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Abstract 

 

When humans assemble into face-to-face social networks, they create an extended environment 

that permits exposure to the microbiome of other members of a population. Social network 

interactions may thereby also shape the composition and diversity of the microbiome at 

individual and population levels. Here, we use comprehensive social network and detailed 

microbiome sequencing data in 1,098 adults across 9 isolated villages in Honduras to investigate 

the relationship between social network structure and microbiome composition. Using both 

species-level and strain-level data, we show that microbial sharing occurs between many 

relationship types, notably including non-familial and non-household connections. Using strain-

sharing data alone, we can confidently predict a wide variety of relationship types (AUC ~0.73). 

This strain-level sharing extends to second-degree social connections in a network, suggesting 

the importance of the extended network with respect to microbiome composition. We also 

observe that socially central individuals are more microbially similar to the overall village than 

those on the social periphery. Finally, we observe that clusters of microbiome species and strains 

occur within clusters of people in the village social networks, providing the social niches in 

which microbiome biology and phenotypic impact are manifested.   
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The human microbiome plays a role in many aspects of human physical and mental health1, and 

the microbiome is in turn shaped by diverse factors. Diet, medications, lifestyle, and 

environmental exposures (such as animals) are known to affect a person’s microbiome 

composition2–5. But since few bacterial components of the human microbiome can survive for 

very long outside the human body, most such bacteria must somehow be acquired from other 

humans through diverse forms of physical contact. While maternal transmission to offspring is 

one obvious pathway6–10, adults may acquire normal flora from others beyond their mothers via 

social interactions11.  Indeed, in models involving both wild mice and primates, gut microbiome 

information can predict a host’s social interactions, group membership, and network centrality12–

14. And in human populations, recent evidence indicates the salience of household and spousal 

transmission of the microbiome11,15.  

 

However, the influence of face-to-face social interactions beyond household contacts or closely 

related kin on the composition of the human microbiome is still incompletely understood11,16. 

Yet the impact of the broader set of social relationships that people have on their microbiome 

composition is surely relevant. Furthermore, the precise type of relationship (e.g., whether a 

person is a close friend, casual acquaintance, or neighbor), what the social interactions involve 

(e.g., in terms of face-to-face contact, sharing of meals, or physical greetings), and the frequency 

of interactions are likely also relevant. Here, we explore the impact on the microbiome, at the 

species and strain levels, of such detailed social network interactions within isolated rural 

villages, including interactions outside of households and with non-kin.  

 

Study Cohort 

 

Microbiome acquisition patterns may be especially important to investigate in a traditional social 

setting involving face-to-face interactions within a circumscribed population that partakes of a 

traditional diet and is relatively devoid of antibiotics and other medications. Our cohort consists 

of 1,098 individuals in 9 isolated villages who are part of a larger population-based cohort we 

started following in 2015 for a different purpose17. The average distance from each of the 9 

villages to the nearest other village among the 9 is 800 meters, and the average distance to the 

farthest other village is 12.3km.  We combine face-to-face social networks mapped in detail for 

whole villages (i.e., sociocentrically); a comprehensive set of both individual and community-

level characteristics regarding behavioral, socioeconomic, and health phenotypes; and detailed 

gut microbiome sequencing data. Such social network data from traditional populations are 

scarce18–20. Microbiome data from such developing world settings are also scarce, especially at 

large sample sizes21. The coverage rates (i.e., the percentage of people in the village-level social 

networks for whom microbiome samples could be collected) in these villages ranged from 43% 

to 76%.  Village size ranged from 89 to 432 individuals; and the average household size was 

4.46. The average age of participants was 40.9 (SD=17; range: 15-93); 62% were women; and 

23.4% were married.   

 

Several “name generator” questions were used to map the social networks, including questions 

such as “With whom do you spend free time?” and “Who do you trust to talk about something 

personal or private?” (See Table S1 for a summary of the name generator questions used). The 

total number of relationships identified in our cohort are as follows: Partner/Spouse (254), Father 

(209), Mother (369), Sibling (740), Child (262), Close Friends (915), Spend Free Time (1,061), 

and Personal or Private Conversation (1,129). Some of these relationships overlap, and, after 
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network symmetrization, we identified 2,919 unique social network links. For individuals who 

report spending free time together, we also collected many details about the nature of these 

interactions, such as how often the pair spends free time together, whether they share meals, and 

how they typically greet each other.  

 

Microbiome Profiling 

 

Strains can be very divergent, genetically and functionally, within a given microbe species22,23.  

Such variation can be very useful to bolster confidence that two people who have a similar strain 

acquired it from a common source. For instance, after filtering out strains associated with 

fermented foods, strain-sharing between two people can offer evidence that the shared strain 

resulted from direct interpersonal transmission rather than shared exposure to an environmental 

factor such as diet24. That is, documenting the same strain in two people can provide suggestive 

evidence for actual interpersonal transmission23,25–28. 

