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Abstract: 

Previous work has identified stimulus specific time cells as a potential mechanism for 
working memory maintenance. It has been proposed that populations of stimulus specific 
sequences of cells could support memory for many items in a list over long periods of time. This 
would require information about one stimulus to persist after the presentation of subsequent 
stimuli. However, it is not known if sequences triggered by one stimulus persist past the 
presentation of additional stimuli. It is possible that each new stimulus terminates preceding 
sequences, making memory for multiple stimuli impossible. To investigate this question, we 
utilized a data set originally published by (Warden & Miller, 2010), studying the firing of monkey 
prefrontal neurons during short lists of stimuli. We were able to decode “what happened when” 
throughout the list, using linear discriminant analysis. Additionally, we were able to decode the 
first stimulus after the presentation of the second stimulus. Furthermore, we found that stimulus 
modulated sequences of cells, with discrete temporal fields, continue after the second item was 
presented.  Much of the information about the previous item was carried by neurons that 
responded to conjunctions of stimuli and the timing of late-firing cells was synchronized to the 
firing of the second stimulus rather than the first. These properties falsify a simple linear model 
of sequential time cells. These results suggest that non-linear mixed selectivity extends to 
continuous variables such as time, but that in this experiment at least, only the timing of the 
most recent stimulus was explicitly maintained in ongoing firing. 
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Introduction: 

The prefrontal cortex has long been implicated in working memory (Fuster & Alexander, 
1971; Goldman-Rakic, 1995; Jacobsen, 1936; Miller & Cohen, 2001). Cognitive models of 
working memory require multiple past stimuli to be represented in working memory (Atkinson & 
Shiffrin, 1968; Baddeley & Hitch, 1974); this is necessary to allow associations to be formed 
between stimuli for later recall (Kahana, 1996). Although early work focused on content-specific 
persistent firing of neurons in PFC as a neural model for working memory (Funahashi et al., 
1989; Miller et al., 1991), more recent neurophysiological work studying firing of PFC neurons 
has identified more subtle and complex signatures of firing associated with maintenance of 
information in working memory. This paper focuses on how information about multiple past 
items, and the time at which they were presented, are expressed in the firing rates of neurons in 
PFC using a canonical dataset (Warden & Miller, 2010). 
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Non-linear mixed selectivity in PFC ensembles.   

Consider stimuli that differ on multiple dimensions.  For concreteness, let us consider two 
visual shapes, square or circle, and two different colors, red and blue.  Content-specific firing for 
these shapes could be divided among the different features.  For instance, some neurons might 
fire to circles, regardless of their color, while other neurons fire to squares, regardless of color. 
Another separate population could fire only to the color of the stimuli, and ignore the shape. In 
contrast, one could imagine a population where many neurons fire to conjunctions of stimuli. For 
instance, one neuron might fire only for red circles and fire for neither red squares nor blue circles. 
This form of coding is referred to as non-linear mixed selectivity. Rigotti et al., (2013) observed 
that firing in the PFC during maintenance of information in working memory for short lists included 
many conjunctive neurons that coded for features extended in time, such as neurons that coded 
for a particular stimulus in a particular serial position.  Non-linear mixed selectivity endows a 
system with many computational advantages, at the cost of requiring many more neurons to cover 
the stimulus space than would have been necessary for neurons that only coded for one or 
another feature (Fusi et al., 2016; Sreenivasan & D’Esposito, 2019). Mixed selectivity in the 
prefrontal cortex may also be a reflection of the top-down influence of attention on primary cortices 
(Sreenivasan et al., 2014).  The utility of non-linear mixed selectivity is supported by the finding 
that conjunctive coding is also observed in the hippocampus, for a wide range of variables 
(Anderson & Jeffery, 2003; Komorowski et al., 2009; Nieh et al., 2021; E R Wood et al., 2000; 
Emma R Wood et al., 1999). Indeed, the fact that hippocampal place cells exhibit radial basis 
functions for position has long been argued to reflect conjunctive coding for distance to different 
landmarks available in an environment (O’Keefe & Burgess, 1996).  
 
