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Abstract 1 

Background: Dietary intake provides nutrients for humans and their gastrointestinal 2 

microorganisms, as some dietary constituents bypass human digestion. These undigested 3 

components affect the composition and function of the microorganisms present. Metagenomic 4 

analyses allow researchers to study functional capacity. As dietary components affect the 5 

composition and function of the gastrointestinal microbiome, there is potential for developing 6 

objective biomarkers of food intake using metagenomic data. 7 

 8 

Objective: We aimed to utilize a computationally intensive, multivariate, machine learning 9 

approach to identify fecal Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) 10 

categories as biomarkers that accurately predict food intake.  11 

 12 

Design: Data were aggregated from five controlled feeding studies in adults that studied the 13 

impact of specific foods (almonds, avocados, broccoli, walnuts, barley, and oats) on the 14 

gastrointestinal microbiota. DNA from pre- and post-intervention fecal samples underwent 15 

shotgun genomic sequencing. After pre-processing, sequences were aligned 16 

(DIAMONDv2.0.11.149) and functionally annotated (MEGANv6.12.2). After count 17 

normalization, the log of the fold change ratio for resulting features between pre- and post-18 

intervention of the treatment group against its corresponding control was utilized to conduct 19 

differential KO abundance analysis. Differentially abundant KOs were used to train machine 20 

learning models examining potential biomarkers in both single-food and multi-food models. 21 

 22 
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Results: We identified differentially abundant KOs for almond (n = 54), broccoli (n = 2,474), 23 

and walnut (n = 732) (q < 0.20). Using the differentially abundant KOs, prediction accuracies 24 

were 80%, 87%, and 86% prediction accuracies for the almond, broccoli, and walnut groups, 25 

respectively using a random forest model to classify food intake. The mixed-food random forest 26 

achieved 81% prediction accuracy. 27 

 28 

Conclusions: Our findings reveal promise in utilizing fecal metagenomics to objectively 29 

complement self-reported measures of food intake. Future research on various foods and dietary 30 

patterns will expand these exploratory analyses for eventual use in feeding study compliance and 31 

clinical settings. 32 

 33 

Keywords: gastrointestinal microbiome; genomic sequencing; KEGG; dietary intake 34 

biomarkers; machine learning 35 
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Introduction 46 

The gut microbiome is a complex ecosystem containing over 1,000 bacterial species and their 47 

3.3 million non-redundant genes, which contribute to human health (1,2). While not limited to 48 

nutrient metabolism, many of the ways that the intestinal microbiome contributes to host health 49 

is through macronutrient metabolism, vitamin production, and bile acid metabolism (3). 50 

Metagenomic analyses characterize the microorganisms present in a given sample and their 51 

encoded functions, which provide insight into the composition and functional capacity of the 52 

microbiome (4). Thus, the use of metagenomics for biomarker discovery is of rising interest (5).  53 

To date, most metagenomic biomarker discovery studies have been specific to disease (6–54 

11). Yet, another promising route for these discoveries is to complement self-reported measures 55 

of food intake and compliance with fecal microbial genes and subsequent pathways as objective 56 

biomarkers because nondigested nutrients undergo microbial metabolism (12). While self-57 

reported food intake and compliance measures are frequently utilized in nutrition studies, they 58 

are limited by their reliability and validity (13–17). Therefore, objective biomarkers to 59 

complement self-reported measures of food intake, like those identified from metagenomic 60 

analyses of fecal samples, are of interest.  61 

The discovery, development, and use of biomarkers of food intake are needed (18–22). 62 

Researchers have reported specific microbial genes and pathways associated with food 63 

consumption. For example, through daily sampling of the gut microbiome over 17 days, Johnson 64 

et al. demonstrated that daily variations in the human gut microbiome relate to food choices (23). 65 

In comparing rural and urban Russian gut microbiomes and Japanese and North American gut 66 

microbiomes, Tyakht et al. and Hehemann et al., respectively, reported gut microbial signatures 67 

attributed to differences in dietary intake (24,25). Furthermore, distinct clusters or “enterotypes” 68 
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dominated by specific bacteria based on metagenomic sequences have been identified and linked 69 

to long-term dietary patterns (26,27). Indeed, the human gut metagenome relates to diet as 70 

different dietary components differentially impact gut microbiome composition and function 71 

(23–27). Despite the promise of these efforts, more work is needed to fully elucidate the impact 72 

of diet on gut microbial composition and function. 73 

Thus, aligned with our previous efforts (28,29), we aimed to develop a proof-of-concept 74 

machine learning model to identify microbial metagenomic profiles in fecal samples that could 75 

be leveraged as biomarkers of specific food intake. Herein, we describe secondary analyses 76 

conducted on data from fecal samples collected at pre- and post-intervention of 5 feeding trials 77 

(almonds, avocados, broccoli, walnuts, and whole grains). The purpose of the present 78 

investigation was to utilize a computationally intensive, multivariate, machine learning approach 79 

to identify fecal Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) 80 

categories as biomarkers that accurately predict food intake. 81 

 82 

Subjects and Methods  83 

Experimental Design 84 

This study utilized data from five separate feeding studies examining almond (30), 85 

avocado (31,32), broccoli (33), walnut (34), or whole-grain barley and whole-grain oat (35) 86 

consumption in adults (n = 285) between 21 to 75 years of age, which have been briefly 87 

summarized in Table 1. Briefly, the almond, broccoli, and walnut trials were each complete 88 

feeding studies that utilized randomized, controlled, crossover designs. Of note, the original 89 

almond trial included five intervention arms: 1) control, 2) whole almonds, 3) whole, roasted 90 

almonds, 4) roasted, chopped almonds, and 5) almond butter (30). However, the current effort 91 
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only included control and chopped almond samples due to cost of analyses and previous efforts 92 

revealing statistically significant changes in the gut microbiota composition in chopped versus 93 

control samples (36). The whole grain study was a 6-week, complete feeding, parallel-arm 94 

design. The avocado trial was a randomized, parallel-arm, controlled trial that provided one meal 95 

daily for 12 weeks. All study procedures were administered in accordance with the Declaration 96 

of Helsinki and were approved by the Institutional Review Board of the MedStar Health 97 

