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ABSTRACT  15 

Building evolutionarily appropriate baseline models for natural populations is not only important 16 
for answering fundamental questions in population genetics – including quantifying the relative 17 
contributions of adaptive vs. non-adaptive processes – but it is also essential for identifying 18 
candidate loci experiencing relatively rare and episodic forms of selection (e.g., positive or 19 
balancing selection). Here, a baseline model was developed for a human population of West 20 
African ancestry, the Yoruba, comprising processes constantly operating on the genome (i.e., 21 
purifying and background selection, population size changes, recombination rate heterogeneity, 22 
and gene conversion). Specifically, to perform joint inference of selective effects with 23 
demography, an approximate Bayesian approach was employed that utilizes the decay of 24 
background selection effects around functional elements, taking into account genomic 25 
architecture. This approach inferred a recent 6-fold population growth together with a 26 
distribution of fitness effects that is skewed towards effectively neutral mutations. Importantly, 27 
these results further suggest that, while strong and/or frequent recurrent positive selection is 28 
inconsistent with observed data, weak to moderate positive selection is consistent but 29 
unidentifiable if rare. 30 
 31 
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INTRODUCTION 38 

Quantifying the relative contributions of adaptive vs. non-adaptive processes in shaping 39 

observed levels of genomic variation remains difficult. This is largely due to the fact that 40 

multiple evolutionary processes can affect patterns of variation in a similar manner, making it 41 

challenging to disentangle their individual contributions. For instance, while genetic hitchhiking 42 

effects resulting from both recurrent selective sweeps (Maynard Smith and Haigh 1974) and 43 

background selection (BGS; Charlesworth et al. 1993) may skew the allele frequency 44 

distribution towards rare alleles (Kim 2006; Nicolaisen and Desai 2012; 2013; Ewing and Jensen 45 

2016; Johri et al. 2021), neutral population growth can result in a similar skew (see review of 46 

Charlesworth and Jensen 2021). In addition to conflicting signatures created by different 47 

evolutionary processes, heterogeneity in the rates of mutation and recombination as well as gene 48 

density across the genome add to the noise generated by these processes. Thus, in order to 49 

accurately quantify the frequency of, and identify candidate loci experiencing, rare and episodic 50 

forms of selection (such as positive selection), one must first construct an evolutionary baseline 51 

model that includes the effects of constantly acting evolutionary processes, such as genetic drift 52 

resulting from the underlying non-equilibrium population history as well as purifying and 53 

background selection caused by the constant input of deleterious mutations (Johri et al. 2022a). 54 

As most new fitness-impacting mutations are indeed deleterious (see review of Bank et al. 2014) 55 

it is particularly important to correct for them when predicting patterns of genomic variation in 56 

and around functional regions – however, the interplay of these purifying and background 57 

selection effects with population history is non-trivial (Johri et al. 2020; 2021). 58 

 59 

Building an appropriate baseline model thus requires the quantification of parameters 60 

describing the population history as well as those defining the distribution of fitness effects 61 

(DFE) of new deleterious mutations. As accurately inferring parameters of the DFE requires 62 

corrections for the demographic history of a population (Eyre-Walker and Keightley 2007; 63 

Boyko et al. 2008), a common workaround is to follow a two-step approach whereby alleles at 64 

putatively neutral sites are utilized to obtain the demographic history, and the DFE is then 65 

inferred from variation at functional sites conditional on that estimate of demography (see review 66 

of Johri et al. 2022b). However, apart from the difficulty of identifying genuinely neutral sites in 67 

many organisms, even if these sites are successfully identified they may still experience 68 
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background selection effects due to linkage with directly selected sites. As neutral demographic 69 

estimators do not account for this effect, the resulting skew in the site frequency spectrum (SFS) 70 

owing to BGS will often be misinterpreted as population growth (Ewing and Jensen 2014; Johri 71 

et al. 2021). Consequently, it is preferable to simultaneously account for the linked effects of 72 

purifying selection when inferring parameters of population history, highlighting the importance 73 

of performing joint inference of the DFE with demography. 74 

 75 

 In this study, we utilized the joint inference approach of Johri et al. (2020) in an 76 

approximate Bayesian computational framework (ABC; Beaumont et al. 2002), in order to 77 

uniquely infer the joint parameters of purifying selection and demography in a human 78 

population, the Yoruba from Ibadan, Nigeria (YRI). This approach utilizes the decay of 79 

background selection effects around functional regions while correcting for the specific genome 80 

architecture as well as the underlying heterogeneity in recombination and gene conversion rates 81 

across the genome, and has previously been shown to perform well across arbitrary DFE shapes 82 

(Johri et al. 2020; 2021). Furthermore, as the method makes no a priori assumptions about the 83 

neutrality of specific site types (e.g., synonymous sites), it is also robust to the presence of weak 84 

selection at these sites (Johri et al. 2020). Our inference procedure suggests recent population 85 

growth, together with a DFE strongly skewed towards effectively neutral and weakly deleterious 86 

mutations. We compare this finding with previous estimates based upon two-step inference 87 

approaches, and investigate the statistical identifiability of positively selected mutations within 88 

the context of this estimated baseline model. 89 

 90 

 91 

RESULTS & DISCUSSION 92 

The expected pattern of decay of background selection effects around exonic regions (see 93 

Johri et al. 2020) was used to perform the joint inference of DFE-shape with population size 94 

change in the Yoruba population, while correcting for region-specific rates of crossing over and 95 

genetic architecture. As gene conversion can significantly affect hitchhiking effects around 96 

functional genomic elements (Figure S1), region-specific rates of gene conversion were also 97 

newly incorporated into this inference framework. As the direct and linked effects of purifying 98 

selection were modeled specifically for a single exon, this method is applicable to the subset of 99 
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exons in the genome for which interference effects from other nearby functional regions are 100 

minimal.  101 

 102 

Selecting exons in the human genome 103 

In order to identify such exons, the recovery of nucleotide diversity (𝜋) at neutral sites 104 

due to BGS was predicted theoretically for each exon in the human genome (based upon the DFE 105 

inferred by Keightley and Eyre-Walker 2007), using equations 3a and 3b of Johri et al. (2020). 106 

