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Hippocampus is critical for memory, imagination, and constructive reasoning. However, recent models have 
suggested that its neuronal responses can be well explained by state-spaces that model the transitions 
between experiences. How do we reconcile these two views? Here we show that if state-spaces are constructed 
compositionally from existing primitives, hippocampal responses can be interpreted as compositional 
memories, binding these primitives together. Critically, this enables agents to behave optimally in novel 
environments with no new learning, inferring behaviour directly from the composition. This provides natural 
interpretations of generalisation and latent learning. Hippocampal replay can build and consolidate these 
compositional memories, but importantly, due to their compositional nature, it can construct states it has never 
experienced - effectively building memories of the future. This enables new predictions of optimal replays for 
novel environments, or after structural changes. Together, these findings provide a framework for reasoning 
about several seemingly disparate functions of hippocampus. 
 
 
A recent spate of hippocampal models suggest that hippocampus represents a state-space and its transitions, 
i.e. a cognitive map (George et al., 2021; Piray & Daw, 2021; Stachenfeld et al., 2017; Whittington et al., 2020). 
These models come in two flavours, those that infer the state-space from sequences (George et al., 2021; 
Whittington et al., 2020), and those that use the state-space for reinforcement learning (RL) (Piray & Daw, 
2021; Stachenfeld et al., 2017). Together they explain many key hippocampal findings; from associative 
learning in neuroimaging studies (Garvert et al., 2017; Schapiro et al., 2016) to precise cellular responses 
during spatial sequences, such as place (O’Keefe, 1976) and grid cells (Hafting et al., 2005). Additionally, they 
account for latent state representations in reinforcement learning tasks that require non-spatial behaviour, 
such as splitter cells (Frank et al., 2000; Wood et al., 2000) in spatial alternation tasks or lap cells (Sun et al., 
2020) in tasks that require counting (George et al., 2021; Whittington et al., 2020). Overall, these models’ 
successes have been greatly suggestive that hippocampus builds state-spaces from sequences and may use 
these state-spaces for RL. 
 
However, these new ideas about state-space inference seem at odds with key principles of hippocampal 
function that are supported by a wealth of empirical evidence. Most strikingly, hippocampus' primary role is 
one of memory (Eichenbaum & Cohen, 2014; Scoville & Milner, 1957). This memory is part of a constructive 
process that also supports imagination, and scene construction and understanding (Addis et al., 2007; Hassabis 
& Maguire, 2007; Mullally et al., 2012; Rosenbaum et al., 2009; Tulving, 1985). This evidence suggests that the 
hippocampal representation is compositional, binding cortical information together to build a representation 
of the current experience. A door to the north-west. A wall to the south. A friend sitting at the table. Indeed, 
hippocampal neurons respond to conjunctions of external features (Komorowski et al., 2009), as if binding 
together elements of a composition, and RL state-space tasks predominantly rely on hippocampus when new 
state-spaces are initially constructed (Packard & McGaugh, 1996). The big computational benefit to 
compositional scene-construction and episodic memories is being able to understand and respond to 
situations in one-shot. This flexibility is missing from the traditional state-space models: learning the state-
space often requires much experience, and can be brittle to policy or local transition changes (Russek et al., 
2017). While these symptoms can be alleviated, for example by offline replay that performs credit assignment 
when new rewards or barriers are observed (Mattar & Daw, 2018; Sutton & Barto, 2018), the diagnosis 
remains the same. This raises a significant puzzle - how do the state-space models relate to the well-known 
memory and construction machinery of hippocampus?  
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Here, we unify the two through a model of state-space composition. To be compositional, the model of the 
world must be decomposable into representational sub-blocks (𝑧	 = 	 [𝑧1, 𝑧2, 𝑧3, . . . ]), where the dynamics of 
each sub-block are independent from one another (𝑧!" = 𝑔(𝑧!"#1)). This means that new configurations of the 
sub-blocks (corresponding to a new world model) will have predictable dynamics with no extra learning. In this 
scenario, the world-model for any particular situation specifies how the building blocks combine in the current 
world - a role we propose for hippocampal place cells1. For example, composing a map of space with an object 
centric map (or wall- or door-centric), means the hippocampal state-space knows where the object (or wall or 
door) currently is in space. This feature of hippocampal compositions offers several advantages over and above 
hippocampus being just state-spaces or memories alone, and provides new insights into hippocampal 
phenomena. We show that 1) Conjunctive hippocampal cells can be reinterpreted as compositionally binding 
together multiple maps/variables, accounting for a variety of hippocampal cells and predicting experimentally 
observed non-random remapping; 2) There is a dramatic performance gain (versus standard RL) when 
hippocampal state-spaces are compositions of already learned building blocks, since policies learned on one 
hippocampal composition generalise to novel compositions; 3) Latent learning can be understood as building 
compositions in the absence of reward, so that optimal behaviour can be achieved when rewards are 
discovered; 4) Replay can compose states-spaces offline into memories that improve future behaviour either 
by updating policies or consolidating existing memories; 5) We can predict optimal replay patterns.  
 
RESULTS 
 
Model of hippocampal compositions 
 
We propose that hippocampus makes use of reusable building blocks that it can compose together to 
understand new situations - just like scene construction (Fig 1a). For clarity, we explain this model in terms of 
spatial representations, but it applies to any situation where the world-dynamics can be split into 
compositional parts. In this section, we give a high-level overview of the model and its main features, which 
we will further elaborate on in each of the following sections. The Methods section provides further 
implementational details. 
 
In space, to construct a scene of a simple room, hippocampus may bind together a representation of where 
you are in space, 𝑥, with where you are relative to walls (𝑤), salient objects (𝑜), and rewards (𝑟) (Fig 1b). This 
means that hippocampal cells will be a conjunction of representations for space, walls, objects, and rewards 
(𝑥,𝑤, 𝑜, 𝑟). Critically, the subcomponents (𝑥,𝑤, 𝑜, 𝑟) are reusable since any room is a different configuration of 
space, walls, objects, and rewards. Thus, the hippocampal state-space can be built immediately, for any new 
environment, out of different compositions of these building blocks (Fig 1c).  

 

 
1 We refer to the cortical building blocks as compositional as they can occur in any configuration, but we 
propose the composition of these building blocks occurs in hippocampus. 
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Fig 1. Model of hippocampal state-space composition. a. To construct a scene, like this (imagined) experience 
of being on the beach, hippocampus binds objects into relational configurations. b. We propose that 
hippocampus similarly composes state-spaces from structural elements like walls and rewards (black 
arrowheads denote allocentric vector relations). c. The advantage of composition is that new situations, like 
new spatial environments, can be constructed from the same building blocks. d. Cortex can provide such 
reusable representations, for example in the form of grid cells (Hafting et al., 2005) and object vector cells 
(OVCs; (Høydal et al., 2019)) in spatial environments. e. Hippocampus can construct new situations from 
cortical representations by binding them together in relational memory. f. Because these compositional state-
spaces are built from reusable elements, understanding from one environment generalises to others. In 
particular, these maps immediately imply actions (white arrowheads). g. To construct the state-space, building 
block representations can be propagated to remote locations - online, but also offline in replay. 
 
A key question, however, is what should the building blocks look like? Fortunately, for space, walls, objects, 
and rewards (𝑥,𝑤, 𝑜, 𝑟), biology already tells us. In entorhinal cortex and hippocampus, along with place and 
grid cells that code for space, there are vector cells that point towards walls, objects, and rewards: border-
vector cells, object-vector cells, reward-vector cells (Gauthier & Tank, 2018; Høydal et al., 2019; Lever et al., 
2009; Solstad et al., 2008). Each cell provides a distance and direction to the border/object/reward, and each 
population of vector cells for border/object/reward provides a map that can be path integrated (updated with 
respect to actions taken), just like grid cells for space, but rather with each map being centred around the 
border/object/reward (Fig 1d). In other words, each population of cell types represents a coordinate system, 
e.g. grid cells are a global 2D coordinate system, object vector cells are also a 2D coordinate system but locally 
centred on objects, etc. We posit non-spatial building blocks will have coordinate system representations too, 
i.e., vector cells but in non-spatial coordinates (Nieh et al., 2021). Lastly, these cells generalise and so are 
reusable - an object vector cell in one environment is also an object vector cell in another environment, with 
the same true for grid cells and border vector cells. 
 