Research Institute (almond, broccoli, walnut, and whole grains) or the University of Illinois 98 

Institutional Review Board (avocado).  99 

 100 

DNA Extraction and Shotgun Genomic Sequencing 101 

Details of DNA extraction through functional annotation are outlined in Figure 1. All 102 

five studies collected fecal samples at the beginning and end of each dietary period. Fecal sample 103 

collection and DNA extraction were conducted as previously described (32). Shotgun genomic 104 

DNA libraries were constructed and sequenced at the DNA Services laboratory of the Roy J. 105 

Carver Biotechnology Center at the University of Illinois at Urbana-Champaign using the Kapa 106 

Hyperprep Sample Preparation Kit (Kapa Biosystems). Briefly, 100 ng high molecular weight 107 

DNA was sonicated on a Covaris M220 sonicator to a size of ∼250 bp. After sonication, DNA 108 

was blunt-ended, 3′-end A-tailed, and ligated to unique dual-indexed adaptors from Illumina. 109 

The adaptor-ligated DNA was amplified by PCR for four cycles with the Kapa HiFi polymerase 110 

(Kapa Biosystems). The final libraries were quantitated using Qubit High-Sensitivity DNA 111 

(ThermoFisher) and the average size was determined on the Fragment Analyzer (Agilent, CA). 112 

The libraries were pooled in equimolar concentration into two pools. Each pool was size selected 113 

on a 2% agarose gel for the portion of the DNA library that contained genomic DNA fragments 114 
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of length 100-350 bp, then evaluated on the Fragment Analyzer. The final pools were diluted to 5 115 

nM concentration and further quantitated by qPCR on a BioRad CFX Connect Real-Time 116 

System (Bio-Rad Laboratories). Each pool was loaded on 1 lane of an Illumina NovaSeq 6000 117 

S4 flowcell and sequenced with paired-reads 150nt in length. The FASTQ files were generated 118 

and demultiplexed with the bcl2fastq v2.20 Conversion Software (Illumina). 119 

 120 

Sequence Pre-processing 121 

All pre-processing steps were performed for each participant’s sequence data, consisting 122 

of separate forward and reverse read sequence files for both the pre-intervention and post-123 

intervention timepoints, totaling 4 FASTQ files (samples) per participant.  124 

For each pair of samples, the forward and reverse read FASTQ files were merged into a 125 

single-read FASTQ file using the fastq_mergepairs function in VSEARCH v2.4.3 (37), a 126 

computational tool for pre-processing metagenomic sequences. Each merged FASTQ file was 127 

further augmented by concatenating it with the remaining forward reads not merged by 128 

VSEARCH. Quality control was then performed on the resulting merged sequence data using 129 

KneadData v0.8.0 (38) to separate contaminant host reads from the microbial reads. KneadData 130 

removed reads appearing in the hg37 v0.1 human reference database from each FASTQ file.  131 

 132 

Functional and Taxonomic Annotation 133 

All functional annotation steps were performed for each participant’s merged and cleaned 134 

pre-intervention and post-intervention sequence data, totaling 2 FASTQ files (samples) per 135 

participant. See Supplemental Figure 1 for more details on included data.  136 
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DIAMOND (double index alignment of next-generation sequencing data) v2.0.11.149 137 

(39) was used in conjunction with the National Center for Biotechnology Information (NCBI) 138 

non-redundant (nr) protein reference database (40) to align translated DNA query sequences. The 139 

database was downloaded directly from NCBI’s FTP server in June 2021 and formatted using the 140 

makedb function within DIAMOND. Each sample’s sequences from the merged and cleaned 141 

FASTQ file were aligned against the NCBI-nr database, producing a corresponding output 142 

DIAMOND alignment archive file. DIAMOND was set to “sensitive” mode, targeting 143 

alignments with >40% identity with an e-value of 0.00001. 144 

MEGAN (MEtaGenome ANalyzer) v6.12.2 (41) Ultimate Edition was then used to 145 

perform functional analysis of the sequence alignments against the KEGG gene database (42–146 

44). For each sample, the sequence alignments produced by DIAMOND in the previous step 147 

were matched to a KEGG ortholog (KO) accession, producing a MEGAN file containing the 148 

total count of each KO across each sample. KOs represent common functionalities across 149 

orthologous genes in different species based on sequence similarity, enabling the comparison of 150 

microbial functional profiles. The MEGAN file was then exported to CSV format for further 151 

processing. NCBI taxonomy counts were also exported from MEGAN in a similar fashion.  152 

 153 

Count Normalization 154 

Count normalization was performed on the KO and taxon count table produced by 155 