More specifically, it has been shown previously (Johri et al. 2020) that if the distribution of 107 

fitness effects of new mutations follows a uniform distribution, analytical expressions for the 108 

nucleotide diversity at linked neutral sites near a functional element can be obtained. Thus, for 109 

the purpose of this study we assumed that the DFE of new deleterious mutations was comprised 110 

of four non-overlapping uniform distributions (Figure 1a), such that an 𝑓0 proportion of all new 111 

mutations was neutral (2𝑁𝑒𝑠 = 0), an 𝑓1 proportion was weakly deleterious (1 < 2𝑁𝑒𝑠 ≤ 10), 112 

an 𝑓2 proportion was moderately deleterious (10 < 2𝑁𝑒𝑠 ≤ 100), and an 𝑓3 proportion was 113 

strongly deleterious (100 < 2𝑁𝑒𝑠 ≤ 2𝑁𝑒), where 𝑁𝑒 is the effective population size and 𝑠 > 0 114 

represents the selection coefficient against homozygotes. Nucleotide diversity relative to that 115 

expected under strict neutrality, at a site that is physically at a distance 𝑧 from a selected site, is 116 

given by: 117 

𝐵 =
𝜋

𝜋0
~ exp[−𝐸(𝑡, 𝑧)] 118 

( 1 ) 119 

such that 𝑡 = 𝑠ℎ where ℎ is the dominance coefficient and  120 

𝐸(𝑡, 𝑧) =
𝜇𝑡

[𝑡 + (𝑔 + 𝑟𝑧)(1 − 𝑡) + 𝑟𝑥(1 − 𝑡)]2
 121 

( 2 ) 122 

 where 𝜇 is the mutation rate, 𝑔 is the gene conversion rate and 𝑟 is the cross-over rate 123 

per site per generation. In order to account for BGS effects generated by a functional element of 124 

length 𝐿, with 𝑡 following the probability density function 𝜑(𝑡), the expression above can be 125 

integrated over both: 126 

𝐵~𝑒𝑥𝑝 [−∫∫𝐸(𝑡, 𝑧) 𝑑𝑧 𝑑𝑡] = exp⁡[−𝐹] 127 

( 3 ) 128 
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Upon integration, 𝐹 was obtained (as shown in Johri et al. 2020) as: 129 

𝐹 =
𝜇

𝑟(1 − 𝑎)
{1 +

𝑎

(1 − 𝑎)(𝑡𝑖+1 − 𝑡𝑖)
𝑙𝑛 [

𝑎 + (1 − 𝑎)𝑡𝑖
𝑎 + (1 − 𝑎)𝑡𝑖+1

]} 130 

( 4 ) 131 

−
𝜇

𝑟(1 − 𝑏)
{1 +

𝑏

(1 − 𝑏)(𝑡𝑖+1 − 𝑡𝑖)
𝑙𝑛 [

𝑏 + (1 − 𝑏)𝑡𝑖
𝑏 + (1 − 𝑏)𝑡𝑖+1

]} 132 

where 𝑎 = 𝑔 + 𝑟𝑦 and 𝑏 = 𝑔 + 𝑟(𝑦 + 𝐿), where 𝑦 is the number of sites between the 133 

neutral site and the end of the functional region and 𝑡𝑖 correspond to the boundaries of the bins. 134 

As a DFE comprised of four bins was assumed, the effect of all bins were summed up as follows:  135 

𝐹(𝑡)̅̅ ̅̅ ̅̅ = ∑
𝑓𝑖

𝑡𝑖+1 − 𝑡𝑖

3

𝑖=0

∫ 𝐹(𝑡) 𝑑𝑡
𝑡𝑖+1

𝑡𝑖

 136 

( 5 ) 137 

For the purpose of these analytical predictions, the gene conversion rate was assumed to 138 

be zero, which results in conservative estimates of B. The DFE inferred by Keightley and Eyre-139 

Walker (2007) was assumed such that 𝑓0 = 0.22, 𝑓1 = 0.27, 𝑓2 = 0.13, 𝑓3 = 0.38 and all 140 

mutations were assumed to be semidominant. Using the above equations (1-5) derived in Johri et 141 

al. (2020), it is possible to analytically calculate expected values of nucleotide diversity as one 142 

moves away from a functional region. The expected number of bases required for a 50% 143 

recovery of diversity (𝜋50) was calculated as detailed in the Methods. Note that this decay of 144 

nucleotide diversity due to BGS is dependent on the length of each exon as well as the local 145 

recombination rate, and thus is specific to the human population under consideration. This 146 

analytical approach was applied to identify a subset of exons for which there were no other exons 147 

or large (> 500 bp) functionally important regions (sno/miRNAs and phastCons elements; Siepel 148 

et al. 2005) present within 4 × 𝜋50 bases of the ends of the exons. In addition, in order to observe 149 

sufficient BGS effects, our application was limited to larger exons, sized between 2-6 kb. A total 150 

of 465 such autosomal exons were identified in the human genome (i.e., those that were 151 

relatively long and were less likely to have interference from other functional elements nearby) 152 

and used for further analysis (provided as a supplemental file; see Methods for further details).  153 

 154 

The sensitivity of assuming the DFE inferred by Keightley and Eyre-Walker was 155 

evaluated by investigating how the reduction and recovery of nucleotide diversity due to BGS 156 
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 6 

was affected by two very different DFE shapes – a DFE skewed strongly towards mildly 157 

deleterious mutations and another towards strongly deleterious mutations (Table S1). The 158 

primary determinant of BGS effects around functional elements was driven by the cross-over 159 

rate, for which we accounted. The DFE skewed towards strongly deleterious mutations predicted 160 

larger number of bases required for recovery (as expected from previous theoretical results). 161 

Note that while extremely strongly deleterious mutations have long range BGS effects, they 162 

reduce diversity only by a factor of ~0.999 (in the human population), and do not segregate at 163 

high frequencies, and thus are unlikely to contribute to interference effects. Moreover, as all 164 

calculations were performed assuming a conservative absence of gene conversion, it is unlikely 165 

that there exist unaccounted for interference effects from other nearby exons. 166 

