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Summary 
Memories are stored as ensembles of engram neurons and their successful recall 
involves the reactivation of these cellular networks. While progress has been made in 
understanding the biology of engrams, significant gaps remain in connecting these cell 
ensembles with the process of forgetting. Here, we examine whether forgetting is 
governed by changes in engram plasticity and suggest that it helps animals prioritize 
relevant memory representations for adaptive behavior. We utilized a mouse model of 
object memory and investigated the conditions in which a memory could be preserved, 
retrieved, or forgotten. The results indicate that engram activity correlated with the rate 
of forgetting. Direct modulation of engram activity via optogenetic stimulation or 
inhibition either facilitated or prevented the recall of an object memory. In addition, the 
modulation of engram activity was able to prevent forgetting itself. Moreover, through 
pharmacological and behavioral interventions, we successfully prevented or 
accelerated forgetting of an object memory. Finally, we show that these results can be 
explained by a computational model in which engrams that are subjectively less 
relevant for adaptive behavior are more likely to be forgotten. Together, these findings 
suggest that forgetting is an adaptive form of engram plasticity that involves circuit 
remodeling, which allows engrams to switch from an accessible state to an 
inaccessible state. 
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Introduction 

How does the environment prime the brain for optimum learning? For learning to be 

efficient, information must be encoded in a discrete, non-overlapping fashion. Without 

such a process, memory recall would suffer high interference from similar experiences 

(1). Furthermore, for an organism to adapt to its environment there must be processes 

by which learned information is updated or replaced with new more relevant 

information (2). For example, learning that a specific food source is no longer present 

in a previous location, or that a given action stops yielding the same outcome (2–4). 

Without a process to update or forget irrelevant information, adaptability would be 

impaired, with frequent instances of correct but outdated memory recall, and the 

subsequent biased behavioral response (4–7). 

 

Memories are stored as ensembles of engram cells that undergo specific forms of 

plasticity during learning, and their successful recall involves the reactivation of these 

cellular networks (8–12). However, despite advancements in understanding the 

biology of engram cells, work is still needed to fully elucidate how these cell ensembles 

contribute to the process of forgetting (12–14). We argue that a new conceptualization 

is necessitated by recent behavioral and physiological findings that emphasize 

retrieval deficits as a key characteristic of memory impairment, supporting the idea 

that memory accessibility may be driven by learning feedback from the environment 

(7, 13–18). Little is understood about the role experience plays in altering forgetting 

rates. Recently it has been suggested that different forms of forgetting may exist along 

a gradient of engram expression (13). Indeed, numerous studies have suggested that 

memory recall (15, 17, 19–22), and most recently forgetting, require engram activity 

(18, 23). Long-term memories of salient experiences can last a lifetime and must 
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involve significant and specific changes to brain structure, while the successful recall 

of learned information requires the reactivation of these cell ensembles (10). In 

contrast, forgetting occurs when engrams are not or cannot be reactivated (13, 24). In 

severe amnesic states, this may be due to the destruction of the engram itself (13, 25–

28). However, in other pathological and non-pathological states, forgetting may be due 

to reduced accessibility of engrams that otherwise endure (28).  

 

Altered engram accessibility may be caused by structural plasticity in the engram or 

indeed by competing engrams of similar or recent experiences (13, 29–33). We 

hypothesize that natural forgetting represents a reversible suppression of engram 

ensembles due to experience and perceptual feedback, prompting cellular plasticity 

processes that modulate memory access adaptively. In pathological cases of memory 

loss these forgetting triggers are aberrantly initiated causing maladaptive forgetting 

(13). To investigate this idea, we developed a forgetting paradigm based on an object 

recognition task and interrogated the conditions in which a memory could be 

preserved, retrieved, or forgotten to elucidate the mechanisms that govern engram 

accessibly or “memory expression”. Based on our experimental results, we developed 

a computational model that dynamically updates engram accessibility in response to 

perceptual feedback, where engrams that are subjectively less relevant for adaptive 

behavior are more likely to be forgotten. 
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Results 

Natural forgetting of an object memory 

We developed a behavioral task in which mice displayed natural forgetting across 

time. We based this task on an object recognition paradigm which utilizes the natural 

tendency of mice to explore novel stimuli to assess recognition memory (Figure 1a) 

(34, 35). During the acquisition phase all mice spent equivalent times exploring the 

two sample objects (Supplementary Figure S1a). During object memory recall, mice 

tested 24 hours (h) after training spent significantly more time exploring the novel 

object compared to mice tested 2 weeks (wk) after training (Figure 1b). This was 

further demonstrated by a significant difference between the discrimination index of 

the 24 h and 2 wk group (Figure 1c). Together, these data indicate that mice 

successfully recall an object memory 24 hours after acquisition, while at 2 weeks there 

was no preference for the novel object suggesting the original familiar object had been 

forgotten. 

 

Engram reactivation and object memory 

In order to assess engram reactivation on object memory retrievability an AAV9-TRE-

ChR2-EYFP virus was injected into the dentate gyrus of c-fos-tTA mice (36, 37). The 

immediate early gene c-fos becomes upregulated following neural activity and as such 

the c-fos-tTA transgene selectively expresses tTA in active cells (37, 38). The activity-

dependent tTA induces expression of ChR2-EYFP following a learning event (Figure 

1d, e). To restrict activity-dependent labelling to a single learning experience, mice 

were maintained on diet containing doxycycline (DOX) which prevents binding of tTA 
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to the TRE elements of the TetO promoter, thus controlling the activity-dependent 

labelling to a specific time window of the object acquisition training (Figure 1d-f). Prior 

to training (36 h) doxycycline was removed from the animal’s diet, thereby allowing for 

activity-dependent labelling during the subsequent acquisition training (Figure 1f). 

During the acquisition phase all c-fos-tTA mice spent equivalent times exploring the 

two sample objects (Supplementary Fig S1b). Again, during the object recall test, c-

fos-tTA mice tested 24 hours after acquisition training spent significantly more time 

exploring the novel object compared to mice tested 2 weeks later (Figure 1g). This 

memory impairment was further demonstrated by a significant difference between the 

discrimination index of the 24 h tested and 2 wk tested mice (Figure 1h). When 

comparing the engram ensemble between the two cohorts, we observed no significant 

difference in the number of engram cells between the 24 h and 2 wk tested groups 

(EYFP+) (Figure 1j, k). Similarly, there was no significant difference in c-Fos activity 

within the dentate gyrus between the 24 h tested or 2 wk tested mice (Figure 1l). 

However, when comparing engram reactivation, that is the number of engram cells 

(EYFP+) that also express c-Fos during the recall test, which indicates these cells were 

active during encoding and then became active again during the memory recall (Figure 

1j), there was a significant decrease in engram reactivation in mice that were tested 2 

weeks after training and that had forgotten the object memory (Figure 1m). 

Furthermore, the level of engram reactivation correlated with the performance in object 

discrimination (Figure 1i). Together these data suggest that natural forgetting may be 

driven by a reduction in engram ensemble activity. 
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Engram spine density decreased following natural forgetting 

In order to gain further insight into the changes that occur within the memory engram 

following natural forgetting we performed morphological analysis of engram dendritic 

spines following successful memory recall at 24 hours or forgetting at 2 weeks. 