Timing information in PFC ensembles.   

Representations of the time at which items were experienced has long been an important 
feature of cognitive models of working memory (Brown et al., 2000; Hacker, 1980; Howard et al., 
2015). In the last decade, a growing body of work has demonstrated that the firing of neurons in a 
wide range of brain regions carry information about the time at which past events were 
experienced (MacDonald et al., 2011; Mello et al., 2015; Rossi-Pool et al., 2019; Tsao et al., 
2018). In the hippocampus, sequentially-activated time cells (MacDonald et al., 2011; Pastalkova 
et al., 2008) can be used to reconstruct the time since a delay interval began. Because different 
stimuli in a working memory experiment trigger distinct sequences, hippocampal time cells can be 
understood as conjunctively coding for what happened when in the past (Cruzado et al., 2020; 
Taxidis et al., 2020; Terada et al., 2017). The same type of conjunctive coding of what happened 
when in the past can be observed in sequentially-firing neurons in PFC (Cruzado et al., 2020; 
Tiganj et al., 2018). Sequentially-activated time cells are not the only way a neural population may 
code for the time of past events.  For instance, in entorhinal cortex, time can be decoded from 
populations of neurons that change their firing monotonically over time, but at a wide variety of 
rates (Bright et al., 2020; Tsao et al., 2018). Indeed, many authors have noted that the firing of 
PFC neurons carries information about time while not explicitly describing sequential firing 
(Cavanagh et al., 2018; Cueva et al., 2020; Murray et al., 2017).  
 
Temporal mixed selectivity in lists of multiple items.   

Prior work has established that prefrontal neurons use non-linear mixed selectivity to code 
for information maintained in working memory after a brief list.  Prior work has also established 
that sequentially-activated neurons code for time by tiling the delay following a stimulus, showing 
conjunctive coding of what happened when.  However, previous work on timing information has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.07.535754doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.535754
http://creativecommons.org/licenses/by-nc-nd/4.0/


focused on delays following a single item (but see Goh, 2022). This leads to a critical question. As 
the number of items in a list grows, the number of neurons necessary to conjunctively code for the 
list grows exponentially (the number of lists composed of N items of length L goes like 𝑁𝑁𝐿𝐿). This 
concern becomes more acute if the ensemble also retains information about the time of each of 
the separate items in the list. In this paper we study the retention of information in working 
memory during study of short lists of visual stimuli using an existing dataset (Warden & Miller, 
2010). The primary question is how information about the time and identity of earlier items is 
retained following the presentation of the second item in the list. 
 
Methods: 
Description of Behavioral Task 

Warden & Miller (2010) trained two monkeys to remember lists of two visual stimuli. 
Each of the four clearly distinguishable images could appear in either list position. The same 
stimulus could not appear twice in the same list. Each stimulus was presented for 500ms with a 
1s delay after each presentation. For this paper, only the time of list presentation, or the first 
3000ms of each trial, was considered. After each list, the animals were presented with one of 
two behavioral decision tasks that required the monkey to remember the list. The data from both 
tasks was combined. Recordings were made in the prefrontal cortex. See Warden and Miller 
(2010) for complete methods. 

 
Population Analyses 

Our primary interest is to know how the firing of PFC neurons after the second list item 
was presented reflected memory for the first list item. To evaluate this, we will attempt to 
decode the stimulus in the first serial position at all points during presentation of the list.  As a 
control, we will attempt to decode the stimulus in the second serial position at all time points 
during list presentation. Decoding accuracy of the second list item prior to the time it was 
presented provides a baseline that controls for dependencies between the serial positions and 
any other methodological issues that may arise from the decoder. 
 