  167 

The ABC approach  168 

 An ABC approach was employed to perform joint inference of parameters of 169 

demography and purifying selection while accounting for BGS effects. As BGS tends to distort 170 

genealogies such that inferences of recent population history could be biased, for the purpose of 171 

this study, recent size changes were specifically modeled and focused upon. More specifically, a 172 

simple single size change was modeled ~200 generations ago (allowing for uncertainty in the 173 

age), which represents the Bantu population expansion (Schiffels and Durbin 2014), allowing 174 

estimation of the ancestral population size (𝑁𝑎𝑛𝑐), current population size (𝑁𝑐𝑢𝑟), and the precise 175 

time to change (𝜏; Figure 1a). Purifying selection was modeled using a DFE comprising four 176 

non-overlapping uniform distributions (Figure 1a), such that an 𝑓0 proportion of all new 177 

mutations was neutral (2𝑁𝑒𝑠 = 0), an 𝑓1 proportion was weakly deleterious (1 < 2𝑁𝑒𝑠 ≤ 10), 178 

an 𝑓2 proportion was moderately deleterious (10 < 2𝑁𝑒𝑠 ≤ 100), and an 𝑓3 proportion was 179 

strongly deleterious (2𝑁𝑒𝑠 ≥ 100). Note that 𝑠 > 0 represents the selection coefficient against 180 

homozygotes and the effective population size (𝑁𝑒) here corresponds to the ancestral size. By 181 

sampling different combinations of 𝑓𝑖 (such that 𝑓𝑖 ∈ [0,1]⁡∀⁡𝑖 and ∑ 𝑓𝑖
𝑖=3
𝑖=0 = 1), all possible 182 

shapes of the DFE could be sampled (including bimodal DFEs). Thus, the inferred parameters of 183 

the DFE were the four proportions (𝑓𝑖) of new mutations in each selective class.  184 

 As ABC is a simulation-based method, all 465 exons were simulated using the forward 185 

time simulator SLiM (Haller and Messer 2019), with the specific lengths of exonic and 186 

intergenic/intronic regions, as well as their respective recombination and gene conversion rates 187 
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(see Methods). Note that although the inference approach applied here is conceptually similar to 188 

that employed by Johri et al. (2020) to Drosophila populations, the simulations performed for the 189 

purpose of this work were tailored to the exons in the human genome and thus were newly 190 

performed. In addition, we have here newly added a consideration of gene conversion to the 191 

model. For each exon, statistics were calculated for three separate windows: (1) “functional” 192 

(comprising all sites in the exon), (2) “linked” (comprising 𝜋50 consecutive bases in the 193 

intergenic/ intronic region), and (3) “less linked” (comprising the subsequent set of 𝜋50 bases in 194 

the intergenic/intronic region; Figure 1b). A large number of statistics summarizing the means 195 

and variances of the site frequency spectrum, linkage disequilibrium (LD), and divergence for 196 

each window were employed when performing inference procedures (see Methods). The 197 

accuracy of inference was assessed by performing a leave-one-out cross-validation, whereby a 198 

single parameter combination was excluded from the priors while performing inference. All 199 

seven parameters (𝑁𝑎𝑛𝑐 , 𝑁𝑐𝑢𝑟, 𝜏, and 𝑓0–𝑓3) were estimated sufficiently well (Figure 1c, Table 200 

S2), with the smallest errors in the proportion of neutral mutations (𝑓0) and the ancestral 201 

population size, and highest errors in the estimation of the proportion of moderately deleterious 202 

mutations (𝑓2) and the current population size.  203 

 204 

 Genomic analyses of sequencing data – such as those collected for the Yoruba population 205 

as part of the 1000 Genomes project (Auton et al. 2015)  –  are inevitably restricted to sites in the 206 

genome that are accessible to next-generation sequencing. In addition, summary statistics are 207 

frequently reported for regions outside of functional elements to avoid the effects of selection. 208 

Such filtering could potentially bias the values of statistics, particularly those associated with the 209 

variance of the statistics across exons. Indeed, when a filtering scheme replicating that of the 210 

1000 Genomes project was employed on simulated data, a drastic increase in the variance of 211 

SFS-based statistics was observed post-filtering (Figures S2 and S3; Table S3), while almost no 212 

change was observed for statistics based on LD. Therefore, the sites excluded from the empirical 213 

data (i.e., inaccessible sites and those belonging to functionally important regions smaller than 214 

500 bp) were also excluded from the simulated data, decreasing the accuracy of our inference 215 

method almost by half (Table S2). Importantly, by mimicking the filtering of the empirical data 216 

in such an exact manner in the simulated data, the statistics observed in the YRI population 217 
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across the 465 exons (as shown in Table 1) were well explained by the set of simulations 218 

employed for inference (Figures S4-S10). 219 

 220 

Inference and comparison to previous studies  221 

 Upon performing inference on the Yoruba population, a 6-fold population size increase 222 

was estimated that began ~300 generations ago (with an ancestral and current size of 7,509 and 223 

44,632 individuals, respectively). These estimates correspond well to previous neutral estimates 224 

of the recent history of the Yoruba population (Figure 2a). Interestingly, by jointly estimating 225 

population history and the DFE, our estimated shape of the deleterious DFE was highly skewed 226 

towards mild selective effects – ~50% of all new mutations in the exonic regions investigated 227 

were estimated to belong to the effectively neutral class, ~20% to the mildly deleterious class, 228 

and ~30% to the moderately deleterious class. In addition, when dividing the 465 exons into two 229 

equal sets with high and low exonic divergence from the human ancestor, a much larger 230 

proportion of effectively neutral mutations was observed in the high-divergence set as expected 231 

(Figure 2b). These observations suggest that it is possible to infer the DFE with reasonable 232 

accuracy, and that the shape will depend upon the set of chosen exons (also see Campos et al. 233 

2017).  234 

 235 

This approach did not identify an appreciable proportion of strongly deleterious 236 

mutations amongst these selected exons, though there is of course some uncertainty around these 237 

estimates (presented as the posterior distributions provided in Table S4 and Figure S11). Notably 238 

however, as previous studies have generally assumed a gamma distribution of the deleterious 239 

DFE, it is also possible that constraints of the gamma distribution have resulted in the estimation 240 

of more mutations in the strongly deleterious class. Moreover, the DFE estimated by Keightley 241 

and Eyre-Walker (2007; 2009) was estimated based on a set of genes selected either because 242 

loss-of-function mutations in those genes cause severe diseases (EGP data), or because those 243 

genes underly inflammatory responses (PGA dataset) in humans. Such genes are more likely to 244 

be highly conserved and thus to have more strongly deleterious mutations. Huber et al. (2017) 245 

used a wider set of genes and obtained a DFE more skewed towards effectively neutral 246 

mutations, with a very similar shape as that obtained by the present study (Figure 2b). Further, 247 

these observed differences in the DFE could also reflect differences in the DFE of different 248 
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 9 

populations – the present study was conducted on the Yoruba population (the same dataset 249 

analyzed by Huber et al.), while the DFE in Keightley and Eyre-Walker (2007) was calculated 250 

from an African-American population. Finally, as our method could only be applied to exons 251 

located in sparser regions of the human genome, limited to 465 in number, it is possible that the 252 

difference in the estimated DFE from Huber et al. (2017) is due to the difference in selective 253 

constraints experienced by the selected group of exons vs. all exons. 254 

 255 

Model violations and fit  256 

In order to find a sufficient number of exons that were appropriately distant from other 257 

functional elements, we excluded exons that were near phastCons elements of lengths larger than 258 