 

We performed strain-level profiling with StrainPhlan 4 and detected putative transmission events 

between pairs of individuals. We summarize the strain-level similarity between two individuals 

with the strain-sharing rate metric which is equal to the number of shared strains between two 

samples divided by the number of species with available strain profiles that are present in both 

samples29. Overall, our data included information on 2,285 species and 183,195 strains (from the 

682 species profiled by StrainPhlAn). We summarize the species-level beta diversity using one 

minus the Bray-Curtis dissimilarity of species’ relative abundances, and also with the Jaccard 

index when treating the presence or absence of a species as binary. 

 

Village-Level Microbiomes 

 

Many villages in our setting tend to have distinctive microbiome patterns, some more than others 

(Fig. 1). Dimensionality reduction (with t-distributed stochastic neighbor embedding, t-SNE) of 

the centered log-ratio transformed species-level relative abundance data reveals clear differences 

in composition for most two-village comparisons and (to some extent) across the five most 

populous sites combined. 
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Fig. 1. Visualization of microbiome species relative abundance data across villages.  Data are shown after 

centered log-ratio transformation using t-distributed stochastic neighbor embedding (t-SNE), colored by village 

membership, for the five most populous villages in the Honduras microbiome cohort. A two-dimensional t-SNE plot 

for all five of the most populous villages combined is in the top right, and the remaining plots show the two-

dimensional t-SNE visualizations for all distinct pairs of the five most populous villages. Microbiome samples are 

clearly distinguished by village membership for most pairs of villages and to some extent still when all five villages 

are combined. The distinction of microbiome clusters by village appears to depend on the village; for example, the 

village Azpeitia maintains a relatively distinct cluster in all visualizations.  

 

Strain Sharing Across Multiple Relationship Types 

 

We observe microbiome species-sharing and strain-sharing occurring across many relationship 

types. Pairs of individuals with diverse sorts of relationships (partner/spouse, father, mother, 

sibling, child, close friend, free time, personal-private) share significantly more strains with each 

other than other pairs of people from within the same village with no relationship, and we 

observe a social-distance-based gradient of strain-sharing among relationships (two-sided 

Wilcoxon rank-sum tests, max Padj ≤ .05 ) (Fig. 2A). Spouses and relationships between 

individuals living in the same building have the highest levels of strain-sharing (median strain-

sharing rate of 13.5% and 12.9% respectively). While prior studies have revealed potential 

household and familial transmission11,15,24, we also observe a significantly elevated strain-sharing 

rate between non-kin relationships living in different houses (median 6.2%, permutation P 

 < 2.2 × 10-16). We observe minimal amounts of strain-sharing between individuals living in the 

same village without a social relationship (median 3.9%), potentially a result of shared village 

environments or network-wide circulation of strains. And we observe a low strain-sharing rate 

between individuals living in different villages (median 2%). 
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Since species distributions are to some extent village-dependent (Fig. 1) and individuals in the 

same village have higher strain-sharing rate than individuals living in different villages (Fig. 

2A), village-level sharing can serve as a baseline for comparison. To account for both the 

potential influence of village-level microbiome niches and of village-level network structure, we 

compared each relationship distribution to 100 samples from a within-village relationship 

permutation (e.g., swapping mother-child pairs in the same village; see Methods), and the same 

pattern of variation in strain-sharing by relationship type is observed (Fig. S1). This result is also 

observed at the species level (Fig. S2, S3), although to a lesser extent, possibly suggesting that 

strain-sharing is more likely to be a result of direct transmission than species-level sharing, 

which could potentially originate from multiple sources (such as a shared environment). 

 

For individuals who report spending free time with someone else, we also examined how 

microbiome strain-sharing may relate to how often they spend free time together, how often they 

share meals together, and how they typically greet each other (Fig. 2, B, C, and D). The 

frequency that a person spends free time with someone, whether casually or through a meal, is 

associated with an increase in their propensity to share strains (Free-time, Kruskal–Wallis test, 

χ2 = 62.3, n = 1,033, P = 3.0 × 10-14; Meals, Kruskal–Wallis test, χ2 = 122.4, n = 1,051, P 

 < 2.2 × 10-16). This result holds even when excluding the effect of living in the same house and 

kinship (Free-time, Kruskal–Wallis test, χ2 = 12.7, n = 574, P = .0017; Meals, Kruskal–Wallis 

test, χ2 =  22.4, n = 586, P  = 5.4 × 10-5) (Fig. S4), suggesting that close physical proximity and 

shared meals are potential transmission routes when individuals are not cohabiting. Diet is a key 

modifiable factor influencing the composition of the human microbiome30 and shared foodstuffs 

are a potential explanation for microbial sharing. That is, shared meals can lead to similar gut 

microbiomes among group members because eating similar foods at the same time can lead to 

microbial sorting in the gut, creating similar microbial communities even if there is no direct 

exchange of microbes between individuals31. 