The reusability of these building blocks means any understanding from one configuration can be generalised to 
new configurations. This is particularly powerful for reinforcement learning, as now an agent does not have to 
learn a new policy from scratch for every new environment (like RL on conventional hippocampal state-spaces, 
e.g. SR (George et al., 2021; Stachenfeld et al., 2017)). Instead, the compositional state-space already implies 
actions (Fig 1f). A reward vector cell says head towards the reward, a border vector cell says don’t crash into 
the border and so on. In RL terminology, credit assigned to these compositional building blocks in one situation 
is a useful assignment in new situations as well, i.e. the hippocampal state-space comes ‘pre-credit assigned’. 
This means online RL is dramatically reduced and often not necessary at all. 
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But how can this composition be achieved in the first place? It requires binding representations of (𝑥,𝑤, 𝑜, 𝑟) at 
every location in the environment and in the appropriate configuration, i.e. binding the vector representation 
saying 3 steps north to the reward to the spatial representations when you are actually 3 steps south of the 
reward. This is easily achieved by binding the reward vector representation, 𝑟, at the current timestep to the 
spatial location representation, 𝑥, at the current timestep and storing it as a hippocampal memory (Fig 1e). 
However, performing compositions in online behaviour is slow to propagate information throughout the whole 
state-space, and is error prone as it relies on path integration (Etienne & Jeffery, 2004; Mittelstaedt & 
Mittelstaedt, 1980). Fortunately, biology provides a potential resolution in the form of offline replay (Foster & 
Wilson, 2006), which can bind building blocks together in remote locations (Fig 1g). This is both more data 
efficient and reduces potential errors. In this context, replay is effectively performing credit assignment since it 
constructs the state-space for future successful behaviour; next time we are at that remote location we 
already know about the reward. This function of replay also has implications for what the content of replay 
should be: the best replays are those that improve the map the most. We can therefore predict patterns of 
replay and behaviour from this principle.  
 
Place cells that embed global knowledge in local representations  
 
The constructive nature of hippocampal function suggests a particular interpretation of hippocampal place 
cells - a conjunctive representation (Komorowski et al., 2009; Manns & Eichenbaum, 2006), where 
hippocampal cells bind existing representations into a new relational configuration. At its simplest this means 
combining sensory input with the grid coordinate system, as suggested by previous sequence models 
(Whittington et al., 2020), but much more is required for it to be a useful state-space for inducing behaviour. 
The local (at a given location) representation must contain global (about other locations) relational knowledge. 
If a reward is 4 steps east, but there is a wall 3 steps east, you should move north or south (Fig 2a). Such a 
representation can also be built from conjunctions, but they must be conjunctions between cortical cells that 
encode this global relational knowledge, such as object- and border-vector cells in the medial entorhinal cortex 
(Fig 2b). With such a representation, unlike with existing place cell models, many transitions are inherited, 
rather than learnt, as they are implied by the particular combination of cortical inputs (Fig 2c).  
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.07.536053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536053
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Fig 2. Hippocampal place cells as conjunction of cortical building blocks. a. A state representation that 
induces behaviour needs to contain global relational information about the structural elements of the 
environment. If there is a wall to the east and a reward further to the east, the correct course of action is to go 
north around the wall, but if the wall is to the north, the agent can proceed directly towards the reward. b. 
Populations of object vector cells (Høydal et al., 2019), each of which fires at a particular allocentric angle and 
distance from an object, encode this kind of global relational knowledge. c. Hippocampus combines cortical 
building block representations, like the population of 5 grid cells for space and 4 object-vector cells for reward, 
into a new conjunctive memory. One way to achieve this conjunctive representation is by encoding the outer 
product of the population vectors in hippocampal memory. d. Conjunctive hippocampal cells remap between 
environments, but do so non-randomly: they still respond to the same cortical inputs. Place cells, modelled as 
location-observation conjunctions, appear at similar grid phases in different environments, replicating (right 
panel) the results from (Whittington et al., 2020) (left and middle panel). e. For the conjunction of grid and 
object-vector codes this remapping means that a hippocampal neuron may be active in environment 1 but not 
in environment 2, depending on whether the object-vector and grid peaks align. f. The same mechanism can 
produce hippocampal landmark-vector cells (empirical: top left (Deshmukh & Knierim, 2013), simulated: 
bottom right) that respond to some objects in the environment but not to others.  
 
When examined in an open-field arena, it is not possible to distinguish this representation from simple place 
cells, or states in a state-space model, but compositional representations should have particular remapping 
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properties when the environment changes, or when objects appear in multiple places in the environment 
(Methods 3. Conjunctive memories). For example if one compositional input is grid cells, then when place cells 
remap (Anderson & Jeffery, 2003; Bostock et al., 1991; Muller & Kubie, 1987) they should remap to the same 
grid phase in each environment (Fig 2d), as shown in (Whittington et al., 2020). If another compositional input 
is object vector cells, hippocampal cells should appear at the same vector from multiple objects, but only if 
that coincides with the same grid phase (Fig 2e) - a possible explanation of landmark vector cells (Fig 2f; 
(Deshmukh & Knierim, 2013)). 
 
Notably, such conjunctive representations need not be the only representations in hippocampus, and can be 
further tuned by learning as the environment becomes familiar, or behaviour is overlearned (for example, with 
an algorithm that builds a successor representation). Their power comes from their potential to generate 
behaviour immediately in a new environment. 
 
Compositional codes facilitate zero-shot behaviour  
 
To explore this potential for zero-shot generalisation we compare two agents (Fig 3a). In both cases, we train a 
feedforward network 𝑓 through supervised learning on ground-truth optimal policies to predict optimal 
actions 𝑎 given a state representation 𝑠. In the first agent (Traditional) states are unrelated to the features 
across environments: they only represent space 𝑥. In the second agent (Compositional), states are 
compositions of vector cells to environment features: they combine walls, objects, and rewards (𝑤, 𝑜, 𝑟). We 
do not include space (𝑥) as part of this composition as it is not required for action selection (but we will need 
the spatial component later to build compositional maps). In each case, we train on multiple environments 
with walls, objects, and rewards, placed at random. The optimal policy is defined as the local actions that 
minimise the number of steps to reward from each location.  
 

 
Fig 3. Compositional state representations generalise. a. We learn a mapping 𝑓 from state representation 𝑠 to 
optimal action 𝑎 (white arrowhead): 𝑓(𝑠) = 𝑎. For a given location, 𝑠 represents the absolute location in the 
environment (traditional; red; 𝑠	 = 	 [𝑥]) or the relative vector codes (black arrowheads) for all objects (walls 
and rewards) in the environment (compositional; blue; 𝑠	 = [	𝑤, 𝑟]). b. In discrete graph environments, we 
sample [state representation, optimal action (blue triangles)] training examples, both in simple environments 
with reward only and in complex environments with multiple walls. When trained on a single environment and 
tested on the same environment, both the traditional and compositional state representations provide 
accurate policies (panels 1 and 2). Only mappings from compositional state representations yield accurate 
policies when tested in a new environment (panels 3 and 4). c. In continuous environments, where locations 
are continuous coordinates and actions are continuous directions, we find the same results. Either 
representation works within environments (panels 1 and 2), but only the compositional state representation 
generalises (panels 3 and 4).  
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In each simulation, we randomly generate a set of environments and calculate optimal policies. We then 
sample [state representation, optimal action] pairs (𝑠, 𝑎) as training examples to train a feedforward network 
that maps state representations to optimal actions through supervised learning. We evaluate the network’s 
performance by measuring whether following the learned policy successfully navigates to the goal from a set 
of test locations (Methods 4. Policies that generalise). 
 
