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Abstract: 

JTE-607 is a small molecule compound with anti-inflammation and anti-cancer activities. Upon 

entering the cell, it is hydrolyzed to Compound 2, which directly binds to and inhibits CPSF73, 

the endonuclease for the cleavage step in pre-mRNA 3¢ processing. Although CPSF73 is 

universally required for mRNA 3¢ end formation, we have unexpectedly found that Compound 2-

mediated inhibition of pre-mRNA 3¢ processing is sequence-specific and that the sequences 

flanking the cleavage site (CS) are a major determinant for drug sensitivity. By using massively 

parallel in vitro assays, we have measured the Compound 2 sensitivities of over 260,000 sequence 

variants and identified key sequence features that determine drug sensitivity.  A machine learning 

model trained on these data can predict the impact of JTE-607 on poly(A) site (PAS) selection and 

transcription termination genome-wide. We propose a biochemical model in which CPSF73 and 

other mRNA 3¢ processing factors bind to RNA of the CS region in a sequence-specific manner 

and the affinity of such interaction determines the Compound 2 sensitivity of a PAS. As the 

Compound 2-resistant CS sequences, characterized by U/A-rich motifs, are prevalent in PASs 

from yeast to human, the CS region sequence may have more fundamental functions beyond 

determining drug resistance. Together, our study not only characterized the mechanism of action 

of a compound with clinical implications, but also revealed a previously unknown and 

evolutionarily conserved sequence-specificity of the mRNA 3¢ processing machinery. 
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Introduction: 

Almost all eukaryotic mRNA 3¢ end are formed through two chemical reactions, an 

endonucleolytic cleavage followed by polyadenylation1,2. Pre-mRNA 3¢ processing is not only an 

essential step in gene expression, but also an important mechanism for gene regulation. ~70% of 

human genes produce multiple mRNA isoforms by selecting different poly(A) sites (PASs), a 

phenomenon called alternative polyadenylation (APA)3–5. Distinct APA isoforms from the same 

gene can produce functionally different proteins and/or they can be regulated differently. APA is 

regulated in a developmental stage- and tissue-specific manner and mis-regulation of APA 

contributes to many human diseases. It remains poorly understood how APA is regulated in 

physiological or pathological contexts and pharmacological tools are needed for manipulating 

APA for research and therapeutic purposes.  

The sites for canonical mRNA 3¢ processing, or PASs,  are defined by several cis-elements, 

including the AAUAAA hexamer, the U/GU-rich downstream elements, and other auxiliary 

sequences1,2. These cis-elements are recognized by multiple trans acting factors, including 

cleavage and polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF), 

which in turn recruit other mRNA 3¢ processing factors to assemble the pre-mRNA 3¢ processing 

complex. Pre-mRNA cleavage is carried out by the endonuclease CPSF736, which, together with 

CPSF100 and symplekin, forms the nuclease module of the CPSF complex mCF7. CPSF73 

preferentially cleaves after CA or UA sequences8. Although the sequences flanking the CS display 

distinct and well-conserved nucleotide composition patterns9–11. it remains unknown what role, if 

any, these sequences play in pre-mRNA 3¢ processing.  

 In recent years, CPSF73 has emerged as a drug target for treating a variety of diseases. For 

example, a number of small molecule drugs for treating toxoplasma gondii (causes 

toxoplasmosis)12, African trypanosomes (causes sleeping sickness)13, and Plasmodium (causes 

malaria)14, target the CPSF73 homologues in these pathogens. JTE-607 is a small molecule that 

inhibits the production of multiple cytokines by mammalian cells15–17. Animal studies 

demonstrated that administration of JTE-607 results in improvements in several inflammation 

diseases, including septic shock, acute injury, and endotoxemia15–17. Furthermore, JTE-607 was 

recently shown to have anti-cancer activities and specifically kill myeloid leukemia and Ewing’s 

sarcoma cells18,19. JTE-607 is a prodrug and is hydrolyzed to Compound 2 upon entering the cells 

by the cellular enzyme CES118,19. Compound 2 specifically binds to CPSF73 near its active site to 
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inhibit its activity18. In addition to its potential clinical application, JTE-607 has quickly become 

an important tool for research20,21. However, it is unclear if all pre-mRNA 3¢ processing events in 

the human transcriptome are equally affected by JTE-607 and it is unclear why this compound is 

only active against specific cancer types. 

 Although the JTE-607 target, CPSF73, is universally required for pre-mRNA 3¢ processing, 

we have found, surprisingly, that JTE-607-mediated inhibition of pre-mRNA 3¢ processing is 

sequence-specific both in vitro and in cells. We have identified the CS region as a major 

determinant of drug sensitivity. Using massively parallel in vitro assay (MPIVA) coupled with 

machine learning, we have comprehensively characterized the relationship between the CS 

sequence and JTE-607 sensitivity and identified key sequence features that determine drug 

sensitivity. Using the MPIVA data, we trained a machine learning model, C3PO, that can 

accurately predict JTE-607 sensitivity of a PAS based on its CS region sequence. We demonstrated 

that C3PO can predict the effect of JTE-607 on PAS selection and transcription termination 

genome-wide. Together, our study not only better characterized the properties of an anti-cancer 

and anti-inflammation compound, but also revealed a previously unknown sequence-specificity of 

the mRNA 3¢ processing machinery. 

 

Results: 

Compound 2-mediated inhibition of mRNA 3¢ processing in vitro is sequence-dependent 

To better understand the mechanism of action for Compound 2, the active form of JTE-60718, we 

characterized its effect on pre-mRNA processing in an in vitro cleavage assay using HeLa cell 

nuclear extract (NE). We first performed in vitro cleavage assays with L3, the PAS of the 

adenovirus major late transcript, in the presence of DMSO or increasing concentration of 

Compound 2 (0.1, 0.5, 2.5, 12.5, 62.5, and 100 µM). Our results showed that the cleavage of L3 

PAS was strongly inhibited by Compound 2 with an IC50 (concentration needed to achieve 50% 

of maximal inhibition) of 0.8 µM (Fig. 1a). Compound 2-mediated inhibition of pre-mRNA 

cleavage could occur at the cleavage step and/or the earlier pre-mRNA 3¢ processing complex 

assembly step. To distinguish between these possibilities, we monitored pre-mRNA 3¢ processing 

complex assembly on L3 PAS in the presence of DMSO or increasing concentrations of 

Compound 2 using an electrophoretic mobility shift assay. The pre-mRNA 3¢ processing complex 

assembled indistinguishably under all conditions tested (Fig. 1b). These results suggest that 
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Compound 2 does not interfere with pre-mRNA 3¢ processing complex assembly, but blocks 

cleavage of the L3 PAS. 

We next performed similar in vitro cleavage assays on other PASs. Surprisingly, we found 

that different PASs displayed different sensitivities to Compound 2-mediated inhibition of pre-

mRNA cleavage. For example, significant cleavage was observed for SVL, the PAS from SV40 

late transcript, even at the highest concentration tested of Compound 2 (Fig. 1c). The estimated 

IC50 for SVL PAS was greater than 100.2 μM  (Fig. 1c). Therefore, the IC50 of L3 and SVL PASs 

differ by over 100-fold. Similar to L3, mRNA 3¢ processing complex assembly on SVL PAS was 

not affected by Compound 2 (Fig. S1). In total we performed the same in vitro cleavage assays 

with 38 different PASs and found that their IC50 values varied widely (Fig. 1d). To begin to 

understand the molecular basis for such variations, we first asked if the Compound 2 sensitivity of 

a PAS is determined by its strength, i.e. the efficiency by which it is processed by the pre-mRNA 

3¢ processing machinery. We measured the percentage of pre-mRNA cleaved in vitro in the 

absence of the drug and compared this value with their IC50. Our results detected poor correlation 

between the two measurements (r=0.38) (Fig. 1d, SI Table 1). We conclude that the cleavage of 

different PASs display differential sensitivity to Compound 2 in vitro and that the sensitivity of a 

PAS is not determined by its strength. 