 

The strain-sharing rate for non-kin living in different houses who spend free time together almost 

every day (median of 7.8%) is higher than the strain-sharing rate for friends who see each other 

only once a week (6.5%) or a few times a month (5.7%, Fig. S4). A similar gradient is observed 

with the frequency that non-cohabiting non-kin share meals together, with those sharing meals 

daily or weekly (median strain-sharing rates 8.5% and 8.0% respectively) sharing more than 

pairs who share a meal together a few times or only once a month (6.7% and 5.8%). Physical 

contact via kissing, hugging, and touching can also result in the transfer of microbes32 and 

studies have shown that the oral microbiome is influenced by different greeting types, such as 

kissing33. Pairs who greet each other with a kiss on the cheek have the highest median strain-

sharing rate (median 11.7%) – although, perhaps due to the low sample size and diversity of 

greeting types mentioned (see Methods), the strain-sharing rates across most greeting types are 

not significantly different from each other (Fig. 2D). We had hypothesized that individuals 

reporting a physical greeting type would have a higher strain-sharing rate than those who self-

report using a non-physical greeting type, but we did not observe this (Fig. S5). 
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Fig. 2. Strain-Sharing Across Multiple Relationship Types. (A) Distribution of strain-sharing rates based on 

relationship type. All pairwise relationship comparisons are significantly different, except for those marked ‘ns’ 

(Kruskal–Wallis test, χ2 =  43,416, n = 604,215, P < 2.2 × 10-16, two-sided Wilcoxon rank-sum tests, NS, not 

significant (Padj ≥ .05 )). The final two boxes quantify the strain-sharing rates between all pairs of individuals living 

in the same village without a nominated relationship, and all pairs of individuals living in different villages, 

respectively. Median values for each distribution are printed at the top of each box. (B) The propensity to share 

strains increases as a function of how often a pair spends free time together. Only the non-significant pairwise 

comparisons are indicated (Kruskal–Wallis test, χ2 = 62.3, n = 1,033, P = 3.0 × 10-14, two-sided Wilcoxon rank-sum 

tests; NS, not significant (Padj ≥ 0.05 )). (C) The propensity to share strains increases as a function of how often a 

pair shares meals together. Only the non-significant pairwise comparisons are shown (Kruskal–Wallis test, 

χ2 = 122.4, n = 1,051, P  < 2.2 × 10-16, two-sided Wilcoxon rank-sum tests; NS, not significant (Padj ≥ .05 )). (D): 

The strain-sharing rate varies by the typical way individuals greet each other (Kruskal–Wallis test, χ2 = 23.3, n = 

1,049, P = 0.0007).  

 

We find that mothers tend to have a significantly higher strain-sharing rate with their children 

than fathers (two-sided Wilcoxon rank-sum test, Padj ≤ 0.05) (Fig. S6). Previous research has 

shown that mothers may transmit bacterial strains to children during childbirth6, and, although 

our study does not contain infants (the youngest participant is 15), this higher strain-sharing rate 

may be a result of the retention of strains transmitted during infancy (we observe a higher strain-

sharing between mothers and their children the younger the child is; see Fig. S6). Alternatively, 

the high mother-child strain-sharing rate may be explained by cultural factors that result in more 

opportunities for household transmission events between mothers and children relative to fathers 

and children, since current Honduras gender roles are strict and mothers tend to be at home with 
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their children during adolescence more than fathers. At the species level, while mothers have a 

higher average Bray-Curtis similarity to their children than fathers, the trend is insignificant, 

suggesting some of the effects of mother-child microbiome transmission may have a stronger 

signal at the strain level than species level (Fig. S6). As children age, they may have a higher 

propensity to populate their microbiome with novel species from non-maternal sources, which 

could lower species-level mother-child similarity yet still maintain a high strain-sharing rate due 

to maternal strains retained from infancy. 

 

In contrast to past analyses11, we find no evidence that women are more likely to share strains 

with their direct social connections than men (two-sided Wilcoxon rank-sum test, Padj ≥ 0.05) 

(Fig. S7). In fact, at the species level, we observe the opposite trend, where men are more 

microbially similar to their direct connections than women are, based on Bray-Curtis similarity 

(two-sided Wilcoxon rank-sum test, Padj ≤ 0.05, Fig. S7). A large portion of this effect appears to 

stem from brothers having more similar microbiomes to each other than sisters (median Bray-

Curtis similarity 0.39 and 0.284 respectively; two-sided Wilcoxon rank-sum test, Padj ≤ 0.05; see 

Fig. S7). This same effect does not appear with the Jaccard index, suggesting the absolute 

difference in species between brothers and sisters is not large, but that sisters are more variable 

in their relative abundances than brothers. The contrast with prior work may relate to different 

social habits in Honduras compared with other places where this has been studied (such as 

Fiji11,16) or with differences between the oral and gut microbiome. 

 

Strain-Sharing Strongly Predicts Social Relationships 
 

To evaluate the strength of strain-sharing and species-sharing across relationship types, we 

implemented a mixed-effects logistic regression model to predict whether any pair of individuals 

in a village has a social or familial relationship. If there is a strong imprint of the social network 

in the microbiome network, we would expect the microbiome similarity between two individuals 

to be a strong predictor of a social relationship. We created a second model to test the predictive 

power of microbial-sharing outside of the family and household by removing kin and household 

relationships from our positive class. To account for potential confounding by socio-

demographic factors, we created three versions of each predictive model, one with strain-sharing 

rate as the only predictor (in addition to a random slope for each village); one including age and 

gender; and one including the socio-demographic variables age, gender, wealth, education, 

religion, and indigenous status (See Methods). 