Linear Discriminant Analysis Serves as the Base of the Decoding Analyses 

A cross temporal classifier was used to identify stimuli based on neural firing data. This 
involves running a linear discriminant analysis for all of the combinations of time bins. The 
classifier was trained to decode the stimulus on each trial using firing from a given time bin and 
then tested on firing from all time bins. The linear discriminant analysis uses firing rate 
averaged over each bin on each training trial to create a linear model, for which each neuron is 
a variable. Firing on a separate set of test trials is then evaluated by the model to predict the 
probability of the stimulus identities for the test trials. We implemented the classifier using the 
Matlab function “classify”. Random normally distributed noise was added to the training and test 

data with a sigma of 10−7 and a mu of 0, in order to prevent singularities.  
 
LDA is utilized to determine “what” 

We sought to decode the identities of the stimuli presented in both presentation 
positions. Firing was divided into 250ms blocks. Each run contained 260 training trials, 40 test 
trials, and 200 units. Units were selected that have at least 420 trials (1.4 x (training trials + test 
trials)). 50 repetitions were run of this analysis and the average accuracies were calculated. We 
compared the bins representing equal offset for the classification of the second stimulus after 
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the presentation of the first, and the classification of the first stimulus after the presentation of 
the second.  For example, we compared classification of stimulus 1 at 2000 ms (500 ms after 
the other item was presented) to classification of stimulus 2 at 500ms (500 ms after the other 
item was presented).  
 
LDA is utilized to determine “when” 

We also sought to decode time to determine if temporal information persists throughout 
the entirety of the trial. We again used a linear discriminant analysis, but divided the trial into 
ten 300ms bins.  The classification of time bin used 200 training trials and 60 test trials. Units 
were included that had at least 312 trials (1.2 x (training trials + test trials)). We used 150 units 
instead of 200 due to the differences in number of trials needed for the increase in the number 
of outcomes.  
 
Analysis of Individual Cells 

 We sought to characterize the firing field of each neuron using a series of models that were 
fit to the spiking profile. We included four models: a constant model, a ``pure time'' model with 
Gaussian receptive fields, a stimulus-specific time cell model, and a conjunctive time cell model. 
Parameters for each model were selected to maximize the likelihood of the observed spike train 
across sequences. While the Gaussian time field model does not capture the nuances of the firing 
fields, the representation is sufficient to identify cells whose firing is modulated by the stimulus 
identity and temporal patterns.  

First, we identify all time cells. To do this we compare the log likelihoods of the model fits 
for the Gaussian model to the constant model. Next the time cells are divided into three mutually 
exclusive subpopulations: pure time cells, stimulus-specific time cells, and conjunctive time cells.  
``Pure time'' cells are those whose fit was not improved by adding parameters sensitive to the 
stimuli presented on each trial. The stimulus-specific model has four separate stimulus 
parameters in addition to the parameters of its time field.   The conjunctive model has 12 
parameters one for each possible list (recall that the four stimuli were never repeated within a 
list). The stimulus-specific time cells are defined as those for which the stimulus-specific model is 
a better fit than the Gaussian and conjunctive models. The conjunctive time cells are defined as 
those for which the conjunctive model is a better fit than the Gaussian and stimulus-specific 
models.  

Model fits and parameter selection were performed on the cells using a customized 
program Maxlikespy (https://github.com/tcnlab/maxlikespy), which utilizes scipy’s basin-hopping 
method to determine model parameters. This method is similar to previous work (Cruzado et al., 
2020; Tiganj et al., 2018). The basin hopping algorithm was run until a better fit could not be 
found for 1500 iterations. It uses the Truncated Newton (TCN) method as the minimization 
method. The first model simply estimated a constant firing rate: 

 
𝑝𝑝(𝑡𝑡; 𝜃𝜃) = 𝑎𝑎0 

 
The ``pure time'' model adds a Gaussian temporal receptive field:  
 

𝑝𝑝(𝑡𝑡;𝜃𝜃) = 𝑎𝑎0 + 𝑎𝑎1[𝑇𝑇(𝑡𝑡; 𝜇𝜇,𝜎𝜎) + 𝑇𝑇(𝑡𝑡 − 1500;𝜇𝜇,𝜎𝜎)] 
 
where 
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𝑇𝑇(𝑡𝑡;𝜇𝜇,𝜎𝜎) = 𝑒𝑒
−(𝑡𝑡−𝜇𝜇)2
2𝜎𝜎2  

