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Abstract

Machine learning sequence-function models for proteins could enable significant ad-

vances in protein engineering, especially when paired with state-of-the-art methods to

select new sequences for property optimization and/or model improvement. Such meth-

ods (Bayesian optimization and active learning) require calibrated estimations of model

uncertainty. While studies have benchmarked a variety of deep learning uncertainty

quantification (UQ) methods on standard and molecular machine-learning datasets, it

is not clear if these results extend to protein datasets. In this work, we implemented

a panel of deep learning UQ methods on regression tasks from the Fitness Landscape

Inference for Proteins (FLIP) benchmark. We compared results across di↵erent degrees

of distributional shift using metrics that assess each UQ method’s accuracy, calibra-

tion, coverage, width, and rank correlation. Additionally, we compared these metrics

using one-hot encoding and pretrained language model representations, and we tested

the UQ methods in a retrospective active learning setting. These benchmarks enable

us to provide recommendations for more e↵ective design of biological sequences using

machine learning.
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1 Introduction

Machine learning (ML) has already begun to accelerate the field of protein engineering

by providing low-cost predictions of phenomena that require time- and resource-intensive

labeling by experiments or physics-based simulations (1 ). It is often necessary to have an

estimate of model uncertainty in addition to the property prediction, as the performance of

an ML model can be highly dependent on the domain shift between its training and testing

data (2 ). Because protein engineering data is often collected in a manner that violates the

independent and identically distributed (i.i.d.) assumptions of many ML approaches, (3 ),

tailored ML methods are required to guide the selection of new experiments from a protein

landscape. Uncertainty quantification (UQ) can inform the selection of experiments in order

to improve a ML model or optimize protein function through active learning or Bayesian

optimization.

In chemistry and materials science, several studies have benchmarked common UQ meth-

ods against one another on standard datasets and have used or developed appropriate metrics

to quantify the quality of these uncertainty estimates (4–9 ). These works have illustrated

that the best choice of UQ method can depend on the dataset and other considerations

such as representation and scaling. While some protein engineering work has leveraged un-

certainty estimates, these studies have been mostly limited to single UQ methods such as

convolutional neural network (CNN) ensembles (10 ) or Gaussian processes (GPs) (11 , 12 ).
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Gruver et al. compared CNN ensembles to GPs (using traditional representations and

pre-trained BERT (13 ) language model embeddings) in Bayesian optimization (BO) tasks

(14 ). They found that CNN ensembles are often more robust to distribution shift than

other types of models. Additionally, they report that most model types have more poorly

calibrated uncertainties on out-of-domain samples. However, more comprehensive study of

CNN UQ methods other than ensembles against GPs using a variety of uncertainty quality

metrics has not yet been done. A comparison of uncertainty methods on di↵erent protein

representations (e.g., one-hot encodings or embeddings from protein language models) in an

active learning setting is also lacking.

In this work, we used a set of standardized, public protein datasets to evaluate a panel

of UQ methods for protein sequence-function prediction (Figure 1). Our chosen datasets

included splits with varied degrees of domain extrapolation, which enabled method evaluation

in a setting similar to what might be experienced while collecting new experimental data

for protein engineering. We assessed each model using a variety of metrics that captured

di↵erent aspects of desired performance, including accuracy, calibration, coverage, width,

and rank correlation. Additionally, we compared the performance of the UQ methods on

one-hot encoded sequence representations and on embeddings computed from the ESM-1b

protein masked language model (15 ). We find that the quality of UQ estimates are dependent

on the landscape, task, and embedding, and that no single method consistently outperforms

all others. Finally, we evaluated the UQ methods in an active learning setting with several

acquisition functions, and demonstrated that uncertainty-based sampling often outperforms

random sampling (especially in later stages of active learning), although better calibrated

uncertainty does not necessarily equate to better active learning. The understanding gained

from this work will enable more e↵ective application of UQ techniques to machine learning

in protein engineering.
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Figure 1: (A) Schematic of the approach for benchmarking uncertainty quantification (UQ)
in machine learning for protein engineering. A panel of UQ methods were evaluated on
protein fitness datasets to assess the quality of the uncertainty estimates and their utility
in active learning. (B) Our study utilized three protein datasets/landscapes and di↵erent
train-validation-test split tasks within each dataset. These datasets and tasks covered a
range of sample diversities and domain shifts (task di�culties).