 

Using strain-sharing rate as the only predictor, the classifier achieves moderately strong 

performance across all relationships and also in non-kin different-household relationships (AUC 

0.73 ± 0.007 and AUC 0.67 ± 0.009 respectively, Fig. 3 A and 3B. Fig. 3C and 3D show 

respective model predictions for the village of Ermua). Species-level similarity, as measured by 

Jaccard and Bray-Curtis similarity, achieves poor performance (All Relationships; Jaccard, AUC 

0.55 ± 0.008, Bray-Curtis, AUC 0.54 ± 0.008 – Fig. S8).  

 

To understand how much more strongly strain-sharing indicates a social relationship compared 

to socio-demographic attributes in our model, we use permutation feature importance metrics 

(see Methods). The permutation feature importance is defined to be the decrease in a model score 

when a single feature value is randomly shuffled34. This method shows that the strain-sharing 
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rate is a stronger predictor of a relationship in both models than similarity along any other 

individual socio-demographic dimension in our study (Fig. S9).  

 

 
Fig. 3. Strain-level Model Predicting Social Connections. Area under ROC curves predicting a social or familial 

relationships (A) or only non-kin, different-house relationships (B) compared to un-nominated pairs living in the 

same village; 95% DeLong confidence intervals are shaded surrounding each line. The diagonal dotted line indicates 

an AUC of 0.50, a “test” no better than chance. Legends report the means and standard deviations for each 

classifier’s AUC. SSR: Strain-Sharing Rate. (C and D) True-positive and false-negative network predictions for all 

relationships and non-kin different-house relationships for the village of Ermua. The model including all 

relationships performs better than the non-kin, different-house model as there is increased sharing within households 

and amongst kin. The model generally performs better at predicting within social clusters as there is increased 

strain-sharing around nodes with a high clustering coefficient. 

 

Geodesic Horizon of Microbiome Similarity 

 

Observed strain-sharing patterns in villages could be consistent with possible chains of 

transmission. For instance, if someone’s microbiome is more similar to their friends than would 

be expected if the microbiome distribution and social network were independent, are they also 

more similar to their friends of friends? By measuring complete village social networks, we can 

evaluate how far into a network microbiome strain-sharing extends. We can calculate the 

distribution of the strain-sharing rate by the geodesic distance (shortest path between the vertices 

in a social network) between any two individuals. Under the null hypothesis that a host’s social 
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network has no marginal relationship with their own microbiome composition, we can construct 

a permutation null distribution by randomly swapping the microbiome of every individual in a 

village and observing the null distribution of strain-sharing rate by geodesic distance. As 

previously noted, first-degree relationships have a much higher strain-sharing rate than we would 

expect under the null hypothesis (median 7.5%). But this effect also extends to second-degree 

connections (4.7%) before falling off at a social horizon of third-degree connections (4.1%), 

where pairs of people have a median strain-sharing rate no higher than would be expected under 

the null hypothesis within these small villages (Fig. 4A) (See Fig. S10 for species-level 

analyses).  

 

Social Network Position and Strain Network Position 

 

The strain-sharing patterns we have seen allow us to view the possibility of microbiome 

transmission from the framework of disease ecology. Individuals who are more socially central 

may also be more microbially central and more exposed to strains potentially spreading within a 

network. We may expect that socially central individuals are more microbially related to the rest 

of the village and more representative of the “social microbiome,” or the microbial 

metacommunity of transmittable strains within the village14. After controlling for 

sociodemographic covariates (see Methods), we tested whether there was a relationship between 

an individual's average strain-sharing rate with all others in the village, representing their 

microbiome centrality, and their social network centrality. We examined three measures of social 

network centrality: degree centrality (the number of connections); normalized betweenness 

centrality (the fraction of the number of shortest paths in a network that pass through a person); 

and eigenvector centrality (a function of the number of connections and the centrality of those 

connections). 

 

All measures of social network centrality were positively correlated with an individual's average 

strain-sharing rate to the rest of the village, suggesting that the microbiome of more socially 

central people is more representative of the social microbiome in the village (linear mixed effects 

regression, n =1036; Degree, β = .017, P = 0.00044; Normalized Betweenness, β = 2.8, P = 

0.0094; Eigenvector,  β = .55, P = 0.0018) (Fig. 4B). This effect is apparent visually in Fig. 4C 

where individuals are colored based on their average strain-sharing rate with the rest of the 

village, with red individuals sharing more and yellow individuals sharing less. More socially 

central individuals tend to have higher strain-sharing rates with everyone else in the village than 

socially peripheral individuals. 
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Fig. 4. Strain Sharing and Social Network Position. (A) The strain-sharing rate by geodesic distance is shown. 

Null distributions were calculated based on 10,000 random samples from a within-village microbiome permutation. 

