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Abstract 15 

DNA methylation is influenced by genetic and non-genetic factors. Here, we chart quantitative 16 
trait loci (QTLs) that modulate levels of methylation at highly conserved CpGs using liver 17 
methylome data from mouse strains belonging to the BXD Family. A regulatory hotspot on 18 
chromosome 5 had the highest density of trans-acting methylation QTLs (trans-meQTLs) 19 
associated with multiple distant CpGs. We refer to this locus as meQTL.5a. The trans-modulated 20 
CpGs showed age-dependent changes, and were enriched in developmental genes, including 21 
several members of the MODY pathway (maturity onset diabetes of the young). The joint 22 
modulation by genotype and aging resulted in a more “aged methylome” for BXD strains that 23 
inherited the DBA/2J parental allele at meQTL.5a. Further, several gene expression traits, body 24 
weight, and lipid levels mapped to meQTL.5a, and there was a modest linkage with lifespan. 25 
DNA binding motif and protein-protein interaction enrichment analysis identified the hepatic 26 
nuclear factor, Hnf1a (MODY3 gene in humans), as a strong candidate. The pleiotropic effects 27 
of meQTL.5a could contribute to variation in body size and metabolic traits, and influence CpG 28 
methylation and epigenetic aging that could have an impact on lifespan. 29 
 30 
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Introduction 32 

Genome-wide patterns in DNA methylation (DNAm) are established during development 33 
and are critical for cell differentiation and cell identity.1 The canonical form of DNAm involves 34 
the addition of a methyl- group to the cytosine residue at CG dinucleotides (i.e., CpG 35 
methylation). The methylation status of CpGs is a part of the  epigenetic landscape that serves 36 
as a stable and yet reprogrammable form of gene expression regulation.2,3 On one hand, 37 
methylation of CpGs are important for sustaining and perpetuating expression signatures and in 38 
giving each organ and tissue its functional identity. On the other hand, the methylome is 39 
dynamic and a modifiable molecular process that enables the genome to respond and adapt to 40 
ever changing environmental and nutritional states.4,5 Due to its modifiability, DNAm is 41 
profoundly altered by the passage of time, and tracks closely with age and aging.6,7 42 

Along with aging and modifications by extrinsic factors, CpG methylation can also be 43 
influenced by underlying genetic sequence variants. Several studies in humans have identified 44 
genetic loci that are associated with DNAm.8-10 Analogues to gene expression quantitative trait 45 
loci (eQTLs),11 a genetic region that influences the quantitative variation in CpG methylation is 46 
referred to as a methylation QTL, or meQTL (alternatively also shortened to “mQTL”; although 47 
that can be confused with “metabolite QTL” and “module QTL”12,13). Several human studies 48 
have performed genome-wide association studies (GWAS) for CpG methylation, and there are 49 
now large-scale multi-tissue meQTL atlases available for humans.14,15 Similar to the 50 
classification of eQTLs into cis- and trans-effects, meQTLs are also categorized into cis-meQTLs 51 
or trans-meQTLs, depending on the distance between the meQTL regulatory locus, and the 52 
target CpG.15,16 Cis-meQTLs are highly enriched for genetic loci that have been associated with 53 
complex traits, and genetic variation in methylation levels are implicated in disease risk.9,10,17,18 54 
An meQTL region can be associated with multiple distal CpGs in trans, and similar to trans-eQTL 55 
hotpots, such sites represent trans-meQTL hotspots.8,10,19 Trans-meQTL hotspots implicate 56 
causal modulators with widespread influence on CpGs. There is now growing evidence that 57 
DNA binding factors and transcription factors (TFs) play a role in shaping the methylome by 58 
exerting trans-regulatory influence on CpGs.10,20-22 For instance, during hepatocyte 59 
differentiation, TFs such as the hepatocyte nuclear factors (HNFs) and GATA family are reported 60 
to regulate the dynamic spatial and temporal patterns in DNAm.23 61 

Model organisms provide a powerful tool for interrogating the interactions between 62 
meQTLs, eQTLs, and experimental conditions such as diets and drugs. However, although 63 
genome-scale meQTL studies in humans date back to the 2010s,24 there is an over 10-year lag 64 
in methylome-wide meQTL studies in rodent populations. This is partly due to the lack of a cost-65 
effective and scalable DNAm microarray for model organisms that is comparable to the Illumina 66 
HumanMethylation Infinium BeadChips.25 A few of us attempted to repurpose the human 67 
arrays to measure methylation in mice.26-28 Indeed a small proportion of the CpG probes on the 68 
human arrays map to conserved sequences, and could be considered as “pan-mammalian” 69 
interrogators of the epigenome. More recently, a truly pan-mammal array, the 70 
HorvathMammalMethylChip40, was custom developed.29,30 A unique aspect of the array is that 71 
the probes map to conserved sequences, and this has opened up new avenues for large multi-72 
species comparative epigenomics.31,32 We used this array to track epigenetic changes with aging 73 
when mice are subjected to two different dietary conditions.6 Our data incorporated genetic 74 
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diversity as we profiled members on the BXD Family. In the present work, we use the 75 
methylome data for an meQTL mapping study. 76 

The BXDs are a family of recombinant inbred (RI) and advanced intercross (AI) mouse 77 
strains. We have previously described the BXDs in greater detail.33-36 In brief, the BXD Family 78 
consists of about 150 inbred members derived from two progenitor strains: C57BL/6J (B6) and 79 
DBA/2J (D2). The BXDs have a long history in quantitative genetics and the earlier sets of RI 80 
strains were used to map simpler Mendelian traits.37,38 Subsequently, additional sets of RI and 81 
AI strains were added to the growing family, and over the years, the BXDs have accrued a vast 82 
compendium of phenotypic data ranging from metabolic, physiologic, lifespan, to behavioral 83 
and neural traits, and multi-omic datasets (e.g., transcriptomics, proteomics, and 84 
metabolomics).35,39-41 This is matched by deep genome sequence data with over 6 million 85 
genetic variants segregating in the family, making the BXDs a powerful mammalian panel for 86 
systems genetics, and systems epigenetics.6,30,33,42,43  87 

In our previous work, we studied the genetic regulation of epigenetic clocks in the BXDs and 88 
examined metabolic and dietary factors that are related to the age-dependent methylation 89 
changes.6 Here, we focus on meQTLs that influence individual CpGs, and evaluate the genetic 90 
architecture of CpG methylation in liver tissue. We identify meQTL hotspots that influence 91 
multiple distal CpGs. The region on chromosome (Chr) 5 harbored the highest density of co-92 
localized trans-meQTLs, and we refer to this genetic interval as meQTL.5a. This region also 93 
contains a high-density of QTLs linked to gene expression both at the transcriptomic (eQTLs) 94 
and proteomic (pQTLs) levels. For the CpGs that are trans-modulated by meQTL.5a, the pattern 95 
of variance indicates a genotype dependent susceptibility to the effects of aging, and to an 96 
extent, diet. Specifically, we find a more aged methylome for strains that have the D2 allele at 97 
meQTL.5a. Further, we find a pleiotropic effect of this locus on body weight, and for this, the B6 98 
allele was associated with a positive additive effect. The contrasting allelic effects on the two 99 
traits may moderate the impact on this locus on lifespan. Based on DNA binding motif 100 
enrichment and protein-protein interaction (PPI), we identify the hepatic nuclear factor, Hnf1a, 101 
as one of the important candidate genes in meQTL.5a. In humans, mutations in HNF1A results 102 
in MODY3 (maturity onset diabetes of the young 3),44 and our results indicate a trans-103 
modulatory effect of meQTL.5a on CpGs located in several other genes that are part of the 104 
MODY pathway. Overall, our results suggest a convergent effect of age and diet on CpGs that 105 
are also partly influenced by an meQTL. We propose a model in which the meQTL.5a has both a 106 
horizontal and vertical pleiotropic effect on physiological traits, DNAm, and lifespan.   107 
 108 