 
The stimulus specific time cell model allows us to consider the influence of stimulus specificity on 
the firing of the neurons in addition to temporal specificity. It considers each of the four stimuli 
separately. For the stimulus specific Gaussian model, the value of 𝑐𝑐𝑖𝑖1 was set to one for trials 
when the stimulus was presented in the first location, and 𝑐𝑐𝑖𝑖2 was set to one for trials when the 
stimulus was presented in the second location. 
 

𝑝𝑝(𝑡𝑡;𝜃𝜃) = 𝑎𝑎0 + �𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖1𝑇𝑇(𝑡𝑡; 𝜇𝜇,𝜎𝜎)
4

𝑖𝑖=1

+ 𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖2𝑇𝑇((𝑡𝑡 − 1500);𝜇𝜇,𝜎𝜎) 

 
The conjunctive time cell model has separate information about the identities of the stimuli in the 
first and second presentations. For the conjunctive model the value of 𝑐𝑐𝑖𝑖 was set to one for trials 
when the associated list was presented (ie. both stimuli in order), and zero for all other lists. 
 

𝑝𝑝(𝑡𝑡;𝜃𝜃) = 𝑎𝑎0 + �𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖[𝑇𝑇(𝑡𝑡; 𝜇𝜇,𝜎𝜎) + 𝑇𝑇((𝑡𝑡 − 1500);𝜇𝜇,𝜎𝜎)
12

𝑖𝑖=1

] 

 
For all temporal models, the model fits are able to account for two peaks in a cell’s firing 

that are 1500 ms apart. The mu value was allowed to vary from 0 to 3000ms. Sigma is allowed to 
vary from 0.001 to 1000ms. The coefficients are bounded such that the sum of all a’s is less than 
1. To correct for differing numbers of parameters we used the Matlab function “lratiotest” using a 
p-value of 0.01 (Bonferonni corrected). The constant model has one parameter, the pure time 
cell model has 4 parameters; the stimulus specific time cell model has 7 and the context-
dependent stimulus specific time cell model has 15. 
 
Evaluating distributions of time cell parameters.     

Prior work studying time fields following presentation of one item shows a monotonic, 
roughly linear, relationship between time field width and the peak time.  Inspection of analogous 
plots for this dataset showed an apparent discontinuity after the second list item was presented 
at 1500 ms.  To evaluate this hypothesis, we compared a regression of parameters over values 
of mu spanning the entire duration of the list (0 to 3000 ms) to a piecewise regression that fit the 
intervals 0 to 1500 ms and 1500 ms to 3000 ms separately.  Each of these regressions used 
constant and linear terms.  We compared the best-fitting model over the entire interval to the 
best-fitting piecewise models using Akaike Information Criterion (AIC) and Bayes Information 
Criterion (BIC). 
 
Classification by Subpopulation 
 The stimulus classifier approach utilized for the entire population can be modified to be 
combined with the analyses of subpopulations of cells. For this analysis we analyzed only the 
bins for which training and testing are equivalent. Because of the decreased number of cells 
available, only 50 units were used per repetition. There were still 260 training trials and 40 test 
trials.  
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Results: 
Neural data can be used to classify “what” happened throughout the trial 

A cross-temporal classifier was able to decode the identity of the first stimulus above 
chance even after the presentation of the second stimulus, as shown in Figure 1. The accuracy 
of the decoder decreases from 250ms until the presentation of the second stimulus (p < 0.01, 

slope= -2.5x10−4). While the ability of the classifier to decode the identity of the first stimulus 
drops off over time, it did not return to chance after the presentation of the second stimulus. The 
box plot in Figure 1d shows the accuracy of the decoding of the first stimulus (blue) for all time 
points across the diagonal, as compared to the accuracy of the decoding of the second stimulus 
(black), for all time points across the diagonal. We used two tailed two-sample t-tests on the 
distributions of the classifier accuracies for a given set of parameters to compare these two 
epochs. For example, we can compare the decoding of stimulus 2 from 0-250 ms to the 
decoding of stimulus 1 from 1500-1750ms. Repeating this process, we find that each of these 
pairs is significantly different (p<0.01). There are 98 degrees of freedom for all pairs. The t-
statistics are, in order from stimulus onset, 11.9815, 9.7968, 10.2802, 11.5106, 10.3817, 
12.5892.  