While the traditional agent is able to learn arbitrarily complex policies in a single environment with the reward 
in a fixed location (Fig 3b1, 3b2), it immediately fails when either the reward or environmental features change 
(Fig 3b3, 3b4). This is unsurprising as it is not re-trained when the environment changes, and the state 
representation does not carry useful information across environments. By contrast, the compositional agent 
immediately generalises behaviour. Given the state representation contains reward vectors, this is trivially true 
for changes of reward location in an otherwise empty environment (Fig 3b3). However, it also holds for 
policies that require complicated trajectories avoiding multiple walls (Fig 3b4). These findings generalise across 
both discrete (Fig 3b) or continuous (Fig 3c) state and action representations. Together, these results 
emphasise that if hippocampal cells form a state-space for future learning, it is advantageous for them to build 
on existing relational structure (e.g. from cortical building blocks), as opposed to being learnt from scratch as is 
commonly assumed. 
 
Compositional representations therefore allow for dramatic behavioural generalisation. In this view, the role of 
place cells is to bind together cortical representations into a memory, such that when the animal next visits 
this location they will be able to reactivate cortical representations that link to optimal actions. Paradoxically, 
because the agent does not need to have taken the action to build the memory, this is a memory of future 
behaviour. This memory of the future permits zero-shot inferences.  
 
Latent learning and laying down memories of the future 
  
Compositional reasoning therefore changes the computation required to produce good behaviour in a new 
environment. Instead of learning a new behavioural policy, we must lay down new memories, but critically we 
must lay down these memories everywhere in the environment. This is important because encountering a new 
wall should not only affect the policy at adjacent states. Instead, the presence of a wall will change the optimal 
policy everywhere. When the agent is next at a remote location, its state representation must reflect the fact 
that there is a wall between the agent and the reward.  
 

 
Fig 4. Latent learning through vector code path integration. a. The vector code (black arrowhead) path 
integrates: because it follows relational rules independent of the environment, the representation can be 
updated with respect to the agent’s action (white arrowhead). For example, if a reward is to the east, and the 
agent goes north, the reward is now to the south-east. b. Path integration allows for serially incorporating 
objects (or walls or rewards) into the compositional map. The object-vector code is initialised on object 
discovery, and then carried along as the agent explores the environment. c. That means that the agent learns 
about the structure of the environment without being rewarded. Once it finds a reward, this latent learning 
allows access to optimal actions on the first visit to locations behind the wall (blue). Without latent learning, 
the agent needs to rediscover the wall to obtain the optimal policy behind the wall (orange). 
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Like credit assignment in RL, we therefore have to update state information at remote locations. But the 
content of these updates is structural information rather than reward expectations. Instead of value, we must 
transfer the newly discovered compositional features to each state in the environment. Critically, in 
compositional worlds the independent parts of the representation can be updated independently. In space, 
object-centric representations can be path integrated independently of allocentric representations (Fig 4a). If 
an agent is one step east of a reward and takes a step east, it is now two steps east of the reward. Each 
representation is determined by the last representation and the current action. Hence one approach is simply 
to keep track of the path integrated representation of each object (or wall or reward) it has encountered, as it 
traverses the environment. However, building these representations into memories alleviates the requirement 
to keep track of many variables at the same time. This is possible because the representation is compositional, 
which means that environmental features can be added one at a time.  
 
This process of serially integrating information into a compositional state representation naturally accounts for 
results in latent learning. Here animals who have experienced the structure of the environment without 
rewards can rapidly develop optimal policies upon discovering rewards for the first time (Blodgett, 1929). 
Similarly, when our compositional agent explores the environment, it builds an increasingly complete state 
representation 𝑠, incorporating objects as they are encountered (Fig 4b). Then the agent finds a reward. In a 
simulation where the agent has already learned about the wall-vector representation, it only needs a single 
visit (to add the goal-vector to 𝑠) to any other state for access to the optimal policy (Fig 4c, blue). Without this 
latent learning, the agent needs to explore the whole environment again to accumulate the full state 
representation 𝑠 (Fig 4c, orange). 
 
In this simulation, we consider an agent that has explored an environment with a wall when discovering 
reward (Methods 5. Latent learning). To demonstrate the utility of latent learning, we compare our agent to an 
agent that only starts learning about the environment’s objects after discovering the reward. The former has 
incorporated the wall in its state representation already and will have access to the optimal policy on the first 
visit to a new location, including those behind the wall. The latter needs to rediscover the wall, and will not 
know how to optimally avoid it until then (Fig 4c, right). 
 
Replay builds memories efficiently 
 
In the previous section we argued that path integration allows for serially incorporating objects into a 
compositional map during online exploration. However, this explanation of latent learning seems flawed. If the 
agent must path integrate representations by physically traversing the environment, and can only path 
integrate one or a few representations at a time, then it will need to traverse the environment many times to 
build a latent representation. To avoid this problem, rather than physically path integrating vector 
representations, the agent can imagine path integration in replay (Fig 5a). In this interpretation, replay can 
achieve credit assignment by exactly the same mechanism as it uses to build memories, because credit 
assignment is achieved by binding cortical representations into hippocampal memories.  
 
This leads to clear untested predictions. Replay events should happen in the vector cells when an animal 
discovers a new environmental feature (such as an object or a reward). But critically, the replay events must 
bind object-centred representation to their correct locations in allocentric space. This means that allocentric 
representations must also path integrate in replay, simultaneously with the object-vector cells. A natural 
candidate for this allocentric representation is the grid cell representation, which is known to path integrate 
(Burak & Fiete, 2009; Sargolini et al., 2006). We therefore predict that replay events will involve simultaneous 
replay of grid cells and object-vector cells, where both cell populations replay to the same locations but in two 
different coordinate systems - global and object-centric respectively (Fig 5a). This also implies the resulting 
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hippocampal conjunctions (in this case a hippocampal object-vector-grid conjunction; landmark cells) at given 
locations can be active before ever physically visiting that location. Empirically, a landmark cell can be detected 
from its activity during online behaviour. We predict that some landmark cells will appear in replay, after 
discovering the corresponding object, before they appear in physical navigation. 
 

 
Fig 5. Replay builds compositional maps in memory. a. After discovering an object (or wall or reward), replay 
builds the compositional map in memory by path integrating the vector code and the grid code and binding 
them together to form new hippocampal memories at remote locations. b. Such replay (blue) provides optimal 
policies in a single replay visit. On the other hand, replay that performs Bellman backups for credit assignment 
(orange) requires a single visit for optimal actions only if the replayed trajectories follow the opposite optimal 
policy (left) but needs many more replay visits for random replay trajectories (right). c. Path integration is 
noisy. This can be mitigated by forming memories in multiple different replays since path integration errors are 
independent and average out. d. We test the error-correcting capacity of replay that encodes memories in a 
homing task with path integration noise. The agent starts from home, explores the environment, then needs to 
escape back home as quickly as possible. We compare the agent that encodes memories in replay to an agent 
that only path integrates a homing vector (panel e) and an agent that replays Q-updates to learn which actions 
are expected to lead towards home (panel f). e. For the agent that path integrates only (left), the homing error 
(distance from home after escape) increases for longer exploration and higher path integration noise. For the 
agent that encodes home-vector representation memories in replay, the error is greatly reduced. f. The agent 
that encodes home-vector memories in replay needs fewer replays to achieve lower homing errors than the 
agent that replays Q-updates. 
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Importantly, with noiseless path integration, the optimal new policy is constructed with a single visit to each 
state, whatever the trajectory of the replay (Methods 6. Constructive replay). This is unlike alternative 
interpretations of replay. For example, if replay performs Bellman back-ups (as in the dyna algorithm (Sutton, 
1991)) it can only update the value of any state by comparing to its neighbour, so is exquisitely sensitive to the 
trajectory of the replay. To achieve convergence with a single step would require prescience (Fig 5b, left) as it 
would need to play out (in reverse) the new optimal policy that results from the updated values. Unlike 
Bellman back-ups, replaying for compositional memory requires only a single visit to each state, even if the 
trajectory is random (Fig 5b, right) (Gupta et al., 2010). This is because path integration through a world model 
(spatial or otherwise!) is trajectory-independent, and so the elements that get composed at each state are 
identical regardless of the replay’s trajectory. 
 
