoy dataset that was generated by replacing each unique epitope
with a random amino acid sequence of the same length, removing any chance of true binding12.
When generating negatives from a background TCR data set, a performance better than
random was achieved, demonstrating that the negative data contained a bias that caused a
difference between positive and negative CDR3 sequences independent of the paired epitope.
Similarly, the study by Grazioli et al. showed that using a background data set to generate
negatives for the few-shot or majority learning setting leads to sequence memorization and
making predictions only based on the CDR3 sequence, without considering the epitope13. The
cause of these problems is that the negative pairs and positive pairs are derived from different
experiments, performed by different labs, and often even in a different part of the world with
different subject ethnicities. Any high-performance machine learning method will be able to
capture this bias and utilize it to differentiate between positive and negative samples.

Figure 1. Schematic overview of the two approaches commonly used for generating
negative TCR–epitope data. When generating negatives by shuffling (left), the same epitopes
and TCR are reused but each TCR is paired with a different epitope. When generating
negatives from a background dataset (right), new TCR sequences are paired with the epitopes.

To determine the potential impact of the negative set, we first tested the zero-shot predictions of
PanPep using five-fold cross-validation with data generated using the shuffled epitope approach
instead of the background TCR approach12. PanPep achieved an area under the receiver
operating characteristic curve (ROC-AUC) of 54.1% ± 6.4% (mean ± standard deviation) (Fig.
2a), similar to the previously reported ROC-AUC of 54.1% ± 1.9% on this dataset12. Note,
however, that we did not filter the data to exclude samples or epitope sequences already
present in the PanPep training data, with 57.7% of the positive test samples that were part of
PanPeps training data and only 3.1% of the test samples that had an epitope not seen during
training (see Supplementary Material). As such, although this should have been a relatively
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easy test, the performance on data with negatives generated by shuffling significantly
underperforms the zero-shot ROC-AUC of 70.8% reported originally.

Second, we tested PanPep in a true zero-shot setting by using the PanPep zero-shot positive
data and generating negative data by shuffling the TCR sequences of these samples. The result
is a test dataset that does not contain any samples and epitope sequences already included in
the training dataset. On this test dataset, PanPep achieves an ROC-AUC of 49.2% (Fig. 2b),
failing to make predictions better than random.

Figure 2. ROC curves of PanPep tested on shuffled negative data. (a) Mean ROC curve
and standard deviation of PanPep from five-fold cross-validation with data generated through
the shuffled epitope approach. The data was not filtered to exclude samples or epitope
sequences already present in the PanPep training data. (b) ROC curve of PanPep on zero-shot
data with negatives generated by shuffling.

A lack of unbiased labeled data is not unique to the TCR–epitope prediction problem. Similar
issues exist within many other fields. For example for speech recognition, a big challenge is the
low variability of dialects and accents in the available data14. An example with a lack of negative
data is anomaly detection, where rare events by definition only occur infrequently15. And for
protein–ligand binding prediction, a broadly used benchmarking dataset contains a bias in the
negative data that makes it easy for machine learning models to distinguish between decoys
and binding pairs16.

In conclusion, biased data can and will lead to inaccurate and untrustworthy predictions for any
machine learning task. This is also the case for TCR–epitope prediction tools trained on biased
negative data, as we showed that their performance drops significantly when tested in a more
realistic setting. Given the potential advances in healthcare that would arise from accurate
TCR–epitope binding prediction tools, we argue that more effort needs to go towards this
problem. More data and an unbiased benchmarking dataset are a necessary next step towards
prediction models that are reliable in real-world scenarios.
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