 
The neural data can be used to classify “when” throughout the trial  

Time can also be decoded from the neural data (Fig 1b). This shows that there is 
temporal information carried in the neural firing. If we count the number of classifications for 
each potential time bin, for each row, the distribution is significantly different than for a uniform 
distribution (p<0.01). We found that the distribution of the probabilities was significantly different 
from chance for each row using 10-sample test for given proportions 𝑥𝑥2 (10) ranging from 
169.4 to 585.8, all p < .001. 

 

 
 
Figure 1: The population of neurons represents the identity and time of the first stimulus 
throughout the trial. a) A description of the task. The animal is presented with a stimulus from 0-
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500ms, followed by a delay from 500-1500ms. The second stimulus is presented from 1500-
2000ms, followed by another delay from 2000-3000ms. b) A linear discriminant analysis (LDA) 
shows the ability to decode time bins. Each row represents the actual time bin for a set of 
decoded trials. The number of classified time bins for each row is counted and then normalize 
by the number of trials for the row. c) A cross temporal classifier is able to decode the identity of 
stimulus 1, even after the presentation of the second stimulus. d) A cross temporal classifier is 
able to decode the identity of the second stimulus, after it is presented at 1500ms. e) This graph 
shows the accuracy of the cross temporal classifier for when the training time bin and the test 
time bin are the same. The accuracy increases rapidly for stimulus 1 classification (blue) and 
then slowly drops off, but never to chance. The accuracy for stimulus 2 classification (black) 
increases after the presentation of the second stimulus at 1500ms.  

 
 
Temporal parameters from model-based analysis 

The overwhelming majority of units, 792/867 were better fit by a model with a Gaussian 
time field than by the model with only constant firing rate. These 792 ``time cells'' were further 
classified as 189 pure time cells, 367 stimulus-specific time cells, and 214 conjunctive time cells 
based on criteria described in the methods.  We describe the properties of each of these groups 
below.  

 
Pure Time Cells 

Figure 2 summarizes the properties of the units classified as ``pure time cells''. These cells 
fire in a temporally modulated way irrespective of the stimulus presented. The heatmap in figure 
2a shows that many of these cells have two fields, equally distant from each stimulus 
presentation. However, there exists a subpopulation of cells (see red circle) that fire only after the 
presentation of the second stimulus. These cells may also be sensitive to serial position, and 
could also be successfully fit by a model that combines time with presentation period. 
Alternatively, they could be triggered by the first item, but at a delay longer than 1500 ms. 
However, these two possibilities are confounded due to the equal spacing on each trial.   

We see a diversity of sigma and mu values (Fig 5) for this subpopulation. Investigating the 
relationship between the mu and sigma values, the best model fit was the split linear model 
(ΔAIC=27.8, ΔBIC = 21.3). The fact that the piecewise linear model was a better fit argues against 
the hypothesis that the cells with mu > 1500 ms reflect linearly increasing sequences initiated by 
the first stimulus.  
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Figure 2: Single units best fit by the pure time model. a) A heat map of the pure time cells, 
sorted by the mu value of the Gaussian only model, shows cells that peak only after the 
presentation of the second stimulus. Each row represents the self-normalized firing of each 
neuron. Each cell is normalized to its maximum firing rate bin. b-d) Rasters of time cells show 
punctate fields. Samples are color-coded and sorted by stimulus 1 identity on the left, and 
stimulus 2 identity on the right (trials where stimulus A is shown are in red, stimulus B in black, 
stimulus C in blue, and stimulus D in green.) The top panel shows rasters where each row 
represents a trial, and each line marks times the cell fired within that trial. The second panel is 
the Gaussian smoothed firing rate, calculated separately for each stimulus identity. The bottom 
panel shows the model fit for the Gaussian model. 