Result 109 

Overview of meQTL distribution in the mouse genome 110 

The HorvathMammalMethylChip40 array contains probes for 27966 CpGs that have been 111 
validated for the mouse genome.6,30 We have used this to assay the liver methylome in a 112 
population of BXDs (details on the samples are in Data S1). To uncover genetic loci that 113 
modulate methylation variation at these CpGs, we performed linkage mapping across the 114 
autosomal chromosome (Chrs).33 QTL mapping was implemented in R/qtl2 and adjusted for 115 
age, diet, the top methylome-wide principal component, and the BXD’s kinship matrix.45 For 116 
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each of the 27966 CpGs, we plotted its genome-wide highest LOD score, and the distance 117 
between the maximal meQTL marker, and the CpG location (Fig 1a; genome-wide peak LOD 118 
data for each CpG is in Data S2). Strong meQTLs tended to reside within 10 Mb of the 119 
corresponding CpGs, and we classified these regulatory loci as cis-meQTLs, and the targeted 120 
CpG as cis-CpGs. Note that due to the family-based population and the comparatively larger 121 
haplotypes in the BXDs,33 we have used a much larger interval rather than the <1 Mb interval 122 
that is typically used to assign cis-effects in human association studies.8,15 In total, 3921 CpGs 123 
(14% of the CpGs we examined) mapped to at least one meQTL at a nominal LOD ≥ 3.5. Many of 124 
the CpGs were polygenic and mapped to more than one locus (in other words, a CpG with a 125 
strong cis-meQTL may also have lower QTLs in trans). The meQTLs showed an uneven 126 
distribution with some loci having a trans-modulatory linkage to many distal CpGs that 127 
potentially signify a regulatory hotspot (Fig 1b).  At such trans-meQTL hotspots, there is an 128 
imbalance in which parental allele increased methylation (i.e., has the positive additive effect). 129 
For instance, majority of the CpGs that have meQTLs on markers on Chr 5 (~115 Mb) are 130 
associated with higher methylation for the allele from the D2 parent (D allele) (Fig 1b). On Chr2 131 
(~110 Mb), it is the allele from the B6 parent (B allele) that is associated with higher 132 
methylation. This is consistent with reports from human studies that SNPs associated with 133 
multiple CpGs in trans have the same direction of allelic effect.22 The allelic effects are clearly 134 
visible when we consider only the genome-wide peak LOD markers for each CpG (i.e., each CpG 135 
linked to only its genome-wide strongest meQTL marker). Fig 1c plots the locations of 1416 136 
peak LOD markers against the location of 3921 CpGs that mapped at LOD ≥ 3.5. Of these, 1833 137 
CpGs mapped as cis-meQTLs (meQTLs to marker ratio of 1.98). The remaining 2088 CpGs had 138 
peak LOD at 691 unique markers that were distant from the location of the CpG (meQTL to 139 
marker ratio of 3.02). These QTLs are classified as trans-meQTLs, and the CpGs are referred to 140 
as trans-CpGs. For the cis-meQTLs, the number of loci in which the B allele had the positive 141 
addictive effect (909 cis-meQTLs) was similar to the number of loci in which the D allele had the 142 
positive additive effect (924 cis-meQTLs). However, for the trans-meQTLs, there was a 143 
preponderance for higher methylation for the D allele (1413 or 68% of the trans-CpGs). 144 

In terms of genomic locations and chromatin states, the cis-CpGs were enriched for introns 145 
and intergenic regions, and were located in transcriptionally permissive states (Tr-P), but were 146 
highly depleted in active and bivalent promoters (Pr-A and Pr-B, respectively), transcriptionally 147 
strong states (Tr-S) (Fig 1d,e; Table S1), and gene exons, promoters and 3’ and 5’ UTRs. Trans- 148 
CpGs on the other hand, were enriched in enhancer sites, and depleted in promoter regions 149 
(Fig 1d, e; Table S1).  150 

To examine how the genetic variation in methylation relate to variance associated with 151 
aging, diet, body weight, and genotype dependent longevity (variables that we have reported in 152 
detail in 6), we examined the proportion of differentially methylated CpGs (DMCs) that map as 153 
cis- or trans-meQTLs. The cis-CpGs were only modestly enriched in DMCs associated with 154 
genotype-dependent lifespan (lifespan differentially methylated CpGs or LS-DMC; 155 
hypergeometric enrichment p = 0.003), and were depleted in DMCs related to age, weight, and 156 
diet (Fig 1f; Table S2). This indicates that variance of CpGs that are under cis-modulation are 157 
largely due to genetics. In contrast, the trans-CpGs were highly enriched in CpGs that gained 158 
methylation with age (age-gain), and CpGs associated with weight, diet, and LS-DMCs. This 159 
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suggests that variance of CpGs that are under trans-modulation are multi-factorial and 160 
influenced by both genetic and non-genetic factors. 161 

meQTL hotspots and association with gene expression 162 

To define regions that contain a high density of meQTLs, we took the 3921 CpGs with 163 
maximal LOD ≥ 3.5 and counted the number of meQTLs linked to each genotype marker. 18 164 
markers were associated with 20 or more meQTLs and we classified these as putative meQTL 165 

 
Fig 1. Overview of methylation QTL (meQTLs) in the liver. 
(a) Plot of the genome-wide peak LOD score for the 27966 CpGs, and distance between the 
CpG and the maximum LOD marker. Yellow: D allele (DBA/2J genotype) has positive additive 
effect; blue: B allele (C57BL/6J genotype) has positive additive effect. (b) meQTL location (x-
axis; from chromosomes 1–19) and counts of meQTLs with LOD ≥ 3.5. (c) The genome graph 
plots location of the genome-wide peak QTL marker (x-axis), and location of the linked CpG 
(y-axis). Shows only the 3921 CpGs that map at LOD ≥ 3.5. Relative enrichment or depletion 
in (d) predicted chromatin states, and (e) genomic location for CpGs that map as cis-
meQTLs (black), and as trans-meQTLs (grey). Asterisks denote hypergeometric enrichment p 
< 0.001. (f) Enrichment or depletion in differentially methylated CpGs among the cis- and 
trans-modulated CpGs. (Asterisks denote hypergeometric enrichment p < 0.001; hash 
denotes p = 0.003) (g) Portion of the peak interval in the chromosome 5 meQTL hotspot: 
meQTL.5a (from UCSC Genome browser GRCm38/mm10). 
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hotspots (Table S3). A few of these are mostly cis-meQTL regions. For example, the two 166 
neighboring markers on Chr19, rs30567369 (47.51 Mb) and rs31157694 (47.94 Mb), were 167 
linked to 58 CpGs in cis. We have previously reported this region as a QTL for liver epigenetic 168 
age acceleration (distal portion of “epigenetic age acceleration QTL on Chr19” or Eaa19).6  169 

For trans effects, the highest number of trans-meQTLs per marker was on Chr5, ~115 Mb 170 
(Fig 1b, c, g). Here, the SNP marker rs29733222 (115.43 Mb; coordinates based on 171 
GRCm38/mm10) is linked to 230 genome-wide peak trans-meQTLs, and only 3 genome-wide 172 
peak cis-meQTLs (Table S3). As several neighboring markers in this Chr5 region were linked to 173 
multiple meQTLs, we roughly delineated a 10 Mb interval (110–120 Mb) as a liver meQTL 174 
hotspot and refer this region as meQTL.5a. In total, 535 meQTLs mapped to meQTL.5a at the 175 
3.5 LOD score threshold (502 trans-meQTLs, 33 cis-meQTLs; Table 1; Data S2). Majority of the 176 
trans-meQTLs in meQTL.5a (435 of the 502) were associated with higher methylation for the D 177 
allele, and only 67 trans-meQTLs were associated with higher DNAm for the B allele. 178 

Similarly, we demarcated broad 10 Mb intervals around the other putative meQTL hotspots 179 
and counted the number of CpGs that have peak LOD scores in these intervals. We tabulated 8 180 
putative meQTL hotspots that are in Chrs 2, 4, 5, 7, 14, and 19 (Table 1). To examine if these 181 
meQTL intervals also influence gene expression we referred to an existing BXD liver RNA-seq 182 
data (previously reported in 41) and searched for transcripts that map to the 10 Mb intervals 183 
listed in Table 1 at eQTL LOD ≥ 3.5. meQTL.5a had the largest number of eQTLs, followed by 184 
Eaa19 (Table 1; lists of transcripts that map to meQTL.5a and Eaa19 are in Data S3 and Data 185 
S4). meQTL.5a had 376 liver eQTLs that included 36 cis-eQTLs from positional candidate genes 186 
such as Cit, Sirt4, and Hspb8. Eaa19, despite being primarily a cis-meQTL locus, had an 187 
abundance of trans-eQTLs (Table 1). Somewhat surprisingly, for all the meQTL intervals, there 188 
was very little overlap between meQTLs and eQTLs, even for the strong cis-effects that suggests 189 
limited co-regulation of the methylome and the transcriptome. Only a few genes (listed in Table 190 
1) had concordant meQTLs and eQTLs in the same locus, and of these, only the QTLs for Clcn3 191 
and Tenm3 in meQTL.5a were trans-effects. For both Clcn3 and Tenm3, the trans-modulated 192 
CpGs (cg16842643 and cg24399106, respectively) are in the 5’UTR. The remaining few genes 193 
with overlapping me/eQTLs were cis-effects. 194 