Following natural forgetting mice displayed a significant reduction in spine density 

(Figure 1n). Moreover, there was also a significant decrease in spine volume (Figure 

1o, p). Together, these findings suggest that in addition to the reduced engram activity, 

forgetting may also induce a level of architectural change within the ensemble itself. 
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Figure 1: (a) Object recognition paradigm (b) Object memory test for recall at 24 h or 
2 wk (c) Discrimination index (d) Schematic of c-Fos-tTA engram labelling system (e) 
Representative image of engram labeling within the dentate gyrus (f) Engram labeling 
of object memory and c-Fos detection following recall (g) Object memory test for recall 
at 24 h or 2 wk (h) Discrimination index (i) Correlation between Discrimination Index 
and Engram reactivation (j) Representative image EYFP+ cells, c-Fos+ cells and 
Merged EYFP+ and c-Fos+ for both 24 h and 2 wk test (k) Engram cells (l) c-Fos+ cells 
(m) Engram reactivation (n) Engram spine density average per mouse, (o) Engram 
spine volume average per dendrite (p) Representative image of engram dendrite for 
morphological analysis. Bar graphs indicates average values in n = 4-11 per group 
(**p<0.01, ***p<0.001). Data graphed as means ± SEM. Scale bar 100um. 
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Dentate gyrus engrams are necessary and sufficient for recall of an object memory 

To test the hypothesis that the retrieval of an object memory requires the activity of 

engram cells within the dentate gyrus, we labelled engrams with the virus AAV9-TRE-

ArchT-GFP and inhibited engram activity during memory retrieval 24 hours following 

acquisition training (Figure 2a). During the acquisition phase all mice spent equivalent 

times exploring the two sample objects (Supplementary Figure S2a). During the object 

recall test the No Light control mice spent significantly more time with the novel object, 

indicating successful memory retrieval (Figure 2b). Whereas mice in which the engram 

was inhibited spent equal time exploring both objects, indicating mice failed to 

distinguish the novel from the familiar object (Figure 2b). This was further 

demonstrated by a significant difference between the discrimination index of the No 

Light control and Light-induced inhibition groups (Figure 2c). Together, these data 

demonstrate that the engram cells within the dentate gyrus are required for successful 

retrieval of an object memory. 

Since the data suggested that forgetting correlated with a reduction in engram activity 

(Figure 1) and that inhibition of the ensemble was sufficient to block successful recall 

of an object memory (Figure 2b, c), we next asked if the retrieval of an object memory 

could be induced via activation of the engram after natural forgetting. We labelled 

engrams cells within the dentate gyrus with the virus AAV9-TRE-ChR2-EYFP and 

optogenetically activated the ensemble after natural forgetting. Specifically, 

optogenetic stimulation was induced just prior to memory recall (3min), but not during 

the recall test itself (Figure 2d). During the acquisition phase all mice spent equivalent 

times exploring the two sample objects (Supplementary Figure S2b). During the object 

recall test the No Light control mice displayed equal exploration of both the novel and 

familiar objects suggesting mice had forgotten the familiar object (Figure 2e). Whereas 
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mice that underwent optogenetic activation spent more time exploring the novel object, 

suggesting the original object memory had been retrieved (Figure 2e). This was further 

demonstrated by a significant difference between the discrimination index of the No 

Light control and Light-induced activation group (Figure 2f). These data suggest that 

artificial activation of the original engram was sufficient to induce recall of the forgotten 

object memory. Together, the results of Figure 2 suggest that engram activity can 

modulate memory retrieval, where activation of the engram ensemble is both 

necessary for successful memory retrieval as well as sufficient to induced recall 

despite natural forgetting. 

 

Figure 2: (a) Engram labelling for optogenetic inhibition and behavioral timeline (b) 
Object memory test (c) Discrimination index (d) Engram labelling for optogenetic 
activation and behavioral timeline (e) Object memory test (f) Discrimination index Bar 
graphs indicate average values in n = 9-12 per group (*p<0.05). Data graphed as 
means ± SEM. Scale bar 100um. 
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Environmental enrichment reduces the rate of forgetting by increasing engram 

activation and hippocampal neurogenesis 

Environmental enrichment has been shown to enhance cognitive function and improve 

memory retention (39–43). We, therefore sought to investigate how enrichment might 

alter the rate of forgetting through changes in the engram. First, we characterized the 

forgetting curve of mice housed under either standard or enriched conditions (Figure 

3a). During the acquisition phase all mice spent equivalent times exploring the two 

sample objects (Supplementary Figure S3a, c, e, g). During object recall test both 

standard housed (Std) and Environmental Enrichment housed (EE) mice spent 

significantly more time with the novel object when tested 24 hours or 1 week after 

acquisition training, indicating intact memory recall (Figure 3b, S3b &d). Crucially 

though, when tested 2 or even 3 weeks after training the enriched housed mice were 

still able to recall the familiar object, whereas the standard mice displayed chance level 

performance (Figure 3b, S3e &h).  

In order to assess the impact of environmental enrichment on engram activity we again 

injected an AAV9-TRE-ChR2-EYFP virus into c-fos-tTA mice with to label engram cells 

within the dentate gyrus. Following surgery, mice were housed in either standard or 

enriched housing for 3 weeks before behavioral testing and remained in the housing 

condition for the duration of the experiment. During the acquisition phase all mice 

spent equivalent times exploring the two sample objects (Supplementary Figure S3i). 

Again, we observed that mice housed in enrichment maintained the object memory 2 

weeks after training (Figure 3c). This was further demonstrated by a significant 

difference between the discrimination index of standard housed (Std) and enriched 

(EE) mice (Figure 3d). When comparing the engram size between standard and 

enriched mice, we observed no significant difference in the number of engram cells 
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following enrichment (Figure 3e &f). Similarly, there was also no significant difference 

in c-Fos activity (Figure 3g). However, there was a significant increase in engram 

reactivation in mice that underwent enrichment (Figure 3h). These data suggest that 

environmental enrichment reduces the rate of forgetting, by increasing or maintaining 

engram reactivation. Furthermore, environmental enrichment increased hippocampal 

neurogenesis, with both the number of immature neurons (doublecortin+ cells) (Figure 

3i &j) as well as neuronal survival (BrdU-NeuN positive cells) (Figure 3k &l). Together 

the data in Figure 3 suggest environmental enrichment increases the accessibility of 

the original engram, through maintaining the engram reactivation to retrieval cues. 

Moreover, this enhanced memory expression may be achieved through the up 

regulation of hippocampal neurogenesis.  
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Figure 3: (a) Enrichment behavioral paradigm (b) Natural forgetting curve of an object 
memory at 24 h, 1 wk, 2 wk and 3 wk (c) Object memory test (d) Discrimination index 
(e) Engram labelling within the dentate gyrus (f) Engram cells (g) c-Fos+ cells (h) 
Engram reactivation (l) Doublecortin+ cells (j) Representative image of Doublecortin+ 
cells (k) Neural cell survival (l) Representative image of BrdU/NeuN+ cells. Bar graphs 
indicate average values in n = 4-12 per group (*p<0.05, **p<0.01, ***p<0.001). Data 
graphed as means ± SEM. Scale Bar 100um. 