 

 
 
Stimulus-Specific Time Cells 
 Stimulus specific time cells are the 367 cells for which the cell’s firing is modulated by time 
and the stimulus-identity. Stimulus- specific time cells also tile the entirety of the trial, and cells 
responsive to a stimulus presented first may have temporal fields after the presentation of the 
second stimulus. Shown in figure 3a, we note that there is a subpopulation of 31 cells that fire to a 
particular stimulus at a time greater than 1500ms (8.4% of stimulus selective cells), or after 
subsequent stimuli have been presented (red circle). Early and mid-trial examples of stimulus- 
specific time cells are shown in Figure 3b and 3c. Figure 3d shows an example of a stimulus-
specific time cell with a late temporal field. Importantly, the heatmap appears to terminate its 
“hook” at 1500ms.  

Additionally, there is a discontinuity in the sigma and mu values between the first and 
second presentation periods (Fig 5), as shown by comparing a piecewise linear model associating 
the sigma and mu values to a linear model, (ΔAIC= 45.8 and ΔBIC=38.0). This fails to support the 
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hypothesis that in this experiment mu and sigma increase linearly with time. Further experiments, 
dissociating ordinal and continuous time, and model testing would be required to confidently 
determine if the cells are firing to stimulus 1 at a late time, or stimulus 2 but only in the second 
presentation period. 

 

 
 

Figure 3: Single units best fit by the stimulus selective time cell model. a) A heat map shows 
that the stimulus-specific time cells tile the entirety of the delay with punctate fields. Each row 
represents the normalized firing of a neuron, and neurons are sorted by the model mu value of 
the conjunctive model fit. b-d) Examples of rasters for stimulus specific cells show punctate 
fields as well as variations in firing dependent upon the stimulus presented for that trial. 
Samples are color-coded by and sorted by stimulus 1 identity on the left, and stimulus 2 identity 
on the right (trials where stimulus A are shown are in red, stimulus B in black, stimulus C in 
blue, and stimulus D in green.) The top panel shows rasters where each row represents a trial, 
and each line marks times the cell fired within that trial. The second panel is the Gaussian 
smoothed firing rate, calculated separately for each stimulus identity. The bottom panel shows 
the model fit of the stimulus specific model. This model shows firing for stimulus A in red, 
stimulus B in black, stimulus C in blue, and stimulus D in green. 

 
 

Conjunctive Time Cells 
 Conjunctive time cells are cells that fire to a specific list presentation, or combination of a 
specific pairs of stimulus 1 and 2 identities (ex. C followed by A). Figure 4a shows a heat map of 
these cells. Many of the conjunctive cells fire after the presentation of the second stimulus. These 
cells also encode information about the first stimulus after the presentation of the second stimulus, 
because they fire to a specific pair of stimuli. Ordinal position is also explicitly encoded in the list 
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pair. Figures 3 b-d show examples of these cells at early (b), middle (c), and late (d) times within 
the trial. We also investigated the relationship between the mu and sigma values for the 
conjunctive cell population. For conjunctive time cells the linear and piecewise models were very 
similar, and the best fit model differed based on the criterion used (ΔAIC= 0.5, and ΔBIC= -6.2). 
 