We prioritized the meQTL.5a and Eaa19 intervals and referred to the liver proteomic data 195 
(also reported in 41) to search for protein QTLs (pQTLs) in meQTL.5a and Eaa19. At the same 196 
LOD ≥ 3.5 threshold, 104 protein variants from 83 unique genes mapped as pQTLs to meQTL.5a 197 
(32 cis-pQTLs). There was more consistency between pQTLs and eQTLs, and Hsd17b4, Psmb8, 198 
Psmb9, and Psmb10 had trans-eQTLs and trans-pQTLs, and Pebp1 had cis-eQTL and cis-pQTL in 199 
meQTL.5a (Data S3). Similarly, the overlap between eQTLs and pQTLs was higher for Eaa19. In 200 
total, 138 protein variants (57 cis) mapped to Eaa19, and of these, Abcc2, Cutc, Cyp2c70, Gsto, 201 
and Sfxn2 had cis-acting QTLs for both mRNA and protein, and Cyp1a1 and Naga had trans-202 
eQTLs and trans-pQTLs (Data S4). 203 

Genetic modulation of co-methylation networks in mouse liver 204 

We applied a weighted gene co-methylation network analysis (WGCNA) to evaluate 205 
whether the meQTL hotspots could be detected at the network level.46-49 WGCNA was carried 206 
out on the set of ~28K CpGs. At a soft-threshold power of 6, the CpGs were grouped into 14 207 
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modules that range in size from 62–13821 CpG members that form tightly correlated networks 208 
(Data S5; Fig S1a; the module membership for each of the CpGs are in Data S2). For each 209 
module, the module eigengene (ME) is the top principal component of the co-methylation 210 
network and is the representative methylation pattern.46 The inter-module correlations 211 
between the MEs provide a view of the covariance among the CpG networks (i.e., meta-212 
network) (Data S5 and displayed in Fig 213 
S1b). The MEs can also be tested for 214 
association with major variables such as 215 
age and diet, and this is a convenient way 216 
to assess the network-level impact of 217 
these variables.49 Unsurprisingly, age was 218 
a significant correlate of the CpG 219 
networks, and 6 of the 14 modules were 220 
significantly correlated with age (p < 221 
0.001, |r| ≥0.18; Data S5). Of these, the 222 
Green module (2092 CpG members), 223 
followed by the Lightgreen module (1761 224 
CpGs), had the tightest correlation with 225 
age (r = 0.69 and 0.49, respectively; Data 226 
S5 and Fig S1c, S1d). The large Blue 227 
module with 5067 CpG members was 228 
significantly anti-correlated with age (r = 229 
–0.34). 230 

Our primary focus is on genetic 231 
modulation of these CpG networks, and 232 
we performed QTL mapping for each of 233 
the MEs with age, diet, and body weight 234 
as co-factors. The module-level QTL 235 
mapping was done using the Genome-236 
wide Efficient Mixed Model (GEMMA) 237 
algorithm implemented on the webtool 238 
GeneNetwork.50-52 The strongest QTL was 239 
for the small Royalblue module, which 240 
mapped at LOD = 27 to distal Eaa19 (QTL 241 
plots for select modules in Fig 2; full QTL 242 
results in Data S6 and Fig S2). The age-243 
associated modules, Blue and Lightgreen, 244 
also had modest QTLs in Eaa19 (Fig 2). 245 
The large Blue module that is 246 
anticorrelated with age mapped at a LOD 247 
= 4.6 to meQTL.5a (Fig 2). The Black and 248 
age-associated Lightgreen modules also 249 
had modest QTLs in meQTL.5a (Data S6; 250 

 
Fig 2. Genetics of co-methylation CpG networks 
QTL maps for four module eigengenes (MEs) are 
shown. Mapping was done using a linear mix 
model. The horizontal dashed red line marks a 
relatively lenient threshold of –log10p = 3.5. The 
Blue, Black and Lightgreen modules share 
suggestive overlapping QTLs in meQTL.5a. Eaa19 
has a strong cis-regulatory effect on the 
Royalblue module. The chromosome 2 peak for 
the Black module is proximal to meQTL.2b in 
Table 1. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2023. ; https://doi.org/10.1101/2023.04.12.536608doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.12.536608
http://creativecommons.org/licenses/by-nc/4.0/


 9 

Fig 2). For the Royalblue module, 45 of the 62 CpGs members were located in Eaa19, and this 251 
module mostly represented a correlated network of CpGs that are cis-modulated by variants in 252 
Eaa19. In contrast, only 29 of the 5067 CpGs in the Blue module were located in meQTL.5a, and 253 
indicates that the Blue ME captures CpGs that have shared covariance due to a trans-effect 254 
from meQTL.5a. The Blue module members include 443 of the 502 CpGs that had genome-wide 255 
peak trans-meQTLs at LOD ≥ 3.5 in meQTL.5a.   256 

Overall, the WGCNA shows that multiple distal CpGs can form tightly correlated networks 257 
partly due to shared genetic modulation, and once again highlights meQTL.5a as a CpG 258 
regulatory hotspot. 259 

Characterizing the CpGs trans-modulated by meQTL.5a 260 

To uncover common biological pathways among the set of trans-CpGs linked to meQTL.5a, 261 
we performed a genomic regions enrichment analysis using the GREAT tool.53,54 Compared to 262 
the background array, the 502 trans-CpGs were highly enriched in developmental and cell 263 
differentiation genes (Data S7; Fig 3a). The CpG regions were also enriched in promoter motifs 264 
including sequences that are downstream targets of the hepatocyte nuclear factor 4, alpha 265 
(HNF4A). Additionally, the FOXA1 (HNF3A) TF network was an enriched pathway among the 266 
meQTL.5a trans-CpGs. A regional enrichment analysis for the CpGs in the Blue module 267 
highlighted the same pathways and TF networks (Data S7; Fig 3b), and this collectively suggests 268 
that the CpGs modulated by meQTL.5a are related to development, and may be targeted by 269 
related DNA binding factors, particularly the hepatocyte nuclear factors. In terms of genomic 270 

 
Fig 3. Enriched functional pathways 
Genomic regions enrichment analysis of CpGs that are trans-modulated by meQTL.5a (a), 
and CpGs that are members of the Blue module (b). Gene ontology and pathway 
enrichment among (c) transcripts, and (d) proteins that map to meQTL.5a in liver. 
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context, compared to the background array, the trans-CpGs targeted by meQTL.5a were highly 271 
enriched in predicted enhancer states (e.g., En-Pd, En-Pp, En-Sd, En-Sp, and En-W),6,55,56 and 272 
were mostly located in introns (Table S4).  273 

To test if we find intersecting biological functions in the transcriptome and proteome, we 274 
performed a gene ontology (GO) enrichment analysis of the trans-modulated mRNAs and 275 
proteins that map to meQTL.5a (Data S8). There were no functionally enriched categories after 276 
FDR correction. At a nominal p-value, the top 10 GO (for biological processes), and top KEGG 277 
pathways for both the trans-modulated proteins and transcripts were related to protein 278 
transport and protein catabolism (Fig 3b, 3c; Data S8). The trans-pQTLs were also nominally 279 
enriched in telomere maintenance, and the trans-eQTLs in mitophagy and autophagy. However, 280 
there was limited overlap in functional pathways between the trans-modulated CpGs and trans-281 
modulated mRNA/proteins. 282 

High-priority candidate genes in meQTL.5a 283 

The peak markers in linkage disequilibrium within the meQTL.5a interval are between 284 
114.5–116.5 Mb on Chr5 (Data S2). This is the location of genes such as the hepatic TF Hnf1a, 285 
the sirtuin gene Sirt4, heat shock protein Hspb8, and the coenzyme Coq5 (Fig 1g). For candidate 286 
gene ranking, we narrowed to the 114.5–116.5 Mb peak interval and retained positional 287 
candidate genes that (1) have missense or protein truncating variants that segregate in the 288 
BXDs, and/or (2) are modulated in expression by a cis-eQTL. This identified 20 positional 289 
candidates located in the peak region within meQTL.5a (Table 2). 14 of these had missense 290 
mutations, and we further used the SIFT (Sorting Intolerant From Tolerant) score to predict the 291 
potential deleterious effects on protein function.57 SIFT scores range from 0 to 1 with low 292 
values (<0.05) predicted to be deleterious. Variants with low SIFT scores are in Oasl2, Srsf9, Pxn, 293 
Rab35, Cit, and Prkab1, and the variant in Hnf1a also had a comparatively low SIFT score (Table 294 
2). 295 