500 bp (see Methods for details). Thus, hitchhiking effects (due to selective sweeps and/or BGS) 259 

generated by smaller phastCons elements were not accounted for in the priors. Note that most 260 

phastCons elements are extremely small in length, with 50%, 90%, and 99% of all phastCons 261 

elements being less than 10 bp, 32 bp, and 132 bp respectively (Table S5). Theoretical 262 

calculations using Equations 1-5 and assuming a DFE skewed towards mildly deleterious 263 

mutations (𝑓0 = 0.1;⁡𝑓1 = 0.7;⁡𝑓2 = 0.1;⁡𝑓3 = 0.1) demonstrates that BGS effects generated by 264 

such small functional elements are extremely minor (with B=0.993-1.0; Table S6) and are thus 265 

highly unlikely to cause unaccounted for interference effects.  266 

Another potential caveat of our analysis is the assumption that ancestral alleles have been 267 

accurately inferred by previous studies. Keightley and Jackson (2018) noted two consequences 268 

of ancestral allele misidentification on biasing estimation of summary statistics. Firstly, when 269 

parsimony methods are used to infer the derived allele, filtering of sites can lead to a decrease in 270 

levels of diversity. As the 1000 Genomes data used multiple outgroups to polarize SNPs, it will 271 

likely result in stringent filtering criteria (possibly removing sites that have a high mutation rate). 272 

Hence, while such a bias may lead to under-estimation of population sizes, a comparison of our 273 

estimates to those from previous studies is justified (as other studies are also using the same 274 

ancestral alleles to polarize SNPs). The second issue noted by the authors is that parsimony 275 

methods can result in an over-estimation of high frequency derived alleles. However, they 276 

observed that the unfolded SFS from the 1000 Genomes dataset is very similar to what they 277 

obtained using their maximum likelihood approach (corrected for the mis-identification), unless 278 

they restricted it to CpG sites. As we are not particularly looking at CpG sites alone (and as 279 
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noted above, we are likely throwing a number of those out), our SFS should not be biased. In 280 

order to formally test this, the following analysis was performed to evaluate the sensitivity of our 281 

results to mis-specification of the ancestral state. As CpG sites comprise of less than 1% of the 282 

human genome (Babenko et al. 2017), it was assumed that ~1% of all derived singletons were 283 

falsely polarized, and thus were randomly re-assigned to an allele frequency of 99%. Note that as 284 

not all CpG sites will have segregating derived singletons, this example assumes that many more 285 

sites have a mis-specified ancestral state than is likely to occur in real data. The accuracy of 286 

inference of parameters related to the demographic history were almost entirely unaffected by 287 

this mis-specification (Table S7). However, there was an under-estimation of the fraction of 288 

mutations in the weakly deleterious class and a corresponding over-estimation of the moderately 289 

deleterious class (Table S7). 290 

Finally, a potential caveat concerning the inferences performed in this study is the 291 

assumption of a common mutation rate across the simulated regions. Region-specific mutation 292 

rates estimated from the identification of de novo mutations in humans were therefore simulated 293 

to assess the magnitude of generated bias in our inference method. Again, while inference of 294 

parameters of the demographic history were unaffected, there was a slight under-estimation of 295 

the fraction of mildly deleterious mutations when mutation rate heterogeneity was neglected 296 

(Table S7). Thus, although a large class of mildly deleterious mutations was inferred from the 297 

human data, the proportion of weakly deleterious mutations may be even higher. Despite this 298 

caveat, our inferred model fits the data exceptionally well for all classes (functional, linked, less-299 

linked) and across all 465 exons (Figures 3 and S12-S14). This fit was evaluated by simulating 300 

the best-fit model 10 times, and comparing the distribution of all the summary statistics with 301 

those obtained from the empirical data. As can be seen in Figure 3, predicted patterns of LD, the 302 

SFS, and divergence match the empirical data well. It should be noted that the figure compares 303 

the entire distribution of statistics for all 465 exons between the best-fitting model and the 304 

empirical data – a comparison that is usually restricted to mean values of summary statistics, and 305 

thus suggests an overall excellent fit between the estimated best model and real data. 306 

Importantly, despite the strong fit of our inferred model to the data, it is very likely that 307 

additional parameter combinations under alternative models (including a more complex 308 

demographic history) could also be fit to the data (as discussed in Johri et al. 2022a). As such, 309 
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this model (as with any model fitting exercise) should only be viewed as a viable model rather 310 

than, of course, as a 'correct' model. 311 

 312 

Evaluating the identifiability of a beneficial mutational class 313 

 As beneficial mutations are expected to be rare and only episodically reach fixation, they 314 

were not part of the baseline model fit to the data, which was instead focused upon commonly 315 

and continuously acting evolutionary processes. Nonetheless, the identification of beneficial 316 

mutations is of great interest, and thus the effects of a model violation consisting of various rates 317 

and strengths of recurrent positive selection within the context of the fit baseline model was 318 

evaluated. The proportion of new beneficial mutations (𝑓𝑝𝑜𝑠) was assumed to be 0.1%, 1%, or 319 

5%, and the distribution of fitness effects of beneficial mutations was modelled to be 320 

exponentially distributed with mean 𝑠𝑏, such that 2𝑁𝑒𝑠𝑏 = 10, 100, or 1000, where 𝑠𝑏 > 0 is the 321 

selection coefficient representing selection favoring homozygotes, and all mutations were 322 

assumed to be semidominant. Combinations of the above parameters yielded nine different 323 

evolutionary scenarios ranging from weak and infrequent to common and strong positive 324 

selection.  325 

 326 

 Interestingly, when 0.1% or 1% of new mutations are beneficial and the strength of 327 

positive selection is weak or moderate (2𝑁𝑒𝑠𝑏 = 10⁡or⁡100), there is almost no difference 328 

between the distribution of statistics across the 465 exons in the absence vs. presence of positive 329 

selection (Figures S15-S23). This observation is consistent with results from Drosophila 330 

melanogaster (Johri et al. 2020), and suggests a general inability to identify this class of 331 

mutations, if present. However, when positive selection is common (𝑓𝑝𝑜𝑠 = 1 − 5%) and strong 332 

