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Abstract: Incentives tend to drive improvements in performance. But when incentives get too 
high, we can “choke under pressure” and underperform when it matters most. What neural 
processes might lead to choking under pressure? We studied Rhesus monkeys performing a 
challenging reaching task in which they underperform when an unusually large “jackpot” reward 
is at stake. We observed a collapse in neural information about upcoming movements for jackpot 
rewards: in the motor cortex, neural planning signals became less distinguishable for different 
reach directions when a jackpot reward was made available. We conclude that neural signals of 
reward and motor planning interact in the motor cortex in a manner that can explain why we 
choke under pressure. 

 
 

One-Sentence Summary: In response to exceptionally large reward cues, animals can “choke 
under pressure”, and this corresponds to a collapse in the neural information about upcoming 
movements.  
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Main Text: 
Failing to perform to one’s highest standard when the potential payoff is particularly great is 
known as “choking under pressure” (1). While failures in professional athletics often provide the 
most memorable examples of this phenomenon, people also choke under pressure in a wide 
variety of other settings, including test-taking, video games, puzzle-solving, and more (2–7). 
Neuroimaging studies have implicated the involvement of reward and motor structures in 
choking under pressure (8–10), but the neural mechanisms whereby the possibility of increased 
rewards can lead to performance failure remain unclear. 

We recently reported that animals also choke under pressure (11). Rhesus monkeys performed a 
challenging task in which they had to perform a goal-directed reach that was both fast and 
accurate (Fig. 1A). We cued the animals as to the magnitude of the liquid reward they would 
receive for a successful reach. Performance in the task was influenced by reward size: success 
was more likely for Medium and Large potential rewards than for Small rewards. This 
presumably reflects the motivation to perform this challenging task. However, success rates fall 
when “Jackpot” (rare and exceptionally large) rewards are proffered, leading to the “inverted-U” 
relationship between performance and reward that characterizes choking under pressure (Fig. 
1B). Here we leverage the fact that monkeys choke under pressure to explore the phenomenon’s 
neural basis at the resolution of the activity of individual neurons and the sub-second timescale at 
which neural activity controls behavior. 
We report a novel neural explanation of choking under pressure: a deficit in motor planning. 
Motor planning benefits the execution of rapid, voluntary movements (12, 13), like the reaches 
the animals performed in this task. To study how motor planning relates to choking under 
pressure, we recorded the spiking activity of neurons in the motor cortex (MC, the primary motor 
cortex and the dorsal aspect of the premotor cortex) and examined how the cued reward 
modulated neural population activity during movement planning. MC sends the predominant 
cortical projection to the spinal cord for the control of arm movements and encodes information 
about planned movements (14–17). If choking under pressure involves a failure in motor 
planning, we might expect there to be aspects of MC activity that exhibit an inverted-U 
relationship with reward size, like behavior does. 
We first asked how the magnitude of the cued reward affected the firing rate of individual 
neurons in MC. Neural signals of anticipated reward have been reported throughout the cerebral 
cortex, with neurons in many brain areas exhibiting changes in firing rates when more valuable 
rewards are cued (18–25), including neurons in MC (26–28).  However, previous studies have 
not presented monkeys with rare and exceptionally large potential rewards that induce 
performance decrements, and thus the nature of the cortical response to such Jackpot rewards is 
unknown. Given the “inverted-U” profile that characterizes how behavioral performance is 
impacted by reward size, it is reasonable to ask whether the encoding of reward by individual 
neurons also follows the inverted-U profile. 

The reward tuning in MC was predominantly monotonic. The majority of MC neurons exhibited 
tuning to cued reward (n = 300/459 neurons, 65.4%; single neuron metrics are provided in full in 
Table S2), where most exhibited either monotonically increasing (179/459, 39.0%) or decreasing 
(95/459, 20.7%) changes in firing rate through the entire range of cued reward size (Fig. 1C, see 
Methods). We observed little “inverted-U” (18/459, 3.9%) or “U-shaped” (8/459, 1.7%) reward 
tuning in firing rates. Thus, we conclude that although individual MC neurons are sensitive to 
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Jackpot reward cues, the basis for the inverted-U profile evident in behavior is not to be found in 
the reward-driven changes in the average activity of individual MC neurons. 