 

Exposure to the original stimuli facilities memory recall   

We next sought to investigate conditions in which learning may alter engram activity 

and subsequently switch a forgotten memory from an inaccessible state to an 
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accessible state. Previous work from both human experimental psychology studies 

and rodent behavioral paradigms have shown that a brief exposure to reminder cues 

can aid memory recall (44–46). Here we modified our object-based paradigm to 

include a brief exposure to the original encoding environment and objects (Figure 4a). 

We first demonstrated that a brief reminder exposure of 5 mins was insufficient to 

induce new learning or form a lasting memory (Supplementary Figure S4a). Mice given 

only a brief acquisition period of 5 mins, exhibited no preference for the novel object 

when tested 1 hour after training, suggesting the absence of a lasting object memory 

(Supplementary Figure S4b & c). Next, an AAV9-TRE-ChR2-EYFP virus was injected 

into c-fos-tTA mice to label engram cells in the dentate gyrus. During the acquisition 

phase all mice spent equivalent times exploring the two sample objects 

(Supplementary Figure 4d). During the object recall test, mice within the control group 

spent a similar amount of time exploring both the novel and familiar object, again 

suggesting the original object memory was forgotten (Figure 4b). However, mice given 

a brief reminder session 1 hour prior to the recall test spent significantly more time 

exploring the novel object (Figure 4b). This was further demonstrated by a significant 

difference between the discrimination index of the Control and Reminder group (Figure 

4c). Furthermore, the mice that underwent the reminder session and displayed intact 

memory recall also exhibited an increase in original engram reactivation (Figure g), 

while there was no difference in the engram size (Figure 4e) or the level of neuronal 

activity within the dentate gyrus (Figure 4f). Together, these data indicate that a brief 

reminder of the original stimuli facilitates the transition of a forgotten memory to an 

accessible memory via modulating engram activity. 
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Figure 4: (a) Behavioral timeline for a brief reminder exposure (b) Object memory test 
(c) Discrimination index (d) Engram labelling within the dentate gyrus (e) Engram cells 
(f) c-Fos+ cells (g) Engram reactivation. Bar graphs indicates average values in n = 5-
11 per group (*p<0.05, **p<0.01, ***p<0.001). Data graphed as means ± SEM. Scale 
Bars 100um. 

 

Repeated exposure to the training environment facilitates forgetting 

Given that memory recall could be facilitated by optogenetic activation (Figure 2), 

maintained by enrichment (Figure 3), or even retrieved after forgetting by a brief 

exposure to natural cues “reminder” (Figure 4), we wanted to test the hypothesis that 

forgetting was driven by an adaptive process which updates memory engrams 

according to environmental feedback. We therefore developed an altered version of 

our object memory task where mice were repeatedly reintroduced to the training 

context in the absence of objects (Figure 5a). We hypothesized that the repeated 
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exposure to the training context without objects would update the original memory 

engram signaling that the objects were no longer relevant to the environment. During 

the acquisition phase all mice spent equivalent times exploring the two sample objects 

(Supplementary Figure S5a). During the recall test 1 week after training control mice 

spent significantly more time exploring the novel object, indicating a retrievable object 

memory (Figure 5b). Whereas mice that had been repeatedly exposed to the training 

environment devoid of objects spent a similar amount of time exploring both objects, 

suggesting an updated and now inaccessible engram. This was further demonstrated 

by a significant difference in the discrimination index between the control and empty 

box exposed mice (Figure 5c).  

In order to confirm that the experience during the repeated exposure was indeed 

updating the original engram we ran a second cohort of c-fos-tTA mice which had been 

implanted with an optogenetic fiber and expressed the inhibitory opsin ArchT (Figure 

5d). Following acquisition training the engram was optogenetically silenced during the 

repeated context-only exposures (Figure 5d). Again, during the recall test, the No Light 

control group spent a similar amount of time exploring both objects (Figure 5e), while 

the Light-induced inhibition mice, in which the engram was silenced, spent significantly 

more time exploring the novel object (Figure 5e). This effect was further demonstrated 

by a significant difference in discrimination index (Figure 5f). Combined these data 

suggest that experience following the encoding of an object memory can update the 

original memory engram accelerating the rate at which the information is forgotten. 

Furthermore, this is an adaptive process which requires the activity of the engram 

ensemble. 
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Figure 5: (a) Behavioral paradigm (b) Object memory test (c) Discrimination index (d) 
Behavioral paradigm for optogenetic inhibition during repeated context exposure (e) 
Object memory test (f) Discrimination index. Bar graphs indicates average values in n 
= 8-12 per group (*p<0.05, **p<0.01). Data graphed as means ± SEM. 

 

Rac1 mediates forgetting of an object memory  

Rac1 has previously been shown to mediate forgetting of both contextual as well as 

social memory (47–50). We therefore investigated the role of Rac1 signaling in 

mediating natural forgetting of an object memory. We first injected a Rac1 inhibitor into 

wild-type mice with following object memory encoding and tested recall after 2 weeks, 

once the object memory was forgotten (Figure 6a). Mice that were administered saline 

displayed typical forgetting at 2 weeks, as indicated by similar object exploration 

(Figure 6b), while mice treated with a Rac1 inhibitor displayed intact memory recall, 

spending significantly more time with the novel object (Figure 6b). This was further 
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demonstrated by a significant difference in discrimination index (Figure 6c). Together 

these data demonstrate that the inhibition of Rac1 following memory encoding is 

sufficient to enhance the retrievability of an object memory. Given Rac1-mediated 

retrieval, it stands to reason that by activating Rac1 forgetting maybe accelerated. We 

next injected a a Rac1 activator into a second cohort of wild-type mice following 

training (Figure 6d). This time, the saline control showed intact memory retrievability, 

with mice spending more time with the novel object (Figure 6e). Whereas the mice 

administered with the Rac1 activator displayed a memory impairment, spending a 

similar amount of time with both objects. This was further demonstrated by a significant 

difference in discrimination index (Figure 6f). Combined these data demonstrate the 

Rac1 signaling is involved in memory retrievability and may therefore be a signaling 

mechanism involved in adaptive forgetting. 
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Figure 6: (a) Experimental timeline and drug administration for Rac1 inhibition (b) 
Object memory test (c) Discrimination index (d) Experimental timeline and drug 
administration for Rac1 activation (e) Object memory test (f) Discrimination index. Bar 
graphs indicates average values in n = 10-12 per group (*p<0.05, **p<0.01, 
***p<0.001). Data graphed as means ± SEM. 