2 Results and Discussion

2.1 Uncertainty Quantification

Our first goal was to evaluate the calibration and quality of a variety of UQ methods. We

implemented seven uncertainty methods for this benchmark: linear Bayesian ridge regression

(BRR) (16 , 17 ), Gaussian processes (GPs) (18 ), and five methods using variations on a

convolutional neural network (CNN) architecture. The CNN implementation from FLIP (3 )

provided the core architecture used by our dropout (19 ), ensemble (20 ), evidential (21 ),

mean-variance estimation (MVE) (22 ), and last-layer stochastic variational inference (SVI)
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(23 ) models. Additional model details are provided in Section 4.

The landscapes used in this work were taken from the Fitness Landscape Inference for

Proteins (FLIP) benchmark (3 ). These include the binding domain of an immunoglob-

ulin binding protein (GB1), adeno-associated virus stability (AAV), and thermostability

(Meltome) data landscapes, which cover a large sequence space and a broad range of pro-

tein families. The FLIP benchmark includes several train-test splits, or tasks, for each

landscape. Most of these tasks are designed to mimic common, real-world data collection

scenarios and are thus a more realistic assessment of generalization than random train-test

splits. However, random splits are also included as a point of reference. We chose 8 of the

15 FLIP tasks to benchmark the panel of uncertainty methods. We selected these tasks to

be representative of several regimes of domain shift – random sampling with no domain shift

(AAV/Random, Meltome/Random, and GB1/Random); the highest (and most relevant)

domain-shift regimes (AAV/Random vs. Designed and GB1/1 vs. Rest); and less aggressive

domain shifts (AAV/7 vs. Rest, GB1/2 vs. Rest and GB1/3 vs. Rest). The Datasets section

of the Methods provides notes on the nomenclature used for these tasks.

We trained the seven models on each of the eight tasks described above and evaluated

their performance on the test set using the metrics described in Section 4.7. We compare

model calibration and accuracy in Figure 2 and the percent coverage versus average width

relative to range in Figure 3. These figures illustrate the results for models trained on the

embeddings from a pretrained ESM language model (15 ); the corresponding results using

one-hot encodings are shown in Figures S1 and S2.

As expected, the splits with the least required domain extrapolation tend to have more

accurate models (lower RMSE; Fig. 2). However, the relationship between miscalibration

area and extrapolation is less clear; some models are highly calibrated on the most di�cult

(highest domain shift) splits, while others are poorly calibrated even on random splits. There

is no single method that performs consistently well across splits and landscapes, but some

trends can be observed. For example, ensembling is often one of the highest accuracy CNN
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models, but also one of the most poorly calibrated. Additionally, GP and BRR models are

often better calibrated than CNN models. For the AAV and GB1 landscapes (Fig. 2a, c),

model miscalibration area usually increases slightly while RMSE increases more substantially

with increasing domain shift.

In addition to accuracy and calibration, we assessed each method in terms of the coverage

and width of its uncertainty estimates. A good uncertainty method results in high coverage

(a large percentage of points where the true value falls within the 95% confidence region

established by the uncertainty) while still maintaining a small average width. The latter is

necessary because predicting a very large and uniform value of uncertainty for every point

would result in good coverage, so coverage alone is not su�cient. Figure 3 illustrates that

many methods perform relatively well in either coverage or width (corresponding to the

the top and left limits of the plot, respectively), but few methods perform well in both.

Similarly to Figure 2, there is some observable trend that more challenging splits are further

from the optimal part (upper left) of the plot; this trend is more clear for the GB1 splits

(Fig. 3b) than for the AAV splits. Most models trained on the AAV landscape (Fig. 3a) have

a similar average width/range ratio for all splits, but for the GB1 landscape (Fig. 3c), this

ratio typically increases as the domain shift increases. The locations of the sets of points

for each model type shared some similarities across landscapes. CNN SVI often has low

coverage and low width, CNN MVE often has moderate coverage and moderate width, and

CNN Evidential and BRR often have high coverage and high width. The results for all

prediction and uncertainty metrics are shown in Tables S1-S22.

We next assessed how target predictions and uncertainty estimates depended on the

degree of domain shift. Across datasets and splits, we compared the ranking performance

of each method in terms of predictions relative to true values and uncertainty estimates

relative to true errors (ESM in Figure 4 and OHE in Figure S3). The splits are ordered

according to domain shift within their respective landscapes (lowest to highest shift from

left to right). We observe that the rank correlation of the predictions to the true labels
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generally decreases moving from less to more domain shift within a landscape, consistent

with expectation, with the exception of AAV/Random vs. Designed models performing

better than AAV/7 vs. Rest models (Fig. 4a). Most methods exhibit similar performance

in ⇢ within the same task. For many tasks, GP and BRR models perform as well or better

than CNN models. Performance on ⇢unc is generally much worse than that on ⇢, with some

results showing negative correlation (Fig. 4b). MVE and evidential uncertainty methods are

most performant in ⇢unc for most cases of low to moderate domain shift. Most methods have

⇢unc near zero for the most challenging splits. Despite the relatively good performance of

MVE on tasks with low to moderate domain shift, it performs poorly in cases of high domain

shift, which is consistent with its intended use as an estimator of aleatoric (data-dependent)

uncertainty.