Next, we considered whether neural signatures of choking under pressure might be present at the 
population level. We analyzed patterns of covariance in the activity of simultaneously recorded 
neurons. By treating the activity of each individual neural unit as an axis in a high dimensional 
space, we can identify specific dimensions (i.e., linear combinations of neurons’ firing rates) that 
capture reward-related variance (Fig. 1D). Because there were so few Jackpots given per session, 
for analyses we combined neural activity across days using a “stitching” algorithm (29) (see 
Methods). We then used principal components analysis (PCA) on trial-averaged activity to 
identify the linear projection maximizing the amount of reward-related variance captured. We 
found that a single dimension, which we call the “reward axis,” captured the majority of the 
reward-related variance (Monkey E: 92.6%, P: 89.8%, R: 84.7%). Consistent with the single-
neuron responses, projections along the reward axis were monotonic with reward size (Fig. 1E). 
In sum, we find that the encoding of reward information in MC is primarily monotonic, which on 
its own is not able to explain the performance drop observed for Jackpot rewards. 
 

 
Fig. 1. Monkeys choke under pressure, although reward tuning in motor cortex is 
monotonic. (A) Monkeys were trained to prepare then reach briskly to a small target . The color 
(Monkeys E, P) or shape (Monkey R) instructed the reward size. Parameters bolded in green 
were titrated for each animal to make the task challenging and motivating (Table S1 shows task 
parameters for each animal). A separate choice task indicated that animals understood reward 
cues (Fig. S1). Simultaneously, we recorded from primary motor (M1) and/or dorsal premotor 
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cortex (PMd) using 96-channel microelectrode “Utah” arrays (Blackrock Microsystems, Inc., 
gray squares schematize general array locations, see Table S1 for array location details). (B) 
Success rate improved from Small to Large rewards (binomial proportion test, ***p < 0.001), 
indicating that performance in this difficult task is influenced by motivation. All three animals 
choked under pressure, indicated by the significant decrease in task success rates from Large to 
Jackpot rewards. Error bars represent S.E. of overall mean success rate shown in black. 
Individual sessions are shown in gray. (C) Individual neurons exhibited monotonic tuning to 
reward size. Activity traces from three example neurons from Monkey E are shown, averaged 
within each reward condition (± S.E.). We highlight the time window used for the ensuing neural 
analyses: during reach preparation at the end of the delay period, a time when the animal had 
information regarding both the target location and potential reward size to be received for a 
successful trial. (D) Simultaneous neural firing rates can be visualized in a neural state space in 
which the firing rate of each neuron comprises one dimension (axis) within the space. Three 
neurons were used here for illustration; in actuality, hundreds of neurons recorded over 6-12 
days were used (see Methods for the stitching procedure used to combine data across sessions). 
(E) The dimension that captures the majority of reward-related variance follows monotonic 
trends with cued reward, even though behavior exhibits a non-monotonic relationship with 
reward. Translucent dots show single trial values, while the large, filled dots show the mean of 
the reward condition. A horizontal jitter is introduced within each group to improve visibility. 
We considered whether these reward-monotonic effects might reflect muscular stiffening. 
However, neither arm nor shoulder electromyography showed much activity during the reach 
planning period, and neither reliably predicted reward axis projections (Fig. S2). 

 
Since we did not see evidence for choking under pressure in the neural signal of reward 
considered on its own, we next wondered whether an interaction might exist between reward 
signals and the neural activity associated with motor planning. Individual neurons in MC are 
tuned for different directions of upcoming reaches, such that at the neural population level, 
distinct neural activity patterns correspond to the motor plans for different reach directions (14, 
17). We hypothesized that reward information may interact with the directional reach planning 
signals in MC, and that this interaction might lead to choking under pressure. 
 