Our next goal was to determine which of these candidate genes formed the most cohesive 296 
functional network(s) with the trans-modulated CpGs. For this, we took the list of genes 297 
cognate to the trans-CpGs (i.e., gene in which the CpG in located, or the nearest gene if CpG is 298 
intergenic), and the list of positional candidates, and searched the STRING database for protein-299 
protein interactions (PPI).58 This resulted in a large and highly connected network with an 300 
average node degree of 4.21 (PPI enrichment p < 1e-16), and a high enrichment in 301 
developmental genes. The central hub was around the trans-modulated Crebbp, which had the 302 
highest degree of nodes at 47 (Fig S3). In this CpG-based network, the candidate gene with the 303 
highest degree of connections was Hnf1a (13 nodes; Table S5). The most enriched KEGG 304 
pathway was ‘maturity onset diabetes of the young’ or MODY (mmu04950), and 6 members in 305 
the central hub were members of this pathway (Fig 4a). This included the positional candidate, 306 
HNF1A, which is the causal gene for MODY3.44 Enriched GO terms included metabolic 307 
processes, cell differentiation, and developmental processes (Data S9). PXN was another 308 
candidate gene in meQTL.5a with high connectivity, but it formed a more peripheral cluster (Fig 309 
S3). Other candidates such as Sirt4 and Hsbp8 had 2 and 0 connections, respectively (Table S5). 310 
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A CpG located in an exon of the hub gene, Crebbp (cg27201505), mapped as a strong trans-311 
meQTL to meQTL.5a; however, the Crebbp transcript had low expression in adult liver, and the 312 
mRNA had only a weak eQTL in meQTL.5a (–Log10p = 2.09 at the meQTL.5a peak interval) (Fig 313 
4b). Similarly, a CpG (cg12712768) located in the promoter of Hnf1a mapped as a strong cis-314 

 
Fig 4. Interaction networks that connect the trans-meQTLs to the meQTL.5a candidates 
(a) The trans-modulated CpGs and candidate genes in meQTL.5a form a highly connected 
and functionally enriched protein-protein interaction network. HNF1A (yellow triangle) is 
the most connected candidate in the central sub-network, and member of the enriched 
MODY (Maturity Onset Diabetes of the Young) pathway (red nodes). (b) CREBBP is the hub 
gene in the meQTL-based network, and a CpG in its exon is trans-modulated by meQTL.5a 
(top). Its transcript (bottom of mirrored Manhattan plot) has a weak peak in meQTL.5a. 
Crebbp is located on chromosome 14 (red triangle). (c) The CpG in the 5’UTR of Hnf1a is cis-
modulated, and its expression has a weak cis-eQTL. Strong positive correlation between the 
CpGs (d), and between the mRNAs (e) of Hnf1a and Crebbp. Weak inverse correlation 
between (f) the Hnf1a mRNA and Crebbp methylation, and (g) between the mRNA and 
methylation of Hnf1a. 
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meQTL, but the Hnf1a mRNA only had weak evidence of cis-modulation (Fig 4c). The cis-315 
modulated CpG in Hnf1a had a strong positive correlation with the trans-modulated CpG in 316 
Crebbp (Fig 4d), and there was also strong positive correlation between their transcripts (Fig 317 
4e). However, the inter-omic correlations between CpGs and transcripts were relatively 318 
modest, and although CREBBP formed the central node in the PPI network, the expression of 319 
Crebbp was uncorrelated with its cognate CpG, and instead, the Crebbp transcript had a 320 
modestly significant inverse correlation with the Hnf1a CpG (Fig 4f). The Hnf1a transcript was 321 
also modestly correlated with its CpGs (Fig 4g). 322 

We performed a similar PPI analysis for the lists of genes with trans-eQTLs, and trans-pQTLs 323 
in meQTL.5a. The trans-modulated mRNAs formed a network with an average node degree of 324 
2.42 (PPI enrichment = 1e-06; Fig S3). The trans-modulated proteins formed a smaller but 325 
highly connected network with average node degree of 2.34 (PPI enrichment = 5.2e-10; Fig S4). 326 
At both the transcriptomic and proteomic levels, HNF1A no longer occupied a central position 327 
(only one degree of connection for HNF1A in both), and instead, OASL2 was the most 328 
connected positional candidate for networks defined from the trans-eQTL and trans-pQTL (Fig 329 
S3, Fig S4). The functional profiles of the networks were also altered and the most enriched 330 
KEGG pathway in the eQTL-based PPI network was autophagy, and the pQTL-based PPI network 331 
was enriched in metabolic pathways (Data S8). The eQTL and pQTL networks shared 332 
similarities; for instance, there was a clique of proteasome subunits (PSMB8, PSMB9, PSMB10) 333 
connected to OASL2, and suggests overlapping interactional and regulatory networks at the 334 
transcriptomic and proteomic levels that are disconnected from the developmental networks at 335 
the methylome level. Overall, this suggests that Hnf1a is a strong positional candidate for the 336 
trans-meQTLs, but not for the pathways that connect the trans-modulated expression traits. 337 

Due to the apparent centrality of HNF1A within the CpG network, we searched the STRING 338 
database for the top 10 high-scoring interaction partners for HNF1A (Fig 5a). The present array 339 
targets only a few highly conserved CpGs in each of these genes. But even with this sparse 340 
profiling of CpGs, 6 of the top 10 PPI interaction partners of HNF1A mapped as trans-meQTLs to 341 
meQTL.5a (two members, PCPD1 and PPARA, did not have meQTL data as no CpG probes in the 342 
mammalian array targeted these genes). We performed pair-wise expression correlations for 343 
these 10 interaction partners and Hnf1a using the liver RNA-seq data, and the transcripts 344 
formed a highly interconnected network in which the mRNA for Hnf1a was connected to 9 of 345 
the 10 PPI-based members at |r| ≥ 0.5 (Fig 5b). As was the case for the Crebbp and Hnf1a 346 
transcripts, the mRNAs of Foxa2 (Fig 5c) and Hnf4a also mapped as weak trans-eQTLs to the 347 
same interval (GEMMA based linkage statistics in Data S6). For Gata4, its mRNA had a relatively 348 
strong trans-eQTL in meQTL.5a (Fig 5d).  349 

While we cannot dismiss the other genes highlighted in Table 2, Hnf1a stands out as a 350 
strong candidate for the trans-meQTLs. Our observations suggest that meQTL.5a modulates the 351 
methylation, and to a lesser extent, the expression of genes that functionally interact with 352 
HNF1A. The missense mutation in Hnf1a (rs33234601) results in a proline to serine substitution, 353 
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with proline as the conserved amino acid across most mammals (based on the comparative 354 
genomics track on the UCSC Genome Browser).59 355 

Interaction with aging, diet, and potential impact on longevity 356 

We next examined how the trans-CpGs interface with aging and diet, and how these may 357 
potentially influence physiological traits and lifespan. Based on the level of overlap with DMCs 358 
that we have previously defined,6 the CpGs trans-modulated by meQTL.5a had 3-fold higher 359 
enrichment in age-gain CpGs (hypergeometric p = 5.4e-92). There were also significant 360 
enrichments in weight- and diet-CpGs, and modest enrichment in age-loss CpGs, but no DMCs 361 
related to strain dependent life expectancy (Fig 6a; Table S6). Intriguingly, for the age 362 
dependent trans-CpGs, whether a site gained or lost methylation with aging depended on the 363 
allele effect of meQTL.5a (Fig 6b). Trans-CpGs with D positive additive effect were more likely to 364 
gain methylation with age, whereas the few trans-CpGs with higher methylation for the B allele 365 
were associated with decrease in methylation with aging (Fig 6b; Data S2). This is not due to 366 
spurious co-segregation between genotype in meQTL.5a since there is not difference in mean 367 
age between the samples with the DD genotype (421 ± 170 days) and those with the BB 368 
genotype (425 ± 184) (Data S1). This pattern of allele-dependent effect of age is exemplified by 369 

 
Fig 5. Primary protein-protein interaction partners of HNF1A and their trans-modulation 
(a) The network shows the top 10 interaction partners of HNF1A based on protein-protein 
interactions. CpGs in CREBBP, FOXA2 (HNF3B), GATA4, HNF4A, ONECUT1, and PCDB2 are 
trans-modulated by the meQTL.5a locus, making Hnf1a a prime candidate. (b) At the 
transcriptomic level, expression of these genes in the liver are also highly intercorrelated. 
Only correlations |r| > 0.45 are shown (line thickness conveys strength of correlation; blue: 
negative; red: positive). Mirrored meQTL (top), and eQTL (bottom) for two example gene: 
(c) Gata4, and (d) Foxa2. Red triangles mark the location of genes. 
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the CpG located in the 5’UTR of Jarid2, a canonical member of the Polycomb-Repressive 370 
Complex 2 (PRC2) (Fig 6c).60 This CpG gained methylation with age, and across all ages, mice 371 
with the D allele in meQTL.5a tended to have higher methylation. An meQTL map for the Jarid2 372 
CpG using GEMMA is displayed in Fig 6d. The expression of Jarid2 in adult liver was low, and 373 
showed no covariance with age, but the mRNA mapped as a weak trans-eQTL to meQTL.5a (p = 374 