MEGAN6 prior to downstream analysis. First, all counts were normalized using log 156 

transformation, offsetting each count by 1 to account for zero-valued data points. Then, the 157 

difference between the pre- and post-intervention log-normalized counts was computed for each 158 
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sample, resulting in two sets of counts for each sample describing the log of the fold change ratio 159 

in both KO counts and taxon counts from pre- to post-intervention. 160 

 161 

Differential KEGG Ortholog Abundance and Pathway Enrichment Analysis 162 

Differential KO abundance analysis was conducted individually for each food group by 163 

contrasting the normalized KO counts of the food intervention group against its corresponding 164 

control group using Student’s t-test (45). KOs were considered differentially abundant if they 165 

met a significance threshold of q < 0.20 after controlling for the false discovery rate (FDR) using 166 

the Benjamini-Hochberg procedure (46). 167 

Pathway enrichment analysis was then performed using the kegga function in the limma 168 

R package (47). KEGG pathways were tested for over-representation in the set of differentially 169 

abundant KOs for each food using Fisher’s exact test (48). Pathways with an uncorrected P < 170 

0.05 were considered significantly enriched.  171 

 172 

Machine Learning 173 

 We utilized random forests (49) to further examine the relationship between food 174 

consumption and changes in functional abundance. For each food group, a scikit-learn (50) 175 

random forest model with 2000 trees was trained to classify each participant’s study arm (control 176 

or treatment) using the normalized KO counts as the covariate. Only differentially abundant KOs 177 

with an absolute mean log-fold change of greater than two were included in the training dataset. 178 

Each model was trained and then evaluated in a leave-one-out cross-validated fashion with all 179 

model parameters fixed to their default values. Feature importances were extracted from each 180 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2023. ; https://doi.org/10.1101/2023.04.10.536271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536271


11 
 

 
 

model to determine the most informative KOs as potential biomarkers in discriminating food 181 

consumption.  182 

 Finally, we pooled normalized KO counts from each group for classification to examine 183 

the impact of food consumption on functional abundance across different food groups. To 184 

account for inter-study batch effects (such as varying background diets), we further normalized 185 

the data by computing the fold change ratio between each participant’s treatment and control KO 186 

counts. Then, we fit a scikit-learn random forest model with 2000 trees using the normalized KO 187 

counts as the covariate and the food consumed as the outcome. Only KOs considered 188 

differentially abundant in at least one of the food groups and with an absolute mean log-fold 189 

change of greater than two were included in the training data. Each model was trained and then 190 

evaluated in a leave-one-out cross-validated fashion with all model parameters fixed to their 191 

default values. Feature importances were extracted from each model to determine the most 192 

informative KOs in discriminating food consumption.  193 

The pooling of data from various independent studies would typically make the model 194 

susceptible to the batch effect, where the training procedure could potentially learn to 195 

discriminate the outcome based on variance in the data not influenced by food consumption but 196 

rather external factors such as the background diet (28). As each individual in the almond, 197 

broccoli, and walnut studies participated in both the food intervention and control arms as part of 198 

the crossover design, we utilized a model that accounted for the batch effect (28) by using 199 

training data that consisted of the difference of the normalized counts between both study arms 200 

and endpoints for each individual. This ensured the model was training on data representing the 201 

effect of only the food intervention on KO abundance, accounting for the impact of background 202 

diets and other external factors.  Additionally, it is crucial to understand the interpretations of 203 
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these findings. While a feature may have a negative log of the fold change ratio, it does not 204 

necessarily mean that this feature exhibited lower abundance in absolute terms.   205 

To compare earlier findings on the impact of food consumption on fecal bacteria, we 206 

replicated our prior analysis which utilized 16S (V4 region) sequencing to infer microbial 207 

abundance with the metagenomic dataset (28). Briefly, the analysis aimed to identify a compact 208 

set of microbial biomarkers of specific whole food intake. A marginal screening process was 209 

used independently on each food group to select the top 20 most statistically significant microbes 210 

when comparing the treatment and control groups within that food’s dataset. This feature set was 211 

pooled together and used to train a random forest model to classify which treatment (i.e. almond, 212 

avocado, broccoli, walnut, or whole grains) each participant across the treatment groups 213 

received. The set of biomarkers was further pared down by pooling the top 10 most important 214 

features as ranked by the random forest model for classifying each food group. This compact set 215 

of features was then used to train a second random forest to classify which treatment the 216 

participants received, demonstrating the effectiveness of the compact set of microbial biomarkers 217 

at differentiating whole food intake. Finally, the same random forest model was used to classify 218 

participants in the control group to validate that the performance of the model was not heavily 219 

influenced by batch effects in which the model is differentiating between differences in 220 

background diet or participants in specific studies rather than the effects of the food intake itself. 221 

This methodology, originally using taxonomic abundance data derived from 16S sequencing 222 

data, was replicated using the NCBI taxonomic data exported from MEGAN. As only a smaller 223 

subset of the participants from the original study (n = 285) were included in this analysis, we also 224 

replicated the analysis on the original SILVA-annotated (51) 16S data using only this subset of 225 

participants. 226 
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Results 227 

The relative abundance of the 20 most variable KOs within each food group before and 228 

after both arms of each study are visualized in Figure 2. Notably, the almond, broccoli, and 229 

walnut groups displayed large shifts in functional composition in the treatment group compared 230 

to the control group. In contrast, the avocado and grains groups maintained relatively steady 231 

abundances between the treatment and control arms. 232 

 233 

 Differential KEGG Ortholog Abundance and Pathway Enrichment Analysis 234 

The analysis revealed differentially abundant KOs in the almond (n = 54), broccoli (n = 235 

2,474), and walnut (n = 732) groups at a corrected q-value of < 0.20. No KOs were differentially 236 

abundant at this threshold for the avocado, whole-grain barley, or whole-grain oats groups. 237 