The null distribution slopes downwards because of the effect of large networks; larger villages have more pairs with 

a higher geodesic distance between them and, on average, have a lower average strain-sharing rate between 

individuals (see Fig. S11 for more details); 95% Confidence intervals are plotted around the null distributions. (B) 

As an individual’s degree centrality (number of social connections) increases and they get more socially embedded 

in the village, their average strain-sharing rate with the village also tends to increase. (C) Example social network 

for Hondarribia. Individuals with more connections (degree) and a higher network centrality (betweenness or 

eigenvector) tend to be more microbially typical as well. Nodes are colored according to their average strain-sharing 

rate with the rest of the village, and nodes are sized according to their degree centrality. (D) When individuals have 

a wider variety of social connections (increasing degree centrality), between-host heterogeneity tends to increase, 

and individuals on average have a lower strain-sharing rate with their first-degree connections. (E) Example social 

network for Hondarribia. Central individuals with a wider variety of social connections on average have a lower 

strain-sharing rate with their first-degree connections. Nodes are colored according to their average strain-sharing 

rate with their first-degree connections, and nodes are sized according to their degree centrality.  
 

We may also hypothesize that, while socially central individuals are more microbially 

representative of the overall network possibly as a result of the greater quantity of social contact, 

they may be less microbially similar to their typical first-degree social connection. An increase in 

the number and frequency of social contacts globally within the village may lead to higher 

between-host heterogeneity in gut microbial diversity locally. A very popular individual may be 

more representative of the social group at large, but, as a result of their many social interactions, 

they may be more removed from each of their individual connections, in a paradox of popularity. 

Indeed, we observe that increases in degree, eigenvector centrality, and betweenness centrality 

all correlate with a decrease in average microbiome similarity to first-degree connections. (linear 

mixed effects regression, n =1036; Degree, β = -.089, P = 0.00014; Normalized Betweenness, β 

= -19.5, P = 0.00019; Eigenvector,  β = -2.6, P = 0.0014) (Fig. 4D).  Gregarious individuals are 

less intimately related to their social connections, whereas individuals with only a handful of 

social connections tend to be more intimately microbially tied to those connections. This effect is 

apparent visually in Fig. 4E where individuals are colored based on their average strain-sharing 
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rate with their first degree connections, with red individuals sharing more and yellow individuals 

sharing less. More socially central individuals tend to have lower average strain-sharing rates 

with their first degree connections, whereas peripheral individuals share much more (this trend is 

the opposite of Fig. 4C, with the red and yellow colorings generally being reversed). 

 

Social Clusters and Microbiome Clusters 

 

The strain-sharing patterns we have seen along village, household, familial, and social lines 

would mean that social clusters (i.e., communities of more densely interconnected individuals 

within the village networks) should also have shared sets of particular microbiome strains14. That 

is, the phenomena so far documented should come to instantiate or to reflect niches of 

microbiomes within niches of people (analogous in some ways to soil biology35).  

 

At the smallest scale, individuals with a higher clustering coefficient (i.e., transitivity – that is, 

the fact that three individuals are connected in a triangle) are more likely to have a higher 

average strain-sharing rate to those connections (linear mixed effects regression, n =1036, β = 

2.97, P = 6.46 x 10-6). Having relationships to others who are also connected may facilitate 

microbiome circulation, instantiating microbiome niches within social niches. Individuals with a 

high clustering coefficient (≥.75) who form small-world networks with their connections have a 

high average strain-sharing rate with their first-degree connections (median 9.68%). Conversely, 

individuals with a low clustering coefficient ( ≤ .25) (and thus links to disparate parts of the 

network) have a lower average strain-sharing rate with their first-degree connections (8.05%) 

(two-sided Wilcoxon rank-sum test, Padj ≤ .05) (Fig. 5A).   

 

To observe this phenomenon at the whole-village-level scale, we identify both social and 

microbiome clusters using Louvain clustering,36–38 a method that can discern clusters in social 

network data38–40 and biological data41,42. If strain-sharing rates are significantly elevated within 

social network clusters, we would expect a large correspondence between social network clusters 

and clusters of microbially similar individuals. We form microbiome clusters based on the strain-

sharing network within a village, with ties between people discerned simply by virtue of the 

extent to which they share microbiome strains, with edges weighted by the strain-sharing rate 

between constituent nodes (Fig. 5B). Similarly, we form social clusters based on familial and 

social connections without weighting (Fig. 5C). On average, this method yields social clusters of  

13 people with an average of 27 intra-cluster relationships; and it yields microbiome clusters of  

24.5 people with an average intra-cluster strain-sharing rate of 7.5%. We can then paint the 

microbiome cluster membership onto the social network clustering and visualize the 

correspondence between social communities and microbiome strain communities (Fig. 5D).  

 

Across the villages, social clusters visually overlap with microbiome clusters (shown for just one 

village in Fig. 5C and 5D). To statistically test this effect, we can evaluate the correspondence 

between social and microbiome cluster membership with the adjusted Rand index43, which is a 

measure of similarity between two data clusterings, with an adjustment for the chance grouping 

of elements. To observe the distribution of this statistic if there was independence between a 

host’s microbiome and their social network, we can compare our observed index to a 

microbiome permutation null, where we randomly swap every individuals microbiome in the 

village. We observe that social cliques correspond to microbial cliques at a highly significant rate 

in all nine villages (max P < .05) (Fig. 5E). Across 10,000 microbiome permutations, in only 1 
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village does a random permutation lead to higher overlap between social and microbiome 

clusters than the observed overlap (Sestao in Fig. 5E, where 3 out of 10,000 permutations have a 

higher overlap between clusterings).  