We find that the models trained on ESM embeddings outperform those trained on one-

hot encodings in 21 out of 51 cases for rank correlation of test set predictions, and 29 out

of 51 cases for rank correlation of test set uncertainties. The relative performance of the

two representations on prediction and uncertainty rank correlation is shown in Figure S4. In

terms of predictions, ESM embeddings often yield substantially better performance for tasks

with high domain shift (e.g. GB1/1 vs. Rest and Meltome/Random), while OHE performs

slightly better on tasks with lower domain shift (e.g. AAV/Random and GB1/3 vs. Rest).

The relative uncertainty rank correlation performance, on the other hand, does not have a

clear relationship to domain shift.
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A
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Figure 2: Miscalibration area vs. root mean square error (RMSE) for the (A) AAV, (B)
Meltome, and (C) GB1 landscapes. Miscalibration area (also called the area under the
calibration error curve or AUCE) quantifies the absolute di↵erence between the calibration
plot and perfect calibration. It is desirable to have a model that is both accurate and well-
calibrated, so the best performing points are those closest to the lower left corner of the
plots. Each point represents an average of 5 models trained using di↵erent random seeds
for initialization of the CNN parameters and batching / stochastic gradient descent. The
GP Continuous model is not shown for the AAV landscape due to memory constraints for
training these models. Figure S1 shows the corresponding results for the OHE representation.
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Figure 3: Coverage vs. average width / range for the (A) AAV, (B) Meltome, and (C) GB1
landscapes. Coverage is the percentage of true values that fall within the 95% confidence
interval (±2�) of each prediction, and the width is the size of the 95% confidence region
relative to the range of the training set (4�/R where R is the range of the training set). A
good model exhibits high coverage and low width, which corresponds to the upper left of each
plot. The horizontal dashed line indicates 95% coverage. Each point represents an average
of 5 models trained using di↵erent random seeds for initialization of the CNN parameters
and batching / stochastic gradient descent. The GP Continuous model is not shown for the
AAV landscape due to memory constraints for training these models. Figure S2 shows the
corresponding results for the OHE representation.
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B

A

Figure 4: Spearman rank correlations of (A) predictions (⇢) and (B) uncertainties (⇢unc) vs.
extrapolation. Within each landscape (AAV, Meltome, and GB1), splits are qualitatively
ordered by the amount of domain shift between train and test sets, with the lowest domain
shift on the left and the highest domain shift on the right. Error bars on the CNN results
represent the 95% confidence interval calculated from 5 di↵erent random seed for initializa-
tion of the CNN parameters and batching / stochastic gradient descent. Figure S3 shows
the corresponding results for the OHE representation.
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2.2 Active Learning

In protein engineering, the purpose of uncertainty estimation is typically to intelligently

prioritize sample acquisition for experimentation. One such use case of uncertainty is in

active learning, where uncertainty estimates are used to inform sampling with the goal of

improving model predictions overall (i.e., to achieve an accurate model with less training

data; Fig. 5a). Having assessed the calibration and accuracy of the panel of UQ methods

above, we next evaluated whether uncertainty-based active learning could make the learn-

ing process more sample-e�cient. Across all datasets and splits using the pretrained ESM

embeddings, data acquisition was simulated as iterative selection from the data library ac-

cording to a given sampling strategy (acquisition function; see Methods for details). The

results are summarized in Figure 5 for Spearman rank correlation (⇢) on three methods and

one split per landscape, and additional results are shown in the Figures S5-S57 for other

metrics, uncertainty methods, and splits. Across most models, the performance di↵erence

between the start of active learning (10% of training data) and end of active learning (100%

of training data) is relatively small, and many models begin to plateau in performance before

reaching 100% of training data.