 

The cleavage site (CS) region sequence is a major determinant of Compound 2 sensitivity 

Since PASs display sequence-dependent sensitivity to Compound 2 in vitro, we next wanted to 

map the specific region(s) of the PAS that determine its drug sensitivity. To this end, we divided 

the PAS sequence into three regions: the AAUAAA hexamer and upstream sequence (referred to 

as upstream sequence or UPS), the CS region (20 nucleotide (nt) region centered at the cleavage 

site), and the downstream sequence (DS) (Fig. 2a). Among PAS sequences we tested previously, 

L3 (IC50=0.8 µM, Fig. 1a) and SVL (IC50=100.2 µM, Fig. 1c) showed the lowest and the highest 

resistance to Compound 2, respectively. Therefore, we constructed a series of chimeric PASs 

between these sequences, in which one or more of the three regions in one PAS was replaced by 

their counterparts in another. We then measured their IC50 using in vitro cleavage assay as 

described above. Replacing the UPS of L3 PAS with that of SVL did not result in a major change 

in IC50 (Chimera 1, IC50=2.1 µM, Fig. 2a and Fig. S2a). However, replacing both the UPS and the 

CS of L3 with those of SVL dramatically increased the resistance to Compound 2 (Chimera 2, 
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IC50=89.6 µM, Fig. 2a and Fig. S2b), suggesting that the CS region plays a major role. On the 

other hand, replacing the UPS of SVL with that of L3 led to a significant decrease in drug 

resistance (Chimera 3, Fig. 2a and Fig. S2c), although its IC50 (39.5 µM) was still nearly 50 times 

higher than that of L3. Replacing both the UPS and CS of SVL with those of L3 led to a near 15-

fold decrease in IC50 (Chimera 4, IC50=6.7 µM) (Fig. 2a and Fig. S2d), again highlighting a major 

role for the CS region. By contrast, the DS did not seem to play a significant role  (compare L3 

and Chimera 4 or SVL and Chimera 2, Fig. 2a). Given the large impact of the CS region on 

Compound 2 sensitivity in both backgrounds, we swapped the CS regions alone between L3 and 

SVL. The results showed that replacing the L3 CS region with that of SVL increased its IC50 to 

47.8 µM, a near 60-fold increase (L3-SVL CS, Fig. 2a and b). Even more dramatically, the 

opposite change in SVL reduced its IC50 to 0.8 µM (SVL-L3 CS, Fig. 2a and c), identical to that 

of L3. These results demonstrated that the CS region is a major determinant of Compound 2 

sensitivity in both backgrounds. Additionally, the UPS also contributes to the drug sensitivity in a 

context-dependent manner, while the DS does not appear to play a significant role. Therefore, we 

have focused on the CS region for the rest of this study. 

 

Define the CS sequence-Compound 2 sensitivity relationship by using massively parallel in 

vitro assay (MPIVA) 

We next wanted to comprehensively define the relationship between the CS region sequence and 

Compound 2 sensitivity. To this end, we designed an MPIVA strategy (Fig. 3a). Using L3 

(sensitive) or SVL (resistant) PAS as backbones, we replaced the original cleavage site with a YA 

sequence (Y is U or C), which is the preferred cleavage site for CPSF73, and randomized the 23nt 

flanking sequence. These two libraries, called L3-N23 and SVL-N23, contained ~3 million PAS 

variants each and were transcribed into RNA. The PAS RNA pools were used for in vitro cleavage 

and polyadenylation assays in the presence of DMSO (control) or increasing concentrations of 

Compound 2, including low (0.5 μM) , medium (2.5 μM), and high (12.5 μM) concentrations. As 

shown in Fig. 3b, the PAS RNA pool was efficiently cleaved in vitro in the presence of DMSO 

and the cleavage efficiency gradually decreased in the presence of increasing concentrations of 

Compound 2. The starting PAS RNA pool and the cleaved RNA pools under different conditions 

were subjected to high throughput sequencing using the Illumina platform (Fig. 2b). For each 

variant, a resistance score was calculated as the log ratio between its frequency in Compound 2-
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treated samples and that in DMSO-treated samples. As shown in Fig. 3c and Fig. S3a, the 

resistance scores of all variants were concentrated in a narrow peak centered at ~0 at low 

Compound 2 concentration (L3: -0.04 ± 0.31; SVL: -0.05 ± 0.28) but diverged more at high 

inhibitor concentration (L3: -0.12 ± 0.53; SVL: -0.09 ± 0.43), suggesting that, as expected, drug 

sensitivities are better distinguished at higher drug concentrations. Furthermore, we compared the 

resistance scores of all variants and their cleavage efficiency (log ratio between the frequency of a 

PAS variant in Library 2 and that in Library 1) and found that there was no significant correlation 

(Fig. 3d and Fig. S3b), which was consistent with Fig. 1d. Thus, both our low throughput in vitro 

assays and high throughput screen results demonstrated that the Compound 2 sensitivity of a PAS 

is not dependent on its strength. 

Based on the resistance scores in the high Compound 2 concentration condition, we 

obtained a list of the top 1000 most sensitive and resistant PASs from both the L3-N23 and SVL-

N23 libraries. We selected 6 variants, 3 sensitive and 3 resistant, in each background and tested 

them using our in vitro cleavage assay and our data validated the screen results (Fig, 3e, Fig. S4). 

It was noted that some of the variants (e.g. Fig. 3e, top left panel) were more sensitive to Compound 

2 than the original L3 while other variants displayed greater resistance than SVL (e.g. Fig. 3e, 

bottom right panel), indicating that our screens selected variants with a wide range of drug 

sensitivities. Interestingly, the nucleotide composition in the CS region of sensitive and resistant 

PASs showed distinct patterns. The CS regions of sensitive L3 variants are generally G/U-rich, 

especially in the region upstream of the cleavage site (Fig. 3f, top panel). By contrast, resistant 

CSs contained alternating U-rich and A-rich sequences mainly in the region upstream of the 

cleavage site (Fig. 3f, bottom panel). Very similar patterns were observed in SVL background 

(Fig. 3g), suggesting that the CS region sequence can determine Compound 2 sensitivity 

independent of other regions. Consistent with the nucleotide compositions, our motif analyses of 

the sensitive and resistant variants detected U/G-rich and A/U-rich motifs, respectively, in both L3 

and SVL libraries (Fig. S5). These results defined the key sequence features in the CS region that 

determine Compound 2 sensitivity. 

 

Machine learning predictions of Compound 2 sensitivity from PAS sequences 

We next used our MPIVA data to train a machine learning model with the goal of predicting 

Compound 2 sensitivity of any given PAS based on its CS region sequence. Our model, called 
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Cleavage and Counteraction with Compound 2 on Polyadenylation Outcomes (C3PO), is a three-

layer convolutional neural network (CNN) that is based on the Optimus 5′ architecture that we 

have previously used to predict polysome profiles from 5′ untranslated region (UTR) sequences 

(Fig. 4a, Methods).22 C3PO uses the 25 nt CS sequences as inputs and predicts Compound 2 

sensitivity, which is calculated as the log ratio between each variant’s percent representation in the 

DMSO-treated and Compound 2-treated libraries (Fig. 3a).  C3PO was trained on the processed 

MPIVA datasets from both the L3 and SVL RNA contexts, and model performance was assessed 

on held-out variants from both RNA contexts. We used the variants with high read coverage in the 

input and DMSO-treated data (Libraries 1 and 2) as our test set to minimize the impact of 

measurement noise (Methods). C3PO performed better on higher doses of Compound 2 with 

Pearson’s r of 0.56, 0.74, and 0.84 for 0.5 µM, 2.5 µM, and 12.5 µM, respectively. We explored 

variations of convolution-based machine learning architectures (SI Table 2), and this trend was 

consistent. This was expected as drug resistance is better detected at higher drug dose (Fig. 3c). 