 

 
Fig. 5. Social and Microbiome Strain Niches. (A) Individuals with a higher clustering coefficient are on average 

more similar to their first-degree connections. (B) Microbiome strain-sharing-rate Louvain clusters for the village of 

Basauri. Ties are weighted and sized according to the strain-sharing rate between the pair. (C) Social network 

Louvain clusters for the village of Basauri. (D) Microbiome cluster membership painted onto the social network. 

There is visual overlap between communities detected solely on the basis of shared microbe sets and communities 

detected based solely on social connections. (E) P-value distributions for clustering results. Histograms represent the 

null distribution of adjusted Rand index values from 10,000 microbiome permutations. All villages are highly 

significant, with the observed overlap metric represented by the vertical red line. (F and G) Examples of 

differentially abundant species within the village of Hondarribia. Nodes are scaled according to the log relative 

abundance of the species, with yellow indicating presence of the species and red indicating absence. 
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The co-occurrence of strain-sharing clusters and social clusters suggests that certain species, in 

addition to strains, may also be differentially abundant in different social network niches. If 

social clustering reinforces within-group microbial sharing, we would expect different social 

clusters to have differentially abundant bacteria. To test this effect, we compared whether the 

relative abundance of each species differed across Louvain social clusters in each village with 

the Kruskal-Wallis test. After Benjamini-Hochberg multiple testing correction, we found 125 

examples of species that were differentially abundant in different network communities out of 

9,366 tests (Fig. S12 shows the p-value distributions of this test). Fig. 5F and G show examples 

of two species differentially abundant in different network regions of an illustrative village; 

Enterococcus faecium (SGB7967) is highly abundant in the right-hand side of the network, 

whereas Coriobacteriaceae (SGB14372) is highly abundant in the bottom left region of the 

village. 

 

Discussion 

 

Using detailed social network mapping and strain-level microbiome genomics in isolated 

Honduras villages, we find a substantial correspondence between social structure and 

microbiome sharing beyond familial or even household relationships. The amount of strain-

sharing appears to be modulated by the nature of the social relationships. More intimate 

relationships share more strains, and strain-sharing rates monotonically increase based on the 

frequency a pair shares meals or free time together. The strain-sharing rate was the strongest 

predictor of social relationships, which suggests that when entering a village and knowing 

nothing about the social arrangements, there is more predictive power in knowing the 

microbiome distribution than knowing a sociodemographic feature such wealth, religion, or 

education. We also observe significantly elevated strain-sharing levels out to a social horizon of 

third-degree connections. And host network position, whether central or peripheral, moderates 

egocentric exposure to the microbial metacommunity within the villages; more socially isolated 

people tend to be more microbially isolated. Overall, the intricate groundwork provided by the 

social network structure of human populations provides a set of niches within which microbes 

can thrive or spread. 

 

We are unable to distinguish direct transfer of strains from indirect transfer (e.g., via unobserved 

social interactions that we were unable to measure), nor can we infer the directionality of any 

transfer between two people seen to share a strain. We are also unable to fully distinguish shared 

environment from transmission, though the genetic specificity of strains and the distinction 

between villages or far-flung households does suggest actual transmission, especially in light of 

the human-host specificity of some transmitted species44–47. Strain-level resolution helps shed 

light, to some extent, on the idea that similar microbial species seen within members of the same 

household may be based not only on a modulation by similar environmental conditions or shared 

genetics, but also on spread between individuals. Our ability to also find strain-sharing among 

people who are not genetically related and do not reside in the same household but who are 

known to interact bolsters this conclusion.  

 

A prior study of 287 people in five villages in Fiji was able to document strain sharing between 

spouses, household members, and a subset of other social interactions (up to five other people 

with whom they “spent the most amount of time” (a total of 489 unique social interactions 

outside households were identified)11. Another recent study examining 7,646 individuals from 31 
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villages in 20 countries observed that, on average, the strain-sharing rate for the gut microbiome 

for non-cohabiting adults within the same village generally was 8%24.  Our estimate of this 

parameter was 3.9%. But, since we actually mapped so many types of social relationships (and 

not just familial or same-household ties) among essentially all the inhabitants of each village, we 

can be more sure than prior studies about whether village co-residents do or do not, in fact, 

interact with each other. That is, our estimate of pairs of people who are simply village co-

residents includes only people who do not, in fact, interact; this likely explains the difference in 

findings. Social network mapping at the level of detail, comprehensiveness, and scale that is 

present here has not previously been available for microbiome analyses. 

 

Findings with oral or skin microbiomes might be different. Oral strain-sharing rates are known to 

be higher than seen with the gut; for instance, among cohabiting individuals, prior work has 

shown that the median strain-sharing rates are 12% and 32% for gut and oral microbiome 

respectively24. And oral microbiome strains are known to be more easily transmitted, via 

saliva11,33. Future work could involve such specimens. Future research could also include 

longitudinal information, with suitable temporal spacing, ascertaining both the social network 

interactions and the microbiome status of all villagers, evaluating any change in microbes and 

the sharing of species or strains that might accompany any change in social network niches.  