However, the reliance on path integration introduces a vulnerability: path integration is noisy, and errors 
accumulate over time. Replay will therefore build noisy, but unbiased, memories, where the noise can be 
reduced with repeated replays (Fig 5c). One attractive feature of this proposal is again that it aligns replay’s 
role across credit assignment and memory. Here, multiple replays are required to consolidate the existing 
memory (Carr et al., 2011; Karlsson & Frank, 2009).  
 
We simulate a noisy homing task where the agent explores an arena starting from a home location, until it 
encounters a threat and needs to return home as quickly as possible (Fig 5d; Methods 6. Constructive replay). 
Without replay, the homing error for the path integration agent increases both for higher noise and for longer 
exploration, as path integration errors accumulate (Fig 5e, left, top for discrete domains, bottom for 
continuous). With replay, homing errors of both causes are dramatically reduced (Fig 5e, right). Notably, 
Bellman backups are also susceptible to path integration errors as backups can be attributed to incorrect 
states. This can be ameliorated by sampling replay repeatedly (Fig 5f, left). Nevertheless, when replay is 
instead used to build compositional memories, smaller homing error is achieved with fewer replays (Fig 5f, 
right).  
 
Optimal replay creates memories where they matter most 
 
Requiring as few replays as possible for accurate behaviour is beneficial as replay takes time, and time is often 
needed for online behaviour (Agrawal et al., 2022; Jensen et al., 2023). Making the best use of each replay 
means prioritising certain replay trajectories over others. Intuitively, the highest priority replays are those that 
improve behaviour the most. This intuition has been formalised in the RL framework, where replay explicitly 
assigns credit to states through value backups, to successfully explain a wealth of empirically observed 
patterns of replay (Mattar & Daw, 2018). Constructive replay performs implicit credit assignment by binding 
object-centric representations, that come with pre-learned policies, to allocentric coordinates. Nevertheless, 
optimal constructive replay trajectories are qualitatively consistent with those predicted by the best value 
backups - albeit with a very different neural implementation. 
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Fig 6. Optimal replay constructs, then consolidates maps. a. Optimal constructive replay minimises the total 
expected additional distance (the sum of additional distance per state plotted in blue). Upon finding a reward, 
that means laying down reward memories, producing trajectories similar to ‘gain’-dominated value backups 
(Mattar & Daw, 2018). b. Once the reward map is sufficiently complete, optimal replays consolidate existing 
memories that will be needed often in the future, by encoding additional memories to error-correct path 
integration noise. Such replays play out along similar trajectories as ‘need’-dominated value backups (Mattar & 
Daw, 2018). c. Constructive replay naturally accounts for structural changes, such as the discovery of a wall in 
the environment. Optimal replay encodes memories where they matter most. In this situation, that produces 
replays first along the wall to guide the policy around the wall, then away from the wall for a more direct 
policy, and then towards reward to improve the accuracy of memories that will be retrieved many times. 

 
Here, we define optimal constructive replay as making those memories that are most impactful for shortening 
paths towards rewards from anywhere in the environment. Such replay forms new vector representation 
memories, or consolidates existing ones, at locations where these representations change the policy (for 
example by providing a reward vector) and are frequently retrieved (for example on common paths to 
reward). We find optimal replays by enumerating replay trajectories and evaluating how much the resulting 
memories decrease the expected distance towards the goal, averaged across the environment (Methods 7. 
Optimal Replay). 
 
Optimal constructive replays play out along trajectories similar to backups that maximally increase future 
reward, because both aim to achieve the same goal: a map that supports selecting (ultimately) rewarding 
actions. Updates to the map take place in locations that have the greatest impact on the overall policy, 
regardless of the representation that underlies that policy. Upon reward discovery, such optimal updates 
distribute the reward information back through the environment (Fig 6a), whether through value backups or 
constructive replays. Once complete, the reward map can be further improved by consolidating the existing 
memories: additional constructive replays suppress path integration errors, along similar trajectories as ‘need’-
driven value backups (Fig 6b)(Mattar & Daw, 2018). These examples illustrate that the principle of replaying 
whatever improves the policy most can be applied irrespective of the replay mechanism: trajectories 
compatible with optimal value backups are often compatible with optimal state-space construction too. 
 
However, that replay mechanism does sharply distinguish the two. Value backups treat the map, whether in 
hippocampus or cortex, as static, and change striatal synapses to reflect state values. Constructive replays 
change the hippocampal map itself. A new (replayed) composition that combines a particular vector and grid 
code recruits a new hippocampal representation - the conjunction between the two. That means that, in 
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addition to reward changes, constructive replay also naturally accounts for structural changes (Fig 6c). We 
simulate replays when an agent discovers a new wall in a familiar environment with a rewarded location. 
Optimal replay first runs along the wall (opposite side to the reward) while encoding wall-vector memories. 
Now all paths behind the wall are successfully rerouted around the wall, though they still go directly to the 
wall first, and then around. To make these trajectories less bendy, and more efficient, the next replay updates 
state-representations progressively further away from the wall, so that paths end up going directly to the edge 
of the wall. Finally, optimal replay consolidates the reward memories that are retrieved most often: those on 
the path from wall to reward. While no recordings of replay events exist in such situations, exactly these 
progressively less bendy behavioural trajectories are observed in behaviour when barriers are placed between 
a start and goal (home) location in a homing task (Shamash et al., 2021). 
 
Composing non-spatial and hierarchical building blocks 
 
Constructive replay thus carries structural information beyond just reward to compose representations that 
imply actions in remote locations. Importantly, this works equally well for non-spatial building blocks. That is 
important because empirically, hippocampus supports non-spatial reasoning (Aronov et al., 2017; Dusek & 
Eichenbaum, 1997), for example through representation of hierarchy (Kjelstrup et al., 2008; Shapiro et al., 
1997) and context (McKenzie et al., 2014). Computationally, non-spatial composition opens up a whole range 
of new problems to which the same principles can be applied. These problems need to a) decompose into 
building blocks so a common function 𝑓([𝑧1, 𝑧2, 𝑧3, . . . ]) = 𝑎 maps states to optimal actions, and b) allow 
independent forward models for each building block 𝑧!"$1 = 𝑔(𝑧!" , 𝑎") so building blocks can be replayed 
separately and then recombined in memory. Path integration is a specific spatial example of such forward 
models; more generally, they can be learned to capture a broad variety of environment dynamics.  
 
We now show that our model works in a hierarchical task that mixes space and non-space (Methods 8. Non-
spatial replay). This task consists of multiple spatial rooms (one of which contains a reward) joined together 
into a (non-spatial) loop by doors, but where the doors are at random spatial locations within each room and 
behave like teleports (i.e. the locations of the doors are unrelated to the rooms they transition to; Fig 7a). We 
provide a state representation that composes both spatial within-room vector codes, towards doors (𝑑1, 𝑑2) or 
reward (𝑟), and a non-spatial between-room vector code, that specifies the number of rooms between the 
current and the rewarding room (𝑐). Importantly the 𝑑1, 𝑑2 and 𝑟 representations are reused across different 
rooms. As before we train a neural network 𝑓([𝑑1, 𝑑2, 𝑟, 𝑐]) to predict optimal actions on tasks with many 
different room sizes and door locations, and test on an entirely new hierarchical environment. We see that the 
network generalises to unseen configurations and provides accurate policies in each room towards the 
rewarded room (Fig 7b). This highlights generalisation across the hierarchy as anything learned in one room 
applies in another; alternative approaches like hierarchical RL would need to learn separate policies (or 
options) in each room.  
 