 
Fig 6. Joint modulation of CpGs by genetic and non-genetic variables 
(a) CpGs with trans-meQTLs in meQTL.5a are enriched in differentially methylated CpGs 
(DMCs) associated with aging, diet, and body weight. Asterisks denote hypergeometric 
enrichment p ≤ 0.001; hash denotes p = 0.006. (b) Trans-CpGs that are increased in 
methylation by the D allele in meQTL.5a gain methylation with age (positive regression 
estimate on the y-axis) while those with higher methylation for the B allele lose methylation 
with age. Dashed red horizontal line indicate Bonferroni p ≤ 0.05 for DMC. (c) CpG in the 
Jarid2 5’UTR gains methylation with age and has higher methylation in BXDs with the DD 
genotype in meQTL.5a. (d) QTL plots for the Jarid2 CpG (top Manhattan plot), and mRNA 
(bottom). Red triangle marks the location of Jarid2. (e) Allele dependent increase in 
methylation at the meQTL.5a trans-CpGs due to HFD. (f) Allele dependent association with 
body weight for the trans-CpGs. (g) Overall mean methylation of the trans-modulated CpG 
is higher for BXDs with DD genotype in meQTL.5a for both control diet (CD; 0.35 ± 0.02 for 
BB; 0.38 ± 0.03 for DD; pair-wise p < 0.0001 ) and high fat diet (HFD; 0.36 ± 0.03 for BB; 0.38 
± 0.03 for DD pair-wise p < 0.005). (h) Allele dependent increase in mean methylation for 
the CpGs with trans-meQTL in meQTL.5a. (i) Body weight is slightly higher for BXDs with BB 
in meQTL.5a for both CD (27 ± 6 g for BB; 26 ± 5 g for DD; pair-wise p < 0.1) and HFD (47 ± 
13 g for BB; 42 ± 13 g for DD; pair-wise p < 0.02). 
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0.01). We have previously reported that being fed HFD augments the age-dependent gains in 375 
methylation such that HFD results in a more aged methylome.6,43 For the meQTL.5a trans-CpGs, 376 
all the CpGs associated with higher methylation for the D allele were also increased in 377 
methylation by HFD (Fig 6e). These trans-CpGs with higher methylation for the D allele were 378 
also more likely to inversely correlate with body weight (Fig 6f). Overall, this pattern suggests a 379 
genotype dependent susceptibility of CpGs to the effects of aging and diet.  380 

To explore this further, we computed the mean methylation value for all 502 trans-CpGs 381 
targeted by meQTL.5a. As expected, the DD genotype in meQTL.5a had higher average 382 
methylation than the BB genotype for both diet groups (Fig 6g), and similar to Jarid2, the mean 383 
methylation increased with age but was overall higher for the DD genotype (Fig 6h). Body 384 
weight was not directly correlated with the mean methylation of the trans-CpGs, despite the 385 
enrichment in DMCs inversely correlated with body weight among the trans-CpGs. A 386 
multivariable regression showed that the strongest predictor of mean methylation of the trans-387 
CpGs was age, followed by the meQTL.5a genotype, and then diet, but not body weight (Table 388 
3). If we treat body weight as the outcome variable, there is only a slightly higher weight for the 389 
BB genotype (Fig 6i), and a multivariable regression showed a modestly significant association 390 
between weight and meQTL.5a (Table 3). This suggests a pleiotropic effect of meQTL.5a on 391 
DNAm and body weight with contrasting allelic effects. 392 

We obtained bodyweight and lifespan data from a different BXD cohort that were allowed 393 
to survive until natural mortality.35 We segregated the samples into two groups based on 394 
homozygous genotype at the meQTL.5a marker, rs29733222: BB (n = 801) or DD (n = 972), and 395 
tested two predictions: (1) that the BB genotype in meQTL.5a will be associated with higher 396 
body weight at age 6 months, and (2) although higher body weight is associated with shorter 397 
lifespan, we predicted that at this locus, based on a more “aged methylome”, the DD genotype 398 
will have slightly shorter lifespan. As the longevity cohort has no DNAm data, we could not 399 
directly verify whether the DD in this group indeed have a more aged methylome, and this is 400 
purely an assumption based on the meQTL data. As predicted, the BB genotype had 401 
significantly higher mean body weight (Fig 7a, Table 4). Also consistent with prediction, the DD 402 
genotype was associated with a slightly higher risk of death between the ages of 650 and 1100 403 
days compared to the BB genotype, but only in the CD group (Log-Rank p = 0.008 for CD; Log-404 
Rank p = 0.57 for HFD; Fig 7b, 7c). This small difference in the CD group resulted in a median 405 
lifespan of 702 days and maximum LS of 1250 days in the BB genotype (n = 399), compared to a 406 
median of 685 days and maximum of 1197 days in the DD genotype (n = 510). Using a 407 
multivariable regression model with genotype, diet, and bodyweight at 6 months as predictors, 408 
we find that the strongest predictors of lifespan were weight at 6 months, followed by diet, and 409 
then by the meQTL.5a genotype (Table 4). Given the strong association between body weight 410 
at young age and longevity,35 the lifespan advantage for the BB genotype becomes more 411 
apparent when we adjust the longevity data for the weight at 6 months (Fig 7d). For the CD 412 
mice, after adjusting for weight, the BB mice were predicted to have median lifespan that was 413 
46 days longer the DD mice (log-rank p < 0.0001). On HFD, the median lifespan of BB was only 7 414 
days longer than the DD mice (log-rank p < 0.03).  Our results suggest a pleiotropic effect of a 415 
genetic locus on multiple traits that are also modified by diet and aging. Here we use the 416 
terminology by Tyler et al.,61,62  and the model in Fig 7e depicts a horizontal pleiotropic effect 417 
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on body weight and CpG 418 
methylation that can moderate 419 
the association between this locus 420 
and lifespan. We suggest a modest 421 
vertical pleiotropic effect on 422 
lifespan that is mediated by the 423 
methylome, and the genotype 424 
with the less aged methylome (BB) 425 
having a slight lifespan advantage. 426 

Phenome-wide association 427 

analysis for Hnf1a 428 

The BXDs have accrued a vast 429 
collection of traits over decades, 430 
and we next performed a 431 
phenome-wide association 432 
analysis (PheWAS) to identify 433 
other higher-order traits that may 434 
be modulated by the meQTL.5a 435 
interval.63 Note that although we 436 
used “Hnf1a” as the term in the 437 
PheWAS search,64 the results are 438 
from family-based linkage 439 
mapping (not allelic associations), 440 
and the linkages are to relatively 441 
large QTL intervals close to the 442 
Hnf1a locus, and not to an Hnf1a 443 
allele. At -Log10p ≥ 3, there were 444 
10 BXD traits that included one 445 
immune related phenotype, four 446 
traits related to the nervous 447 
system, and five metabolic traits 448 
related to fat content and amino 449 
acid ratios (Table 5). The strongest 450 
QTL was for susceptibility to 451 
rickettsia infection;65 however, the 452 
peak region for this trait was 453 
proximal to the meQTL.5a interval 454 
(~104 Mb; GEMMA based linkage 455 
statistics is Data S6). The brain 456 
related traits were also little 457 
distant from meQTL.5a (at ~107 458 
Mb for brain activity measured by 459 
Ito et al.,66and at 117 Mb for cell 460 

 
Fig 7. Pleiotropic influence on meQTL.5a on body 
weight at young age and lifespan 
(a) Body weight at 6 months (mos) from a separate 
cohort of BXD mice show higher mean weight for strain 
with BB genotype in meQTL.5a for control diet (CD; 26 
± 6 g for BB; 25 ± 5 g for DD; pair-wise p < 0.004 ) and  
High fat (HFD; 34 ± 9 g for BB; 31 ± 8 g for DD; pair-wise 
p < 0.0001). Samples numbers: 383 BB and 503 DD for 
CD; 392 BB and 457 DD for HFD. (b) Kaplan-Meir 
survival plots by genotype at meQTL.5a for CD mice 
(399 BB and 510 DD). Median lifespan in days 
(MedianLS) for the genotypes shown (log-rank p = 
0.008). (c) Similar survival plot for HFD shows no 
significant difference between genotypes (402 BB and 
462 DD). (d) Kaplan-Meir survival after adjusting 
lifespan for 6 mos weight. Adjusted median lifespan in 
days shown for each genotype-by-diet below the 
graph. Within each diet, the BB genotype has longer 
lifespan compared to DD (based on pair-wise 
comparison, log-rank p < 0.0001 for CD, and p = 0.03 
for HFD). (e) Model depicting horizontal pleiotropic 
influence on CpG methylation and weight, and vertical 
pleiotropic influence on lifespan mediated by CpG, 
which are also under the influence of aging and diet. 
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proliferation67). The metabolic traits peaked at the meQTL interval and these included 461 
measures of fat content in liver, and ratio of branched chain amino acids to total amino acids 462 
(Data S5, Fig S6).68-70 Although the QTLs for the metabolic traits are suggestive, it does indicate 463 
a potential role for the meQTL.5a region in higher order metabolism, and similar to the higher 464 
body weight, the BB genotype had higher liver fat content. 465 