 

The Baas-Becking hypothesis suggests that “everything is everywhere, but the environment 

selects,” and it is provocative to consider whether there are particular social niches within the 

social network fabric of human connections that are more conducive to certain species rather 

than to others48. Our social networks may provide the extended niches in which microbes can 

thrive. And being exposed to the microbes of others within one’s social group can have either 

benefits or drawbacks. For example, if a person becomes ill or takes antibiotics and loses some 

of the helpful microbes in their body, they could perhaps regain them through exposure to the 

beneficial microbes of others. Conversely, people with a diversity of social connections may also 

be more likely to be exposed to harmful microbes circulating within a network.  

 

Finally, using both observational and experimental methods, diverse phenomena have been 

shown to spread interpersonally, including phenotypes such as obesity and depression49–51. To 

the extent that the microbiome can be associated with physical or mental states (and there is 

increasing evidence for this52), then any spread of the microbiome via biological contagion may 

partly explain the ostensible spread of other attributes via social contagion. Groups of 

interconnected people may share phenotypes not only because of shared genes or transmitted 

behaviors, but also because of shared microbes.  
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METHODS 
 

Network Construction 
 

Village-level networks were mapped with standard “name generators” for the whole village. 

After a photographic census (of all adult residents) was taken for each village, we conducted the 

main network survey in each village, including a detailed, hour-long survey17, incorporating 

demographic and health measures, as well as a battery of name generators with which 

respondents identified relevant social relationships (friends, family members, etc.) through 

names and images shown in our TRELLIS software (available at trellis.yale.edu)53. All the name 

generator questions are listed in Table S1. Name generators used to ascertain social ties included 

standard questions such as “with whom do you spend free time?” and “with whom do you 

discuss personal or private matters?” as well as questions about closest friends.  

 

For questions in which a pair may report different levels of the same variable, such as greeting 

type or the amount of free time, we symmetrize the variables as follows: For greeting type, we 

report the greeting type involving the most physical contact. For the frequency of free-time and 

shared meals between a pair, we symmetrize by choosing the response between the pair that 

indicates more frequent contact. We symmetrized all other responses at the relationship level 

(i.e., when two individuals nominate each other as a close friend, the relationship is only counted 

once). When calculating degree distributions, centralities, and clusterings, we simplified our 

networks to remove multiplexity (i.e., we concatenated all ties between a pair). 

 

Social network graphs were analyzed and geodesic distances and centrality measures were 

calculated with igraph (v1.3.5)54 and plotted with the Fruchterman-Reingold algorithm. We also 

collected GPS coordinates for all households. To protect the anonymity of our study region, 

villages were renamed to random town names from another country. 

 

Gut Microbiome Sample Collection, Library Preparation, and Sequencing 
 

Participants were instructed on how to self-collect the fecal samples using a training module and 

asked to return samples promptly to the local team. Samples were then stored in liquid nitrogen 

at the collection site and moved to a -80 C in Copan Ruinas, Honduras. Samples were shipped 

on dry ice to the United Stated of America and stored in -80 C freezers. 

 

Stool material was homogenized using TissueLyzer from Quigen and the lysate was prepared for 

extraction with the Chemagic Stool gDNA extraction kit (Perkin Elmer) and extracted on the 

Chemagic 360 Instrument (Perkin Elmer) following the manufacturer’s protocol.  Sequencing 

libraries were prepared using the KAPA Hyper Library Preparation kit (KAPA Biosystems). 

Shotgun metagenomic sequencing was carried out on Illumina NovaSeq 6000. Samples not 

reaching the desired sequencing depth of 50Gbp were resequenced on a separate run. Raw 

metagenomic reads were deduplicated using prinseq lite (version 0.20.255) with default 

parameters. The resulting reads were screened for human contamination (hg19) with BMTagger 

and then quality filtered with Trimmomatic56 (version 0.36, parameters ILLUMINACLIP: 

nextera_truseq_adapters.fasta:2:30:10:8:true SLIDINGWINDOW: 4:15 LEADING: 3 

TRAILING: 3 MINLEN: 50). This resulted in a total of 1,188 samples (with an average size of  

8.6x107 reads). 
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Species-level and Strain-level Profiling 
 

Species-level profiling was performed using MetaPhlAn 4 using the Jan21 database and default 

parameters. Strain-level profiling was performed for a subset of species present in at least 50 

samples using StrainPhlAn 457 with parameters ‘--marker_in_n_samples 1 --

sample_with_n_markers 10 --phylophlan_mode accurate’. This resulted in a total of 682 SGBs 

and 183,195 profiled strains. The StrainPhlAn ‘strain_transmission.py’ script was used to assess 

transmission events using the produced trees which yielded a total of 336,710 identified events. 

For a robust calculation, strain-sharing rates were calculated only for pairs sharing at least 10 

SGBs. 