Due to the better model performance at the highest dose of 12.5 µM, we focused further analyses 

on this regime.  

To test the performance of C3PO, we compared the Compound 2 resistance scores 

(log(12.5 µM/DMSO)) of 30 distinct PASs measured by in vitro cleavage assays as shown in Fig. 

1D (PASs that contain the same CS region sequences were omitted to avoid redundancy) and those 

predicted by C3PO. The C3PO predictions showed strong and positive correlation with 

experimental measurements with a Pearson r of 0.84 (Fig. 4c, SI Table 3). This is very similar to 

its performance on the MPIVA dataset (compare Fig. 4c with 4b, 12.5 µM panel). These results 

strongly suggest that C3PO can accurately predict Compound 2 sensitivity of PAS sequence in 

vitro. 

We next wanted to identify sequence motifs that are predictive of Compound 2 sensitivity 

by extracting filter position weight matrices (Fig. 4a). The position-specific effect on Compound 

2 sensitivity of each filter was quantified by measuring the correlation with drug sensitivity at each 

position across the CS region. Filters associated with higher resistance (dark red color) learned 

motifs that were A/U-rich, while lower resistance filters (dark blue) typically learned motifs with 

higher G/U content (Fig. 4d). Sequence motifs strongly associated with Compound 2 sensitivity 

predictions are positioned such that they begin upstream of the CS (Fig. 4d-f, Fig. S6). Layer 2 

filters learn to use combinations of Layer 1 filters for predictions of drug sensitivity. 15-mers 
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learned by layer 2 filters also showed A/U-rich and G/U-rich motifs for resistant and sensitive 

PASs respectively (Fig. 4e and Fig. S7). Interestingly, both resistance- and sensitivity-associated 

motifs are enriched in the region upstream of the CS (Fig. 4f).  

Given the known function of RNA secondary structures in pre-mRNA 3¢ processing23, we 

investigated the its potential impact on Compound 2 sensitivity. We compared the minimum free 

energy (MFE) structures for the top 10,000 resistant and sensitive sequences (Fig. S8a-b). The 

differences between DGs for the resistant and sensitive sequences were modest, but statistically 

significant with p-values of < 2.2 x 10-308 and 1.58 x 10-26 and for L3 and SVL, respectively. The 

difference between base pairing probabilities for resistant and sensitive sequences also show 

different global patterns between the L3 and SVL backbones, indicating that background-specific 

secondary structural features may contribute to drug sensitivity (Fig. S8c-d). Taken together with 

C3PO’s ability to accurately predict Compound 2 sensitivity with sequence alone, our results 

suggest that sequence is the primary determinant of Compound 2 sensitivity while secondary 

structure may play a minor role.  

We further explored the usage of machine learning models to characterize Compound 2 

sensitivity and its relationship with processing efficiency. First, we compared the cleavage 

efficiency measured by our MPIVA assays with that predicted by APARENT2 24, a highly accurate 

deep learning model for predicting cleavage/polyadenylation efficiency that was trained using 

massively parallel reporter assays in mammalian cells. We saw good correlation between 

APARENT2-predicted cleavage efficiency and our MPIVA data with a Pearson r of 0.60 for the 

L3 background and 0.72 for the SVL background (Fig. 4g). These results suggest that the CS 

region sequence can have a significant impact on cleavage efficiency, and that the cleavage 

efficiency values measured by our MPIVA system are highly consistent with measurements 

obtained in cells. Finally, we compared the resistance score predicted by C3PO with the cleavage 

efficiency predicted by APARENT2 for all CS variants and observed poor correlation with Pearson 

r = 0.42 and 0.24 for L3 and SVL respectively (Fig. 4h). This is consistent with our in vitro 

cleavage assay (Fig. 1d) and MPIVA results (Fig. 3d and Fig. S3b) and provided further evidence 

that the Compound 2 sensitivity of a PAS is not dependent on its strength. 

 

JTE-607 modulates PAS selection and transcription termination in a sequence-specific 

manner in human cells 
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To determine whether the sequence-specific sensitivity to Compound 2 observed in vitro was true 

in cells, we performed two genome-wide analyses. First, we analyzed the global APA profiles in 

DMSO- and JTE-607-treated human HepG2 cells using PAS-seq, a high throughput RNA 3¢ 

sequencing method for quantitatively mapping RNA polyadenylation25. JTE-607 treatment 

induced significant APA changes in 921 genes, of which 847 genes (92%) shifted from a proximal 

PAS to a distal one (blue dots, Fig. 5a and see Methods for details). An example was shown in Fig. 

5b: the proximal PAS was predominantly used for Ptp4a1 transcripts in DMSO-treated cells. 

However, polyadenylation shifted to a distal PAS in JTE-607 treated cells, leading to 3¢ UTR 

lengthening. 74 genes showed APA changes in the opposite direction (red dots, Fig. 5a), as 

exemplified by Paqr8 (Fig. 5c).  

Why did JTE-607 induce the opposite APA changes in different groups of genes? Given 

our finding that JTE-607-mediated inhibition of mRNA 3¢ processing is sequence-specific, we 

predicted that JTE-607 treatment would decrease the usage of the more sensitive PASs in a given 

gene while the usage of resistant PASs would be less impacted, leading to a net shift to the more 

resistant PASs. Therefore, we hypothesized that the directionality of JTE-607-induced APA 

change in any given gene is determined by the relative sensitivities of its alternative PASs. To test 

this hypothesis, we predicted the resistance scores of all annotated PASs in the human genome 

using C3PO and compared the scores of the proximal and distal PASs of the 921 genes that 

displayed significant APA shifts in JTE-607 treated cells. Interestingly, for the 847 genes that 

showed a shift to the distal PAS in JTE-607-treated cells, their proximal PASs are significantly 

more sensitive to JTE-607 than their distal ones (p < 2.2 x 10-16, t-test, Fig. 5d, left panel). The 

opposite trend was observed for the 74 genes that showed a distal-to-proximal shift (p = 0.03, t-

test, Fig. 5d, right panel). Therefore JTE-607 indeed inhibited the usage of more sensitive PASs, 

resulting in higher usage of resistant PASs. These data confirmed that JTE-607 modulates PAS 

selection globally in a sequence-dependent manner in human cells and showed that JTE-607-

induced APA changes depend on the relative drug sensitivities of the alternative PASs. 

Additionally, we also monitored transcription termination by nascent RNA sequencing 

using 4-thiouridine labeled RNA (4sU-seq) in DMSO- or JTE-607-treated HepG2 cells. As mRNA 

3¢ processing is coupled to transcription termination, transcription termination efficiency at PAS 

can be used as a proxy for mRNA 3’ processing efficiency26. Our 4sU-seq analyses showed that 

JTE-607 treatment induced a global transcription termination defect (Fig. 6a). However, the levels 
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of JTE-607-induced transcription readthrough (RT) varied widely at different PASs (Fig. 6a). For 

example, RT increased dramatically downstream of the PAS of the Eif4ebp1 gene (Fig. 6b, left 

panel) while little change was observed for Cox8A gene (Fig. 6b, right panel). Thus 4sU-seq data 

further demonstrated that mRNA 3¢ processing displayed sequence-specific sensitivity to JTE-

607-mediated inhibition in human cells.  

