Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Objects sharpen visual scene representations: evidence from MEG decoding

View ORCID ProfileTalia Brandman, View ORCID ProfileMarius V. Peelen
doi: https://doi.org/10.1101/2023.04.06.535903
Talia Brandman
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Talia Brandman
Marius V. Peelen
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marius V. Peelen
  • For correspondence: marius.peelen@donders.ru.nl
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Real-world scenes consist of objects, defined by local information, and scene background, defined by global information. While objects and scenes are processed in separate pathways in visual cortex, their processing interacts. Specifically, previous studies have shown that scene context makes blurry objects look sharper, an effect that can be observed as a sharpening of object representations in visual cortex from around 300 ms after stimulus onset. Here, we use MEG to show that objects can also sharpen scene representations, with the same temporal profile. Photographs of indoor (closed) and outdoor (open) scenes were blurred such that they were difficult to categorize on their own but easily disambiguated by the inclusion of an object. Classifiers were trained to distinguish MEG response patterns to intact indoor and outdoor scenes, presented in an independent run, and tested on degraded scenes in the main experiment. Results revealed better decoding of scenes with objects than scenes alone and objects alone from 300 ms after stimulus onset. This effect was strongest over left posterior sensors. These findings show that the influence of objects on scene representations occurs at similar latencies as the influence of scenes on object representations, in line with a common predictive processing mechanism.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 08, 2023.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Objects sharpen visual scene representations: evidence from MEG decoding
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Objects sharpen visual scene representations: evidence from MEG decoding
Talia Brandman, Marius V. Peelen
bioRxiv 2023.04.06.535903; doi: https://doi.org/10.1101/2023.04.06.535903
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Objects sharpen visual scene representations: evidence from MEG decoding
Talia Brandman, Marius V. Peelen
bioRxiv 2023.04.06.535903; doi: https://doi.org/10.1101/2023.04.06.535903

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4369)
  • Biochemistry (9546)
  • Bioengineering (7068)
  • Bioinformatics (24768)
  • Biophysics (12560)
  • Cancer Biology (9924)
  • Cell Biology (14297)
  • Clinical Trials (138)
  • Developmental Biology (7930)
  • Ecology (12074)
  • Epidemiology (2067)
  • Evolutionary Biology (15954)
  • Genetics (10904)
  • Genomics (14706)
  • Immunology (9844)
  • Microbiology (23582)
  • Molecular Biology (9454)
  • Neuroscience (50691)
  • Paleontology (369)
  • Pathology (1535)
  • Pharmacology and Toxicology (2674)
  • Physiology (3997)
  • Plant Biology (8639)
  • Scientific Communication and Education (1505)
  • Synthetic Biology (2388)
  • Systems Biology (6415)
  • Zoology (1344)