(2𝑁𝑒𝑠𝑏 = 1000), the distribution of statistics including Tajima’s D, 𝑟2, and divergence do not 333 

resemble observed empirical distributions (Figures 4 and S15-S23). Therefore, while strong and 334 

frequent positive selection is inconsistent with empirical data, weak/moderate infrequent positive 335 

selection remains consistent with observed patterns of variation, though this addition does not 336 

improve the fit. This observation emphasizes the peril of naively fitting models of positive 337 

selection to data while neglecting common evolutionary processes (see Johri et al. 2022c), as 338 

well as the difficulty in being able to accurately infer the proportion and DFE of new beneficial 339 
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mutations. More generally however, it will be of interest in the future to evaluate whether a joint 340 

inference approach that explicitly includes a class of beneficial mutations can be successful. 341 

 342 

 343 

Closing Thoughts 344 

Despite some important methodological differences amongst approaches, one 345 

commonality that has emerged in the study of the Yoruba population is the presence of an 346 

appreciable class of weakly deleterious (1 < 2𝑁𝑒𝑠 ≤ 10) mutations. This observation has a few 347 

noteworthy implications. Firstly, the BGS effects arising from mildly deleterious mutations 348 

cannot be accounted for by a simple rescaling of effective population size, as these mutations 349 

will result in a significant skew towards rare alleles; this may in turn strongly bias demographic 350 

inference when unaccounted for (Ewing and Jensen 2016; Johri et al. 2021). Secondly, weakly 351 

deleterious mutations in regions of low recombination can result in associative overdominance, 352 

which could lead to an increase in both nucleotide diversity and LD (Zhao and Charlesworth 353 

2016; Becher et al. 2020; Gilbert et al. 2020). Additionally, the linked effects of very weakly 354 

deleterious mutations (1 < 2𝑁𝑒𝑠 < 2.5) are still not well understood (though see Charlesworth 355 

2022), and thus their common presence in such inference suggests the need for further study of 356 

these weak selection effects.  357 

 358 

Finally, as the human genome is characterized by a small fraction (< 10%) of functional 359 

sites (Siepel et al. 2005), and indeed is amongst the best-annotated and best-studied genomes to 360 

date, this species probably represents a case for which the joint inference of demography with the 361 

DFE is least critical. In other words, in functionally dense genomes in which neutral sites free of 362 

BGS effects may be difficult to identify or may not exist at all, as well as in less well-studied 363 

species in which functional elements may not be fully annotated for the purposes of exclusion 364 

when performing demographic inference, this type of joint inference will be critical for accurate 365 

estimation. This disparity is partly evidenced by comparing joint inference performed in D. 366 

melanogaster and in humans. In the former, the incorporation of BGS effects into the joint 367 

inference scheme led to considerably lower estimates of population growth and higher 368 

proportions of weakly deleterious mutations relative to studies utilizing two-step inference 369 
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approaches (Johri et al. 2020), whereas in humans the joint inference estimates provided here are 370 

relatively similar to previous two-step estimates. 371 

 372 

 That said, earlier studies in humans as well as model organisms such as D. melanogaster 373 

(e.g., Beichman et al. 2017; Garud et al. 2021) have shown that the specific models of 374 

demography that have been fit previously to these populations do not recapitulate all aspects of 375 

the data. Specifically, when the inferred models are simulated, they explain certain aspects of the 376 

data, but poorly fit others (e.g., linkage disequilibrium). Conversely, we have here shown that 377 

incorporating the specific details of genome architecture with locus-specific recombination rates, 378 

employing a statistical approach that can account for multiple aspects of the data, and jointly 379 

inferring population history with the DFE utilizing BGS expectations, results in a remarkably 380 

good fit to all aspects of levels and patterns of variation and divergence. This once again 381 

highlights the importance of constructing an appropriate evolutionary baseline model for 382 

genomic analysis, and of relaxing common but poorly supported inference assumptions.  383 

 384 

 385 

 386 

 387 

 388 

METHODS 389 

Data 390 

 This study was based on the human reference genome hg19/GRCh37 and its 391 

corresponding resources. In brief, the human reference genome (hg19) was downloaded from the 392 

UCSC Genome Browser (accession number: GCA_000001405.1; Church et al. 2011); a 393 

catalogue of common genetic variation in the Yoruba population was obtained from the 1000 394 

Genomes Phase 3 (Auton et al. 2015) together with information about genome accessibility to 395 

next-generation sequencing (as determined by the "tgpPhase3AccessibilityStrictCriteria" track of 396 

the UCSC Table Browser); ancestral alleles as determined by the six-way primate EPO 397 

alignments were downloaded from Ensembl (release 74; Flicek et al. 2014; Cunningham et al. 398 

2022); gene annotations (including exon start and end positions) were downloaded from the 399 

NCBI Human Genome Resources archive (Sayers et al. 2022); annotations for small nucleolar 400 
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and micro RNAs ("sno/miRNAs") as well as conserved elements identified based on the 100-401 

way PhastCons score (“phastConsElements100way”; Siepel et al. 2005; Pollard et al. 2010) were 402 

downloaded from the UCSC Table Browser; and population-specific recombination rates were 403 

obtained from the HapMap project (“hapMapRelease24YRIRecombMap”; Altshuler et al. 2005). 404 

The URLs for file downloads are provided in Table S8. 405 

 406 

Selecting a set of human exons for analysis 407 

 For every exon in the human genome, we calculated the decay of nucleotide diversity at 408 

linked neutral sites caused by BGS, taking into account the specific exon length and 409 

recombination rate (assuming the rate of gene conversion to be zero in order to be conservative). 410 

This was done analytically using equations 3a and 3b derived in Johri et al. (2020), and presented 411 

as equations 1-5 in the Results section. The DFE was assumed to follow that inferred by 412 

Keightley and Eyre-Walker (2007): f0=0.22, f1=0.27, f2=0.13, and f3=0.38, representing the 413 

proportion of new mutations belonging to the neutral, weakly deleterious, moderately 414 

deleterious, and strongly deleterious classes, respectively. Nucleotide diversity was predicted at 415 

sites 1 to 100,000 bp away from the end of each exon and a logarithmic function was fit such that 416 

𝜋 = 𝑠𝑙𝑜𝑝𝑒 × ln(𝑥) + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, where 𝑥 is the distance of the site from the functional region in 417 

base pairs. The values of 𝑠𝑙𝑜𝑝𝑒 and 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 were used to calculate the expected number of 418 

base pairs required for a 50% recovery of 𝜋 (referred to as 𝜋50). The script to perform such 419 

analytical calculations can be accessed at: 420 

https://github.com/paruljohri/Joint_Inference_DFE_demog_humans/blob/main/selecting_exons/a421 

dd_numbp50_to_exons.py. The distance between every exon and its nearest functional element 422 