We then tested if C3PO can predict the transcription termination efficiency in JTE-607-

treated cells. For comparison, we selected genes with the top 1000 resistant or sensitive PASs 

based on the C3PO predicted resistance scores. To avoid complications from neighboring genes, 

we selected genes that do not overlap with other genes in the 1kb downstream region for our 

analyses. The average normalized 4sU-seq signals at genes with the top 1000 resistant PASs 

showed that transcription terminated efficiently at these PASs in both DMSO- and JTE-607-treated 

cells and only modest change in RT levels was observed downstream of the PASs (Fig. 6c, red 

arrow), suggesting that these PASs are indeed resistant to JTE-607. By sharp contrast, for genes 

with the top 1000 sensitive PASs, their global 4sU-seq signals revealed significantly higher RT in 

JTE-607-treated cells compared to DMSO-treated cells (Fig. 6d, red arrow), suggesting that JTE-

607 induced significant inhibition of mRNA 3¢ processing at these PASs. The JTE-607-induced 

RT levels between the sensitive and resistant PASs were highly significant (Fig. 6e, p < 2.2 x 10-

16, Wilcoxon test). Together, our PAS-seq and 4sU-seq analyses suggest that JTE-607 inhibits 

mRNA 3¢ processing and transcription termination in a sequence-dependent manner and that C3PO 

can predict the effect of JTE-607 on PAS selection and transcription termination. 

Nucleotide composition of the resistant and sensitive human PASs revealed distinct 

patterns. JTE-607-resistant PASs have alternating U- and A-rich regions (Fig. 6f, left panel) 

whereas the JTE-607-sensitive PASs are generally U/G-rich (Fig. 6f, middle panel). These patterns 

are very consistent with the top resistant and sensitive PASs from our MPIVA screen (Fig. 3f-g). 

Interestingly, the average nucleotide composition of the CS regions of all annotated human PASs 

also displayed alternating U- and A-rich regions (Fig. 6f, right panel), suggesting that a significant 

portion of the human PASs are potentially resistant to JTE-607. Finally, a comparison of the 

resistant and sensitive PASs revealed that the resistant PASs are more conserved than the sensitive 

PASs (Fig. S9), indicating that the resistant PASs may be under greater selection pressure. 

 

Discussion: 
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In this study, we have set out to characterize the mechanism of action for JTE-607, a novel inhibitor 

of the endonuclease for mRNA 3¢ processing, CPSF73. Although CPSF73 is universally required 

for mRNA 3¢ processing, we have unexpectedly discovered that Compound 2, the active form of 

JTE-607, inhibits the cleavage step of mRNA 3¢ processing in a sequence-dependent manner both 

in vitro and in cells, and that the CS region sequence is a major determinant of Compound 2 

sensitivity. We have comprehensively characterized the relationship between the CS region 

sequence and Compound 2 sensitivity using MPIVA coupled with machine learning. Our machine 

learning model C3PO can predict Compound 2 sensitivity based on CS sequence and the impact 

of JTE-607 on APA and transcription termination in human cells. Therefore, our study not only 

provided new insights into the mRNA 3¢ processing machinery, but may also have important 

implications for the use of JTE-607 as a research and therapeutic tool. Furthermore, from a 

technological perspective, our approach described here should be broadly applicable to the studies 

of other small molecule modulators of gene expression. 

 What is the molecular mechanism for the sequence-specific sensitivity to Compound 2? 

Since both Compound 2 and the RNA in the CS region bind to CPSF73 at or near its active site18,27, 

these interactions are most likely mutually exclusive (Fig. 7). Thus, if a CS region RNA can bind 

to CPSF73 with a high affinity, it may out-compete Compound 2, rendering this PAS resistant to 

the drug (Fig. 7, left panel). For low-affinity CS region RNA sequences, Compound 2 bound to 

CPSF73 near its active site can block access by the RNA due to its low affinity, thus inhibiting 

cleavage (Fig. 7, right panel). Based on the structure of the histone mRNA cleavage complex27, 

which contains CPSF73 as its endonuclease, CPSF73 binds to RNA substrates via a cleft between 

the β-CASP domain and the metallolactamase domain. However, this cleft can only accommodate 

a ~7 nt sequence, much shorter than the ~20 nt CS region that we identified. Thus, additional 

mRNA 3¢ processing factors likely bind to the CS region as well. Potential candidates include 

CPSF100 and symplekin, which form the nuclease module, or mCF, with CPSF737,27. Indeed, the 

histone mRNA cleavage complex structure revealed that these proteins form an RNA-binding 

channel that can bind to ~20 nt sequence (Fig. 7). Other mRNA 3¢ processing factors can also be 

involved, including Fip1 and PAP. Fip1 is known to bind to U-rich sequences near the AAUAAA 

hexamer28,29. and the Compound 2-resistant CS sequences contain U-rich sequences (Fig. 3f-g). 

Finally, an early biochemical study showed that PAP is required for in vitro cleavage of L3 PAS, 

but not for SVL and that the CS region sequences determine its PAP dependency30. Given the 
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important roles for the CS region in determining both PAP dependency and Compound 2 

sensitivity, it is possible that PAP is involved in binding to CS region sequences. Based on these 

results, we propose that CPSF73 and other mRNA 3¢ processing factors form an RNA-binding 

channel that directly binds to the CS region RNA and that this channel has sequence specificity 

(Fig. 7).  

 The nucleotide composition in the CS region has been conserved from yeast to human9–11. 

and this pattern is highly similar to that of the Compound 2-resistant PASs (Fig. 6f). Additionally, 

our data suggests that Compound 2-resistant PASs are more evolutionarily conserved than the 

sensitive sites (Fig. S8). It remains unclear what, if any, selection pressure can favor PASs that are 

resistant to a small molecule that is not present in most environments. We propose two possible 

models. First, Compound 2 activity may be similar to that of a chemical that is more universally 

found in cells. A number of small molecules, including inositol hexakisphosphate, can bind to and 

modulate the activities of molecular machinery in the gene expression pathway, such as the 

spliceosome31, the Integrator complex32, and the mRNA export factors33. It is possible that a 

naturally occurring Compound 2-like small molecule can inhibit pre-mRNA 3¢ processing and 

many PASs evolved to overcome such inhibition. Secondly, the CS region sequence may impact 

transcription termination independently of its effect on cleavage efficiency. According to our 

model, the resistant PASs interact with CPSF73 and other mRNA 3¢ processing factors more 

strongly (Fig. 7). Because the mRNA 3¢ processing machinery is known to directly bind to RNA 

polymerase II34–36, such interaction could contribute to slowing down the polymerase, thus 

promoting termination. Thus, a subset of PASs may have evolved to stimulate transcription 

termination and the Compound 2 resistance is an unintended consequence of such evolution.  

In addition to CS region sequence, we have provided evidence that UPS sequence  as well 

as RNA secondary structure may also contribute to Compound 2 sensitivity, albeit in a context-

dependent manner (Fig. 2a and Fig. S8). UPS sequence can modulate CPSF73-CS region RNA 

interactions indirectly through associated protein factors. Alternatively, UPS could form secondary 

structures with the CS region, thus impacting its interactions with CPSF73 more directly. In fact, 

the mCF module has been shown to bind directly to double-stranded RNAs in the histone mRNA 

cleavage complex27. Additionally, secondary structures are widespread in PAS regions and have 

been shown to modulate mRNA 3¢ processing.23 Thus, it is possible that RNA secondary structures 

within a PAS could impact not only its cleavage efficiency, but also its Compound 2 sensitivity. 
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Further studies are needed to fully elucidate the roles of UPS and RNA secondary structures in 

drug sensitivity. 