Therefore, these food groups were excluded from further analysis. Supplemental Table 1 lists 238 

the top 50 most significant differentially abundant KOs found for the almond, broccoli, and 239 

walnut groups and their corresponding q-values. Figure 3 shows the number of differentially 240 

abundant KOs unique to and shared between each group. Almond and broccoli shared 41 unique 241 

differentially abundant KOs, whereas broccoli and walnut shared 551. Almond and walnut 242 

shared two unique differentially abundant KOs, manganese-dependent ADP-ribose/CDP-alcohol 243 

diphosphatase (K01517) and heparin lyase (K19050). Only two unique KOs, Vitamin B12 244 

transporter (K16092) and type III secretion protein R (K03226), were differentially abundant in 245 

all three groups.   246 

Pathway analysis was conducted individually for each food group using over-247 

representation tests by the kegga function in the limma R package (47). The analysis revealed 4, 248 

59, and 24 pathways with a significant number of constituent differentially abundant KOs in the 249 
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almond, broccoli, and walnut groups, respectively, at an uncorrected threshold of P < 0.05. 250 

Supplemental Tables 2, 3, and 4 list these pathways, the number of total KOs in each pathway, 251 

the number of differentially abundant KOs in each pathway, and the P value for the over-252 

representation test. 253 

 254 

Single-food Models 255 

Single-food machine learning models were constructed individually for each food group 256 

using the log of the fold change ratio of KO counts for that food group between pre- and post-257 

intervention for both the food intervention and control groups as the covariate and study arm 258 

(control or intervention) as the outcome label. The models achieved prediction accuracies of 259 

80%, 87%, and 86% for the almond, broccoli, and walnut groups, respectively. The top 10 260 

feature importance scores extracted from each random forest model are shown in Supplemental 261 

Table 5. The feature importance score distributions for each of the three models all exhibited the 262 

“elbow” pattern (52) (Figure 4A), i.e., the first few top features show a steep decline in 263 

importance, with the subsequent features declining in importance at a slower pace. Of note, the 264 

variable importance scores assigned by the random forest model may change slightly each time 265 

the model is refit; this numerical instability occurs due to nondeterminism intrinsic to the random 266 

forest algorithm. 267 

 268 

Almond. The top 10 KO categories (in rank order) identified by our random forest model for 269 

predicting almond treatment versus control consumption resulted in 80% prediction accuracy: 1) 270 

manganese-transporting P-type ATPase C (K12950), 2) putative colanic acid biosynthesis 271 

glycosyltransferase (K13683), 3) a nitrilase involved in tryptophan metabolism (K01501), 4) 272 
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membrane-bound hydrogenase subunit mbhJ (K18023), 5) RNA polymerase sigma-32 factor 273 

(K03089), 6) glycolate oxidase iron-sulfur subunit (K11473), 7) probable lipoprotein NlpC 274 

(K13695), 8) serine/threonine-protein kinase PpkA (K11912), 9) RHH-type transcriptional 275 

regulator, proline utilization regulon repressor/proline dehydrogenase/delta 1-pyrroline-5-276 

carboxylate dehydrogenase (K13821), and 10) an outer membrane lipoprotein carrier protein 277 

(K03634).  278 

 279 

Walnut. For walnut’s 86% prediction accuracy, the top 10 KO categories included four ATP-280 

binding cassette (ABC) transporters (1) K10562, 2) K16013, 3) K10559, and 9) K05658), 4) 281 

spore coat-associated protein N (K06336), 5) an uncharacterized protein (K09145), 6) L(+)-282 

tartrate dehydratase alpha subunit (K03779), 7) thiol-activated cytolysin (K11031), 8) heparin 283 

lyase (K19050), and 10) an RCC1 and BTB domain-containing protein (K11494).  284 

 285 

Broccoli. Finally, the ten broccoli KO categories (in rank order) included 1) heptosyltransferase 286 

II (K02843), 2) probable lipoprotein NlpC (K13695), 3) 4-phytase/acid phosphatase (K01093), 287 

4) MFS transporter/FSR family fosmidomycin resistance protein (K08223), 5) β-barrel 288 

assembly-enhancing protease (K01423), 6) 3-deoxy-D-manno-octulosonate 8-phosphate 289 

phosphatase (K03270), 7) MFS transporter/NHS family xanthosine permease (K11537), 8) D-290 

glycero-beta-D-manno-heptose-7-phosphate kinase (K21344), 9) tyrosine-protein kinase 291 

Etk/Wzc (K16692), and 10) phosphomannomutase/phosphoglucomutase (K15778), resulting in 292 

87% prediction accuracy.  293 

 294 

Mixed-food model 295 
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The mixed-food machine learning model was constructed using the difference of the log of 296 

the fold change ratio of KO counts for each food group between pre-treatment and post-297 

intervention between the control and treatment arms of each food group and treatment arm 298 