(i.e., all neighboring exons, as well as sno/miRNAs and phastCons elements larger than 500 bp) 423 

was calculated, and exons with a distance greater than 4 × 𝜋50 kept for further analysis. In 424 

addition, only exons that were 2-6 kb in length were selected (in order to observe significant 425 

BGS effects). This procedure yielded a total of 465 exons with recombination rates within 0.5-426 

10cM/Mb. Note that the selected exons were not restricted to single-exon genes. 427 

 428 

Modeling the simulation framework for ABC 429 

 Each of the 465 exons was simulated using SLiM v.3.1 (Haller and Messer 2019), and 430 

was comprised of a functional region of the length of the exon, with a single linked 431 
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intergenic/intronic region of size 4 × 𝜋50. Intergenic/intronic regions were assumed to be 432 

neutral, whereas exonic regions experienced purifying selection given by a discrete DFE 433 

comprised of four non-overlapping uniform distributions, with 𝑓0, 𝑓1, 𝑓2 and 𝑓3 representing the 434 

proportion of new mutations belonging to the neutral, weakly deleterious, moderately 435 

deleterious, and strongly deleterious classes, respectively. Simulations were performed using a 436 

constant mutation rate of 1.25 × 10−8 per site per generation (Kong et al. 2012) and region-437 

specific crossing over rates obtained from the HapMap project (Altshuler et al. 2005) as 438 

indicated in the Data section and Table S8, utilizing the average crossing over rate across the 439 

exonic and corresponding intergenic/intronic regions (both 5 and 3 intergenic/intronic) for each 440 

exon. 441 

 442 

Modeling gene conversion 443 

 The rate of non-crossover gene conversion has been estimated to be 5.9 × 10−6 per site 444 

per generation (Palamara et al. 2015; Williams et al. 2015), with tract lengths found to be 445 

between 55-290 bp (Jeffreys and May 2004) and between 100-1000 bp (Williams et al. 2015). In 446 

humans and mice, crossover recombination events (COs) are ∼5–15 times less frequent than 447 

non-crossovers (NCOs), but their conversion tracts are ∼2–8 times longer (Jeffreys and May 448 

2004) and most of these events occur in recombination hotspots (McVean et al. 2004). Although 449 

the mean rate of gene conversion per site (i.e., the probability that any given site is affected by 450 

the process of gene conversion) can be estimated with confidence and is consistent across the 451 

studies mentioned above, it is quite difficult to disentangle the tract length from the rate of 452 

initiation of gene conversion. Moreover, previous studies have found that gene conversion rates 453 

are correlated with the rate of crossing over in humans (Padhukasahasram and Rannala 2013; 454 

Glémin et al. 2015; Palamara et al. 2015). We thus assume that tract lengths are geometrically 455 

distributed (as modeled in SLiM) with a mean of 125 bp (Jeffreys and May 2004), and that gene 456 

conversion rates are 5 times those of recombination rates, while maintaining the average rate of 457 

gene conversion of 5.9 × 10−6 per site per generation.  458 

 459 

Demographic history 460 

 To correct for confounding effects of BGS on population history, a simple demographic 461 

history comprised of a single, recent population size change was modeled. As Gutenkunst et al. 462 
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(2009) and Gravel et al. (2011) fit a single size change model that yielded a size change  463 

relatively long ago (~6-8k generations), those models were not used to parametrize the model in 464 

this study. Instead, we based our model on previous studies that have estimated a recent increase 465 

in population size of the Yoruba population, corresponding to the Bantu expansion, with the 466 

estimated expansion occurring ~200 generations ago. Specifically, Tennessen et al. (2012) 467 

estimated the time of change to be 205 generations ago (corresponding to 5,115 years ago with a 468 

generation time of 25 years), Schiffels and Durbin (2014) estimated the time of change to be 200 469 

generations ago (corresponding to 6,000 years ago assuming a generation time of 30 years), and 470 

Terhorst et al. (2017) estimated that the growth in the population began 1,724 generations ago 471 

and significantly increased around 517 generations ago (corresponding to 50k and 15k years ago 472 

assuming a generation time of 29 years). The YRI population was thus simulated to be under 473 

equilibrium until a size change (exponential increase or decrease) occurred ~200 generations ago 474 

(referred to as 𝜏) with uncertainty modeled around this age (Figure S24). The ancestral (𝑁𝑎𝑛𝑐) 475 

and current (𝑁𝑐𝑢𝑟) population sizes were inferred using ABC (see below). 476 

 477 

ABC 478 

 A total of seven parameters were inferred using ABC: 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑁𝑎𝑛𝑐 , 𝑁𝑐𝑢𝑟, and 𝜏. 479 

The 𝑓𝑖 were randomly sampled in increments of 0.05 between 0 and 1, i.e., 𝑓𝑖 ∈480 

{0.0,0.05, 0.1,… , 0.95, 1.0} such that ∑ 𝑓𝑖
𝑖=3
𝑖=0 = 1. Both 𝑁𝑎𝑛𝑐  and 𝑁𝑐𝑢𝑟 were sampled from log 481 

uniform distributions between 5,000 and 50,000 diploid individuals. A total of 2000 parameter 482 

combinations were simulated. Simulations for each parameter combination were rescaled to a 483 

different extent, determined as follows. In order to avoid simulating extremely small population 484 

sizes and having a very large rescaling factor, rescaling was restricted to a maximum of 200-fold 485 

and a minimum of 5,000 individuals, i.e., 𝑟𝑒𝑠𝑐𝑎𝑙𝑖𝑛𝑔⁡𝑓𝑎𝑐𝑡𝑜𝑟 = min⁡{
min{𝑁𝑎𝑛𝑐,𝑁𝑐𝑢𝑟}

5000
, 200}. For 486 

each parameter combination, the 465 exons with their specific lengths, intergenic/intronic region, 487 

cross-over and non-crossover rates were simulated for a burn-in period of 10𝑁𝑎𝑛𝑐 generations 488 

plus an additional 4𝑁𝑎𝑛𝑐 generations (in order to estimate the rate of divergence post burn-in) 489 

after which there was an exponential size change for 𝜏 generations. Fifty diploid individuals were 490 

sampled at the end of each simulation.  491 

 492 

Calculation of statistics from simulated data 493 
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 For each exon, three non-overlapping windows were defined: (1) “functional” (comprised 494 

of all sites in the exonic region), (2) “linked” (sites within [0, 𝜋50] bases linked to the exon, with 495 