Complementing the murine family-based PheWAS, we also searched for GWAS hits 466 
associated with variants in HNF1A using two GWAS databases: GWAS Atlas, and the NHGRI-EBI 467 
GWAS Catalog.71,72 At minimum p < 1e-05, the GWAS Atlas identified 85 traits, and the GWAS 468 
Catalog identified over 400 traits associated with variants in HNF1A and HNF1A-AS1, the 469 
antisense RNA transcribed from HNF1A (Data S10, Data S11). The trait with the strongest 470 
association was C-reactive protein levels, a measure of inflammation and cardiovascular health, 471 
followed by levels of Gamma glutamyl transpeptidase (GGT), a measure of liver damage.73-76 472 
These were followed by lipid levels and coronary artery disease.77-79 Other traits associated with 473 
HNF1A included age at puberty, birth weight, and diabetes.80-84 While not a replicated genome-474 
wide significant hit, a variant near HNF1A (rs6489785) is reported to be one of 37 “longevity 475 
SNPs” that have a small-effect on human lifespan.85 This is consistent with our model where the 476 
meQTL.5a locus could make an indirect and modest contribution to lifespan variation. 477 

Discussion 478 

We have provided an overview of the regulatory loci that influence methylation of 479 
conserved CpGs in the murine liver. Overall, the results show complex interrelationships and 480 
genetic pleiotropy on DNA methylation and physiological traits. As expected, cis-meQTLs are 481 
associated with higher LOD scores compared to the trans-meQTLs.14 Given the strong 482 
contribution of genotype to the variance of cis-CpGs, the cis-modulated CpGs were depleted in 483 
DMCs related to aging and diet. In contrast, the trans-CpGs were enriched in DMCs related to 484 
both genetic traits (lifespan, body weight), and non-genetic variables (aging and diet). In terms 485 
of genomic location, the cis-CpGs were enriched in intergenic sites, which is consistent with 486 
reports from human studies,8,15 and also in intronic regions, and were highly depleted in 5’UTR 487 
and bivalent promoter states (PrB), which are regions that are strongly modified by aging and 488 
typically show methylation gains over time.6 This suggests that aging has a limited impact on 489 
CpGs that are under strong cis-modulation. On the other hand, trans-CpGs have multifactorial 490 
variation and could present key sites for gene-by-environment interactions. 491 

For meQTL mapping, we implemented a stringent regression model that adjusted for age, 492 
diet, weight, and genetic relatedness, and corrected for unmeasured variance by including the 493 
top principal component as a cofactor. However, note that compared to the statistical 494 
thresholds that are applied in human meQTL studies, we used a rather relaxed threshold of LOD 495 
≥ 3.5 for both cis- and trans-effects. This was because our sample size was modest and our 496 
analysis was a family-based linkage mapping done in 41 BXD progeny strains, F1 hybrids, and 497 
the parent strains.33 If we increase the stringency for the trans-meQTLs to LOD ≥ 4.5, then only 498 
309 strong trans-effects remained and 76 of these (i.e., nearly 25%) were in meQTL.5a. The 499 
relaxed statistical threshold is a caveat to keep in mind. For additional evidence, we evaluated 500 
the trans-meQTLs for biological coherence and overlap with eQTLs. For instance, many of the 501 
immediate interaction partners of HNF1A have weak trans-eQTLs overlapping the trans-502 
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meQTLs. The other strategy we used was to reduce the dimensionality of the methylome data 503 
by performing an unsupervised clustering of the CpGs into modules and treating the module 504 
eigengenes as the representative quantitative traits, and this too supported meQTL.5a as a 505 
modulator of functionally connected CpG networks. 506 

Among the meQTL hotspots Eaa19 is also noteworthy. Eaa19 is linked to epigenetic clock 507 
acceleration, and potentially influences susceptibility to entropy accumulation in the liver 508 
methylome.6 In our 2022 paper, we identified several candidate genes in Eaa19. However, like 509 
meQTL.5a, Eaa19 is gene dense and harbors several positional candidates. In the present work, 510 
we focused on meQTL.5a, and used several strategies to prioritize the most plausible 511 
candidates. Without dismissing the other candidates (e.g., Oasl2, Srsf9, Pxn, which contain 512 
variants predicted to be deleterious), our analysis led us to Hnf1a as a functionally highly 513 
relevant prime suspect in meQTL.5a.  514 

Developmental genes, the methylome, and aging 515 

HNF1A is a member of the hepatocyte nuclear factor family of TFs, and is mainly expressed 516 
in the liver, kidney, and pancreas.86 Other HNF members include HNF4A, FOXA2 (aka, HNF3B), 517 
and ONECUT1, which all have trans-meQTLs in meQTL.5a. During embryonic development, the 518 
HNFs and GATA TFs participate in complex autoregulatory networks that modulate the spatial 519 
and temporal expression of downstream genes.23,86,87  Targets of HNF1A include the metabolic 520 
and longevity gene, Igf1 (insulin-like growth factor 1).87,88 MODY3, which is caused by mutations 521 
in HNF1A, is the most common form of maturity onset diabetes of the young.89,90 HNF1A 522 
mutations also lead to dysregulation in fatty acid synthesis and transport that can cause fatty 523 
acid accumulation in the liver.86 A GWAS study also found that a variant in HNF1A (rs6489785) 524 
is one of 169 variants that jointly contribute to human longevity.85 Some mutations in HNF1A 525 
do not cause MODY but increase the susceptibility to type 2 diabetes and lower BMI.91,92 In 526 
mice, deletion of Hnf1a causes Laron dwarfism and hyperglycemia.93-95  527 

Although HNF1A is not a direct regulator of DNAm, there is some intriguing evidence that it 528 
contributes to the epigenetic state. For instance, deletion of Hnf1a in mice causes a change in 529 
the local chromatin structure and affects the spatial location of its target regions in the 530 
nucleus.96 Furthermore, a study from 2008 showed that CpGs located in HNF1A binding motifs 531 
were hypomethylated in the liver and had tissue-dependent differential methylation that 532 
correlated with gene expression.97 This suggests that the binding affinity of HFN1A at these 533 
sites could influence CpG methylation. Generally, binding of protein factors (e.g., GATA6, CTCF, 534 
REST) to motifs that contain CpGs result in low methylation.20,23 In the case of the BXDs, the D2 535 
allele in rs33234601 (Pro423Ser) is the unusual variant as almost all vertebrate species have a 536 
proline at this amino acid position, and only few have serine (e.g., squirrel, elephant; based on 537 
the Vertebrate Multiz Alignment track in the UCSC Genome Browser).59 Expression of Hnf1a has 538 
a modest cis-eQTL that is associated with positive additive effect for the B allele at meQTL.5a. 539 

Many of these CpGs that are trans-modulated by meQTL.5a are characterized by a low 540 
methylation profile (“hypomethylated” with methylation beta-scores closer to 0), and increase 541 
in methylation with aging (illustrated by the Jarid2 CpG, and the mean methylation of the trans-542 
CpGs in Fig 6). Since binding by TFs generally result in lower methylation at the biding 543 
motifs,20,23  we could speculate that the D variant of HNF1A has a lower DNA binding affinity, 544 
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and the BXD strains with DD at meQTL.5a could begin life with heightened methylation at the 545 
target sites. If we consider this in terms of epigenetic entropy, then a hypomethylated state 546 
presents a low entropy landscape.6 For the DD genotype however, the methylation beta-values 547 
at these CpGs will be closer to 0.5, and will approach a more random epigenetic state at an 548 
earlier age compared to strains that have a BB genotype at meQTL.5a.  549 

An interesting feature of the Hnf1a gene is that the promoter and first intron overlaps the 550 
long non-coding RNAs (lncRNA), Hnf1aos1 and Hnf1aos2.98 The cis-regulated CpG in Hnf1a 551 
(shown in Fig 4c) is in this lncRNA, and the RNA products have been shown to have a cis-acting 552 
regulatory role and implicated in cell proliferation and tumor progression.98,99 Furthermore, 553 
Hnf1aos1 interacts with EZH2, the catalytic subunit of PRC2, in liver tissue.100 Genes that are 554 
regulated by PRC2, and CpG sites that interact with EZH2 are known to be highly susceptible to 555 
age-dependent increases in methylation,101-103 and the lncRNA is another plausible link 556 
between Hnf1a and the epigenome. Notably, one of the strongest trans-modulated CpGs is 557 
located in Jarid2, a member of the PRC2 complex,60 and we can see that while the CpG in Jarid2 558 
gains methylation with age, the DD strains start out with a higher methylation compared to the 559 
BB strains (see Fig 6c). This presents links between a development TF and the PRC2 complex 560 
that suggests deeper connections between epigenesis (i.e., embryonic development), and the 561 
aging of the epigenome. 562 