(almond, broccoli, or walnut) as the outcome label. The overall mixed-food random forest 299 

achieved a prediction accuracy of 81%. The feature importance distribution of the mixed-food 300 

model was similar to that of the single-food models, exhibiting an “elbow”-shaped curve where 301 

the first few features saw a steep drop-off in importance while the following features experienced 302 

a less steep decline (Figure 4B). The top 25 feature importances were extracted from the mixed-303 

food model (Supplemental Table 6).  304 

The difference of the log of the fold change ratio of the top 25 most important features 305 

extracted from the model was visualized across the three groups (almond, broccoli, and walnut) 306 

in a heatmap (Figure 5), demonstrating that these features show potential as biomarkers of 307 

dietary intake as differences were seen when comparing treatment to respective control groups 308 

within each food. As shown in Figure 5, 15 KOs were increased in walnut treatment compared to 309 

control. In contrast, the 15 KOs enriched in the walnut treatment compared to control decreased 310 

in treatment compared to control for almond samples. Of the 15 KOs increased in walnut 311 

treatment compared to control, 12 decreased in broccoli treatment compared to control, whereas 312 

three KOs also increased in broccoli treatment compared to control. On the other hand, five KOs 313 

increased in almond and broccoli treatment compared to control but decreased in walnut 314 

treatment compared to control. Finally, five KOs increased in broccoli treatment compared to 315 

control, but decreased in almond and walnut treatment compared to their respective controls. 316 

  317 

Replication of previous 16S methods on NCBI-nr data 318 
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Normalized taxonomic counts relying on annotations of whole genome shotgun 319 

sequences from the NCBI-nr database in the current effort were used in place of annotations of 320 

16S sequences from the SILVA database to replicate our previous work (28). As detailed in the 321 

methods, features (i.e., 86 microbes) were selected by pooling the top 20 most important features 322 

from each food group using the Kruskal-Wallis test (53). These features were used to train a 323 

random forest model to classify which food intervention each participant received. The features 324 

(i.e. microbial biomarkers) and their feature importances across all the foods are listed in Table 325 

2. The top 10 most important features for each food group as ranked by the initial random forest 326 

model were extracted, resulting in 29 unique features. This final compact dataset was then used 327 

to train a second random forest model to classify food intake. This model achieved per-class 328 

balanced accuracies of 69%, 80%, 87%, 83%, and 92% on the almond, avocado, broccoli, 329 

walnut, and whole grains groups respectively. The overall accuracy was 74% (AUC = 0.93) 330 

above the no information rate of 29% with P < 0.05. The confusion matrix for the model is 331 

shown in Supplemental Table 7. When the same model was used to classify participants in the 332 

control arm of each study, it achieved per-class balanced accuracies of 44%, 71%, 48%, 79%, 333 

and 66% on the almond, avocado, broccoli, walnut, and whole grains groups, respectively, for an 334 

overall balanced accuracy of 41% above the no information rate of 24% with P < 0.05 and an 335 

AUC of 0.69. The confusion matrix for this model is also shown alongside the prior results in 336 

Supplemental Table 7. Finally, when retraining and classifying on the original SILVA-annotated 337 

16S dataset using the subset of participants also included in this study, the model achieved per-338 

class balanced accuracies of 61%, 73%, 77%, 91%, and 83% on the almond, avocado, broccoli, 339 

walnut, and whole grains groups, respectively, for an overall balanced accuracy of 67% above 340 
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the no information rate of 29% with P < 0.05 and an AUC of 0.89. The microbial biomarkers 341 

with their feature importances extracted from this model are listed in Supplemental Table 8.  342 

Across both the NCBI-nr and SILVA 16S models, classification of the control groups 343 

using the final random forest model trained on the treatment groups resulted in poor 344 

classification accuracy (Supplemental Table 7). The NCBI-nr trained model achieved an overall 345 

accuracy of 41% (AUC = 0.68) and the SILVA 16S model achieved an overall accuracy of 40% 346 

(AUC = 0.67). As both models performed poorly, we have more confidence that their accuracies 347 

on the treatment groups were not entirely due to overfitting or batch effects (28), such as the 348 

study site or background diet, which differed across the food groups. However, both models still 349 

performed better than the no information rates with P < 0.05, indicating the presence of at least 350 

some batch effects.  351 

 352 

Discussion  353 

Herein, we report fecal microbial KO categories and subsequent metabolic pathways 354 

associated with individual food intake (i.e., almond, broccoli, and walnut). This effort, which 355 

utilized random forest models to identify food intake biomarkers, revealed high predictive 356 

accuracy of almond, broccoli, and walnut intake, both individually (compared to respective 357 

controls) and in a mixed-food model (almond versus broccoli versus walnut). Further, we 358 

identified differentially abundant KOs across all three food groups. Of note, the most promising 359 

findings were produced from data in our three randomized, controlled, crossover, complete-360 

feeding trials compared to our two parallel-arm trials. These findings reveal the promise of 361 

metagenomic data from rigorously designed research efforts in establishing fecal KOs as 362 

biomarkers of food intake to objectively complement self-reported food measures and study 363 
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compliance. Of note, differentially abundant KOs were considered statistically significant at a 364 

conservative q-value of 0.20 due to the exploratory nature of our analyses. For pathway analysis, 365 

kegga intentionally provides uncorrected P values as KOs can be part of multiple pathways, and 366 

thus, FDR correction would be overly conservative (46). However, we chose a more 367 

conservative P = 0.05 to account for the lack of FDR correction. 368 

With approximately 40 grams of dietary carbohydrates, 12-18 grams of protein, and 5% of 369 

dietary lipids bypassing human digestion each day (12), these food components are available for 370 

digestion by over 1,000 bacterial species and their 3.3 million non-redundant genes (2), some of 371 

which encode approximately 16,000 carbohydrate-active enzymes (CAZymes) (54). Because of 372 

this enzymatic capacity, there is interest in the relationship between dietary intake and fecal 373 

microbial genes (23–27). Johnson et al. demonstrated that daily variations in the human gut 374 

microbiome relate to food choices rather than individual nutrients, noting that while food-375 

microbe interactions are highly personalized, it is likely that specific dietary compounds will 376 

have consistent effects on certain bacterial strains and metabolic pathways (23). In considering 377 

geographical differences, Tyakht et al. reported that Russians in several rural regions had gut 378 

microbiomes dominated by bacteria from the Firmicutes and Actinobacteria phyla, including 379 