Our results may have implications for understanding how JTE-607 specifically kills 

myeloid leukemia and Ewing’s sarcoma cell lines. As mentioned earlier, JTE-607 is a pro-drug 

and is converted to Compound 2 by the cellular enzyme CES118. Although cellular CES1 levels 

may contribute to the cell type specificity, previous studies showed that CES1 level is a poor 

predictor for JTE-607 sensitivity18. Thus, the molecular basis for cell type-specific toxicity of JTE-

607 remains unknown. Based on the results reported here, we propose two possible mechanisms 

for explaining the cell type-specific drug sensitivity. First, the potency for JTE-607-mediated 

inhibition of mRNA 3¢ processing may be cell type-specific. Our model suggests that the drug 

sensitivity is determined by the interaction affinity between the CPSF73 and other mRNA 3¢ 

processing factors and the CS region sequence. If cell type-specific mechanisms can modulate the 

specificity of this interaction, they can alter JTE-607 sensitivity globally. This could result from 

cell type-specific expression levels or post-translational modification of CPSF73 and other mRNA 

3¢ processing factors that bind to the CS region. For example, Fip1 levels are known to change 

during differentiation28,37. Symplekin, CPSF100, and PAP are known to be sumoylated and/or 

phosphorylated38–40. It will be important to determine if these factors display different expression 

levels or post-translational modifications between JTE-607-sensitive and -resistant cell types.  

Alternatively, the sequence specificity of JTE-607 is similar among different cell types. However, 

myeloid leukemia and Ewing’s sarcoma cells may be uniquely dependent on one gene or a subset 

of genes whose PASs are highly sensitive to JTE-607. For example, a recent study identified 

PDXK, an enzyme in the vitamin B6 metabolism pathway, as a unique acute myeloid leukemia 

dependency gene41. If the PASs of such dependency genes are sensitive to JTE-607, the expression 

of these genes would be repressed by JTE-607 treatment, leading to cell death in specific cell types. 

Further studies are needed to distinguish between these models and the results will have significant 

implications on how to improve the efficacy of this compound as a potential anti-cancer  and anti-

inflammation therapy. 
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Methods 

Cell Culture and JTE-607 Treatment Condition 

HepG2 cell line were cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 

10% (v/v) fetal bovine serum (FBS). Cells were incubated at 37 ̊C in a 5% (v/v) CO2-enriched 

incubator. Suspension HeLa S3 cell (a kind gift from Dr. Bert Semler, UC Irvine) was maintained 

in Joklik Modified MEM (JEME) supplemented with 2.4 mM sodium bicarbonate and 8% (v/v) 

newborn calf serum (NCS) in a spinner flask at 37˚C with ambient CO2. For JTE-607 treatment, 

20 µM final concentration of JTE-607 (Tocris) in neat DMSO was added to the cell culture media 

and incubated at 37˚C for 4 hours. 

 

Large-scale HeLa nuclear extract (NE) 

Large-scale HeLa nuclear extract (NE) was made as previously described (Abmayr et al., 2006) 

with minor modifications. Briefly, 10 liters of spinner HeLa cells were pelleted by centrifugation. 

The cells were swelled on ice using hypotonic buffer A (10 mM HEPES-NaOH pH 7.9, 10 mM 

KCl, 1.5 mM MgCl2, 10 mM 2-Mercaptoethanol) and then dounce homogenized with 15 strokes 

using a type B pestle. Each stroke involves a 30-second motion containing one 15-second up and 

one 15-second down motion. Cell lysis was closely monitored by mixing a small aliquot of cells 

with trypan blue and observing under light microscope. Dounce homogenization was stopped 

when ~85% cell lysis was achieved. Nuclei were pelleted, extracted with high salt buffer C (20 

mM HEPES-NaOH pH 7.9, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 25% glycerol, 10 mM 

2-Mercaptoethanol, 0.5 mM PMSF) freshly supplemented with 1X Halt proteinase inhibitor 

cocktail (Thermo) at 4˚C for one hour with constant rotation. The extracted nuclei were pelleted, 

and the supernatant (NE) was dialyzed twice against 60 volume of buffer D100 (20 mM HEPES-

NaOH pH 7.9, 100 mM KCl, 1 mM MgCl2, 0.2 mM EDTA, 10% glycerol 10 mM 2-
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Mercaptoethanol, 0.5 mM PMSF) at 4˚C for 1.5 hours each time. After dialysis, the NE was 

aliquoted, flash frozen on dry ice and stored at -80˚C until use. 

 

In vitro Cleavage Assay 

All PASs were cloned into the pBlueScript II KS+ vector. RNA substrates were synthesized by 

run off in vitro transcription (IVT) using T7 polymerase (NEB) in the presence of [α-32P]-UTP 

according to the manufacture’s protocol. For in vitro cleavage reaction with Compound 2, the NE 

was pre-incubated with 10% DMSO or various concentration of Compound 2 (0.1, 0.5, 2.5, 12.5, 

62.5, 100 µM) in 10% DMSO for 30 minutes on ice before the other components were added. 

Each in vitro cleavage reaction is a 10µl reaction containing 20 cps radiolabeled pre-mRNA, 44% 

(v/v) HeLa NE, 8.8 mM HEPES-OH (pH 7.9), 44 mM KCl, 0.44 mM MgCl2, 0.2 mM 3¢-dATP 

(Sigma), 2.5% (v/v) polyvinyl alcohol (PVA), 40 mM creatine phosphate, 4 mM 2-

Mercaptoethanol, and 1% (v/v) DMSO or Compound 2. Cleavage was carried out for 90 minutes 

at 30˚C. Proteinase K digestion mix (30 mM Tris-HCl pH 7.9, 10 mM EDTA, 1% SDS, 0.1 µg/µl 

proteinase K, 0.05 µg/µl yeast tRNA) was then added to halt the reaction and the samples were 

incubated at 37˚C for 15 min. RNA was then phenol chloroform extracted and resolved on an 8% 

Urea-PAGE at 800 V for 45 minuets in TBE. Gel was then transferred to a filter paper, dried at 

80˚C for 30 minutes, exposed to a phosphoscreen overnight and visualized by phosphorimaging. 

IC50 was calculated using the equation: [Inhibitor] vs. normalized response -- Variable slope on 

Prism. 

We have found that this assay is very sensitive to the strength of RNA radioactivity and 

freshness of NE. It is recommended that freshly purchased [α-32P]-UTP (less than a week old) and 

NE made and stored at -80˚C for fewer than two months to be used for this assay. 

 

Electrophoretic mobility shift assay (EMSA) 

NE was pre-incubated with DMSO or Compound 2 as described in the in vitro cleavage assay. Gel 

shift is performed in a 10µl reaction containing 20 cps radiolabeled RNA, 1 mM ATP, 20 mM 

creatine phosphate, 10 µg/µl yeast tRNA, 44% HeLa NE, and 1% (v/v) DMSO or Compound 2. 

The reaction mixture was incubated for 20 minutes at 30˚C and immediately cooled on ice for 2 

minutes. Heparin was added to 0.4 µg/µl and the reaction was incubated for an additional 5 minutes 

on ice. 5µl of the reaction was resolved on 4% native PAGE in 1x Tris-Glycine running buffer (pH 
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8.3) at 100V for 4 hours in an ice bath. Gel was dried and visualized the same as in vitro cleavage 

assay described above. 

 

Massively Parallel in vitro Assay (MPIVA) 

Cloning 

L3 and SVL containing 23 random nucleotides CS spanning YA cleavage position was purchased 

from IDT as ssDNA oligo and PCR amplified to generate dsDNA. The dsDNA library was cloned 

into pBlueScript II KS+ vector by Gibson Assembly (NEB) and electroporated into ElectroMAX 

DH5α (Thermo). Plasmid library size, structure, and diversity were determined as previously 

described42. 