 

Learning Model Explains Forgetting Dynamics 

Utilizing a mouse model of object memory, we have investigated the conditions in 

which a memory could be preserved, retrieved, or forgotten. The data indicate that 

forgetting is a dynamic process that can be explained as a gradient of engram activity, 

where the level of memory expression is experience dependent and influenced by the 

animal’s rate at which it learns from new experiences (Figure 7a-c). Based on these 

findings, we sought to develop a computational model that formalizes the idea that 

forgetting is a form of learning and to integrate the empirical findings into a coherent, 

mechanistic, and quantitative framework. This model updates engram accessibility in 
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response to perceptual feedback, so that engrams that are subjectively less relevant 

for adaptive behavior are more likely to be forgotten. Our modeling analyses suggest 

that the “learning rate”, which is a key parameter of adaptive learning models, could 

also govern the speed of forgetting. Accordingly, faster forgetting is driven by higher 

rates at which mice learn from perceptual feedback. 

 

We interpret forgetting as an adaptive learning process that helps the animal to 

prioritize relevant information in memory (Figure 7). In particular, we applied an error-

driven learning model (51, 52), where the learning rate and expectation of one’s 

environment can alter the efficiency of recall/forgetting plasticity (13). Based on the 

current memory representations stored in engrams, the animal predicts what it will 

encounter in its environment (e.g., what objects) and adjusts these predictions as a 

function of its experiences (e.g., the presence or absence of objects). Within this 

conceptual framework, the animal learns what features of the environment are 

currently relevant and thus important for remembering. 

 

Supporting the idea that forgetting can be cast as an adaptive learning process, model 

simulations showed similar forgetting curves as mice in our experiment. We first 

applied the model to exploration behavior of mice in the standard housing condition 

that included data across four test time points (Figure 3). To obtain an empirical 

estimate of the subjects’ learning rate governing the speed of forgetting, we fitted the 

model to the data using a maximum-likelihood approach (see Methods).  Here, the 

learning rate indicating the weight given to negative prediction errors was 𝛼𝛼− = 0.07, 

explaining the increase in forgetting across time (see Supplementary Table 1 for the 

other parameter estimates). Simulated forgetting curves that were based on the 
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estimated parameters showed a close similarity to mice in the standard housing 

condition (Figure 7d; see Supplementary Figure S7 and S8 for a direct comparison of 

model predictions and empirical data).  

 

Figure 7: Forgetting as adaptive learning. Our model assumes that animals create 
and update memory engrams to flexibly adjust their behavior to their environment. (a) 
Based on learned representations, animals constantly predict what happens in the 
environment (e.g., the occurrence of objects), and if predictions are violated (prediction 
errors), engrams are updated to improve the accuracy of future predictions. Here, 
established engram cells are shown in green; non-engram cells in gray. (b) Positive 
prediction errors signaling the occurrence of an unexpected event (e.g., new object) 
induce a learning process that increases the probability of remembering. This might 
rely on the recruitment of new engram cells (shown in yellow). In contrast, negative 
prediction errors signaling the absence of an expected event (e.g., predicted object 
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did not appear) induce forgetting. This might rely on “forgetting” plasticity reducing 
access to engrams (light green cells). (c) Our model formalizes this perspective based 
on the notion of “engram relevancy”. Higher engram relevancy makes it more likely 
that an engram is behaviorally expressed, e.g., through exploration behavior. The 
presentation of a novel object (upper panel) leads to a high engram relevancy (middle 
panel) in response to a positive prediction error (lower panel). The absence of an 
expected object decreases engram relevancy through negative prediction errors. (d) 
Model simulations corroborate the behavioral effects of our data (Figure 3a). Gray 
lines and bars show the average exploration probability for the familiar and novel 
object according to the model; markers show simulated mice.   

 

The model also offers an explanation for the key results of the different experimental 

interventions. Experiencing objects during environmental enrichment that resemble 

the familiar objects in the memory test might nudge subjects to infer a higher engram 

relevancy that is more robust against prediction errors leading to higher engram 

expression (Figure 8a & 8b, d, f). Supporting the perspective of forgetting as learning, 

the estimated learning rate in response to negative errors driving forgetting 𝛼𝛼− = 0. 

Thereby, negative prediction errors did not induce forgetting so that memory 

performance was constant across 4 weeks (see also Supplementary Figure S7). From 

a computational perspective, a low learning rate may also explain the high memory 

performance of the Rac1-inhibition group. For this group, model fitting revealed a 

similar learning rate to the enrichment group (learning rate for negative prediction 

errors 𝛼𝛼− = 0.01), suggesting that the inhibition of Rac1 made subjects largely ignore 

negative prediction errors that would normally drive forgetting. In contrast to reduced 

learning preventing forgetting due to Rac1 inhibition, Rac1 activation might speed 

forgetting through a higher learning rate. Similarly, we found accelerated forgetting 

following repeated exposure to the context-only training environment. Model 

simulations (Figure 8c) assuming a higher learning rate and, therefore, reduced 

engram expression, reproduced these findings (Figure 5 & 6). 
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A crucial assumption of our model is that seemingly forgotten engrams are not 

necessarily lost but rather inaccessible when the inferred object relevance is low. This 

is consistent with the experimental results above, where we presented evidence for 

the reinstatement of memory representations based on real or artificial reminder cues 

(Figure 2 and 4). Here, we modeled memory reinstatement through reminder cues by 

inducing an artificial, positive prediction error in response to the reminder that boosted 

the inferred object relevance. Similar to the experimental data, the modeled reminder 

cues increased engram expression and yielded reduced forgetting rates (Figure 8e). 

Finally, according to our model comparison, the model fits the data better than a 

baseline model predicting random forgetting rates, suggesting that the model 

describes the data accurately and above chance-level (Supplementary Figure S9). We 

also performed a parameter-recovery analysis suggesting that parameters can 

sufficiently be estimated despite the limited data for model fitting (Supplementary 

Figure S10). Our modeling results support the perspective that natural forgetting is a 

form of adaptive learning that alters engram accessibility in response to environmental 

feedback. Accordingly, environmental, optogenetic, and pharmacological 

manipulations might change the learning rate, suggesting that miscalibrated learning 

rates could indeed give rise to pathological forgetting. In summary, our model provides 

a mechanistic interpretation of our own data, a parsimonious explanation for the 

dynamics of natural forgetting, and could inform future studies on pathological 

forgetting.   
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Figure 8 

 

Figure 8: Learning model captures the dynamics of forgetting. Environmental, 
optogenetic, and pharmacological manipulations might modulate the speed of 
forgetting by altering key parameters of our model. Simulations with different learning-
rate parameters explain the forgetting dynamics of the different experimental 
conditions. (a) The enrichment and Rac1-inhibition conditions were successfully 
captured using a low learning rate (0.01, similar to the empirical estimates). (c) In 
contrast, assuming a larger learning rate (0.5), we could capture faster forgetting as 
observed in the Rac1-activator and context-only conditions. (e) Moreover, improved 
memory performance after reminder cues can be explained by assuming that these 
interventions induce a positive prediction error boosting object relevancy. Here, we 
assumed a learning rate of 0.07 (based on the empirical estimate). (b) Development 
of engram relevancy and (d) prediction errors across conditions. (f) Probability of 
exploring the novel object plotted separately for each condition. 
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Discussion 

For an organism to adapt to its environment, there must be processes by which 

learned information is updated or replaced with new, more relevant information (1, 2, 

13). Forgetting may therefore be an adaptive process that is driven by feedback from 

the environment (13). This experience-dependent process helps an animal to prioritize 

relevant information in memory. Here, we investigated the conditions in which an 

object memory could be preserved, retrieved, or forgotten. Under baseline conditions 

mice were able to recall an object memory 24 hour post-training but exhibited impaired 

recall after two weeks, indicating the initial memory was forgotten. The results 

demonstrated that engram activity correlated with the rate of forgetting. Moreover, 

these reactivated cells were shown to be a functional component of the initially 

encoded memory as the direct modulation of engram activity via optogenetic 

stimulation or inhibition either facilitated or prevented the recall of an object memory. 