Ruminococcus bromii and Eubacterium rectale, which are capable of utilizing resistant starch 380 

(24). Therefore, it was hypothesized that these microbiome signatures were related to the 381 

consumption of conventional staple foods in rural Russia, including starch-rich bread and 382 

potatoes. The lack of these starch-metabolizing microbes in Western cohorts was likely due to 383 

reduced consumption of resistant starch in these regions. Thus, Tyakht et al. attributed 384 

differences in the rural versus urban gut microbiomes to multiple factors, including diet. In the 385 

Japanese population, Hehemann et al. demonstrated that genes encoding porphyranases, 386 
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CAZymes involved in the degradation of red algae, are present in the Japanese gut microbiome, 387 

but absent in that of North Americans. As seaweeds are an important component of the Japanese 388 

diet, the Japanese human gut microbiome’s acquisition of these CAZymes stands to reason (25). 389 

Arumugam et al. identified three distinct clusters or “enterotypes” based on metagenomic 390 

sequences that were dominated by Bacteroides, Prevotella, or Ruminococcus with enrichment for 391 

specific gene functions (26). Wu et al. confirmed that long-term dietary patterns were the 392 

primary predictor of an individual’s enterotype. Further, the Bacteroides enterotype was 393 

associated with a Western diet, high in proteins and fat, while the Prevotella enterotype was 394 

associated with consumption of plant fiber (27). Finally, Turnbaugh et al. demonstrated that 395 

changing from a low-fat, plant polysaccharide-rich diet to a high-fat/high-sugar “Western” diet 396 

changed microbiome gene expression in humanized gnotobiotic mice, further supporting the 397 

adaptability of the composition of the human gut microbiome, and, therefore, function in relation 398 

to diet (55).  399 

In the present study, manganese-dependent ADP-ribose/CDP-alcohol diphosphatase 400 

(K01517) and heparin lyase (K19050) were differentially abundant in both almond and walnut 401 

treatment samples, which may play roles in immune cell signaling and phospholipid biosynthesis 402 

(56) and the cleavage of glycosidic bonds in polysaccharides (57), respectively. Further, vitamin 403 

B12 transporter, BtuB (K16092), and type III secretion protein R (K03226), were differentially 404 

abundant in all three groups. Like humans, gram-negative bacteria require essential nutrients and 405 

thus have mechanisms to obtain cofactors, such as cobalamin, from external sources (58). While 406 

many researchers focus on type III secretion systems to discover antimicrobial therapies against 407 

pathogens, these systems are also present in symbiotic bacteria as they are highly conserved 408 

across bacterial species, playing an important role in various cellular activities by delivering 409 
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effector proteins to targeted eukaryotic cells (59). Of note, butanol dehydrogenase (K00200), an 410 

enzyme involved in microbial fermentation, was differentially abundant in fecal bacteria of 411 

participants in the walnut intervention (60). The breadth of functional potential demonstrated in 412 

these four differentially abundant KOs alone highlights the wide variety of roles that the gut 413 

microbiome plays throughout the body, reflecting the potential for targeting compositional and, 414 

therefore, functional changes through diet.  415 

 Examining the top 10 KO categories identified by our random forest model for almond, 416 

broccoli, and walnut individually, we see features related to genetic information processing, 417 

signaling and cellular processes, and carbohydrate, amino acid, and vitamin pathways. Of note, 418 

broccoli achieved the highest prediction accuracy of the three foods examined here compared to 419 

our previous work utilizing 16S rRNA bacterial sequence data, in which broccoli was our lowest 420 

performing category (28). Similar to our single-food model, the majority of features identified as 421 

important by our random forest model in our multi-food analyses are protein families related to 422 

various metabolic processes, genetic information processing, and signaling and cellular 423 

processes, supporting evidence that diet may alter the activity and function of the human 424 

intestinal microbiome (55,61). These findings highlight the importance of using multiple -omics 425 

techniques in biomarker discovery.  426 

Random forest models are well-suited for metagenomics classification and biomarker 427 

selection tasks (62). Yatsunenko et al. compared microbiome functional profiles across 428 

demographics using random forest models trained on KEGG enzyme data to discriminate 429 

between age groups and geographical locations (63). Random forests easily generalize from 430 

binary problems to multi-class problems, unlike some other types of supervised models, such as 431 

logistic regression and support vector machines (SVM). Additionally, random forests have a 432 
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lower tendency to overfit when compared to SVM models and are uniquely effective in 433 

classifying datasets with smaller sample sizes (64,65). Finally, random forests can intrinsically 434 

inform biomarker discovery by assigning importance scores to input features without relying on 435 

external feature selection tools. As a high score indicates the KO was useful in classifying the 436 

food, KOs with high feature importance scores could be promising biomarker candidates.  437 