To look for such an interaction, we began by identifying the neural subspace that contained reach 
direction signals. We found a projection of the trial-averaged neural population activity using 
PCA that provided the maximal separation of average neural activity corresponding to different 
motor plans. The top 2 principal components accounted for the overwhelming majority of the 
variance due to target direction (Monkey E: 92.7%, P: 99.7%, R: 90.8%). This plane turned out 
to be nearly orthogonal to the reward axis (Fig. S3). Even with this near orthogonality, however, 
we observed an interaction between reward cue and target direction. Comparing neural activity 
for Small, Medium, and Large cues, the mean response for the different upcoming movement 
directions grew farther apart from one another with increased reward (Fig. 2A) (30). This can 
reflect greater information about the upcoming reach with larger rewards, as the average neural 
activity patterns for different movements are more distinct from one another. Surprisingly, for 
Jackpot rewards, the neural states for different target directions collapsed towards each other 
(31). 
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To quantify this expansion-then-collapse of neural states with reward, we examined neural 
activity on individual trials. Within each reward condition, we first identified the average 
response for each target direction (large purple dot in Fig. 2B) and calculated the average across 
the targets (large white dot in Fig. 2B). We then constructed unit vectors that pointed to each 
target's average from the average response across targets. We call these vectors the "target 
preparation axes". We projected the neural activity for each trial onto the corresponding target 
preparation axis. Like success rates, the average projection along the target preparation axis 
follows an inverted-U as a function of reward (Fig. 2C), congruent with the visualizations from 
Figure 2A. We refer to this decrease from Large to Jackpot rewards as a collapse in neural 
information (32). That is, target information becomes less discriminable as neural population 
activity moves along the reward axis from Large to Jackpot states. In this manner, the neural 
population activity resembles the animal’s behavior, in that both show an inverted-U dependence 
on reward size.  
 
 

 
 
Fig. 2. Jackpot rewards induce a collapse in neural information. This is evident in the 
interaction between the neural population response for movement direction and reward. (A) 
Neural population activity corresponding to motor planning for different reach directions is 
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pushed apart with increasing cued reward from Small through Large. However, for Jackpot 
rewards, the activity for different reach directions collapses back towards each other, diminishing 
their discriminability. We projected neural activity grouped by trial conditions defined by reward 
and direction and then averaged into a 3D space reflecting reward information (Reward Axis) 
and target information (Target Axis 1 and 2). The units (population neural activity, spikes/s) on 
the three axes are the same. To aid visualization, adjacent reach directions (dot color) are 
connected by a ring for each reward (line color). Insets show a zoomed-in view of the target 
axes’ plane for a single target to highlight the inverted-U interaction of reward and direction on 
neural activity. (B) To quantify single trial separability of preparatory states, we found a “target 
preparation axis” for each reward and target direction (see Methods). (C) When neural activity 
for individual trials is projected onto these target preparation axes, it exhibits an inverted-U as a 
function of cued reward that parallels the behavior. Dots represent single trials, and large filled 
circles show the mean within each reward condition. **p < 0.01, ***p < 0.001, Welch’s t-test. 
 
How might a collapse in neural information be connected to a decrease in behavioral 
performance? We hypothesized that when the neural state was further out along the target 
preparation axis, this might correspond to better reach preparation. Thus, a collapse in neural 
information, indicated by small projections onto the target preparation axis, would correspond to 
poorer preparation of the reach (Fig. 3A). We compared the magnitude of the projection of 
neural activity onto the target preparation axis to the animals’ performance. We separated the 
trials into successes and failures and then we categorized failed trials by their specific failure 
mode. The animals could fail by executing a reach that either overshoots or undershoots the 
target (Fig. 3B; see Methods). The decrease in success rate between Large and Jackpot reward 
trials was dominated by undershoot failures (Fig. 3C) (11, 33). We conclude from this analysis 
that the collapse in neural information when Jackpot rewards are proffered coincides with 
undershooting the target. 
 