These findings are in support of previous work which has shown that engram activation 

is associated with the level of memory recall (2, 46, 53, 54). In addition, they support 

a role for the hippocampus in object memory retrieval (55, 56). This two-way memory 

retrieval/blocking modulation opens new lines of investigation into the treatment of 

memory disorders (e.g., non-drug and/or combined treatments involving 

learning/experience-based therapies such as environmental enrichment).  Indeed, 

previous literature has shown the benefits of environmental enrichment in alleviating 

memory impairment in Alzheimer’s disease (57–59). One potential mechanism by 

which enrichment or more generally, experience, may enhance memory is through the 

modification of memory engram activity. We showed that the rate of forgetting, and the 

level of engram activation could also be modulated through learned experience, where 

memory recall was extended following environmental enrichment, up to 3 weeks post 
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training. Furthermore, enrichment increased engram reactivation and facilitated 

memory recall.  This finding is supported by earlier work, which showed exposure to 

an enriched environment prior to learning improved engram reactivation and rescued 

memory recall in a mouse model of Fragile X syndrome (60). 

The hippocampus has been identified as one of the only regions where postnatal 

neurogenesis continues throughout life (61). However, the specific contribution of 

these new neurons to the memory engram is not fully understood (62, 63). Levels of 

adult hippocampal neurogenesis do not remain constant throughout life and can be 

altered by experience (41–43, 64). Moreover, these adult born neurons have been 

suggested to contribute to forgetting (65, 66). Here, we showed that environmental 

enrichment increased the level of doublecortin cells, a measure of immature neurons 

as well as neuronal survival which coincided with memory recall up to 2-3 weeks after 

training. Our findings support the role of neurogenesis in modulating memory as the 

key effect occurs when the increase in neurogenesis occurs, either before encoding 

resulting in enhanced memory, or after encoding, resulting in memory decay (63).  

Our results also showed that forgetting could be reversed following a brief reminder 

experience, which was associated with a corresponding increase in engram activity. 

Previous work from both human and rodent behavioral studies have shown that a brief 

exposure to reminder cues can aid memory recall (44–46). We further demonstrated 

that forgetting could be accelerated following repeated exposure to the training 

environment, therefore signaling the updated irrelevance of the object memory. This 

updating through experience was blocked when the original memory was inhibited. 

Our findings indicate that the degree of learning and memory specificity corresponded 

with engram activity (67). The learning rate may therefore offer insight into the 

mechanism of forgetting. Here the learning rate was altered following environmental 
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enrichment as well following repeated context exposure, which in turn affected the rate 

of forgetting. Together, this suggests the possibility of an “optimal” learning rate that 

yields environmentally adaptive, natural forgetting and that learning rates that are too 

high are linked to amnesia and learning rates that are too low to some sort of 

hypermnesia.  

We proposed a parsimonious computational model that integrates our findings into a 

cognitively plausible framework in which memories more relevant for adaptive 

behavior are more likely to be accessible than memories representing irrelevant, 

outdated information. Our model formalizes forgetting as a learning mechanism in 

which perceptual feedback changes how accessible an engram is. As such, our 

modeling analyses suggest that the different experimental manipulations altered the 

learning rate determining how rapidly engrams switch from accessible to inaccessible 

states in response to environmental feedback, such as the presence or absence of 

objects. This model suggests that an emergent property underlying forgetting is the 

prediction error. Within this framework, forgetting is a form of learning that is a 

predictive process whereby experience drives changes in the learning rate of an 

organism and the expectation of one’s environment can alter the efficiency of 

recall/forgetting plasticity (13). It therefore follows that prediction errors may determine 

whether an engram is strengthened, leading to higher engram expression, or 

weakened, leading to lower engram expression (Figure 7b). Positive prediction errors 

indicate that an unexpected event has taken place (e.g., some unexpected object is 

present). We assume that positive errors induce plasticity processes that alter the 

engram and increase the likelihood of engram expression. In contrast, negative errors 

indicate that something that was expected has not taken place (e.g., object absent). 

Consequently, negative errors induce forgetting plasticity and yield decreased engram 
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expression. Indeed, dopamine has is known to play a role in prediction error and 

learning rates (68, 69). Moreover, dopamine has been shown to differently regulate 

Rac1 to modulate behavioral plasticity (29, 70). Here, we showed that the inhibition of 

Rac1 prevented forgetting, while its activation following memory encoding accelerated 

the rate of forgetting. This finding is in agreement with previous work where Rac1 

impaired memory recall by driving forgetting-induced plasticity (29, 47–49, 71). Future 

work should investigate the link between learning rates and Rac1 signaling on engram 

reactivation and morphology.   

Our model could be a starting point for more comprehensive models that account for 

forgetting across different experimental paradigms. Recent work suggests that 

retroactive interference could emerge from the interplay of multiple engrams 

competing for accessibility (18). Future models could explicitly incorporate multiple 

engrams and their competition, explaining a broader range of forgetting effects. 

Several approaches to modeling extinction (72, 73), memory interference (74), or the 

creation and updating of motor memories (75) that more explicitly assumed multiple 

memory representations could inform such a generalized model of natural forgetting.  

Learning and memory allow humans and animals to maintain and update predictions 

about future outcomes. While having access to a large number of memories is 

adaptive in vast environments, it is equally important to prioritize the accessibility of 

the most relevant memories and to forget outdated information. Suppressing stored 

information through natural forgetting might therefore promote adaptive behavior. 

However, forgetting too much (e.g., amnesia) or too little (hypermnesia) under 

pathological conditions is maladaptive. Here, we utilized a mouse model of object 

memory and investigated the conditions in which a memory could be preserved, 

retrieved, or forgotten. Moreover, through pharmacological and behavioral 
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interventions, we successfully prevented or accelerated forgetting. Based on these 

findings and our computational model in which memories subjectively less relevant to 

adaptive behavior are more likely to be forgotten we conclude that natural forgetting 

may, therefore be considered a form of adaptive learning and that miscalibrated 

learning rates governing memory accessibility could give rise to pathological 

forgetting. 
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Methods 

 

Animals 

All wild-type behavior was conducted with male C57BL/6J mice aged 7-12 weeks, bred 

in-house from Charles River breeding pairs. c-fos-tTA mice were generated in-house 

by breeding TetTag mice with C57BL/6J mice and selecting offspring carrying the c-

fos-tTA (38). All mice used for the experiments were male between 8–12 weeks old at 

the time of surgery and had been raised on food containing 40 mg kg-1 doxycycline 

for at least five days prior to surgery. c-fos-tTA mice remained on doxycycline food for 

the duration of the experiments. Doxycycline was removed from the diet for 36 hours 

prior to object acquisition to allow for engram labelling, following completion of the 

object acquisition period c-fos-tTA mice were placed back on the doxycycline diet. 