5´ and 3´ being designated separately), and (3) “less linked” (sites within (𝜋50, 2𝜋50] bases 496 

linked to the exon, with 5´ and 3´ being designated separately). Next, any sites deemed 497 

inaccessible in the 1000 Genomes Phase 3 data were excluded (see Data section above) and sites 498 

in the intergenic/intronic regions that were annotated to be functionally important (i.e., 499 

phastCons elements) that were smaller than 500 bp were also excluded. Pylibseq v.0.2.3 500 

(Thornton 2003) was used to obtain the means and standard deviations of the following statistics 501 

from both the unfiltered and filtered simulated data: nucleotide diversity (𝜋), Watterson’s 𝜃 502 

(𝜃𝑊), statistics that capture the relative proportion of high and intermediate frequency alleles 503 

(𝜃𝐻, 𝐻′), statistics that capture the relative proportion of rare alleles of the SFS (Tajima’s D, 504 

singleton density), and statistics that summarize the LD patterns (haplotype diversity, 𝑟2, 𝐷, 𝐷′). 505 

Together with divergence (see below) these amounted to a total of 66 summary statistics that 506 

were employed to perform inference using the ABC method. It should be noted that while ABC-507 

based approaches can suffer from the “curse of dimensionality”, i.e., ABC inference can become 508 

inaccurate and unstable if an extremely large number of statistics are employed (Beaumont 509 

2010), excluding statistics always resulted in a reduction of accuracy in our study. Moreover, 510 

different statistics from different windows were important to accurately predict different 511 

parameters (see Johri et al. 2020 for a detailed analysis). Therefore, all 66 summary statistics 512 

were used for inference. 513 

 Divergence was calculated using the number of substitutions (as provided by SLiM) that 514 

occurred after the burn-in period of 10𝑁𝑎𝑛𝑐 generations. As a rate of substitutions was obtained 515 

from the simulations, these rates were converted to divergence values as follows. The total 516 

number of fixed substitutions per site (𝑑𝑖𝑣𝑟𝑎𝑡𝑒) was calculated from the simulations over the 517 

course of 4𝑁𝑎𝑛𝑐(𝑠𝑐𝑎𝑙𝑒𝑑) + 200 generations for each parameter combination. Divergence values 518 

(𝑑𝑖𝑣) for each parameter combination were then obtained using 519 

𝑑𝑖𝑣 = ⁡𝑑𝑖𝑣𝑟𝑎𝑡𝑒 ×
𝑡𝑠𝑝𝑙𝑖𝑡

(𝛼 × 𝑡𝑔𝑒𝑛)
×

1

(4𝑁𝑎𝑛𝑐𝛼 + 200)
 520 

 521 

where 𝑡𝑠𝑝𝑙𝑖𝑡  is the time since the split between chimpanzees and humans, which was assumed to 522 

be a minimum of 6 (Nachman and Crowell 2000) and a maximum of 12 million years ago 523 
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(Chintalapati and Moorjani 2020) and the mean of these values was used when performing final 524 

inference. The generation time (𝑡𝑔𝑒𝑛) in humans was assumed to be 25 years following 525 

Gutenkunst et al. (2009) and 𝛼 is a scaling factor (which was different for each parameter 526 

combination). Thereby, the sites that were excluded when calculating statistics from single 527 

nucleotide polymorphisms (SNPs) were also excluded when calculating divergence from 528 

simulated data. Note that as divergence per site was calculated by multiplying the rate of fixation 529 

of mutations in simulated data with the total number of generations to the ancestor, and as 530 

filtering of sites resulted in some regions having very few accessible sites (e.g., 4-7), by chance 531 

some replicates had higher values, which resulted in values of divergence per site > 1 in this 532 

extreme parameter space (as can be seen in Figures 3 and 4). 533 

 534 

Calculation of statistics from empirical data 535 

 Summary statistics were calculated from 50 YRI individuals (25 males and 25 females) 536 

selected at random from the 1000 Genomes Phase 3 data (Auton et al. 2015; and see Table S9 for 537 

the list of individuals), using only sites located in strictly accessible regions and outside of 538 

phastCons elements (see Data section above). Similar to the simulated data, pylibseq v.0.2.3 539 

(Thornton 2003) was used to calculate the means and standard deviations of the 66 summary 540 

statistics (as outlined above), based on the 81% of sites retained after filtering (89% in exons, 541 

80% in 5 intergenic/intronic regions, and 79.4% in 3 intergenic/intronic regions; Figure S25). 542 

Thereby, divergence was calculated based on fixed differences between reference and ancestral 543 

alleles that were non-polymorphic in the YRI dataset. Final values of all statistics obtained from 544 

the 50 randomly selected diploid YRI individuals were very similar to those obtained using all 545 

individuals (Table S10). 546 

 547 

ABC inference 548 

The ABC approach was executed using the R package “abc” (Csilléry et al. 2012). A correction 549 

for the non-linear relationship between the parameters and the statistics was employed using the 550 

“neural net” regression method with the default parameters provided by the package. A 100-fold 551 

leave-one-out cross-validation was performed in order to determine the performance and 552 

accuracy of inference for the following values of tolerance: 0.05, 0.08 and 0.1. As inference was 553 

most accurate with a tolerance of 0.08 (Table S2), this value was employed for inference of final 554 
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parameter values, i.e., 8% of all simulations were accepted by ABC to estimate the posterior 555 

probability of parameter estimates. Final point estimates for each parameter were calculated by 556 

performing inference 50 times and taking the mean of the (50) weighted medians of the posterior 557 

estimates. 558 

 559 

Simulations with mutation rate heterogeneity 560 

Sex-averaged mutation rate maps for humans were obtained from Francioli et al. (2015) 561 

(https://www.nlgenome.nl/menu/main/app-download; last accessed Sep 22, 2022). As rates were 562 

provided for each nucleotide (i.e., A to C, A to G, etc.), the nucleotide composition of each exon 563 

was determined separately for the 5’ intergenic/intronic, exonic, and 3’ intergenic/intronic 564 

regions to obtain region-specific mutation rates. Specifically, for each exon, the average rate of 565 

the three regions multiplied by a mean mutation rate of 1.25 × 10−8 per site per generation (as 566 

rates were normalized with respect to this mean mutation rate) was used for simulations. 567 