Coupled in vitro Cleavage and Polyadenylation Assay 

RNA libraries were synthesized by run off IVT using T7 polymerase (NEB) according to the 

manufacture’s protocol followed by treatment with RQ1 DNase (Promega) to remove DNA 

template. The RNA pool was purified by phenol chloroform extraction and was either 

polyadenylated (for input) or 3¢-dATP blocked (for DMSO and Compound 2 treated) by E. coli 

PAP (NEB). The RNAs were then undergo a coupled cleavage and polyadenylation assay in 

multiple 600µl reactions containing 6 pmol RNA, 44% (v/v) HeLa NE, 8.8 mM HEPES-OH (pH 

7.9), 44 mM KCl, 1.44 mM MgCl2, 1 mM ATP, 2.5% (v/v) polyvinyl alcohol (PVA), 20 mM 

creatine phosphate, 4 mM 2-Mercaptoethanol, and either 1% DMSO or 0.5 µM, 2.5 µM, 12.5 µM 

Compound 2 in DMSO. The reaction mixture was incubated for 90 min at 30˚C, proteinase K 

digested as described above for regular in vitro cleavage assay, except that proteinase K was raised 

to 3µg/µl, and then phenol chloroform extracted. 

MPIVA Sequencing Library Construction 

The phenol chloroform extracted RNA from previous step weas further purified to select for 

polyadenylated RNA using NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) and 

reverse transcribed using SuperScript III reverse transcriptase (Invitrogen) with an anchored oligo 

dT primer. Library cDNA was beads purified (Beckman Coulter) and amplified using a library-

specific forward primer and reverse primer containing Illumina adaptor sequences and a region 

that matches part of the sequence added during RT. The amplified libraries were resolved on a 

2.5% low melting point agarose gel and extracted. 

MPIVA RNA-seq read alignment 
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All MPIVA read 1 and read 2 FASTQ files were merged using bbmerge V38 using option ` 

maxloose=t`43. Untreated RNA-seq reads were used to establish the sequences of the full 

randomized PAS region contained in the IVT pool. All sequences of the 25 nt randomized region 

were clustered using starcode version 1.444 to account for sequencing errors and determine 

consensus sequences of this randomized region. The next steps are to enable assignment of 

expected cleaved RNAs to a unique 25 nt randomized region. The expected cleaved lengths of the 

25 nt consensus sequences for L3 and SVL backbones (13 nt and 12 nt, respectively) were used as 

unique identifiers of the full randomized region. If any of these identifiers were not unique within 

L3 and SVL libraries, respectively, then these sequences were not used in subsequent analyses.  

Next, RNA-seq reads from DMSO and drug-treated libraries were locally aligned against 

the shared 5′ region of the reporter constructs to determine the beginning of the randomized region. 

The part of the RNA-seq read containing the randomized region and shared 3′ region was locally 

aligned against the list of consensus sequences. Only reads with a unique alignment to a single 

consensus sequence were kept, and cut sites were also determined from this alignment. Additional 

checks were performed to ensure cut sites are not misassigned inside the poly(A) tail due to an 

adenine in the reference and these cases were corrected if found. Sequences with at least 50 reads 

in the DMSO libraries were kept to avoid noise from lowly abundant RNA sequences in the IVT 

pool. 158,298 L3 variants and 103,018 SVL variants were left after this read depth filtering step. 

A pseudocount of 1 was then added to variants in L3 2.5 μM, L3 12.5 μM, and SVL 12.5 μM due 

to drug-mediated drop out of high abundance variants in the DMSO libraries. This pseudocount 

avoids having undefined drug sensitivities in later steps that would be introduced by log(0). Each 

variant that passed these checks were counted and converted to a percentage within each RNA-seq 

library to account for sequencing depth by dividing by the total number of kept reads.  

Drug sensitivity for each variant in each dose of Compound 2 was defined as the log ratio 

of normalized reads from drug-treated RNA-seq divided by the normalized reads from DMSO-

treated RNA-seq. Within a given drug dose, sequences with higher log ratios are more resistant 

than those sequences with lower log ratios.  

Minimum free energy folding of IVT RNA’s 

Minimum free energy (MFE) predictions were done with RNAStructure version 6.4’s Fold45 and 

the entire IVT RNA sequence was used. DG of each MFE were determined with RNAStructure’s 
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efn2 with command line argument `--simple`. DG’s from the top 10,000 resistant and sensitive 

sequences were compared (Quantification and statistical analysis).  

C3PO machine learning architecture and training 

The architecture chosen for predicting drug sensitivity is based on a previously published 3-layer 

convolutional neural network (CNN) designed for predicting polysome profiles.22 The model takes 

in 25 nt one-hot encoded sequences followed by: 

First convolution layer: 120 filters (8 × 4), batch normalization, ReLU activation, zero-padding to 

maintain the same length input and output, and 0% dropout. 

Second convolution layer: 120 filters (8 × 1), batch normalization, ReLU activation, zero-padding 

to maintain the same length input and output, and 0% dropout. 

Third convolution layer: 120 filters (8 × 1), batch normalization, ReLU activation, zero-padding 

to maintain the same length input and output, and 0% dropout. 

Dense layer: 80 nodes, batch normalization, ReLU activation and 10% dropout. 

Output layer: 3 linear outputs. 

The Adam optimizer46 was used for model fitting with a mean squared error loss function, batch 

size of 64, and sample weights based on DMSO read depth.   

Sequences were assembled into test and training sets to mix highly covered variants from 

both RNA contexts (L3 and SVL) into the test and training sets. Within each RNA context, 

sequences were ordered by DMSO read depth, then split based on the sequences’ number in this 

ordering into odd and even lists, and then the odd and even lists were concatenated together. This 

odd/even splitting is to include high coverage sequences in both the training and test sets. Finally, 

the L3 and SVL sequences were interleaved to make an even coverage between RNA contexts in 

the test set. The top 4,120 sequences were used as the test set with the remaining sequences used 

as the training set. The 4,120 test set size was chosen because it reflects 2% of the variant space in 

SVL which contains less variants than L3.  

Ten iterations of training with 6 epochs were conducted to account for slight variations in 

model performance due to stochasticity in the training algorithm. Performance between iterations 

were evaluated by the square of Pearson’s r (R2) between measured and predicted Compound 2 

sensitivity in the test sequences. The best performing iteration was kept and used in further 

analyses.  

Exploring additional machine learning architectures and training 
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Additional deep learning and training pipelines were explored based on CNN’s and Dilated 

Residual Networks. With the C3PO CNN architecture, training was done with 4-8 epochs and 

these number of epochs performed relatively similarly on the test set (SI Models Table). We also 

explored using a validation set (4,120 sequences) derived from the training set to determine an 

early stopping criterion for the number of epochs trained, and this performed similarly to the 

models trained with a preset number of epochs. Among the three drug doses predictions, 12.5 μM 

predictions performed better leading us to train models for only this dose as well. However, 12.5 

μM prediction performance between the three dose predictions and the one dose prediction were 

negligibly different so we used the model with three dose predictions.  

Hyperband training47 with the CNN architecture was also performed to ascertain potential 

optimal hyperparameter values. Hyperparameters were allowed to range from 1-5 1D 

convolutional layers with ReLU activation and batch normalization; 8-140 (step 16) number of 

filters; followed by pooling choices of average, max, or none; and dropout rates of 0-0.5 (step 0.1). 

These convolutional layer(s) are followed by a Flatten layer, and 1-3 dense layers. Each dense 

layer can be of size 20-200 (step 20) with ReLU activation, batch normalization, and dropout rates 

of 0-0.5 (step 0.1).  Learning rate parameters were also allowed to range between 1x10-5-1x10-1. 