In the situation described above, we provided the state representation. An agent, however, can only initialise a 
reward vector code (or rewarding room code) after actually observing a reward in one of the rooms. Similarly 
to before, we use replay to propagate this knowledge within the rewarded room (i.e. replay 𝑟 vectors), but 
additionally replay across rooms (via 𝑐). This replay is thus decoupled over space (𝑟) and non-space (𝑐 vectors). 
Since the replay of 𝑐 is at a hierarchical level, a single replay suffices to obtain the optimal policy in all un-
rewarded rooms (Fig 7c). The non-spatial between-room vector 𝑐 can be viewed as a contextual signal that 
modulates behaviour depending on the state of the environment (like chopping or frying, depending on the 
current stage of a recipe). And because its forward model can implement arbitrary non-spatial dynamics (such 
as the non-spatial loop), it could guide actions in game environments that are currently challenging for AI 
agents (Wang et al., 2021).  
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Fig 7. Policy and replay over hierarchical non-spatial building blocks. a. An example hierarchical environment 
that mixes space and non-space, consisting of rooms on a non-spatial loop. One room contains reward (green); 
each room contains two doors (blue and orange) at random locations that transition the agent to the next 
room along the non-spatial loop. We provide a full state representation that consists of within-room spatial 
vectors to reward and doors (𝑟, 𝑑1, 𝑑2) and a between-room non-spatial vector code (𝑐) to the rewarding 
room. b. A policy mapping 𝑓([𝑑1, 𝑑2, 𝑟, 𝑐]) = 𝑎 learned across many hierarchical environments provides 
optimal actions in unseen new configurations, using the same within-room vector codes (𝑑1, 𝑑2, 𝑟) in each 
room. c. Upon finding a reward, and replaying its within-room location, a single between-room replay 
propagates the rewarding room-vector code, 𝑐, thus providing the optimal policy to each of the other rooms. 
 
DISCUSSION 
 
Recent results have suggested a path towards building a formal understanding of neural responses in flexible 
behaviours. By assuming that the hippocampal formation builds a state-space (cognitive map) from sequential 
observations, these models have not only revealed computational insights into the hippocampal involvement 
in reinforcement learning (Piray & Daw, 2021; Stachenfeld et al., 2017), but also accounted for a variety of 
single neuron responses (George et al., 2021; Whittington et al., 2020). However, while this has the potential 
to bring formal explanations to an array of new scenarios it is not clear how these models relate to classic 
hippocampal functions such as episodic memory (Addis et al., 2007; Scoville & Milner, 1957), scene 
construction (Hassabis & Maguire, 2007), or imagination. Indeed, hippocampal patients are impaired not only 
in navigation, but also in scene recognition (Graham et al., 2010) and imagination of future and fictitious 
scenes (Hassabis et al., 2007; Mullally et al., 2012; Rosenbaum et al., 2009). In this work, we propose a 
framework where these disparate functions can be expressed in the same formal language. We formalise 
hippocampal state-spaces as compositions of reusable building blocks. We have shown that this affords flexibly 
generalising behaviour to new situations on first encounter, by simply rearranging previously learned 
components.  
 
We propose that hippocampal cells provide conjunctions of pre-learnt building blocks, specifying their 
arrangement in the current experience. This allows us to reinterpret several hippocampal phenomena and 
offer new computational roles for others. For example, hippocampal place and landmark cells are conjunctions 
of grid cells with sensory cells (Whittington et al., 2020) and object-vector cells respectively. This means that 
hippocampus no longer needs to learn transitions itself, as these are inherited from the building block 
dynamics. Furthermore, we show that forming memories of these conjunctions (compositions) during 
explorations, provides the ideal state-space for future behaviour when observing the reward (latent learning). 
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Importantly, if the building blocks have a forward model then memories can be formed offline in replay. This 
enables an agent to efficiently build a compositional state-space for future behaviour. The idea that replay 
serves future behaviour has already proven influential (Mattar & Daw, 2018). Here we show how a different 
underlying mechanism can provide rapid zero-shot credit assignment, and hence generalisation. This 
constructive interpretation of replay naturally extends to changes in task structure as well as reward, and 
integrates these ideas with the compositional nature of hippocampal/entorhinal representations. 
 
It is notable that in our model the state-space is simply the combination of appropriate cortical building blocks. 
The role of the hippocampus in the model is one of memory and replay. Access to this memory/replay system 
prevents the model from having to continually track all the elements of the forward model. Instead it can track 
one at a time (adding to existing state representations stored in memory) and can do so in replay rather than 
during behaviour (making online behaviour instantaneous). This minimal role for hippocampus is appropriate 
when worlds can be composed perfectly from existing primitive building blocks. By contrast, in models where 
hippocampus learns the transition structure (George et al., 2021; Stachenfeld et al., 2017), any transitions can 
be modelled (after learning). One intriguing possibility is that both systems are at play. Compositional 
inference gives rapid flexible approximate behaviour, which is nuanced by modelling of transitions. In such a 
system another possible role for replay is to build new cortical primitives when experiences have been poorly 
modelled by the existing repertoire.  
 
While we have elucidated a role for replay in the online setting, this framework also suggests a neural 
interpretation of the two previously proposed roles for replay in sleep (Ellis et al., 2020): building cortical 
primitives (as above), and learning the policy on the compositional state-space. Here replay could help learn 
compositional policies by generating training examples for policy mapping 𝑓. By sampling random vector 
representations for walls and rewards, the agent dreams up arbitrary new environment configurations. Instead 
of encoding memories, it then replays to simulate trajectories in those imagined configurations. A successful 
rollout that reaches reward provides a training pair of the sampled vector code with an optimal action. This is a 
natural extension to the idea of learning an inverse model during sleep (Helmholtz machine (Dayan et al., 
1995)), but it is particularly powerful for compositional forward models as “sleep training” can include samples 
that have never been experienced (Ellis et al., 2020). 
 
Notably, we do not learn any building block representations in this paper, but instead assume representations 
in the form of a grid code for space and vector codes for the other building blocks. The ideas in this paper are 
not limited to grid and vector representations but apply to any forward models that can be decomposed into 
sub-models where actions have independent consequences. It will be particularly powerful to learn these 
forward models from experience - another possible role for sleep replay. Critically, our model assumes that 
these representations can be bound into hippocampal conjunctions such that any state in one elemental 
model can be bound with any state in another (the wall can be at any (𝑥, 𝑦)-location). For this binding to work, 
it is likely that different elemental models should be expressed in different neural populations 
(disentanglement). Indeed, previous work has also shown that this is also the most energy efficient form of 
representation (Whittington, Dorrell, et al., 2022).  
 
Our idea of constructing behaviour from reusable building blocks is related to meta-RL. In its broadest sense, 
meta-RL proposes a system that slowly learns over many episodes to train a fast within-episode learning 
system (learning to learn (Harlow, 1949)). Our compositional building blocks, and function 𝑓, permit fast 
within-episode learning, and we have assumed the building blocks are learned over many episodes. The 
implementation of meta-RL that has so far captured neuroscience, however, is where the dopamine system 
slowly trains prefrontal recurrent networks to solve sequential tasks (Wang et al., 2018). The key difference 
between our proposition is that we utilise conjunctive hippocampal representations (and Hebbian memories) 
for explicit building block compositions, whereas presumably a form of implicit composition is taking place in 
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the meta-RL prefrontal models. Lastly, we note that transformer neural networks (Vaswani et al., 2017), the 
state-of-the-art meta-learners (Adaptive Agent Team et al., 2023), are computationally closely related to 
hippocampal compositions (Whittington, Warren, et al., 2022). 
 
Interestingly, while we have not explicitly tried to solve hierarchical RL, our framework nevertheless provides 
ingredients that may prove important. Hierarchy splits a big problem into smaller subproblems which may 
share structure and require similar solutions; this is exactly what our policy function 𝑓 learns from building 
block codes, since they naturally generalise across subproblems. This is unlike the options framework 
(Botvinick, 2012) and related approaches like (Saxe et al., 2017), which only partially exploit hierarchical 
structure, as each smaller subproblem still needs to be solved individually. Additionally, because 
representations in our model are factorised between levels, new pieces of information about one hierarchical 
level immediately permeate to all other levels. 
 