Pleiotropy on CpGs and physiological traits 563 

In the BXDs, low body weight at young age predicts longer lifespan and slower epigenetic 564 
aging.6,35,104 However, the meQTL.5a interval has contrasting allelic effects on body weight and 565 
lifespan. Specifically, despite the higher body weight and higher liver lipid levels for the B allele 566 
in meQTL.5a, it is the D allele that is associated with slightly shorter lifespan. These effect on 567 
weight (specifically, lower body weight) is also seen in Hnf1a-null mice, and HNF1A variants in 568 
humans. Generally, when downstream targets of Hnf1a are deleted, it results in smaller stature 569 
and longer lifespan in both humans and mice. For instance, deficiency in growth hormone or 570 
IGF1 confers longer lifespan and healthspan.105,106 In some instances of Laron syndrome (LS), 571 
individuals exhibit insulin resistance and hyperlipidemia but still have long lives.107,108 Mouse 572 
models of Laron dwarfism also age slower and have longer lifespan.109,110 However, direct 573 
deletion of Hnf1a in mice, or deleterious mutations in HNF1A in humans, do not appear to 574 
confer any lifespan advantage despite the mice having a form of Laron dwarfism and humans 575 
have lower BMI.91-95 576 

We suggest that HNF1A, in addition to its role as a TF for developmental and metabolic 577 
genes, also influences the epigenome early in life, and contributes to epigenomic maintenance 578 
in adulthood and aging. We present a model in which the meQTL.5a locus exerts horizontal 579 
pleiotropic effects on physiological traits and CpG methylation. The pleiotropic influence results 580 
in the D allele increasing methylation at sites that typically have low methylation when young, 581 
and the B allele increasing body weight and lipid levels. The methylation of the target CpGs, 582 
which are also under convergent influence of aging and diet, then contribute to variation in 583 
survival trait, with the D allele associated with slightly shorter lifespan. In this model, lifespan is 584 
a distal complex trait that shows only a modest linkage to meQTL.5a, while the intermediate 585 
traits (the CpGs) have a stronger linkage.  586 
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In conclusion, we have identified meQTL.5a as a trans-meQTL hotspot that modulates 587 
several CpGs in trans. The pleiotropic effect of meQTL.5a could contribute to variation in body 588 
size, metabolic traits, CpG methylation and lifespan. Hnf1a is a key candidate in this locus, and 589 
the potential influence of the HNFs on the epigenomic state during development could 590 
contribute to aging and longevity. 591 

Methods 592 

Description of DNAm samples and data 593 

The data we use in this study has been previously reported, and the full data is available 594 
from NCBI Gene Expression Omnibus (GEO accession ID GSE199979).6 In brief, these are liver 595 
DNAm data generated on the HorvathMammalMethylChip40 array from 339 mice that belong 596 
the BXD Family. Information on each animal (strain, age, weight, diet, etc.) along with all 597 
relevant variables used in this study are provided in Data S1.  598 

Methylation QTL mapping with R/QTL2 599 

Each CpG was mapped against 7127 informative autosomal genotype markers distributed 600 
across the autosomal chromosomes using the R/qtl2 software.45 The full methylation data is 601 
available from the NCBI Gene Expression Omnibus database (GEO accession ID GSE199979), 602 
and the genotype data used from mapping is provided as Data S12. We performed QTL 603 
mapping using a univariate linear mixed model that accounts for genetic relatedness. We first 604 
computed genotype probabilities and employed that to obtain genetic relatedness matrices 605 
(GRM), or the kinship, using a Leave One Chromosome Out (LOCO) scheme. Genome scans 606 
included age, diet and the top PC as covariates (variables provided in Data S1), and were 607 
implemented using a ‘scan1’ function with genotype probabilities as input while adjusting for 608 
relatedness outside the chromosome of interest.  We next estimated genetic effects and 609 
genetic directions between the two genotypes was computed as (DD – BB). The R codes are 610 
provided as Supplemental information (Data S13).  611 

CpG co-methylation networks 612 

We used the WGCNA R package to cluster the CpGs into inter-correlated modules.46 The full 613 
set of CpGs (~28K) was used for network definition. Prior to WGCNA, we performed hierarchical 614 
clustering (hclust function in R with method = “average”) for outlier detection and excluded one 615 
sample (UT153). WGCNA first constructs a pair-wise correlation matrix, and this was converted 616 
to a scale free adjacency matrix using default parameters, and with a soft power threshold, β = 617 
6. The β = 6 was associated with a mean connectivity of 168, and maximum connectivity of 618 
1560. The adjacency matrix was converted to a topological overlap matrix (TOM), and the 619 
dissimilarity matrix (1 – TOM), and the hclust() function with the “average” method was used to 620 
cluster the CpGs. To group the CpGs into modules, we applied the dynamic tree cutting method 621 
(cutreeDynamic), with minimum module size = 35, and deepSplit = 2. This resulted in the 14 622 
CpG families (aka, modules), and the grey module, which had 1284 CpGs that did not fit into the 623 
other modules. The top principal component was derived from each module and taken as the 624 
representative ME. The R codes used are provided as supplementary information (Data S14).  625 
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QTL mapping using the Genenetwork web tool 626 

Aside from the main meQTL mapping that was done using R/qtl2, addition QTL analyses 627 
were done on the web platform, GeneNetwork, which provide interface to few different 628 
mapping algorithms.34,52 We used the GEMMA algorithm, which adjusts for the BXD kinship 629 
structure using linear mixed modeling.50,51 The MEs from the WGCA were uploaded to 630 
Genenetwork, and QTL mapping for each ME was done with age, diet and body weight (weight 631 
at time of tissue collection) as cofactors. Instructions on how to retrieve the ME traits on 632 
GeneNetwork are provided in Data S6. QTL mapping for the higher order traits identified by the 633 
PheWAS was also done using GEMMA, and for these, the data are at the strain levels (i.e., strain 634 
means), and instruction on trait retrieval are provided in Data S6. 635 

Enrichment analysis and other statistics 636 

As previously described, we have annotated each CpG by genomic context (i.e., intergenic, 637 
3’UTR, intron, exon, 5’UTR) and chromatin state.6,55,56 For enrichment analysis, we compared 638 
the frequency of these features among the cis- and trans-modulated CpGs relative to the array 639 
background (i.e., ~28K CpGs), and enrichment or depletion p-values were calculated using a 640 
hypergeometric test (formulae provided under Table S1). In addition to genomic locations, the 641 
CpGs have been classified into differentially methylated by age, diet (high fat vs normal lab 642 
chow), and body weight based on a multivariable epigenome-wide association analysis.6 The 643 
frequency of these differentially methylated CpGs among the cis- and trans-modulated CpGs 644 
were also compared against the array background using the hypergeometric test (the R codes 645 
are provided under Table S2). All other statistical tests (Pearson correlations, linear regression 646 
modeling, and survival analyses) were done using JMP (version 16). 647 

Bioinformatic resources 648 

For the meQTL.5a trans-modulated CpGs, and CpGs in the Blue module, biological functions 649 
and transcription factor motif enrichment analysis was done using the R package for Genomic 650 
Regions Enrichment of Annotations Tool (rGREAT; version 3).53,54 The base coordinate for each 651 
CpG was provided (GRCm38/mm10 reference genome), and comparison was against the array 652 
background. For the trans-modulated mRNAs and proteins, we used the gene symbol as the 653 
identifier, and enrichment analysis was done on DAVID.111 Another enrichment analysis to 654 
connect the trans-modulated genes with the positional candidates was based on protein-655 
protein networks, and for this, a non-redundant list of the trans-modulated genes and 656 
candidate genes was uploaded to the STRING (version 11.5).112,113 657 

For candidate gene selection, we search for cis-eQTL in the BXD liver RNA-seq data using the 658 
GeneNetwork search tool.41 To identify protein truncating and missense variants located in the 659 
positional candidate genes, we use the Ensemble Variant Table tool for the mouse gene 660 
(GRCm38) and the Mouse Genome Informatics variant database, and selected the genes that 661 
had such variants between B6 and D2.114-117 We used the integrated systems genetics web 662 
platform to perform a PheWAS for the Hnf1a locus in the BXDs.63,64 For human PheWAS, we 663 
used HNF1A as the search term and retrieved GWAS hits from two databases: the GWAS Atlas, 664 
and the GWAS Catalog.71,72 665 
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Tables 979 

Table 1. Liver meQTL hotspots 980 

Name 
Broad location 

(peak) 
Liver 

meQTL 
Hotspot type Module QTL 

Liver 
eQTL 

me/eQTL overlap 

meQTL.2a 
Chr2:102–112 
(107 Mb) 

72 (41 cis) cis methyl 

 

80 (13 cis) 

Them7 
(cg10774906); 
Mpped2 
(cg07667286, 
cg00811894) 

meQTL.2b 
Chr2:141–151 
(144–149 Mb) 

164 (15 cis) trans methyl 

Green 
(2092) 

27 (13 cis) 

Rem1 
(cg23754359, 
cg25361894); 
Rin2 
(cg12687767) 

meQTL.4a 
Chr4:114-124 
(119 Mb) 

39 cis cis methyl 

 

43 (25 cis) 