Training was allowed to stop early based on the validation set’s mean squared error and a minimum 

delta of 0.001 and patience of 5 epochs. Hyperband training was done with an output layer for all 

three drug doses, and hyperband training was also tried with an output layer for only predicting 

12.5 µM Compound 2 resistance.  

Due to the improvement of APARENT224 which is a residual neural network (ResNet) 

over APARENT7 which is a CNN, we also tried an architecture similar to APARENT2 with our 

task on predicting Compound 2 sensitivity. We tested the residual neural network architecture with 

predicting both Compound 2 sensitivity and cleavage patterns with the hypothesis that learning 

sequence features that affect cleavage site usage would improve the Compound 2 sensitivity 

predictions. Input to the residual network is a one-hot encoded 25 nt sequence which is the same 

as our CNN models and is followed by 20 residual blocks where each block contains 2 layers of 

dilated convolutions and a skip connection. More specifically, there are 5 residual groups where 

each residual group contains 4 residual blocks with 32 channels and convolutional filters of size 

3. Each residual block is encoded the same as APARENT2 where each blocks has two one-

dimensional convolutional layers with batch-normalization, ReLU activation, and a filter dilation 
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rate. There are additional skip connections from between each residual group to the last 

convolutional layer and produces a vector of length 26, s(x). The 26th position is for all cuts found 

at positions not found the 25 nt randomized region. For training and accounting for any background 

sequence biases, a boolean is passed to indicate whether the data point is from the L3 or SVL 

background which is multiplied with a position-specific weight matrix and linearly combined with 

s(x). We also kept APARENT2’s random shifting of the input sequence and cleavage distribution 

during training to force the network to not simply learn the designed expected cleavage position 

in each library. These scores containing library-specific information are sent to four different linear 

dense layers for separate predictions of cleavage profiles of all four drug doses and softmax 

transformation is applied to each. For Compound 2 sensitivity prediction, s(x) undergoes average 

pooling, and the library indicator is concatenated before a linear dense layer for final output. KL-

divergence is used as the loss function for cleavage profiles and mean squared error for Compound 

2 sensitivities. Total loss is a weighted average of half from Compound 2 sensitivities, and the 

other half split evenly between the four cleavage profiles. The ResNet was trained with Keras’s 

implementation of the Adam optimizer, batch size of 64, stopping criteria based on a validation 

set (4,120 sequences) derived from the training set.  

We first tried 1, 2, 4, 2, and 1 as dilation rates for the 5 residual groups and performed 

similarly to previously trained CNNs with R2 values of 0.232, 0.541, and. 0.681 for the three 

Compound 2 doses but did not outperform C3PO (SI Table 1). We also tried lower dilation rates 

of 1, 2, 2, 2, and 1 as well as 1, 1, 1, 1, and 1 which performed worse. Using the dilation rates 1, 

2, 4, 2, and 1, we trained for exactly 7 epochs and did not find improved performance. We also 

increased the cleavage profile length to 27 to separately model cuts found at positions greater than 

the 25 nt randomized region in position 26, and position 27 is filled when a sequence is not found 

at a given Compound 2 dose (i.e. sensitive sequences that drop out at higher Compound 2 doses). 

This led to R2 values of 0.229, 0.55, and. 0.686 for the three Compound 2 doses which also did not 

outperform C3PO (SI Table 1). Finally, we increased the weight of Compound 2 sensitivity 

predictions to 75% of the total loss which did not lead to better performance than C3PO.  

Convolutional layers 1 and 2 activation analysis 

Convolutional layers 1 and 2 were analyzed similarly to a previously published analysis of a CNN 

that predicts alternative polyadenylation (APARENT)42. In brief, every filter in both convolutional 

layers were correlated with predictions of drug sensitivity at the 12.5 µM dose. The top 5,000 input 
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sequences from the training set that achieved maximal filter activation were put into a position 

weight matrix and used to generate position-aware consensus sequence logos48. Pearson’s r plots 

of each filter’s activations with predicted 12.5 µM Compound 2 sensitivity at each position are 

plotted below these filter-specific sequence logos. Layer 1 filters are 8 positions wide, and layer 2 

filters are 15 positions wide. Note that the convolutional layers in C3PO contain even zero-padding 

to maintain an input/output size of 25. The padding should be accounted for when analyzing the 

filters’ Pearson r plots. For example in layer 1, the sequences are padded with 4 0’s on both the 

left and right.  

APARENT2 predictions and comparisons 

APARENT2 predictions of logodds of cleavage at expected cleavage position versus elsewhere 

were done on all MPRA sequences, centered at their expected cut site which is the expected format 

of APARENT2. Predictions with read depth of at least 150 in the Input libraries were kept for 

further analysis. APARENT2 predictions were compared against the logodds of expected cleaved 

DMSO read counts and Input read counts which estimates the in vitro cleavage efficiency. 

Additionally, APARENT2 predictions were compared against the logodds of expected cleaved 

12.5 μM Compound 2 read counts and Input read counts which estimates the in vitro drug 

resistance.  

 

4sU-seq 

HepG2 cells were treated with DMSO or 20 µM JTE-607 (Tocris) for 3 hours at 37˚C. 500 µM 

4sU (Sigma) was then added to the DMSO/JTE-607 containing media and cells were incubated at 

37˚C for one additional hour. After incubation, cells were lysed in Trizol (Invitrogen), and total 

RNA was extracted following the manufacturer’s protocol. 4sU RNA enrichment and library 

preparation were done as previously described with minor modifications49. Briefly, 50 µg total 

RNA was used as the starting material and biotinylated with biotin-HPDP (Thermo). 4sU labeled 

and biotinylated RNA was enriched with streptavidin beads by rotating at room temperature for 

1.5 hours, eluted with 100 mM DTT, and further purified by phenol chloroform extraction. 

 

PAS-seq 

HepG2 cells were treated with DMSO or 20 µM JTE-607 (Tocris) for 4 hours at 37˚C and total 

RNA was extracted by Trizol (Invitrogen). 10 µg of total RNA was used to prepare PAS-seq 
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libraries as previously described50. Briefly, 10 µg total RNA was fragmented using fragmentation 

buffer (Thermo) and reverse transcribed by SuperScript III (Thermo). The cDNA was circularized 

by Circligase (Lucigen) and then re-linearized by BamHI. The digested DNA was then PCR 

amplified and a ~200 bp region was gel extracted and sequenced. During the execution of this 

study, we have further optimized the library preparation steps of the protocol and for the most 

updated PAS-seq protocol please refer to PAS-seq 251. 

 

4sU-seq and PAS-seq data analysis 

For 4sU-seq, reads were mapped to human hg19 using STAR52 and bigwig files were generated 

using deepTools53. For PAS-seq, reads without a poly(A) tail (fewer than 15 consecutive A’s) were 

removed. The polyA tail sequence and linker sequence was trimmed from remaining reads before 

mapping. The trimmed reads were mapped to human hg19 using STAR52 as done for 4sU-seq 

except that the EndToEnd parameter was used only for PAS-seq. The resulting bam output file 

was converted to a bed file using BEDTools54. Reads that may have been due to internal priming 

(reads where there were 6 consecutive A’s within 10 nucleotides downstream of the PAS, or 7 A’s 

out of 10 nucleotides downstream of the PAS) were removed. The resulting bed file was then 

converted back to a bam file using BEDTools.54 The location of the 3¢ end of each read was 

extracted using BEDTools54 and was then compared to the location of all annotated PAS within 

PolyA_DB55 to retrieve read counts for each PAS. APA analysis was performed by edgeR56. 