When comparing the current effort’s NCBI-nr taxonomic annotations with the previous 438 

effort’s SILVA annotations of 16S sequences (28), the classification accuracies across the food 439 

groups were mostly similar among datasets. Notably, the balanced accuracy for classifying 440 

broccoli was greatly increased to 87% from our previous 11% (28). However, these results 441 

cannot be directly compared to the previous efforts’ (28) due to the differing sample sizes of the 442 

two analyses (340 data points (difference in pre- and post-intervention) in the previous 16S 443 

effort; 187 data points in current effort). To provide a more direct contrast between the 444 

metagenomic and 16S annotations, we examined the results from replicating the analysis only on 445 

the subset of 187 samples present in both datasets (Supplemental Table 7). Here, the 446 

metagenomic dataset annotated using the metagenomic taxonomy holistically performed better 447 

than the subsetted 16S dataset. The replicated almond group still performed poorly compared to 448 

our original 16S efforts (62% vs 76% accuracy) (28), demonstrating the negative effect of the 449 

reduced sample size on this analysis. Finally, the replicated broccoli group performed much 450 

better compared to our 16S original efforts (77% vs 11%) (28), indicating that the increased 451 

accuracy of the current effort may be inflated due to overfitting or elimination of “problematic” 452 

samples.  453 

From a microbial biomarkers standpoint, in comparing the current effort’s NCBI-nr 454 

taxonomic annotations with the previous effort’s SILVA annotations of 16S sequences (28), 455 
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Parabacteroides distasonis and species within the Lachnospiraceae, Subdoligranulum, and 456 

Bacteroides genera appeared in both our current (Table 2) and previous efforts (28). Further, 457 

species within the Dorea and Ruminococcus genera, which appeared as important in original 458 

efforts (32,66), were identified by the current random forest model. Unique to the current effort, 459 

the butyrate-producing genus, Eubacterium (67), was deemed important by our random forest 460 

model. Eubacterium spp. are also involved in bile acid and cholesterol metabolism (68). Finally, 461 

Blautia wexlerae and Blautia obeum were also identified as important features by our random 462 

forest model. Blautia plays is involved in various metabolic diseases, inflammatory diseases, and 463 

biotransformation with recent interest in its potential probiotic properties (69). The consistencies 464 

between our previous 16S (28) and current metagenomic effort reveal promise in our ability to 465 

identify fecal microbes as objective biomarkers of food intake. However, there are differences in 466 

some of our current findings when comparing to our previous effort (28). For example, 467 

Roseburia was enriched with almond (36) and walnut (66) consumption, and multiple Roseburia 468 

species were identified as a potential bacterial (16S) biomarkers (28). However, Roseburia was 469 

not selected by our current metagenomic taxa model. This discrepancy points to the limitations 470 

in the microbiota molecular methods, namely primer bias (70). Thus, when feasible, shotgun 471 

genomic sequencing should be utilized (71).  472 

Our works reveals promise in the utility of metagenomics data as food biomarkers,  473 

which underscores the importance of including metagenomic endpoints as primary outcomes in 474 

future studies. While the present study is strengthened by the use of state-of-the-art 475 

bioinformatics techniques and fecal samples from three randomized, controlled, crossover, 476 

complete-feeding trials, our two parallel-arm trials did not perform well, highlighting the 477 

importance of appropriate research design for intended outcomes. Further, although 478 
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metagenomic data provides insight into functional capacity, metabolomics and transcriptomic 479 

studies are needed to assess metabolic activity and active genes. Thus, future work should utilize 480 

multi-omics analyses, when possible. While the gut microbiome expresses many functional 481 

genes involved in core metabolic pathways across healthy individuals (26,72), inter-individual 482 

variability must also be considered. Future randomized, controlled, crossover, complete feeding 483 

trials should also include dose-response of specific foods within a greater number of individuals. 484 

As researchers continue to elucidate the relationship between diet and the gut microbiome and 485 

identify microbial genes and pathways as biomarkers of food intake, these outcomes can be 486 

examined in observational trials and eventually used in clinical and research settings as 487 

compliance measures to complement self-reported measures of intake and advance the field of 488 

personalized nutrition.  489 

In summary, using metagenomics data and machine learning, we reveal promise in the 490 

feasibility of fecal KO categories as objective biomarkers of food intake. These findings provide 491 

groundwork for uncovering additional objective biomarkers of food intake. With future work and 492 

integration of -omics data, biomarkers like the ones identified from this effort can be applied in 493 

feeding study compliance and clinical settings.  494 
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Tables and Figures 

Table 1. Study design of five studies aggregated for secondary analyses. 

 Population Trial Design 

Study Age, y BMI, kg/m Design Controlled Diet 

Composition 

Intervention Food 

Almond 

(n=18) 

(30) 

57.0 ± 2.3  

(25-75 y) 

30.0 ± 1.0 

(21.9-36.1 

kg/m2) 

Randomized, 

controlled, 

crossover 

Complete feeding (55% 

carbohydrate, 15% protein, 

30% fat) 

1.5 servings (42 grams)/day of roasted, 

chopped almonds (base diet scaled 

down for isocaloric inclusion) 

Avocado 

(n=163) 

(32) 

35.0 ± 0.5  

(25-45 y) 

32.8 ± 0.5 

(23.9-58.8 

kg/m2) 

Randomized, 

controlled, 

parallel-arm 

One daily meal (45% 

carbohydrate, 15% protein, 

40% fat) 

175 grams (males) or 140 grams 

(females) avocado (once daily isocaloric 

meal)  

Broccoli 

(n=18) 

(33) 

55.0 ± 1.7 

(21-70 y) 

28.0 ± 1.2 

(19.0-36.6 

kg/m2) 

Randomized, 

controlled, 

crossover in 

adults 

genotyped for 

Complete feeding (54% 

carbohydrate, 16% protein, 

30% fat) 

