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Abstract 

Mouse is a widely used model organism in cancer research. However, no computational 

methods exist to identify cancer driver genes in mice due to a lack of labeled training data. To 

address this knowledge gap, we adapted the GUST (genes under selection in tumors) model, 

originally trained on human exomes, to mouse exomes using transfer learning. The resulting 

tool, called GUST-mouse, can estimate long-term and short-term evolutionary selection in 

mouse tumors, and distinguish between oncogenes, tumor suppressor genes, and passenger 

genes using high throughput sequencing data. We applied GUST-mouse to analyze 65 exomes 

of mouse primary breast cancer models, leading to the discovery of 24 driver genes. The 

GUST-mouse method is available as an open-source R package on github 

(https://github.com/liliulab/gust.mouse).  
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Introduction 

Mouse models are indispensable resources that complement human tissues in cancer research 

(1). In parallel with large-scale sequencing efforts in human cancers, whole exome sequencing 

and whole genome sequencing of mouse tumors have emerged (2-5). Sophisticated algorithms 

have been developed to identify driver genes in human cancers by integrating mutational 

patterns, somatic evolution, and other informative features extracted from high throughput 

sequencing data (6, 7). However, no such method is currently available for non-human 

organisms. Researchers using mouse tumor models often rely on the traditional practice of 

assuming frequently mutated genes as drivers. But not all recurrent mutations are drivers; and 

hotspot mutations in passenger genes have been reported (8-10). Since mouse tumor models 

are often induced or genetically engineered from specific mouse strains, the high mutation rate 

and low genetic diversity inevitably result in many shared passenger mutations (4). Advanced 

tools are needed to go beyond mutation frequency to identify bona fide drivers in mice. 

 Supervised machine learning has been widely used to build models for cancer driver 

gene prediction (11). However, unlike human data, which has carefully curated driver genes and 

passenger genes available for training a supervised model (12), the lack of labeled benchmark 

genes in mice makes it impractical to train a de novo classifier. To address this challenge, 

transductive transfer learning, a technique that adapts a classifier trained on labeled data in the 

source domain to unlabeled data in the target domain, may be employed (13). Transfer learning 

is suited for knowledge transfer when the source domain and target domain are similar (14). 

Given that the fundamental mechanisms of neoplastic development are conserved in human 

and mice (15), predictive models built on human genes may be leveraged to develop models for 

mouse. 

We have previously developed the GUST (genes under selection in tumors) method that 

distinguishes oncogenes (OGs), tumor suppressor genes (TSGs), and passenger genes (PGs) 
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in human cancer genomes (7). GUST has two functionalities. Firstly, it estimates key 

parameters that characterize long-term species evolution and short-term tumor evolution, which 

can be used to prioritize biomarkers (16, 17). Secondly, it includes a random forest classifier 

that predicts cancer driver genes based on the evolutionary parameters and mutation 

distribution features. Transductive transfer learning to adapt random forest models can be 

achieved through structure reduction, which progressively prunes the trees (18), and through 

threshold shifting, which adjusts the cutoff value used at each split (19). In this study, we 

present the GUST-mouse method that is adapted from the GUST method using these two 

algorithms. Application of this new method to mouse exomes of induced breast cancer models 

revealed known and novel cancer drivers.    

The GUST-mouse Method 

Source and target domains: The random forest model in the GUST method is trained to classify 

human genes into OGs, TSGs, and PGs. The source domain for this model consists of 533 

labeled human genes (hBenchmark), which were obtained from the published supplementary 

materials. The target domain is the mouse exome data from a published study of mouse models 

of breast cancer  (20). This dataset includes 65 mouse exomes of primary breast cancers 

(mmBRCA). We downloaded the VCF files from the NCBI GEO database (GSE142387) and 

extracted somatic mutations in each sample. The human and mouse reference genomes used 

in this study were GRCh38 (hg38) and GRCm38 (mm10), respectively. 

Estimating parameters of long-term species evolution for mouse genes: The GUST method 

utilized the Multiz alignments of protein sequences from 100 vertebrates to compute position-

specific evolutionary rates (21). Since the Multiz alignments use human as the reference 

species, we swapped the mouse sequence with the human sequence, removed sites where the 

mouse sequence contained a gap, and verified that the resulting mouse sequences were 

identical to those in the mm10 genome. The evolutionary rate (r) at each position was then 
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computed using the Fitch method (22), expressed as the number of substitutions per billion 

years (s/bys).  