Faah 
(cg08815464, 
cg15610892, 
cg19641802, 
cg06184921) 

meQTL.5a 
Chr5:110-120 
(115 Mb) 

535 (33 cis) trans methyl 

Blue (5067); 
Black (1087) 

376 (36 cis) 

Tenm3 (trans; 
cg24399106), 
Clcn3 (trans; 
cg16842643) 

meQTL.7a 
Chr7:132–142 
(138 Mb) 

59 (9 cis) trans methyl 

 

197 (7 cis) 

Mgmt 
(cg00046614, 
cg11711038, 
cg23272565) 

meQTL.14a 
Chr14:17-27 
(23 Mb) 

51 (32 cis) cis methyl 
 

5 cis - 

meQTL.14b 
Chr14: 41–51 
(46–49 Mb) 

184 (19 cis) trans methyl 

Greenyellow 
(998) 

97 (31 cis) 

Ddhd1 
(cg17695612; 
cg10924987); 
Prmt5 
(cg24106188) 

distal 
Eaa191  

Chr19:42–52 
(48 Mb) 

103 (100 
cis) 

cis methyl 

Royalblue 
(62); 
Lightgreen 
(1761) 

274 (43 cis) 
Crtac1; Ldb1; Psd; 
Col17a1 

1Epigenetic age acceleration 981 
 982 
Table 2. Candidate genes in meQTL.5a 983 
 984 

Symbol 
Brief description of annotated 

function 
Chr Mb Missense variants (SIFT score) 1 

Tchp 
Apoptotic process; negative 
regulator of cell growth; 
cytoskeleton 

5 114.7 rs29566070 (1) 

Git2 
G-protein coupled receptor 
protein signaling pathway; 
related to brain development 

5 114.7 rs32133813 (0.86–1) 

1500011B03Rik  5 114.8  
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Oasl2 
Purine nucleotide biosynthetic 
process; immune signaling 

5 114.9 
rs29822904 (0.49–0.97); 
rs32142001 (0) 

Gm13822  5 114.9  

Hnf1a 
Liver-enriched transcription 
factor; development & growth; 
MODY3 

5 114.9 rs33234601 (0.14) 

Acads 

Mitochondrial flavoprotein; 
acyl-CoA dehydrogenase 
family; fatty acid beta-
oxidation pathway 

5 115.1  

Coq5 

Mitochondrial co-enzyme; 
methylation and ubiquinone 
biosynthetic process; CoQ10 
biosynthesis pathway 

5 115.3  

Srsf9 
Pre-mRNA splicing factor; 
mRNA export 

5 115.3 rs33739429 (0) 

Gatc 
Glutaminyl-tRNA synthase; 
mitochondrial 

5 115.3 rs33338640 (0.21) 

Triap1 

p53 binding; DNA damage 
response; negative regulation 
of apoptosis; phospholipid 
transport 

5 115.3 rs33338640 (0.21) 

Sirt4 

Sirtuin member; 
mitochondrial; metabolic 
processes; mono-ADP-
ribosyltransferase 

5 115.5 
rs46787798 (0.58); rs6400038 
(0.32) 

Pxn 
Cytoskeletal; angiogenesis; 
transforming growth factor 
beta receptor signaling 

5 115.5 

rs50194001 (0.39); rs52040466 
(0.87); rs46615100 (0.34); 
rs33590215 (1); rs50879465 (1); 
rs47873388 (0.03); rs33728337 
(0.28); rs33892383 (1) 

Rplp0 Ribosomal protein 5 115.6 rs52016292 (1) 

Rab35 
GTpase activity; neuron 
projection; mitochondrial 

5 115.6 rs48405889 (0) 

Ccdc64 

Small GTPase binding; 
dynactin binding; golgi to 
secretory granule transport; 
neuron projection 

5 115.6 rs47577059 (1) 

Cit 
Serine/threonine-protein 
kinase; cell division; central 
nervous system development 

5 115.8 
rs48791426 (1); rs47954950 
(0.01); rs48893178 (0.05); 
rs48063202 (0) 

Prkab1 
AMP-activated protein kinase; 
energy sensing; metabolism 

5 116.0 rs46168068 (0) 

Hspb8 
Heat shock protein; unfolded 
protein response; Charcot-
Marie-Tooth disease 

5 116.4  

1The SIFT scores provided within parenthesis predicts the effect of missense mutation on protein function; lower 985 
scores are more likely to be deleterious. SIFT scores for the missense variants were obtained from the Ensemble 986 
Browser.  987 
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Table 3. Multivariable variable regressions for mean methylation and weight 990 
Outcome Predictors Estimate Std Error t Ratio p 

Mean methylation of trans-
CpGs1 
 

rs29733222[B] -0.011 0.002 -7.27 <.0001 

Age (days) 6.4E-05 8.4E-06 7.64 <.0001 

Diet[CD] -0.008 0.0021 -3.84 0.0002 

Body weight -0.0002 0.0002 -1.45 0.15 

Body weight2 

rs29733222[B] 1.517 0.5316 2.85 0.005 

Age (days) 0.006 0.0030 2.17 0.03 

Diet[CD] -8.94 0.5415 -16.51 <.0001 
1(Mean methylation for meQTL.5a trans-CpGs) ~ genotype + age + diet + weight, where diet is control diet (CD) or 991 
high fat diet (HFD), and genotype is BB (72 on CD, 50 on HFD) or DD (105 on CD, 63 on HFD) for marker rs29733222 992 
in meQTL.5a. 2Weight ~ genotype + age + diet. 993 
 994 
Table 4. 995 

Outcome Term Estimate Std Error t Ratio p 

Weight_6M1 
rs29733222[B] 0.98 0.17 5.78 <.0001 

Diet[CD]  -3.38 0.17  -20.11 <.0001 

Lifespan2 

rs29733222[B] 14 4.41 3.08 0.002 

Diet[CD] 26 4.82 5.43 <.0001 

Weight_6M  -4.0 0.62  -6.34 <.0001 
1(Weight at 6 months) ~ genotype + diet. 2Lifespan ~ genotype + diet + weight at 6 months, where diet is control 996 
diet (CD) or high fat diet (HFD), and genotype is BB (399 on CD,  402 on HFD) or DD (510 on CD, 462 on HFD) for 997 
marker rs29733222 is meQTL.5a. 998 
 999 
Table 5. Phenotypes that map to meQTL.5a 1000 

GN 
number1 

Phenotype Category PMID -log10(p) 
QTL peak 
location 

17439 
Rickettsiu tsutsugamushi 
susceptibility of both sexes 
at 6-12 weeks-of-age 

Immune 6774020 4.42 
Peak at 104 
@rs32034514 

17266 

Brain activity and coherence 
of electrical field oscillations 
at 160 Hz  in L2/3 of the 
primary whisker motor 
cortex 

Nervous 
system 

24686563 4.03 
Peak at ~107 
Mb @ 
rs29681689 

15092 

Total fat content measured 
by Fourier Transform 
Infrared Spectroscopy in 
liver at 140 days, males, fed 
high fat diet fed from 4 
weeks on 

Metabolism 23758785 3.94 
Peak from 
110–114 Mb 

15091 

Saturated fat content 
measured by Fourier 
Transform Infrared 
Spectroscopy in liver at 140 
days, males, fed high fat diet 
feeding from 4 weeks on 

Metabolism 23758785 3.62 
Peak from 
110–114 Mb 
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15094 

Ratio of lipid to protein 
content in liver at 140 days, 
males, fed high fat diet from 
4 weeks on 

Metabolism 23758785 3.44 
Peak from 
110–114 Mb 

14786 

Proliferation of BrdU-
labeled cells in subgranular 
zone, 1h BrdU injection, 
unadjusted data  

Nervous 
system 

24640950 3.43 
Peak at 117 
Mb 
@rs29728022 

17265 

Brain activity and coherence 
of electrical field oscillations 
at 159 Hz  in L2/3 of the 
primary whisker motor 
cortex 

Nervous 
system 

24686563 3.31 
Peak at ~107 
Mb @ 
rs29681689 

16783 
Ratio of total branched-
chain amino acid/total 
amino acid 

Metabolites 
22939713; 
30709776 

3.23 
Peak at 110 
Mb 
@rs49420585 

17245 

Brain activity and coherence 
of electrical field 
oscillations, coherence at 
139 Hz between local field 
potentials (LFP) at two sites 
(0.3 mm apart) in L2/3 of 
the primary whisker motor 
cortex in awake 6 

Nervous 
system 

24686563 3.19 
Peak at ~107 
Mb @ 
rs29681689 

16774 
Ratio of total branched-
chain amino 
acid/Alanine_CD 

Metabolites 
22939713; 
30709776 

3.1 
Peak at 110 
Mb 
@rs49420585 

1Search carried out using Hnf1a as the search key in https://systems-genetics.org/; the traits ID can be used to 1001 
retrieve the BXD strain level data from www.genenetwork.org   1002 
 1003 
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