 
 

Figure 4: Single units best fit by the conjunctive time cell model. a) A heat map shows that the 
conjunctive time cells, which are selective to a particular combination of 1st and 2nd stimulus 
identities, tile the entirety of the delay with punctate fields. Each row represents the normalized 
firing of a neuron. Neurons are sorted by the model mu value of the conjunctive model fit. b-d) 
Examples of rasters for conjunctive cells show variation in firing over time. Samples are color-
coded by and sorted by stimulus 1 identity on the left, and stimulus 2 identity on the right (trials 
where stimulus A are shown are in red, stimulus B in black, stimulus C in blue, and stimulus D 
in green.) The top panel shows rasters where each row represents a trial, and each line marks 
times the cell fired within that trial. The second panel is the Gaussian smoothed firing rate, 
calculated separately for each stimulus identity. The bottom panel shows the model fit of the 
conjunctive model. In this graph the colors of the lines represent the identity of the first stimulus 
(red= A, black=B, blue=C, green = D), and the width of the line represents the identity of the 
second stimulus (moving from thinnest to thickest from A to D). For example, a model that 
predicts activity for the condition of stimulus B presented first followed by stimulus A would be 
represented by a thin black line.  

 

 
All subpopulations can classify stimulus information independently 
 In order to determine the source of the stimulus one information that persists past the 
presentation of the second stimulus, we combined the individual cell analyses with the decoders. 
Utilizing the three distinct subpopulations of cells: pure time cells, stimulus-specific time cells, and 
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conjunctive time cells, we used the stimulus classifier on each cell type independently. Comparing 
results for cells with equivalent training and test times, shows significant differences for the ability 
to classify the identity of the first stimulus identity during the second presentation period, as 
compared to the ability to classify the identity of the second stimulus during the first presentation 
time, for time bins 4 and 6 (p < 0.01), for the pure time cells. For the stimulus specific and 
conjunctive subpopulations, the classification of the first stimulus during the second presentation 
period was better than the classification of the second stimulus during the first presentation period 
was significantly better (p<0.01) for all 6 time bins. The full characteristics of the classifier can be 
seen in Figure 6. 

 
 
 
Figure 5: The relationship between the time field peak and width is non-linear. Scatter plots of the 
mu and sigma values of the model fits show the relationship between the time field peak time and 
the width, for all three subpopulations: a) pure time cells, b) stimulus specific time cells, and c) 
conjunctive time cells. In a and b, black lines show split linear models for two temporal epochs: the 
first spanning the first stimulus presentation period from 0-1500ms, the second spanning the 
second stimulus presentation period from 1500-3000ms. In c, the linear model is displayed 
showing the linear model extending from 0-3000ms.The unfilled black circles show cells with 
model fit values at a boundary; these weren’t included in the regression analyses.  
 

 
 
Figure 6: All cell categories can distinguish the identity of the first stimulus after the presentation of 
the second. Utilizing the stimulus classifier on a) pure time cells, b) stimulus specific time cells and 
c) conjunctive time cells, the ability to decode the stimulus 1 and stimulus 2 identity was examined 
at all time points. Boxplots represent the median, and interquartile range of the decoding 
accuracies. Blue represents decoding of the first stimulus. Black represents decoding of the 
second stimulus. Significant (p < 0.01) stimulus 1 information is available after the presentation of 
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stimulus 2 at 1500ms at all 6 delays for the stimulus specific and conjunctive subpopulations. The 
classifier is only significant for the 4th and 6th time bins for the pure time cell population.  
 
 
Discussion: 

During presentation of the second item in the list, the firing of ensembles in PFC carried 
information about what happened when at both positions during the list. The identity of the first 
item from the list could be robustly decoded throughout the entire list (Fig 1). The time within the 
study list could also be decoded (Fig 1). However, because the time between the first and 
second item was fixed across trials it is not possible to distinguish timing information of the first 
item after the second item was presented. Analyses of single units showed that the population 
carried information about time via consistent firing profiles. The pure time model with Gaussian 
temporal firing fields better fit the data than a constant model for the overwhelming majority of 
cells (792/867). Although some neurons showed temporal profiles that were more complex than 
Gaussian receptive fields (see Fig 2,3,4), nonetheless the population demonstrated sequential 
firing, in that different neurons fire reliably at distinct points in the delay interval. This can also 
be seen by noting that the mu parameter, describing the peak time of firing, took a wide range 
of values across units. 