Estimating parameters of short-term somatic evolution in mouse tumors: For each protein-

coding gene in the mm10 genome, GUST-mouse simulated saturated point mutations to infer 

the expected mutational patterns, considering factors such as codon usage, mutation types, and 

varying mutational rates. Synonymous mutations were used as the neutral baseline. When 

analyzing a gene that is mutated in a set of mouse tumors, GUST-mouse compares the 

observed mutation patterns with the expected patterns to infer selection coefficients of missense 

mutations (ω) and protein-truncating mutations (φ). The inference is obtained using the 

maximum likelihood estimation procedure implemented in the GUST program (7).  

Extracting features describing mutation distribution: The GUST program captures the mutational 

profile of a gene using several features including fractions of missense mutations and protein-

truncating mutations, size of clusters of mutations forming hotspots, and length of truncated 

peptides. The GUST program's functions for calculating these features can be used to analyze 

and characterize mutational patterns in mouse genes from exome sequencing data.. 

Refining the random forest classifier: The random forest model in GUST uses 10 predictors, 

including two long-term evolutionary parameters, two short-term evolutionary parameters, and 

six mutational distribution parameters, to classify genes into OGs, TSGs, and PGs. For a given 

mouse gene with mutations observed in a set of cancer exomes, GUST-mouse calculates the 

values of these predictors. Although the class labels of mouse genes are unknown, it is 

reasonable to assume that genes with similar roles in tumorigenesis tend to cluster together 

based on the values of these predictors. GUST-mouse then calculates pairwise Euclidean 

distances (D) between mouse genes based on the predictor values and examines how these 

distances change in each node of the tree. This allows GUST-mouse to refine the classifier 
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based on the patterns of similarity or dissimilarity between genes in the tree nodes, even in the 

absence of known class labels for the mouse genes.   

Given a bifurcating decision tree Th in the random forest classifier RF trained on human 

data, GUST-mouse implements two types of transductive transfer learning. The first type 

involves pruning the tree via structure reduction (18). Specifically, it traverses the Th tree from 

root to leaves in a depth-first order. At each internal node, GUST-mouse calculates the mean 

distance between all pairs of genes reaching that node (Di), as well as between all pairs of 

genes reaching each of its child nodes (Da and Db). If splitting the internal node into the child 

nodes does not reduce the pairwise gene distance (i.e.,   Di < Da and Di < Db), the clade below 

the internal node is snipped. This process is applied recursively to the entire tree, resulting in an 

updated tree Tprune.  

The second type of transductive transfer learning in GUST-mouse does not change the 

topology of the tree, but rather adjusts the splitting threshold of each internal node (19). Similar 

to the first type, GUST-mouse traverses the Th tree from root to leaves in a depth-first order. At 

each internal node, the optimal threshold of the splitting feature is selected to minimize the sum 

of pairwise gene distance in the two child nodes (i.e., argmint(Di + Da)  where t is the splitting 

threshold). After completing the traversal and threshold adjustment, the updated tree Tshift is 

obtained. 

The GUST model consists of 200 Th trees. By applying structure reduction and threshold 

adjustment to each tree, the GUST-mouse model will have 200 Tprune trees and 200 Tshift trees.  

These updated trees collectively constitutes the random forest classifier RF-mouse. 

Results 

Human genes and mouse genes showed similar distributions of evolutionary parameters.  
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For each gene in the hBenchmark dataset and in the mmBRCA data sets, we calculated the 

evolutionary rates of each affected position, recurrently mutated positions, and all positions. Low 

evolutionary rates indicate strong purifying selection across species and large functional impact. 

The comparison of evolutionary rates between the mmBRCA data set and the hBenchmark data 

sets (human) showed highly similar distributions (Fig. 1A). This suggests that the evolutionary 

constraints and functional impact of mutations in these datasets are comparable between 

human and mouse, despite the species differences. 

The selection coefficients, ω and φ, quantify short-term somatic selection on missense 

mutations and protein-truncating mutations, respectively. The sign of the coefficient indicates 

direction of selection (positive or negative) and the magnitude indicates strength of selection. 

We computed ω and φ for mutated genes in the mmBRCA dataset and the hBenchmark 

dataset. The scatterplots showing the distribution of ω and φ in each dataset shared a similar 

Figure 1. Building the RF-

mouse classifier via transfer 

learning. (A). Mutations in the 

hBenchmark dataset and in 

the mmBRCA data set showed 

similar distributions of long-

term evolutionary rates. (B). 