 

Quantification and statistical analysis 

Pearson’s r and R2 (square of Pearson’s r) are used in Figures 1~4, S2, S3, S6 and S7 and related 

text as well as SI Models Table. Potential inequality of the top 10,000 resistant and sensitive 

sequences’ MFE ΔG’s were tested with a two-sided t-test with unequal variance. 6-mers in the top 

10,000 resistant and sensitive sequences were found to be significant by a binomial test with a null 

hypothesis of probability of success = 0.25! and alternative hypothesis of > 0.25!. p-value 

threshold was adjusted by the number of possible k-mers, 4!, and thus significant 6-mers must 

have p-values ≤	 "."$%! . 
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Figure legends: 

Fig 1. Compound 2-mediated inhibition of mRNA 3’ processing in vitro is sequence-

dependent. (a) In vitro cleavage assay on L3 PAS with increasing concentration of Compound 2 

and its IC50 quantification. Radio-labeled RNAs from the reactions were extracted and resolved on 

8M urea gel and visualized by phosphorimaging. Compound 2 concentrations used are: 0.1, 0.5, 

2.5, 12.5, 62.5, and 100 µM. (b) Electrophoretic mobility shift assay (EMSA) with L3 PAS in the 

presence of increasing concentration of Compound 2. Same concentrations as (A) were used. (c) 

In vitro cleavage assay on SVL PAS with increasing concentration of Compound 2 and its IC50 

quantification. (d) PAS activity and IC50 correlation of 34 in vitro tested PAS. 

 

Fig 2. Cleavage site (CS) region is a major determinant of Compound 2 sensitivity. (a) A 

diagram of L3, SVL and their chimeras. Their corresponding IC50 were plotted on the right. UPS: 

upstream sequence; CS: cleavage site; DS: downstream sequence. Black triangles denote the 

cleavage position YA (Y is U or C). (b) In vitro cleavage of L3-SVL CS with increasing 

concentration of Compound 2, similar to Fig. 1A and C. (c) In vitro cleavage of SVL-L3 CS with 

increasing concentration of Compound 2.  

 

Fig 3. Determine sequence specificity for Compound 2 sensitivity by massively parallel in 

vitro assay (MPIVA). (a) Design of the randomized CS sequence libraries and the MPIVA assay. 

Each box represents a sequence variant. YA: cleavage position (Y is U or C). N: random 

nucleotide.  (b) The randomized sequence library L3/SVL-N23 were transcribed into RNAs and 

used for in vitro cleavage/polyadenylation assays in the presence of 0.5, 2.5, and 12.5 µM 

Compound 2. The RNAs from these reactions were amplified by RT-PCR and resolved on an 

agarose gel. The RNA species were marked on the left. The white half brackets mark the regions 

on the gel that were extracted and amplified for sequencing. (c) A density plot for the resistance 

scores of all variants in L3-N23 library. The low, medium, and high groups represent the screens 

in the presence of 0.5, 2.5, and 12.5 µM Compound 2 as shown in (B). (d) A scatter plot comparing 

the cleavage efficiency log(frequency in Library 2/frequency in Library 1)  and the resistance score 

(log(frequency in Library 5/frequency in Library 2) of L3-CS variants. Pearson correlation is 

shown. (e) Examples of validation experiments using in vitro cleavage assays for variants from 

both L3- and SVL-N23 libraries. (f) Nucleoside distribution of L3-CS variants for the top 1000 
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most sensitive and resistant sequences. (g) Nucleoside distribution of SVL-CS variants for the top 

1000 most sensitive and resistant sequences. T- and A- rich regions were marked with red and 

green arrows respectively. 

 

Fig 4. C3PO architecture, performance, and layer feature analyses. (a) The model takes 25 nt 

RNA sequences immediately downstream of the core hexamer and predicts three doses of 

Compound 2 drug sensitivity by predicting the log ratio of percent reads in a drug-treated sample 

to a DMSO-treated sample. (b) Scatter plots of C3PO performance on predicting drug sensitivity 

at 3 Compound 2 doses on test sequences. Test sequences include equal number of sequences 

derived from both the L3 and SVL RNA contexts. (c) A scatter plot comparing the resistance 

scores predicted by C3PO and those measured experimentally. (d) Convolutional layer 1 and (e) 

layer 2 max filter activations with the highest Pearson correlation with 12.5 µM Compound 2 

predictions. Sequence logos are plotted on top of per-position absolute value of Pearson 

correlations with 12.5 µM Compound 2 sensitivity predictions. All layer 1 and 2 filters are reported 

in Fig. S6, S7. (f) Plot of average of all layer 1 filters’ absolute value of Pearson correlation with 

12.5 µM Compound 2 predictions across all positions. These are split into Pearson correlation 

values associated with resistance or sensitivity. Dashed gray lines indicate positions at the edge of 

sequence padding. The position of the cleavage site (CS) is marked and note that preceding filters 

may overlap with the designed canonical cut sites. (g) Scatterplots of RNA cleavage logodds 

measured in vitro calculated from input and DMSO libraries versus those from APARENT2 

predictions. (h) Scatterplots of Compound 2 resistance predicted by C3PO and the cleavage 

efficiency predicted by APARENT2. 

 

Fig 5. JTE-607-induced APA changes in cells are sequence-specific. (a) A scatter plot showing 

JTE-607-induced APA changes in cell. (b-c) PAS-seq tracks of 2 example genes: Ptp4a1 and 

Paqr8. Two replicates for each treatment are shown and the positions of the proximal and distal 

PASs are marked. (d) Boxplots comparing the C3PO-predicted resistance scores for the proximal 

(Prox) and distal (Dist) PASs for the PtoD and DtoP genes. ****: p value < 0.0001; *: p value < 

0.05 (t-test). 
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Fig 6. JTE-607-mediated inhibition of mRNA 3’ processing in cells is sequence-specific. (a). 

A density plot of transcription readthrough index (read counts in the 1kb downstream region/read 

counts in gene body) for DMSO- and JTE-607-treated cells based on 4sU-seq data. (b). 4sU-seq 

tracks for Eif4ebp1 and Cox8A genes. Two replicates for DMSO and JTE-607 are shown. PAS 

positions are marked. (c) Average normalized 4sU-seq signals for the genes with the top 1,000 

most resistant PASs. (d) Similar to C, but for the top 1,000 most sensitive PASs. Red arrow denotes 

region downstream of PAS. (e) A blox plot compare the DRT (the difference in 4sU-seq signals in 

the 1kb region downstream of the PAS. ****: p value < 0.0001, Wilcoxan test. (f) CS region 

nucleotide distribution for the top 1000 most resistant (left) and most sensitive (middle), and all 

human PASs (right). The T- and A-rich regions are marked by red and green arrows. 

 

Fig 7. A model for sequence-specific inhibition of pre-mRNA 3’ processing by Compound 2. 

Artistic rendering of resistant (left panel) or sensitive (right panel) PAS RNAs within the pre-

mRNA 3’ processing complex. CPSF73, CPSF100, and symplekin are shown and their structures 

are partially based on the histone mRNA cleavage complex (PDB accession: 6V4X), and the RNA-

binding channel formed by the three proteins is highlighted. The RNA (orange thread), active site 

of CPSF73, and the drug (Compound 2) are marked. Please see discussion for details. 
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Fig. 1. Compound 2-mediated inhibition of mRNA 3’ processing in vitro is 
sequence-dependent.
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Fig. 2. Cleavage site (CS) region is a major determinant of Compound 2 sensitivity.
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Fig. 3. Massively parallel in vitro assays for charactering 
the relationship between CS sequence and drug sensitivity.
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Fig 4. Machine learning analysis of Compound 2 sensitivity.
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specific manner.
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Fig. 7. A model for sequence-specific inhibition of pre-mRNA 3’ processing 
by Compound 2. 
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