200 g cooked broccoli with 20 g raw 

daikon radish/day (added to controlled 

diet) 
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glutathione S-

transferase μ 1 

(GSTM1) and 

glutathione S-

transferase θ 1 

(GSTT1) gene 

Walnut 

(n=18) 

(34) 

53.1 ± 2.2 

(25-75 y) 

28.8 ± 0.9 

(20.2 -34.9 

kg/m2) 

Randomized, 

controlled, 

crossover 

Complete feeding (54% 

carbohydrate, 17% protein, 

29% fat) 

1.5 servings (42 grams)/day of walnuts 

(base diet scaled down for isocaloric 

inclusion) 

Whole 

grains 

(n=68) 

(35) 

52.8 ± 1.3 

(25-70 y) 

28.2 ± 0.5 

(18.9-38.3 

kg/m2) 

Randomized, 

controlled, 

parallel-arm 

Complete feeding with 0.7 

servings (11.2 grams) of 

whole grains per 1800 kcal 

(53% carbohydrate, 15% 

protein, 32% fat) 

4 servings (64 grams) of whole-grain 1) 

barley or 2) oats per 1800 kcal 
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Table 2. Microbial biomarkers using the top fecal metagenomic NCBI-nr annotated species 
from metabolically healthy adults who consumed 5 foods. 

Rank Overall variable 
importance 

NCBI-nr assignment 

1 0.038 Eubacterium spp. 
2 0.015 Evtepia gabavorous 
3 0.018 Unclassified species in Bacteroidales order 
4 0.007 Subdoligranulum variabile 
5 0.011 Unclassified species in Bacteroidaceae family 
6 0.011 Unclassified species in Tannerellaceae family 
7 0.014 Unclassified species in Bacteroidetes phylum 
8 0.008 Ruminococcus torques 
9 0.016 Unclassified species in Prevotellaceae family  
10 0.004 Unclassified species in Rikenellaceae family 
11 0.017 Bilophila spp.  
12 0.011 Unclassified species in Deltaproteobacteria class 
13 0.013 Unclassified species in Desulfovibrionales order 
14 0.016 Parabacteroides distasonis 
15 0.011 Clostridioides difficile 
16 0.013 Unclassified species in Lachnospiraceae family 
17 0.007 Dorea formicigenerans 
18 0.012 Blautia wexlerae 
19 0.011 Unclassified species in Eubacteriales order 
20 0.007 Blautia spp. 
21 0.006 Unclassified species in Actinomycetia class 
22 0.004 Unclassified species in Oscillospiraceae family 
23 0.004 Unclassified species in Betaproteobacteria class 
24 0.003 Unclassified species in Peptostreptococcaceae family 
25 0.010 Dorea spp. 
26 0.009 Blautia obeum 
27 0.006 Bacteroides spp. 
28 0.007 Unclassified species in Bacteroidia class 
29 0.005 Unclassified species in Firmicutes phylum 
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Figure 1. Data workflow from DNA extraction to KEGG functional ortholog counts. An overview of methods from 
shotgun genomic sequencing, generation of raw sequences, merging paired-end reads, filtering contaminants, aligning 
reads with DIAMOND, annotating reads in MEGAN, and generation of KEGG orthologs is shown.
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Figure 2. Mean relative abundance of 20 most variable functional orthologs in metabolically healthy adult participants. A) almond, B) avocado, 
C) broccoli, D) grains, and E) walnut visualize these orthologs before and after undergoing each intervention. Variance was calculated within each food 
group using KO counts aggregated across all participants in the group and normalized.  F) visualizes the most variable orthologs across all food groups 
prior to each intervention. Mean relative abundance was computed only within a set of 20 most variable orthologs relative to each other. Directional 
indicator arrows follow changes in mean relative abundance for each ortholog before and after undergoing each intervention type.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 11, 2023. ; https://doi.org/10.1101/2023.04.10.536271doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536271


Figure 3. Overlap of differentially abundant KEGG orthologs across almond, broccoli, and walnut. KEGG orthologs (KOs) 
were considered differentially abundant if they met a significance threshold of q < 0.20. Subset labels indicate the number of KOs 
differentially abundant in both groups represented by the subset.
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Figure 4. Single-food (A) and multi-food (B) feature importances generated from random forest in almond, broccoli, and walnut. Random forest models were trained to (A) discriminate food intake vs. control for each 
food group using normalized KO counts and (B) discriminate between almond, broccoli, and walnut intake using normalized KO counts. The top 50 feature importance scores were extracted from each model and scaled with 
respect to the most important feature. For almond single-food model at 7 features, broccoli single-food model at 3 features, and walnut single-food at 9 features, the importance scores begin to decline slower than the 
importance scores before these cutoffs. For the multi-food model, the same trend appears at 10 features.

A B
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Figure 5. Heat map of almond, broccoli, and walnut top 25 features selected by 
multi-food random forest model. A random forest model was trained to discriminate 
between almond, broccoli, and walnut intake using normalized KO counts. The top 25 
most important features were extracted from the model. Orange boxes indicate an 
increased mean fold change from pre- to post-intervention in each food group’s 
treatment group with respect to control, whereas blue boxes indicate a decreased fold 
change. The darker the color, the higher the magnitude of change for that KO. The 
dendrogram (black bars) was generated using Euclidean distance metric for both study 
groups and the individual KOs. Bars across the top and y-axis show how variables 
cluster together. Items that are in the same cluster are more similar (i.e., across the top, 
hierarchical clusters show which foods have similar patterns of fold change across the 
KO category, and across the y-axis the clusters show which KOs have similar patterns of 
fold change across the food groups).
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