All mice were grouped housed in standard housing conditions, with temperature 22 ± 

1°C, relative humidity 50% and a 12:12 hour light-dark cycle (lights on 0730h) and had 

ad libitum access to food and water.  All experiments were conducted in accordance 

with the European Directive 2010/63/EU and under an authorization issued by the 

Health Products Regulatory Authority Ireland and approved by the Animal Ethics 

Committee of Trinity College Dublin 

Virus-mediated gene expression 

The recombinant AAV vectors used for viral production were AAV-TRE-ChR2-EYFP 

and AAV-TRE-ArchT-GFP. Plasmids were serotyped with AAV9 coat proteins and 

packaged commercially by Vigene. The recombinant AAV vectors were injected with 

viral titers were 1 X 1013 genome copy (GC) ml-1 for AAV9-TRE-ChR2-EYFP and 

AAV9-TRE-ArchT-GFP. 
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Stereotaxic viral injection and Optic Fiber implantation 

Mice were anaesthetized with Avertin 500 mg kg-1 and placed into a stereotaxic frame 

(World Precision Instruments).  Bilateral craniotomies were performed using 0.5 mm 

diameter drill and the virus was injected using a 10 ml Hamilton microsyringe filled with 

mineral oil. A microsyringe pump and its controller were used to maintain the speed of 

the injection. The needle was slowly lowered to the target site and remained for 5 min 

before the beginning of the injection. For engram labeling and activation studies 

(AAV9-TRE-ChR2-EYFP) or inhibition studies (AAV9-TRE-ArchT-GFP) (Volume; 

300nl) virus was injected bilaterally into the DG using the coordinates AP: -2 mm, ML: 

± 1.35 mm, DV: -2 mm relative to Bregma at a rate of 60nL/min. Followed by a 10 min 

diffusion period. For optogenetic experiments, a Doric optical fiber (200 μm core 

diameter; Doric Lenses) was implanted above the injection site (–2 mm AP; ± 1.35 mm 

ML; –1.85 mm DV). A layer of adhesive cement (C&B Metabond) was applied followed 

by dental cement to secure the optic fiber implant to the skull. Mice were given 1.5 mg 

kg-1 meloxicam as analgesic. Animals were allowed two weeks to recover before 

behavioral testing. 

 Engram labelling strategy 

The AAV9-TRE-ChR2-EYFP virus was injected into the dentate gyrus of c-fos-tTA 

mice, under the control of a c-fos promoter (37, 38). The immediate early gene c-fos 

becomes upregulated following neural activity and as such the c-fos-tTA transgene 

selectively expresses tTA in active cells (36, 76). The activity-dependent tTA induces 

expression of ChR2-EYFP. In order to restrict activity-dependent labelling to a single 

learning experience, mice were maintained on diet containing doxycycline (DOX). 

Object Recognition 
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The novel object recognition task was as based on the protocol previously described 

by Bevins and Besheer (2006). Mice were first habituated to the testing arena (30cm 

L x 20cm W x 30cm H) for a 10-minute exploration period on two consecutive days. 

On day three, two identical objects were positioned on adjacent sides of the arena and 

each animal was introduced for a 10-minute exploration period. Mice were then placed 

directly back into their home cages. After a 24-hour or two-week inter-trial interval, one 

familiar object was replaced with a novel object, and each animal was introduced for 

a five-minute exploration period. Objects and locations were counterbalanced across 

groups. Object exploration was defined when the animal’s nose came in contact with 

the object. The testing arena and objects were cleaned with a disinfectant, TriGene, 

between each animal and training session. Video recordings were made to allow for 

manual scoring of object exploration. The object discrimination index was calculated 

as the time spent exploring the novel object minus the time spent exploring the familiar 

object divided by the total time spent exploring both objects (novel – familiar / novel + 

familiar).   

 

Environmental Enrichment 

The enriched environment consisted of a larger home cage (50cm L x 20cm W x 40cm 

H). The cage was included a running wheel, tunnels, extra nesting material as well as 

an assortment of Lego bricks. Furthermore, the configuration of tunnels, Lego bricks 

and housing enrichment changed every week. Mice were placed in the enriched 

housing for three weeks prior to behavioral testing and remained in the housing for the 

duration of the experiment.  
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Immunohistochemistry  

On completion of the behavioral testing, mice were deeply anaesthetized with sodium 

pentobarbital and then transcardially perfused with 4% paraformaldehyde. Brains 

were post-fixed for 24 hours in 4% paraformaldehyde, transferred to PBS, and stored 

at 4°C. Coronal sections through the DG were collected onto slides at 50 µm thickness 

in a 1:4 series. Coronal sections were immunostained for EYFP and c-Fos. Non-

specific antibody binding was blocked using 10% normal goat serum (NGS) in a 

solution of PBS with 0.2% Triton–X100 and tissue sections were incubated with goat 

anti-EYFP (Anti-GFP chicken IgY fraction 1:1000, Invitrogen) and anti-c-Fos (Anti-c-

Fos rabbit, 1:500, Synaptic System). Sections were then incubated in the appropriate 

AlexaFluor secondary antibody (AF488 for EYFP and AF596 for c-Fos) and then with 

Dapi (1:1000; Sigma) to stain nuclei.  Lastly, sections were washed, mounted, and 

coverslipped with anti-fade mounting media (Vectashield-DAPI).  Images were 

obtained using a Leica SP8 gated STED confocal microscope at 40x magnification. 

For BrdU/NeuN immunohistochemistry, hippocampal sections were washed, 

denatured in HCl (2 N) for 45 min at 37 °C and renatured in 0.1 M sodium tetraborate. 

Sections were then washed in PBS and blocked in 10% normal goat serum (NGS; 

Sigma) diluted in 0.1% Triton-X 100 PBS to prevent non-specific binding. Sections 

were incubated with rat anti-BrdU antibody (1:100, Abcam) in 1% NGS diluted in 0.1% 

Triton-X 100 PBS, washed, and then incubated in AlexaFluor secondary antibody 

(AF598 for BrdU and AF88 for NeuN) and then with Dapi (1:1000; Sigma) to stain 

nuclei.  Lastly, sections were washed, mounted, and coverslipped with anti-fade 

mounting media (Vectashield-DAPI).  Images were obtained using a Leica SP8 gated 

STED confocal microscope at 40x magnification. 
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Morphological Analysis 

In order to obtain engram dendritic spine density, the dentate gyrus was imaged using 

the Leica SP8 gated STED confocal microscope and images were collected with the 

Leica Application Suite X (LasX) software. Z-stacks were taken bidirectional under a 

40x lens. Dendritic spine analysis was carried out using the Imaris software (Oxford 

Instruments, Imaris v9.5). The dendrites of EYFP-positive cells were traced using a 

semiautomated neurofilament tracer tool and dendritic spines were individually 

highlighted and manually traced with the software. The image processing feature of 

Imaris was used to apply the Gaussian and Median filters to Z-stack images to remove 

background EYFP staining and allow for better resolution and visualisation of dendritic 

fragments and associated spines. Following the labelling of spines on traced dendritic 

fragments, parameters for spine volume, spine head volume and dendritic spine 

density (/10µm) were collected. 