Scatterplots of short-term 

somatic selection of missense 

mutations measured by log(ω)  

and truncating mutations 

measured by log(φ), showed 

similar distributions in the 

hBenchmark dataset and in 

the mmBRCA dataset. (C, D) 

Gini impurity score and within-

node Euclidean distance were 

strongly correlated in large 

nodes with size > 200 (C) and 

were moderately correlated in 

small nodes wit size <20 (D). 

Red lines represent linear fits. 
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pattern – most genes were under neutral selection (ω and φ close to 0 on log scale), and a 

small number of genes were under directional selection (ω and φ deviated from 0, Fig. 1B).  

The consistent patterns of long-term and short-term evolutionary parameters across data 

sets confirmed that human and mouse cancers share common molecular mechanisms. This 

supports the notion that findings from one species can be informative and relevant for 

understanding cancer biology in the other species and justifies the use of transfer learning 

approaches.    

Unsupervised Euclidean distance was a good proxy of supervised splitting index.  

The RF model contained 200 Th trees trained on the labeled hBenchmark data representing the 

source domain. We previously reported that this model had a cross-validation accuracy of 92% 

and area under the receiver operating characteristic curve (AUROC) of 0.97 (7). In the training 

of the RF model, Gini impurity score was used as the splitting index. To assess if within-node 

Euclidean distance calculated without knowing class labels was a good proxy of Gini impurity 

score, we examined each split where a parent node was divided into two child nodes. In 99.6% 

(1,800 out of 1,807) of the splits, the mean pairwise distance of genes in a child node was 

smaller than that in the parent node. This observation is consistent with the expectation that 

node splitting creates clusters of similar genes. Furthermore, the within-node distance was 

positively correlated with the Gini impurity; and the correlation was stronger in large nodes close 

to the root than in small nodes close to the leaves (Pearson correlation coefficient range from 

0.88 to 0.31, all P<10-16, Fig. 1C-D). This result confirmed our assumption that genes with 

different class labels form clusters that can be inferred from Euclidean distance.    

Random forest classifier adapted via transfer learning predicted known and novel driver genes.  

The mmBRCA data set contained a total of 18,454 somatic mutations (point mutations and short 

indels) in 1,004 genes. Using these data as the target domain, we adapted the RF model and 
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built the RF-mouse model. The new model predicted 23 OGs and 1 TSGs with high confidence 

(probability > 0.95, Table 1). The Cdk12 gene, a known OG and a potential drug target for 

breast cancer is a representative example (23). As expected, missense mutations in this gene 

were clustered in a hotspot and under strong positive selection (log(ω)=5.0, Fig. 2A). In the 

Foxn2 gene, a known TSG (24), nonsense and frameshifting mutations that truncated the 

protein and removed the DNA-binding domain were under strong positive selection (log(φ)=3.7, 

Fig. 2B). Therefore, these two genes were putative drivers that confer a selective advantage to  

cancer cells and promote oncogenesis. Meanwhile, an overwhelming majority of the mutations  

were predicted as passengers where protein-changing mutations were under similar neutral  

selection as synonymous mutations, such as the Gm8909 gene (log(ω)=0.19, log(φ)=0.60, Fig.  

2C). These findings highlight the ability of the RF-mouse model to predict drivers in mouse 

tumors and provide insights into the functional impact and selection pressures acting on somatic 

mutations in specific genes. 

 

Figure 2. Mutation profiles of representative genes. (A) The Cdk12 gene was predicted as an OG, 

showing a hotspot of missense mutations (blue bars). (B) The Foxn12 gene was predicted as a TSG, 

showing a cluster of protein-truncating mutations (red bars) removing peptide after position 115. (C) 

The Gm8909 gene was predicted as a PG, with missense (blue bars) and synonymous mutations 

(green bars) scattered throughout the protein. Mutation density was displayed as gray lines. 