Extreme generalisation by composition is a fundamental property of human and animal cognition. Whilst this 
has been self-evident in cognitive science for many decades, it is typically ignored in computational 
neuroscience. In this work, we have taken this notion seriously and tried to align it with a series of properties 
of hippocampal function; some long-known - memory, construction and conjunctive coding; and some more 
recently discovered - state-spaces for controlling behaviour. As the community attempts to find formal 
descriptions for computations underlying increasingly rich and complex behaviours, we believe that 
compositional reasoning will play an increasingly important role in future models, not only of cognition but 
also of neural responses.  
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METHODS 
 
A Python implementation of all models and simulations is available at https://github.com/jbakermans/state-
space-composition. Here, we first describe the modelled worlds and agents in general, and then provide 
details of each figure’s simulations. 
 
1. Discrete and continuous worlds 
 
We implement agents in continuous and discrete environments. Although similar in principle, these two types 
of agents and environments are slightly different in their practical implementation. The discrete agent behaves 
on a graph, whereas the continuous agent behaves in a two-dimensional Euclidean space. Both discrete and 
continuous settings are deterministic Markov Decision Processes (MDP). 
 
The discrete environments are defined by a set of locations and actions as in a deterministic MDP. All results 
here assume rectangular square grid worlds, with actions ‘North’, ‘East’, ‘South’, ‘West’. We generate 
environments by adding walls and rewards on top of these regular grids. We represent rewards with a 
population of object vector cells, where each cell fires at a specific vector relation to the reward, i.e. a cell that 
fires 1 step to the East and so on. We represent each wall with two populations of object vector cells - each 
vector population centred on one of the wall ends. In more details, we calculate the object vector population 
activity at location 𝑥 relative to object 𝑜 by concatenating the vectors of one-hot encoded distance from 𝑥 to 𝑜 
along each action, with -1 distance for actions in the opposite direction. For example, for an object 1 step east 
and 3 steps south from 𝑥, the representation is 
𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑜𝑛𝑒ℎ𝑜𝑡(−1), 𝑜𝑛𝑒ℎ𝑜𝑡(1), 𝑜𝑛𝑒ℎ𝑜𝑡(3), 𝑜𝑛𝑒ℎ𝑜𝑡(−1)). Thus at any location, there are 4 vector cells 
active in the whole population - one for each action. In square grid worlds this representation has redundancy, 
because east is the opposite of west and north the opposite of south, but this setup allows for accommodating 
any type of non-grid graph too. 
 
In continuous environments, locations become continuous (𝑥, 𝑦)-coordinates, and actions are steps in a 
continuous direction. We place walls and rewards within a square 1m x 1m arena, at random locations and 
orientations. Again, we represent rewards by a single population of object vector cells and walls by two 
populations, one centred on each wall end. A single object vector cell is defined by a 2-dimensional gaussian 
firing field, tuned to a specific distance and direction from its reference object; the firing fields of the full 
object vector cell population are distributed on a square grid centred on the object. We thus calculate the 
object vector population activity at location 𝑥 relative to object 𝑜 by evaluating the population of gaussians 
centred on 𝑜 at 𝑥. 
 
2. Agent: tracking representations 
 
Our agent does not have access to these vector representations when it enters a new environment (except in 
Fig 3 where we provide the full state representation). It needs to discover objects first. During exploration the 
agent observes its location and initialises a vector representation on object discovery, i.e. sets 
𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑜𝑛𝑒ℎ𝑜𝑡(0), 𝑜𝑛𝑒ℎ𝑜𝑡(0), 𝑜𝑛𝑒ℎ𝑜𝑡(0), 𝑜𝑛𝑒ℎ𝑜𝑡(0)) at that location 𝑥. From then on, it updates the 
vector representation on each transition. This update combines two components: 1) it path integrates its 
previous vector representation with respect to its action, and 2) it retrieves any existing vector representations 
previously stored in memory based upon the current observed location (the memory links vector 
representations to location representations). It then stores the updated representation at the new location in 
memory.  
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To implement this process we use two practical abstractions from a full neural system. First, we use a direct 
location signal (an id of the location), instead of a neural grid code from which location is traditionally thought 
to be decoded from. Second, we instantiate memory as a key-value dictionary, rather than a hippocampal 
attractor network that stores conjunctions (these are in fact directly relatable to each other (Ramsauer et al., 
2021)). These abstractions do not change any model principles but keep the implementation simple. 
 
The discrete agent initialises an object’s vector representation when it is at a location adjacent to it. Then on 
each step, it path integrates the representation - but due to path integration noise, the represented vector 
relation might diverge from the true vector relation. We model this noise as a probability distribution 𝑝%& over 
the updated representation, so that it reflects either the correct transition with probability (1− 𝑒%&) or one of 
the neighbours with probability 𝑒%&. In addition to path integration, as stated above, the agent relies on 
memory to update its vector representation. After observing its new location, it retrieves vector 
representations inferred there previously. That produces another probability distribution 𝑝' over represented 
vector relations, with the probability of a vector representation proportional to the number of retrieved 
memories of that representation. The agent then samples the final updated representation from the weighted 
sum of the path integrated and memory-retrieved distributions: 𝑠	~	𝑤 ⋅ 𝑝%& + (1−𝑤) ⋅ 𝑝'. Finally, it stores 
the sampled representation in memory at the new location. 
 
The continuous agent tracks representations in a similar fashion. It discovers an object when it comes in range 
(5 cm), initialises the corresponding vector representation, and from then on updates it after every step. We 
model path integration errors in continuous space by adding gaussian noise to the direction and step size of 
the update to get a path integrated vector representation 𝑠%&. Again, the agent combines this path integrated 
representation with a representation that is retrieved from memory. Continuous memories store vector 
representations at continuous locations; the agent retrieves all memories created within a cutoff distance (5 
cm) from its new location, then weights the vector representations stored in these memories with a softmax 
over the cosine similarities between the memory location and the new location to obtain 𝑠'. The updated 
representation is the weighted sum of path integration and memory-retrieval: 𝑠	 = 	𝑤 ⋅ 𝑠%& + (1−𝑤)	 ⋅ 𝑠'. 
The agent then encodes this inferred representation in memory at the new location. 
 
3. Conjunctive memories 
 
We propose that hippocampal representations are conjunctions of building block representations, and that 
these conjunctions can be stored as memories in hippocampal weights (Fig 2). While it is possible to 
implement a conjunctive representation in different ways, here we use an outer product representation, i.e. 
the conjunction 𝑐	between representations 𝑎 and 𝑏 will have cells corresponding to the product of all pairs of 
𝑎 and 𝑏 cells. So if 𝑎 has 3 cells, and 𝑏 has 4 cells, then 𝑐 will have 12 cells. To demonstrate what conjunctive 
representations (e.g. between spatial representations and sensory representations) would look like in 
hippocampal recordings, we simulate populations of grid cells, object vector cells, and sensory neurons. Each 
of these neurons is defined by one or multiple spatial gaussian firing fields, arranged on a triangular grid (grid 
cells), at fixed distance and direction from an object (object vector cells), or at a random environment location 
(sensory neurons). See example conjunctive representations in Fig 2.  
 
Conjunctive hippocampal cells remap in very different ways to random hippocampal cells. To reproduce the 
non-random remapping demonstrated in the Tolman-Eichenbaum Machine (Fig 2d), we generate 5 grid cells 
and 4 sensory neurons in two different environments. Across environments, the simulated grid cells shift 
together (as real grid cell correlation structure is preserved), while the simulated sensory neurons rearrange 
randomly since different spatial environments have different sensory particularities. We calculate all 
hippocampal cell ratemaps, i.e. the 5 × 4 = 20 hippocampal conjunctions between grid cells and sensory 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.07.536053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.07.536053
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

neurons in both environments, and then for all 20 × 5 = 100 place-grid pairs we find the firing rate of the grid 
cell at the peak location of the place cell ratemap in each environment.  
 