 

Statistical analyses 

All data were analysed using SPSS statistical software (SPSS, Chicago, IL).  

Behavioral data and the number of ChR2-EYFP-positive and c-Fos cells were graphed 

as means ±SEM. Data were analysed by Student’s t-test or ANOVA where 

appropriate. An alpha level of 0.05 was used as a criterion for statistical significance, 

and probability levels were quoted for non-significance. Standard errors of the mean 

(SEM) were used with all graphical output.  
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Computational Modelling 

We used an error-driven learning rule inspired by the Rescorla-Wagner model (51, 

52). The model offers a mechanistic explanation for the key behavioral results of our 

experiments (Figure 7 and 8). In line with the idea of the Rescorla-Wagner model that 

learning is an error-driven updating process, the model computes the relevancy of an 

engram 𝑒𝑒𝑡𝑡 on each day 𝑡𝑡 of the experiment. The engram relevancy is updated as a 

function of the prediction error (𝑜𝑜𝑡𝑡– 𝑒𝑒𝑡𝑡; where 𝑜𝑜𝑡𝑡 denotes the object observation). The 

degree to which the prediction error changes the computed engram relevancy is 

determined by the learning rate 𝛼𝛼𝑡𝑡. To update the engram relevancy, the model relies 

on a two-speeded mechanism through which the relevancy quickly increases when an 

object is present (higher learning rate) and slowly decays when the object is absent 

(lower learning rate). In particular, the appearance of an object yields a positive 

prediction error and triggers the fast-updating process, while the absence of an object 

is associated with negative prediction errors and slow decay in the engram relevancy. 

Depending on the time between the acquisition phase and the retrieval test, the model 

predicts different levels of memory performance, where a longer time interval between 

acquisition and test is associated with less object recognition. 

Task Model 

To model mouse behavior in the object-based memory task, we first formulated a 

model of the experimental paradigm. 

● 𝑇𝑇 ≔ 21 denotes the maximum number of days, which are indexed as 𝑡𝑡 =

0,1, … ,𝑇𝑇. 

● 𝑥𝑥 ∈ {0,1} denotes the objects of the task. 𝑥𝑥 = 0 refers to the novel object; 𝑥𝑥 =

1 refers to the acquisition object that is presented together with the novel object. 
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● 𝑂𝑂 ∈ {0,1} indicates whether an object is presented. When the acquisition (and 

therefore familiar) object 𝑥𝑥 = 1 is presented in the acquisition phase, 𝑜𝑜𝑡𝑡𝑥𝑥=1 = 1. 

Moreover, 𝑜𝑜𝑡𝑡𝑥𝑥=1 = 1 when the retrieval test takes place, which depending on the 

task condition is after one day, one week, two weeks or three weeks. In all other 

cases, 𝑜𝑜𝑡𝑡 = 0. 

Learning Model 

To formalize the learning and memory processes of mice in the object-based memory 

task, we developed a simple reinforcement learning model. Here, 

● 𝑒𝑒𝑡𝑡 ∈ [0,1] denotes relevancy of an engram, which is updated on each trial. 

Higher values indicate higher object relevancy. 

The key assumption of the model is that once engrams are formed, they endure but 

might be inaccessible when they cannot be reactivated following natural forgetting. 

The expressibility of the engram depends on the inferred relevancy of the respective 

object, where objects that are subjectively more likely to be encountered in the current 

environment (higher relevancy), are more easily accessible. The inferred relevancy of 

the (familiar) acquisition object 𝑥𝑥 = 1 governing the accessibility of the engram was 

computed according to the delta rule 

𝑒𝑒𝑡𝑡+1 = 𝑒𝑒𝑡𝑡 + 𝛼𝛼𝑡𝑡(𝑜𝑜𝑡𝑡 − 𝑒𝑒𝑡𝑡),              (eq. 1) 

where 𝑒𝑒𝑡𝑡 denotes the relevancy of the engram, 𝛼𝛼𝑡𝑡 the learning rate, and 𝑜𝑜𝑡𝑡 − 𝑒𝑒𝑡𝑡 =: 𝛿𝛿𝑡𝑡 

the prediction error. For clarity, we omit the dependency on 𝑥𝑥 here. Moreover, we used 

separate learning rates for positive and negative prediction errors 

𝛼𝛼𝑡𝑡 ≔ � 1, 𝛿𝛿𝑡𝑡 ≥ 0
𝛼𝛼−,𝛿𝛿𝑡𝑡 < 0.                        (eq. 2) 
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That is, positive prediction errors indicating the presence of an object lead to a rapid 

increase in the relevancy of the engram. Negative prediction errors indicating the 

absence of an object lead to a slower decrease in the relevancy (when 𝛼𝛼− < 1). 

Exploration model 

To translate the modeled engram relevancy into exploration behavior, we used the 

softmax and beta functions. The softmax function was used to compute the average 

exploration probability for the familiar object 

𝜇𝜇 = exp�𝛽𝛽𝑒𝑒𝑡𝑡
𝑥𝑥=1�

∑ exp�𝛽𝛽𝑒𝑒𝑡𝑡
𝑥𝑥�𝑥𝑥

                        (eq. 3) 

where the inverse-temperature parameter 𝛽𝛽 determines the slope of the function. 𝑒𝑒𝑡𝑡𝑥𝑥=1 

denotes the engram relevancy of the familiar object that is dynamically updated 

according to the delta rule (eq. 1). 𝑒𝑒𝑡𝑡𝑥𝑥=0corresponds to the relevancy of the novel 

object, where, since the object has not been experienced before, we assume an 

engram relevancy of 0. Subsequently, we utilized the beta distribution to model 

exploration variability across individuals. The beta distribution for 𝜇𝜇 ∈ [0,1] is defined 

by 

𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎(𝜇𝜇;𝑎𝑎, 𝑏𝑏) ≔ 1
𝐵𝐵(𝑎𝑎,𝑏𝑏) 𝜇𝜇

𝑎𝑎−1(1 − 𝜇𝜇)𝑏𝑏−1             (eq. 4) 

with the shape parameters 𝑎𝑎  and 𝑏𝑏 . In order to compute the distribution over 

exploration probability conditional on the mean 𝜇𝜇, we exploited that the sum of 𝑎𝑎 and 

𝑏𝑏 indicates the concentration 𝜅𝜅 of the distribution. That is, when 𝜅𝜅 = 𝑎𝑎+ 𝑏𝑏  gets larger, 

the beta distribution is more concentrated, and the predicted exploration variability is 

lower. When 𝜅𝜅 is lower, the distribution is wider and the model predicts greater 

exploration variability (for more details, see (77)). 
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Therefore, to compute the exploration probabilities for object 𝑥𝑥 = 1 using the beta 

distribution conditional on the computed average exploration probability 𝜇𝜇 and 

concentration 𝜅𝜅, we computed the shape parameters 𝑎𝑎  and 𝑏𝑏  in the following way: 

𝑎𝑎 = 𝜇𝜇𝜇𝜇 and 𝑏𝑏 = (1 − 𝜇𝜇)𝜅𝜅.              (eq. 5) 

Parameter estimation 

We implemented the following free parameters. The learning rate conditional on 

negative prediction errors 𝛼𝛼− (see eq. 2), the inverse-temperature parameter 𝛽𝛽 of the 

softmax distribution (see eq. 3), and the 𝜅𝜅 parameter of the beta distribution (see eq. 