 

Statistical Analyses 
 

All statistical analyses were performed in R (v.4.1.3) with additional packages ggpubr (v0.5.0) 

and ggplot2 (v3.4.0). Correction for multiple testing (Benjamini–Hochberg procedure, 

marked Padj) was applied when appropriate, and significance was defined at Padj < 0.05. All tests 

were two-sided except where otherwise specified. All egocentric regressions involved linear 

mixed effects models with this general specification: 

 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 ~ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 +  𝐴𝑔𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟 
+  𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑊𝑒𝑎𝑙𝑡ℎ 𝐼𝑛𝑑𝑒𝑥 +  𝐷𝑁𝐴 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 +  𝐵𝑀𝐼 
+ (1| 𝑉𝑖𝑙𝑙𝑎𝑔𝑒)  

 

Mixed effects models were created with the lmertest package (v3.1.3)58.  

 

Figure 1 was generated using Python (v3.9.7). The scikit-bio package (v0.5.6) was used for 

calculating the centered log-ratio transformation of the microbiome species relative abundances 

after all zero values were replaced with the small value of 5x10-6, which was half the value of the 

original smallest non-zero value before replacement.  

 

The sklearn package (v1.0.1) was then used to compute the t-distributed stochastic neighbor 

embedding (t-SNE) lower-dimensional representation of the centered log-ratio transformed data 

with a perplexity parameter of 5 and random seed 0. The 2D t-SNE representation was then 

visualized using the matplotlib package (v3.4.2), coloring points by village membership. 

 

Network Predictions 
 

Mixed effect logistic regressions were used for out-of-sample network predictions. Class-

balanced data sets were constructed by down-sampling the number of unrelated pairs to equal the 

number of related pairs. We analyzed our model with threefold cross-validation. Predictions 

from the three separate test sets were combined. Receiver operating characteristic (ROC) curves 

were constructed from the average of five sets of threefold cross-validation. ROC Curves and 

confidence intervals were calculated with the pROC package (v1.18.0)59 and logistic regression 

models were constructed with the lmertest package (v3.1.3) with the binomial family link 

function and a random slope per village. The predictive model including all covariates was 

specified by: 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 ~ 𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑜𝑚𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐺𝑒𝑛𝑑𝑒𝑟 + 𝐼𝑛𝑑𝑖𝑔𝑒𝑛𝑜𝑢𝑠 𝑆𝑡𝑎𝑡𝑢𝑠 + 𝑅𝑒𝑙𝑖𝑔𝑖𝑜𝑛
+ 𝐴𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑔𝑒 + 𝑊𝑒𝑎𝑙𝑡ℎ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
+ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑒𝑎𝑙𝑡ℎ + 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 

 

Variable importance metrics were calculated based on the permutation feature importance 

metric. The permutation feature importance is defined to be the decrease in a model score when a 

single feature value is randomly shuffled34. This procedure breaks the relationship between the 

feature and the target; thus, the drop in the model score is indicative of how much the model 

depends on the feature. Variable importance metrics were analyzed after 1000 random 

permutation of each feature. VIF values were calculated to ensure the reliability of results against 

colinearity of variables and were all low (<2). 

 

Microbiome Null Permutations 
 

Microbiome null permutations create a null distribution of strain-sharing rates between any two 

people while accounting for network structure. Under the null hypothesis that a host’s 

microbiome composition and social network are independent, we can sever their relationship by 

randomly permuting the microbiome of every host in the village and recalculating metrics of 

interest, e.g., strain-sharing by degree or clustering Rand indices. This ensures that the inherent 

structural pattern of the network remains the same, but the node values are randomized. This 

allows us to observe the distribution of our statistics if the human microbiome is fostered 

independently of any host social interactions.  

 

Village-wide microbiome permutations were used to calculate null distributions for the strain-

sharing rate by geodesic distance and for the clustering results. For relationship-specific 

permutations in Fig. S1, permutations at the relationship level were taken instead of full village 

permutations. The observed distribution of relationship-specific sharing was compared to the 

distribution of sharing observed when that specific relationship tie was permuted, for example 

comparing the sharing between someone and their friend versus someone and 100 random 

individuals’ friends in the same village. For the inherently gendered relationships of spouse and 

mother/father to the child, we accounted for the gender of the ego; but for all other relationships 

which are not inherently gendered (e.g., free time), we did not. 

 

Microbiome and Social Clustering 
 

We use the Louvain method as implemented in the igraph package to cluster our participants 

along social and microbiome lines. Louvain clustering is based on greedy modularity 

optimization. Modularity is a scale value between −0.5 (non-modular clustering) and 1 (fully 

modular clustering) that measures the relative density of edges inside communities compared to 

edges outside communities. Optimizing this value theoretically results in the best possible 

grouping of the nodes of a given network. In cases where a pair shared too few SGBs to calculate 

a robust strain-sharing rate (<10), a strain-sharing rate of 0% was imputed to allow for proper 

weight-based clustering. The adjusted Rand index was calculated with the mclust package 

(v6.0.0)60. 

 

For testing species differential abundance across network communities with the Kruskal-Wallis 

test, robustness checks ensuring that each social cluster has more than 5 people and the species is 
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present in more than 5 people in the village were performed, and cases where this criterion was 

not met were excluded. 
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