To show how hippocampal landmark cells could result from conjunctions of object vector cells and grid cells 
(Fig 2f), we generate object vector cell ratemaps and perform the outer product with a grid cell representation. 
This leads to landmark cell responses since a grid cell’s peaks do not always align every object (or object vector 
cell), and so each conjunctive cell will not necessarily be active around every object. 
 
4. Policies that generalise 
 
If an agent has access to the full compositional vector representation, it should be able to behave optimally 
even if it has never seen the particular composition before (Fig 3). We demonstrate this by learning a policy 
mapping 𝑓(𝑠) = 𝑎 that maps an input state representation to an output optimal action. In discrete 
environments, the output action is a vector of probabilities across the four discrete actions; in continuous 
environments, the output action is a two-dimensional vector that contains the sine and cosine of the optimal 
direction. For the compositional vector representation, s is the concatenation of object vector population 
activities described above (e.g. rewards, walls etc). As a control, we also learn a mapping for a representation 
of absolute location (‘traditional’), i.e. a representation that does not know about walls or rewards. 
 
We implement the function 𝑓 as a feedforward neural network, with three hidden layers (dimensions 1000, 
750, 500 in discrete environments; 3000, 2000, 1000 in continuous environments) with rectified linear 
activations. For the wall representation (which is two populations of vector cells per wall), we include an 
additional single network layer (common to all walls) that takes in the two populations and embeds them 
(same embedding dimension as input dimension) before feeding them in to the first hidden layer of of 𝑓 - this 
is not necessary for learning, but does speed it up. We then sample [state representation, optimal action] pairs 
as training examples from environments with just a reward and environments with a reward and multiple 
walls, and train the network weights in a supervised manner through backpropagation. To evaluate a learned 
mapping, we sample locations and then simulate a rollout that follows the learned policy, and calculate the 
fraction of locations from where following that policy leads to reward (within 5cm).  
 
To test whether policies learning from a single environment generalise (Fig 3b1,2; Fig 3c1,2), we sample 
training examples from one environment (discrete: 1000 samples; continuous: 2500 samples) and test on the 
same environment, for 25 environments independently. To test whether policies learned from many 
environment generalise (Fig 3b3,4; Fig 3c3,4), we train the network on 25 environments in parallel (batched 
input), sampling training examples in each environment (discrete: 200 samples; continuous: 500 samples) 
before sampling a new set of 25 environments (100 times). We then test the learned mapping for a new set of 
25 environments not included in training. 
 
5. Latent learning 
 
Upon entering a new environment, we allow the agent to obtain and update compositional representations of 
objects/walls even in the absence of reward - this is latent learning (Fig 4). To show the utility of latent learning 
(Fig 4c), we simulate agents with and without latent learning in a discrete environment with a wall and reward. 
We consider the situation where both agents have already explored the environment and found the wall, and 
now they have just discovered the reward. The agent that does latent learning then has a full vector 
representation of wall and reward, while the agent without latent learning only knows about the reward 
vector (as it did not obtain or update the wall representations when it saw the wall earlier). We simulate both 
agents as they continue their exploration. The latent learning agent can use path integration to continue 
updating wall/reward vector representations, and can use these to calculate the optimal policy, wherever it 
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goes even if it has never been there before. The non-latent learning agent, on the other hand, needs to 
rediscover the wall to incorporate it in its state representation before it can behave optimally from all 
locations. To calculate the difference in their optimality, for each location behind the wall (where the full 
vector representation is required for appropriate behaviour), we calculate whether the agent would be able to 
successfully navigate to the reward based on its current representation on every encounter. We average policy 
success across these locations on first, second, et cetera until fifteenth, encounter and repeat the simulation 
25 times in different environments. 
 
6. Constructive replay 
 
Replay offers a way of carrying vector representations to remote locations, without having to physically 
navigate there (Fig 5). During replay, the agent imagines actions, path integrates location (grid cell) and vector 
(object vector cell) representations, and binds them together by encoding a new memory of the resulting 
combination. We model these replayed transitions like the ones in physical navigation, with two important 
differences: 1) the agent cannot observe the transitioned location like in behaviour, so there can be path 
integration errors in the memory location (the ‘key’ in the dictionary) as well as in the representation (the 
‘value’), and 2) it only relies on path integration to update representations during replay, without the memory 
retrieval. 
 
First, we compare an agent that encodes memories in replay like this to an agent that instead carries out credit 
assignment by temporal difference learning through Q-updates (Fig 5b). We apply ‘backwards’ Q-updates 
(temporal discounting factor 𝛾 = 0.7, learning rate 𝛼 = 0.8), in the opposite direction of replay (i.e. after a 
replay transition from 𝑎 to 𝑏 we calculate a backup from 𝑏 to 𝑎), to make credit assignment more efficient. We 
sample replay trajectories that start from the reward location and either extend out along a random policy (Fig 
5b, right), or a reverse-optimal policy (Fig 5b, left). We then calculate for each step in the replay trajectories 
whether the currently learned policy, either according to the encoded vector representation or the Q-values, 
provides an optimal path to reward from that step’s location. We aggregate policy success by the first, second, 
et cetera until fifteenth, replay visit to each location and average across locations, and repeat the simulation 
25 times in different environments. 
 
Then, we investigate the consequences of path integration noise (Fig 5e,f). We simulate a homing task, where 
the agent starts from home and initialises its home-vector representation, then explores the arena, until it 
needs to escape to home as quickly as possible. During exploration, the agent builds home-vector memories by 
replaying from the home location 5 times every 4 steps, and retrieves these memories when it is updating its 
current home-vector representation (i.e. using memories to reduce path integration noise). During escape, it 
selects actions that lead home according to its current home-vector representation. In two different 
experiments, we compare the agent to two different controls. The first control agent only path integrates its 
homing vector, without encoding or retrieving any memories (and without any replay). In this experiment (Fig 
5e) we vary path integration noise and the total number of steps during exploration. The second control agent 
carries out Q-updates to learn actions (discretised direction in the continuous environment) expected to lead 
home in on-policy replays, and uses the learned Q-values to find the way home during escape. Because the 
current location can be observed from the environment, the read-out of Q-values during escape does not 
suffer from path integration errors, but path integration noise does affect the replayed Q-updates: during 
replay, the location to update Q-values for needs to be path integrated, so credit can get assigned to the 
wrong place. In this experiment (Fig 5f), we vary the path integration noise and the number of replays that the 
agent engages in every 4 steps. 
 
7. Optimal replay 
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Given the proposed constructive function of replay, what should its content be (Fig 6)? We define a replay as 
optimal if it maximally reduces the expected additional distance to reward (as compared to before replay), 
summed across all locations. We search over all possible replays to find the replay trajectory that best 
improves this metric. Conceptually, there are two ways replay can improve the metric: Either by adding vector 
representations of previously missing elements into the compositional map, or by consolidating already 
existing representations to reduce path integration noise. We now describe how we calculate the expected 
additional distance, and show how replay can improve it by these two ways.  
 
To fully elucidate how the memories formed in constructive replay improve expected additional distance, we 
need to think about the possible representations at each location. In particular, each location either has access 
to the full state representation, composed of vector representations for all objects/walls/rewards, or a partial 
state representation, where an element of the composition is missing - but replay can provide the missing 
element. Partial representations can have different consequences for policy optimality. Sometimes the 
resulting policy is still successful (for example, when the missing element is irrelevant for the policy, like a wall 
to the north when there is reward to the south), but other times the agent will get stuck. Replay must then 
choose which locations to visit to make partial state representations full or to further improve representations 
that are currently noisy.  
 