 Notably, stimulus information and temporal information were intimately related. This can 
be seen from the cross-temporal classifier, which showed a strong dynamic profile (Fig 2) and 
the broad distribution of temporal parameters for each of the subpopulations of neurons (Fig 5). 

 
Stimulus information 

The population showed robust stimulus coding for the most recently-presented item 
throughout the duration of list presentation (Fig 1). To assess the form of stimulus coding we 
constructed three subpopulations of cells. These subpopulations are a convenience for 
understanding the data that depend on choices of the experimenter; they should not be taken to 
be an argument that there are distinct biologically-meaningful categories of cells. Nonetheless, 
these artificial subpopulations revealed several properties of the ensemble coding.   

Consistent with previous analyses of these data (Rigotti et al., 2013), the single unit 
analysis showed many neurons that code for conjunctions of list items (the conjunctive 
subpopulation Fig. 4). In addition, there was also a substantial number of neurons that showed 
simple coding for the most recently-presented item (the stimulus-specific subpopulation, Fig. 3).  
The ``pure time'' subpopulation, by construction, showed less stimulus coding than the other 
two subpopulations (by choosing a more stringent threshold between the populations we could 
have turned down the amount of residual stimulus information in the pure time subpopulation).    

The subset of the pure time subpopulation that peaked after 1500 ms suggests that 
some neurons may be sensitive to serial position in addition to conjunctions of items.  Notably, 
because the identity of the first list item was able to be decoded after 1500 ms from the 
conjunctive subpopulation, these neurons cannot simply be responding to serial position X time 
X current item. 
 

 
Temporal information  

As in many previous studies (Bright et al., 2020; Cruzado et al., 2020; Kraus et al., 2013; 
Zoran Tiganj et al., 2018), the accuracy of temporal information decayed in precision with the 
passage of time since the most recently presented item. This can be seen by noting the 
decrease in the accuracy of the time decoder (Fig 1) and in the curvature of the heatmaps (Figs. 
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2,3, and 4). In the time following presentation of an item these plots show a reflected-J pattern. 
This indicates that the unfolding of the sequence ``slows'' with the passage of physical time in 
that the number of cells that begin firing at a time T after the stimulus goes down with T. This 
result is broadly consistent with the decrease in the spanning dimension of a neural ensemble 
with the passage of time (Cueva et al., 2020). The increase in the spread of firing fields with mu 
(Fig 5) is also consistent with a decrease in temporal accuracy with the passage of time. Both of 
these properties are characteristic of time cells described in PFC (Cruzado et al., 2020; Zoran 
Tiganj et al., 2018) and other brain regions (Cao, Bladon et al., 2021). 

However, unlike previous findings, there appears to be a discontinuity in the sequences 
triggered by the first list item when the second list item was presented. This can be seen as a 
vertical line around 1500 ms in the heatmaps (Figs 2, 3, and 4) and as an apparent discontinuity 
in the sigma/mu plots (Fig 5). One way to understand this finding is that the presentation of the 
second item in the list not only initiates a new sequence, but disrupts the ongoing sequence.  
The identity of the previous item is preserved in the ensemble, largely due to conjunctive coding 
(Fig 6) but the sequence it triggered is terminated. It is unclear whether these results would also 
hold if the timing between the first and second item was variable across trials or if it was 
important to perform the task. There is good evidence that the timing of preceding events is 
preserved in other brain regions and other tasks. For instance, Tsao et al. (2018) showed that 
ramping neurons in rodent LEC triggered by the initiation of a session in an open field persisted 
throughout the session, despite periodic contextual changes. Recording from rodent 
hippocampus, Shahbaba et al. (2022) showed long sequences of firing during study of a five 
item list and were able to decode time within the entire list. However, because the list was 
consistent across trials, it is unclear whether sequences from early items were terminated or not 
by subsequent items. Future work should explore how multiple past events that vary in their 
identity and timing are represented in working memory in various brain regions. 
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