Cdk12 (OG)       Foxn2 (TSG)               Gm8909 (PG) 

A       B          C 
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Table 1. OGs and TSGs predicted with high confidence (probability >0.95) 

Symbol log(ω) log(φ) r.mean* r.hotspot** Prediction Probability 

1700029F12Rik 5 -5 0.59 0.59 OG 0.98 
Adam9 5 -5 0.59 0.59 OG 0.98 

Cdk12 5 -4.61 0.59 0.59 OG 0.95 

Ear10 5 -5 2.88 2.88 OG 0.97 

Ear2 5 -5 1.80 1.80 OG 0.97 

Eef1g 5 -4.99 0.08 0.10 OG 0.97 

Fam205c 5 -5 0.59 0.59 OG 0.98 

Gm3164 5 -5 0.59 0.59 OG 0.98 

Klrh1 5 -5 0.59 0.59 OG 0.98 

Mndal 5 -5 0.59 0.59 OG 0.98 

Ppp1r2 5 -5 0.59 0.59 OG 0.98 

Rab5a 5 -5 0.09 0.09 OG 0.99 

Raet1e 5 -4.6 0.59 0.59 OG 0.95 

Serpinb3d 5 -5 0.45 0.45 OG 0.98 

Skint7 5 -5 0.59 0.59 OG 0.98 

Speer4b 5 -5 0.59 0.59 OG 0.98 

Spink7 5 -5 0.00 0.00 OG 0.99 

Tprg 5 -5 0.53 0.53 OG 0.98 

Trav15-2-dv6-2 5 -5 0.59 0.59 OG 0.98 

Trim43c 5 -5 0.59 0.59 OG 0.98 

Vmn2r66 5 -5 0.59 0.59 OG 0.98 

Zfp69 5 -4.99 0.59 0.59 OG 0.95 

Zfp990 5 -4.99 0.59 0.59 OG 0.98 

Foxn2 1.13 3.68 0.03 0.00 TSG 0.97 

* mean evolutionary rate of positions harboring somatic mutations. 
** evolutionary rate of the mutation hotspot position. 

 

Discussion 

Tumorigenesis is an evolutionary process, in which selectively advantageous mutations 

accumulate in cancer cells, leading to uncontrolled cell growth and tumor formation (25, 26). 

The newly developed computational tool, GUST-mouse, is the first of its kind to enable the 

study of mouse tumors within an evolutionary framework. It provides two levels of analysis – 

estimation of evolutionary parameters and classification of driver genes. 

From the long-term evolutionary perspective, cancer driver mutations are under strong 

purifying selection across species and tend to affect highly conserved sites in the genome (27). 

GUST-mouse, through its ability to compute substitution rates at positions affected by different 

types of somatic mutations, provides valuable information about the evolutionary conservation 

of mutated sites. Similarly, from the short-term evolutionary perspective, mutations that result in 
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gain-of-function or loss-of-function effects are under strong positive selection, as measured by 

the selection coefficients (ω and φ). These quantitative measures can assist researchers in 

biomarker selection and understanding the molecular mechanisms underlying cancer 

development. Other computational methods can also incorporate these values as prior 

knowledge into algorithm design.  

Due to the scarcity of curated cancer drivers in mice, GUST-mouse relies on transfer 

learning to adapt the classifier trained on labeled human data to fit in the mouse domain. An 

important consideration in transfer learning is the similarity between the source domain and the 

target domain. Theoretically, tumorigenesis in human and in mice share common hallmarks 

(15). Our empirical analysis confirmed that the human and mouse exome data indeed shared 

similar distributions (Fig. 1). Using this adapted classifier, we identified known cancer drivers 

and passengers with patterns consistent with expectations (Fig. 2).  

However, models constructed from unlabeled data may have intrinsic weaknesses. 

While the current literatures report structure reduction and threshold shifting are effective 

techniques to transfer a random forest model, we were unable to evaluate the performance of 

the GUST-mouse classifier. To provide transparency to users, GUST-mouse displays a warning 

message of "accuracy unknown" in the header of the prediction result file. This serves as an 

alert to users to interpret the results with caution, considering the potential uncertainties. Further 

research and validation using labeled data in the target domain may be necessary to assess 

and improve the performance of the GUST-mouse classifier. 

 We implemented the GUST-mouse as a R package that is freely available on github 

(https://github.com/liliulab/gust.mouse). Detailed documentation is provided in the standard R 

manual format. 

Conclusions 
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The GUST-mouse method provides a mouse-specific model to study long-term and short-term 

evolution of cancer mutations, and to identify driver genes. It is a valuable computational tool 

that can contribute to our understanding of tumorigenesis and facilitate comparative studies 

between human and mouse tumors. 
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