4 and 5). To estimate these parameters, we computed the probability of the observed 

exploration probabilities 𝜇̂𝜇 for the familiar object 𝑥𝑥 = 1 conditional on 𝑎𝑎  and 𝑏𝑏  on the 

test day using the beta distribution (eq. 4). Based upon this, we computed the model 

fit across subjects of the experimental and control group by summing the log-

likelihoods 

ℓ = ∑ log 𝑝𝑝 (𝜇̂𝜇𝑠𝑠|𝑎𝑎𝑠𝑠, 𝑏𝑏𝑠𝑠)𝑠𝑠                 (eq. 6) 

where 𝑠𝑠 denotes the subject. The free parameters were estimated using the bound-

constrained optimization algorithm L-BFGS-B of the SciPy library in Python 3.10. The 

parameter boundaries were [0, 0.25] for 𝛼𝛼−, [-10, 0] for 𝛽𝛽, and [1, 100] for 𝜅𝜅. 

Model comparison 

We systematically compared our model to a baseline model that explored the two 

objects with the same probability (𝜇𝜇 = 0.5), where we computed the log-likelihood 

based on 𝑎𝑎 = 1 and 𝑏𝑏 = 1. We compared the Bayesian information criterion (BIC; (78)) 

of the two models defined by 
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𝐵𝐵𝐵𝐵𝐵𝐵 ≔ ℓ −  𝑘𝑘
2
𝑙𝑙𝑙𝑙(𝑆𝑆)                           (eq. 7) 

where 𝑘𝑘 denotes the number of free parameters and 𝑆𝑆 the number of subjects of the 

respective group. 
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Supplementary information 

 

Supplementary Figures 

 

Supplementary Figure 1: Object exploration during acquisition training for (a) Wild-
Type mice and (b) c-fos-tTA mice. Bar graphs indicates average values in n = 5-12 
per group. Data graphed as means ± SEM. 
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Supplementary Figure 2: Object exploration during acquisition training for (a) ArchT-
GFP inhibition and (b) ChR2-EYFP activation. Bar graphs indicates average values in 
n = 9-12 per group. Data graphed as means ± SEM. 
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Supplementary Figure 3: (a) Object exploration for 24h acquisition training and (b) 
24 h recall group (c) Object exploration for 1 wk acquisition training and (d) 1 wk recall 
group (e) Object exploration for 2 wk acquisition training and (f) 2 wk recall group (g) 
Object exploration for 3 wk acquisition training and (h) 3 wk recall group (i) Object 
exploration during acquisition training for c-fos-tTA mice. Bar graphs indicates average 
values in n = 7-12 per group. Data graphed as means ± SEM. 
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Supplementary Figure 4: (a) Behavioral paradigm for brief reminder trial (b) Object 
exploration during 5 min acquisition training (c) Object exploration during 1 h recall 
test (d) Object exploration during acquisition training for c-fos-tTA mice. Bar graphs 
indicates average values in n = 5-10 per group. Data graphed as means ± SEM. 
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Supplementary Figure 5: (a) Object exploration during acquisition training for Wild-
Type mice and (b) c-fos-tTA mice. Bar graphs indicates average values in n = 8-10 
per group. Data graphed as means ± SEM. 
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Supplementary Figure 6: Object exploration during acquisition training for (a) Rac1 
Inhibition (b) Rac1 Activation. Bar graphs indicates average values in n = 10-12 per 
group. Data graphed as means ± SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2023. ; https://doi.org/10.1101/2023.04.15.537013doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.15.537013
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 
 

 

Supplementary Figure 7. In-Sample Model Validation. A comparison between the 
forgetting data and the forgetting curve predicted by the model suggests that the model 
captures the data accurately. (a) Control group (standard housing condition) of the 
environmental enrichment experiment. (b) Enrichment group of the environmental-
enrichment experiment. (c) Control group of the Rac1-inhibition experiment. (d) Rac1-
inhibition group of the Rac1-inhibition experiment. Markers and bars show exploration 
probabilities of the mice. Lines show the average exploration probability for the familiar 
and novel object according to the model. 
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Supplementary Figure 8. Out-of-Sample Model Validation. We examined the model 
fit using a simple cross-validation procedure. For the environmental-enrichment data 
set, we estimated the free parameters based on half of the subjects. Then, we 
compared the predicted exploration behavior (dark lines) to the data of the other half 
of the subjects. (a) Control group. (b) Enrichment group (markers and bars show 
exploration probabilities of the mice). Furthermore, we compared the predicted 
exploration probabilities conditional on the parameter estimates from the 
environmental-enrichment experiment to the observed exploration probabilities in the 
Rac1-inhibition experiment. (c) Control group. (d) Rac1-inhibition group.    
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Supplementary Figure 9. Model Comparison. We tested if our computational model 
(Rescorla-Wagner, “RW”) describes the data better than a control model (“Baseline”) 
that explores each object with a probability of 0.5. The model comparison was based 
on a comparison of the cumulated Bayesian information criterion (BIC). Here, higher 
values indicate a better model fit. In both the environmental-enrichment experiment 
((a); experimental and control condition) and the Rac1-inhibition experiment ((b); 
experimental and control condition), the model comparison favored the RW-learning 
model. These results show that our model explained the data above chance-level. 
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Supplementary Figure 10: Parameter Recovery. We performed a parameter-
recovery study to examine whether the free parameters of our learning model could 
be estimated accurately. Similar to the enrichment experiment, we assumed N=12 
mice per inter-test interval (24 hours, 1 week, 2 weeks, 3 weeks). The recovery study 
indicates that the (a) learning-rate, (b) slope, and (c) exploration-variability parameters 
can sufficiently be estimated given the limited amount of data for model fitting. We 
validated that the variability of the parameters, especially of the learning rate, is lower 
when more subjects are included (e.g., N=50; not shown). 
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Supplementary Table 1. Parameter Estimates. Control group (Cont) and 
Experimental group (Exp). 

 Alpha  Beta Kappa 
Enrichment Cont: 0.072; Exp: 0.0 Cont: -0.695; Exp: -0.48 Cont: 23.12; Exp: 19.668 
Rac1 inhibition Cont: 0.101; Exp: 0.013 Cont: -0.651; Exp: -0.736 Cont: 29.209; Exp: 

13.841 
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