 568 

Simulations of the best-fitting model 569 

When simulating the best-fitting model, the best estimates (weighted median) of each parameter 570 

were used. Ten independent replicates of each of the 465 exons were simulated and the 571 

distribution of all statistics (post-filtering) for each window was compared to the corresponding 572 

empirical data. 573 

 574 

Simulations with positive selection 575 

When simulating the best-fitting model with positive selection, the best estimates (weighted 576 

median) of each parameter were used. To test the effect of recurrent selective sweeps, beneficial 577 

mutations were assumed to be a fraction 𝑓𝑝𝑜𝑠 of all new mutations in exonic regions and their 578 

fitness effects were assumed to follow an exponential distribution with mean 𝑠, such that 579 

2𝑁𝑎𝑛𝑐𝑠 = 10, 100, or 1000. The fitness effects of the remaining exonic mutations (1 − 𝑓𝑝𝑜𝑠) 580 

followed the estimated DFE (comprising neutral and deleterious mutations).  581 

 582 

 583 

 584 

 585 
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FIGURES AND TABLES 740 
Table 1: Means and variances of statistics from the empirical data for all 465 exons and their 741 

linked non-coding regions. 742 

  5 less 

linked 

5 linked exonic 3 linked 3 less 

linked 

𝜋 mean 0.00106 0.00094 0.00075 0.00104 0.00104 

 SD 0.00112 0.00077 0.00053 0.0009 0.00088 

𝜃𝑊 mean 0.00124 0.00117 0.00100 0.00121 0.00124 

 SD 0.00085 0.00071 0.00057 0.00074 0.0008 

𝜃𝐻 mean 0.00112 0.00085 0.00071 0.00113 0.00107 

 SD 0.00245 0.00115 0.00072 0.00179 0.00159 

𝐻′ mean -0.02132 0.06284 0.05171 -0.04963 -0.02194 

 SD 0.95642 0.79148 0.73348 0.99715 0.9544 

Tajima’s D mean -0.45302 -0.46848 -0.71615 -0.38713 -0.41615 

 SD 0.83581 0.83469 0.73082 0.86133 0.8104 

singleton  mean 0.00152 0.00160 0.00150 0.00148 0.00146 

density SD 0.00160 0.00183 0.00131 0.00157 0.00166 

haplotype  mean 0.58943 0.57756 0.73031 0.59578 0.59492 

diversity SD 0.28405 0.29629 0.18698 0.28463 0.27446 

𝑟2 mean 0.09420 0.08984 0.07027 0.08624 0.10444 

 SD 0.11779 0.10688 0.04943 0.0987 0.1396 

𝐷 mean 0.00579 0.00436 0.00280 0.00524 0.00717 

 SD 0.01693 0.01680 0.00801 0.02008 0.02157 

𝐷′ mean -0.58160 -0.59220 -0.64041 -0.5856 -0.54356 

 SD 0.37716 0.34858 0.23092 0.36485 0.38881 

divergence mean 0.00574 0.00531 0.00430 0.00547 0.00594 

 SD 0.00659 0.00439 0.00428 0.00397 0.00531 

 743 

 744 

 745 
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 746 

Figure 1: (a) Model and parameters inferred by the ABC method. The left panel shows the DFE 747 
while the right panel shows the single, recent size change demographic model fit to the data. All 748 
inferred parameters are indicated in blue font. (b) Schematic of the expected number of bases 749 
(𝜋50) to reach a 50% recovery of nucleotide diversity due to BGS around single exons. The three 750 
windows in which statistics were calculated are shown in green font. (c) Accuracy of joint 751 
inference of demography and the DFE. Cross-validation was performed on 100 randomly 752 
selected parameter combinations for all size parameters with tolerance = 0.08. The black line 753 
represents the y=x line. All statistics were used for inference and were calculated after removing 754 
sites inaccessible to next-generation sequencing in both the simulated and empirical data. 755 
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 756 

Figure 2: Inference of (a) recent population history and (b) the DFE of deleterious mutations in 757 
the Yoruba population. Inferences from the current study (using the 5 intergenic/intronic 758 
regions) are shown in grey/black while those from previous studies are shown in the colored 759 
bars/lines. Note that the current population size predicted by Terhorst et al. (2017) is 356,990 and 760 
is not visible due to truncation of the y-axis. Also note that 2𝑁𝑒𝑠 for the purpose of the current 761 
study corresponds to 2𝑁𝑎𝑛𝑐𝑠 as the scaling was performed with respect to the ancestral 762 
population size. 2 hap: refers to inference performed using a single diploid individual; 4 hap: 763 
refers to inference performed using 2 diploid individuals; EGP: Environmental Genome Project 764 
(https://egp.gs.washington.edu/); PGA: Programs for Genomic Applications 765 
(https://pga.gs.washington.edu/). 766 
 767 
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 768 

Figure 3: Fit of the best model inferred by our method to the empirical data, as shown by the 769 
distribution of (a) nucleotide diversity, (b) Tajima’s D, (c) 𝑟2, and (d) divergence per site, across 770 
the 465 exons, for each of the three windows: functional, linked and less linked 771 
intergenic/intronic regions. The simulated best model (with 10 replicates) is shown in red, while 772 
the observed empirical distributions of the same statistics in the YRI population are shown in the 773 
white distributions.  774 
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 775 
Figure 4: Fit of the estimated best model to the empirical data in the presence of positive 776 
selection. (a-c) Distribution of Tajima’s D, 𝑟2, and divergence per site across the 465 exons 777 
(only in the “functional” windows) for the best-fitting model (in red), the best-fitting model with 778 
positive selection (in blue), and their overlap (in purple). The distribution of the empirical data is 779 
shown in the white distributions. Examples of varying extents of positive selection are shown: 780 
(a) infrequent (𝑓𝑝𝑜𝑠 = 0.1%) and weak (2𝑁𝑒𝑠𝑏 = 10), (b) moderately frequent (𝑓𝑝𝑜𝑠 = 1%) and 781 

moderately strong (2𝑁𝑒𝑠𝑏 = 100), and (c) common (𝑓𝑝𝑜𝑠 = 5%) and strong (2𝑁𝑒𝑠𝑏 = 1000). 782 

(d) A grid depicting the fit of varying extents of positive selection to the data with a check mark 783 
indicating that the addition of positive selection does not worsen the fit of the model to the data, 784 
and the number of '' marks indicating the severity of the mis-fit to the calculated statistics 785 
generated by the addition of positive selection. 786 
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