As a more stringent test of this relationship, we examined it on individual trials. We projected 
neural activity onto the target preparation axis (see Methods) and labeled it according to whether 
the trial was a success, a failure due to an undershoot, or a failure due to overshooting the target. 
Within every reward condition, neural preparatory activity prior to an undershoot failure had a 
smaller projection along the target preparation axis than preparatory activity prior to a success 
(Fig. 3D, left). In contrast, there was little difference between neural activity on overshoot 
failures and successes (Fig. 3D, right). This means that when the projection of neural activity 
onto the target preparation axis was smaller for a given trial, the animal was more likely to fail 
by undershooting the target. Quantifying this across all trials for each animal revealed that 
undershoot trials had significantly smaller target preparation axis projections than successes (Fig. 
3E). This effect also holds when using other algorithms to define the target preparation axis (Fig. 
S8). This observation links the collapse in neural information triggered by a Jackpot reward to 
the decline in behavioral performance for Jackpots. We suggest that choking under pressure is 
due to an adverse interaction of reward information with movement preparation signals, and that 
this interference is visible in motor cortex. 
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Fig. 3. The quality of reach preparation is reflected in the state of neural activity. (A) 
Hypothesized relationship between single trial target preparation axis projections (small purple 
dots) and reach preparation. (B) Possible reach outcomes. Monkeys can either succeed at the 
reach (top), undershoot the target (middle), or overshoot the target (bottom). (C) Success rates 
(green) and failure rates broken down by failure type (light gray: undershoots; dark gray: 
overshoots). Compared to Large rewards, Jackpots had more undershoots (binomial proportion 
test; for all panels, *p < 0.05, **p < 0.01, ***p < 0.001, n.s. = not significant) but not more 
overshoots, whereas Small rewards evoked both more undershoots and overshoots than did 
Large rewards. (D) Undershoots showed a consistent decrease in average target preparation axis 
projections across animals (shape) and rewards (color) compared to successes, whereas 
overshoot trials showed little difference in their projection along the target preparation axis. 
Thick lines and accompanying stars indicate a significant difference within that given reward 
condition (Welch’s t-test). (E) To summarize the relationship between target preparation axis 
projections and failure modes, we pooled across rewards after z-scoring based on successful 
trials within each (mean ± S.E.). Trials that result in undershoots (left, light gray) show a 
significant decrease in projections along the target preparation axis (Welch’s t-test), while 
overshoot failures (right, dark gray) show a much smaller effect.  
 
Our analyses so far support the view that one neural basis of choking under pressure is due to a 
poor positioning of neural activity relative to an optimal region that lies further outward along 
the target preparation axis. We also considered another explanation for choking under pressure: 
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that it is due to variability in neural activity. Note that reward could in principle affect both the 
position of neural population activity in the neural state space and also its variability, so this 
effect could occur alongside the changes in average activity reported above. 
 
Variability in neural activity across trials in motor cortical planning activity is known to be a 
major source of variability in behavior (34–36). Neural variability can depend on context; as an 
example, songbirds are known to modulate their amount of neural variability during song 
production depending on whether they are practicing their song alone or performing for 
courtship (37). Hence it could be that choking under pressure results from an increase in neural 
variability induced by the Jackpot reward cue. To look for an explanation of choking under 
pressure stemming from reward-induced effects on variability, we calculated trial-to-trial 
variability at the population level. We found inconsistent relationships between neural variability 
and reward across our three subjects, and no evidence for a U-shaped relationship between 
reward and neural variability (Fig. S9). Hence our data do not support an explanation for 
choking under pressure in terms of neural variability.  
 
In summary, we can describe a potential neural basis for choking under pressure: Reward 
information interacts with the formation of motor command signals. This interaction can be seen 
in planning-related neural activity in the motor cortex. Reward information can help boost neural 
information (evident in the transition from Small to Large rewards). But when a Jackpot is 
proffered, neural activity does not attain the optimal preparation state for a well-executed 
movement. The specific way in which these states are suboptimal is that they are less 
differentiated according to the upcoming reach target. That is, a “collapse in neural information” 
occurs when a Jackpot is proffered, and this corresponds to a decrease in performance. These 
poor planning states are correlated with the propensity to fail by undershooting the target. In 
broader scope, our findings are a striking example of context altering movement preparatory 
activity and the ensuing input-output transformation implemented by motor cortex (38–44). 
 
Choking under pressure is a robustly observed phenomenon across many forms of cognitive, 
sensorimotor, and perceptual tasks with multiple potential psychological explanations (2, 6, 8, 9, 
45–47). Studies of humans implicate many brain areas in choking under pressure, including the 
basal ganglia, prefrontal cortex, and motor cortex (8–10). This suggests that the neural bases of 
choking are widespread in the brain, perhaps reflecting the action of neuromodulators. Our study 
shows a candidate neural mechanism for choking under pressure in motor cortex where an 
interaction between information about the reward and behaviorally relevant neural signals 
corresponds to under-performance when the stakes are unusually high. The neural basis for 
choking under pressure we report here might be a specific example of a widespread 
phenomenon: it may be that choking under pressure is the result of adverse interactions between 
motivational signals and diverse neural functions, including cognition and perception, leading to 
a collapse in the neural information supporting various types of behavior. 
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