There are multiple possible ways to formalise expected additional distance. We formalise it by comparing the 
optimal path versus the path taken by an agent that operates in three regimes related to whether it has access 
to full or partial representations. The first regime is when it has a full representation - in which case it can path 
integrate straight to the goal. The second regime is when it has a partial representation - then it can path 
integrate but may get stuck in states. The third regime is random behaviour - it can switch to this behaviour 
after it gets stuck. This means the agent will always eventually find the reward. The agent can start using a 
partial regime then transition into the full regime on visiting a state with a memory of the full state 
representation, or it can transition from partial to random if the agent gets stuck. We formally model the 
above using three absorbing Markov chains on the discrete environment. The dynamics of these Markov chain 
are specified by three transition matrices, defined by policies as 𝑇((ʹ = 𝑝(𝑠ʹ|𝑠) 	= 	𝛴)𝑝(𝑎|𝑠) ⋅ 	𝑝(𝑠ʹ|𝑠, 𝑎): the 
transitions 𝑇*+,, for the policy given the full state representation, 𝑇-)." for the policy given a partial state 
representation, and 𝑇.)/0 for the random exploration policy. The reward is an absorbing state for each of the 
chains. For 𝑇-)." there are two additional types of absorbing state: locations where the partial policy gets 
stuck, for example when there is an unexpected wall in front of the reward, and locations where memories of 
the full state representation have been encoded. Together, these three chains allow us to analyse a process 
where an agent that does not have access to the full state representation follows the partial policy until it 
arrives at reward, arrives at a memory, or gets stuck. If it arrives at reward, it is done (1). If it arrives at a full 
representation memory, it switches to the dynamics of the full policy 𝑇*+,, that takes it to reward (2). If it gets 
stuck, it starts random exploration following 𝑇.)/0 until it either arrives at reward, or hits a memory that 
provides it with the full representation, so it can follow 𝑇*+,, to reward (3). The total expected distance for a 
location to reward thus becomes the sum of the expected distances of all these scenarios, weighted by their 
probabilities:  
𝑑(")."→.23).0 =  

(1) 𝑝-)."(𝑠𝑡𝑎𝑟𝑡 → 𝑟𝑒𝑤𝑎𝑟𝑑) ⋅ 𝑑-)."(")."→.23).0  
(2) +𝛴424𝑝-)."(𝑠𝑡𝑎𝑟𝑡 → 𝑚𝑒𝑚) ⋅ (𝑑-)."(")."→424 + 𝑑

*+,,
424→.23).0) 

(3) +𝛴("+56𝑝-)."(𝑠𝑡𝑎𝑟𝑡 → 𝑠𝑡𝑢𝑐𝑘) ⋅ (𝑑-)."(")."→("+56 + 𝑝.)/0("+56→.23).0 ⋅ 𝑑
.)/0

("+56→.23).0  
+	𝛴424𝑝.)/0("+56→424 ⋅ [𝑑

.)/0
("+56→424 + 𝑑

*+,,
424→.23).0]) 

To evaluate this expected distance we need to calculate the absorption probability and expected time until 
absorption for a given chain and a given absorbing state. To get these, standard Markov chain analysis 
separates the transition matrix 𝑇 into the dynamics between transient (non-absorbing) states 𝑄 and 
transitions from transient to absorbing states 𝑅, and defines fundamental matrix 𝑁 = (𝐼" − 𝑄)#1, where 𝐼" is 
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the identity matrix with dimension number-of-transient-states. The probability of getting absorbed at state 𝑗, 
starting from state 𝑖, is given by the (𝑖, 𝑗)-element of 𝐵 = 𝑁𝑅. The expected time until absorption anywhere 
starting from state 𝑖 is given by the sum of the 𝑖-th row of 𝑁. To get the expected time until absorption at a 
specific absorbing state 𝑘, we calculate the sum across columns of the fundamental matrix 𝑀 of an adjusted 
transition matrix 𝑈 that expresses transition probabilities given eventual absorption at 𝑘: 𝑈!7 = 𝐵!6𝑇!7/𝐵76 
(Clyde, 2022). 
The above considers replay that provides missing elements to the compositional map in memory. But because 
memories are noisy, due to path integration errors, replay can also improve the policy by encoding memories 
for elements where these already exist. Repeated replay of existing memories improves the accuracy of those 
memories. To model this, we additionally inject noise into the transition matrices 𝑇*+,, and 𝑇-).". Because this 
noise is caused by path integration errors, we model it by mixing the policy at one location with the policy of 
the neighbours, plus a fixed amount of random policy: 𝜋ʹ = 𝑚𝜋𝑛𝑜𝑖𝑠𝑒 + (1 −𝑚)𝜋. Here 𝜋ʹ is a vector of action 
probabilities, 𝜋 is the noise-free policy vector, and 𝜋/=!(2 is the mean of the policies across all neighbours and 
a random policy with equal probability for each action. The amount of mixing 𝑚, which determines the policy 
noise level, is lowered from 0.2 to 0.1 when replay creates an additional memory of an existing representation 
at that location (i.e. goes from 1 memory to 2 memories). 
 
To actually calculate the optimal replay trajectories, we first calculate the expected disxtance to reward for 
each location, subtract the true distance to reward, then sum across all locations. Then we sample all possible 
5-step replay sequences starting from the agent’s current location and recalculate this total expected 
additional distance given the memories created in that replay. The optimal replay is the one that decreases the 
total expected additional distance the most. 
 
8. Non-spatial replay 
 
Finally, we show how our model of state-space composition can be extended to accommodate hierarchies of 
spatial and non-spatial structures (Fig 7). As an example of such an environment, we consider five discrete 
spatial regular square grid rooms, with shapes that are randomly sampled from [4x4, 3x5, 5x3], connected on a 
length-5 non-spatial loop. Now transitions exist on both hierarchical levels, within-room and between-room; in 
general, there can be many recursive levels where a location on the higher level corresponds to a whole 
environment on the lower level, and a lower-level action can take the agent to a different higher-level 
location. Here, the low-level rooms contain two doors, which when entered transition the agent to the 
adjacent high-level room, and one of the low-level rooms contains reward. Crucially the doors are located 
randomly within each room so their location tells you nothing about the high level action. We provide the 
agent a state representation that consists of within-room door and reward vectors 𝑑1, 𝑑2, 𝑟 and between-room 
vector 𝑐 that specifies the clockwise and anticlockwise distance towards the rewarding room. 
 
Like before, we train a policy mapping 𝑓(𝑠) = 𝑎, where the state representation input concatenates vector 
representations across hierarchical levels 𝑠	 = 	 [𝑑1, 𝑑2, 𝑟, 𝑐] and the action output produces an ‘primitive’ 
action, on the lowest level of the hierarchy. Intuitively, it makes sense that this state representation affords 
correct policies: the 𝑐 representation tells the agent which door to use, and the 𝑑1, 𝑑2 representations tells 
them how to get to that door - or directly to reward following 𝑟 if already in the rewarding room. The agent 
can therefore reuse the same object vector cell population in every room (Fig 7b). We implement 𝑓 as a 
feedforward neural network with one hidden layer of twice the size of the input dimension. To train 𝑓, we 
generate many different environments where the shapes of the rooms, the door locations, and the rewarding 
room and reward location are randomised. We train 𝑓 through supervised learning by backpropagation on 500 
samples of [state representation, optimal action] pairs from 25 of such environments in parallel, and repeat 
this 10 times with new environments. 
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Since door locations are different for each room, the agent utilises a low-level memory bank for each room 
that binds within-room vector representations to low-level locations. Additionally, the agent has a high-level 
memory bank that binds between-room vector representations to high-level rooms. This setup factorises the 
different levels of the hierarchy, and so replay can be independent for the different levels of the hierarchy. 
 
When the agent has, through latent learning, built low-level memories of all door-vectors 𝑑1, 𝑑2 within every 
room before finding a reward, it has complete maps of the low-level environments but no optimal policy yet - 
it knows where the doors are, but not yet which door to take. But when it finds the reward in the rewarding 
room, it only needs to replay at the high-level to create a memory that binds the between-room reward vector 
𝑐 to the room to get access to the optimal policy (Fig 7c). Next time when it enters a room, it retrieves 𝑐 from 
high-level memory and 𝑑1, 𝑑2 from the low-level memory bank for that room, which tells it both where the 
doors are and which door to approach. 
 
9. Summary in double dactyl 
 
Lego with state-spaces: 
Cortical building blocks 
bound through conjunction 
in any new way. 
  
Thus hippocampus is 
combinatorially 
building behaviour 
like children's (re)play.  
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