The “explorative greedy” and “explorative sample” acquisition functions (which sample

based on uncertainty alone or sample randomly weighted by uncertainty, respectively) some-

times significantly outperform random sampling, but this is not true across all methods and

landscapes (Fig. 5b-d). In some cases, the performance of the uncertainty-based sampling

strategies also varies depending on the fraction of the total training data available to the

model. For example, for the Meltome/Random split and CNN evidential model (Fig. 5c),

explorative greedy sampling results in a decrease in model performance after the first round

of active learning while the explorative sample strategy increases performance. By the fourth

round of active learning for this task, the two explorative strategies significantly outperform

random sampling. This indicates that in the early stages of active learning when a model’s

uncertainty estimates are poorly calibrated, it may be advantageous to sample with at least
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some randomness included in an uncertainty-based acquisition function. Overall, the results

indicate that uncertainty-informed active learning can outperform random sampling and

thus lead to more accurate machine learning models with fewer training points needing to

be measured (Fig. 5b-d).
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Figure 5: (A) Schematic of active learning approach. A model is trained on an initial dataset,
and is then retrained in each iteration by adding more points to the training set based
on some selection criteria. (B-D) Uncertainty-guided active learning in protein sequence-
function prediction. Spearman rank correlation of predictions (⇢) for the CNN ensemble,
CNN evidential, and GP methods evaluated on the AAV/Random (B), Meltome/Random
(C), and GB1/Random (D) splits. The “random” strategy acquired sequences with all unseen
points having equal probabilities, the “explorative sample” strategy acquired sequences with
random sampling weighted by uncertainty, and the “explorative greedy” strategy acquired
the previously unseen sequences with the highest uncertainty.
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3 Conclusions

Calibrated uncertainty estimations for ML predictions of biomolecular properties are neces-

sary for e↵ective model improvement using active learning or property optimization using

Bayesian methods. In this work, we benchmarked a panel of uncertainty quantification (UQ)

methods on protein datasets, including on train-test splits that are representative of real-

world data collection practices. After evaluating each method based on accuracy, calibration,

coverage, width, rank correlation, and performance in active learning, we find that there is

no method that performs consistently well across all metrics or all landscapes and splits.

We also examined how models trained using one-hot-encoding representations of se-

quences compare to those trained on more informative and generalizable representations

such as embeddings from a pretrained ESM language model. This comparison illustrated

that while the pretrained embeddings do improve model accuracy and uncertainty correla-

tion/calibration in some cases, particularly on splits with higher domain shifts, this is not

universally true and in some cases makes performance worse.

While the UQ evaluation metrics used in this work provide valuable information, they

are ultimately only a proxy for expected performance in Bayesian optimization and active

learning. We found that UQ evaluation metrics are not well-correlated with gains in ac-

curacy from one active learning iteration to another on these datasets. This suggests that

future work in UQ should include retrospective Bayesian optimization and/or active learning

studies rather than relying on UQ evaluation metrics alone. Our retrospective active learn-

ing studies using holdouts of the training sets demonstrate that many of the uncertainty

methods outperform random sampling baselines. In some of our experiments, we observe

that the uncertainty-based sampling strategies perform worse than random sampling during

the earliest stages of active learning, then perform better as a model’s accuracy and quality

of uncertainty estimates improve in later stages.

Future work in this area could expand on methods (e.g. Bayesian neural networks (24 )

and conformal prediction (25 )), metrics (e.g. sharpness (5 ), dispersion (26 ), and tightness
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(27 )), and representations (e.g. ESM-2 (28 ) or using an attention layer rather than mean

aggregation on our ESM-1b embeddings). While this work considered uncertainty predictions

as directly output by the models, further study is needed to understand the e↵ects of post-

hoc calibration methods (e.g. scalar recalibration (26 ) or CRUDE (29 )). Future work should

consider additional active learning strategies beyond “explorative greedy” and “explorative

sample”, such as Thompson sampling (30 ), other exploitative strategies, strategies that

consider batch diversity in the acquisition function (31 ), and methods that consider the

desired domain shift. Ultimately, this work contributes to a more thorough understanding

of how to best apply UQ to sequence-function models and provides a foundation for future

work to enable more e↵ective protein engineering.

4 Methods

4.1 Regression Tasks

All tasks studied in this work are regression problems, in which we attempt to fit a model

to a dataset with D data points (xi, yi). xi is a protein sequence representation (either a

one-hot encoding or an embedding vector from an ESM language model), and yi 2 R is a

scalar-valued target property from the protein landscapes described in Section 4.2.

4.2 Datasets

The landscapes and splits in this work are taken from the FLIP benchmark (3 ). GB1

is a landscape commonly used for investigating epistasis (interactions between mutations)

using the binding domain of protein G, an immunoglobulin binding protein in Streptococcal

bacteria. These splits are designed primarily to test generalization from few- to many-

mutation sequences. The AAV landscape is based on data collected for the Adeno-associated

virus capsid protein, which help the virus integrate a DNA payload into a target cell. The

mutations in this landscape are restricted to a subset of positions within a much longer
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sequence. The Meltome landscape includes data from proteins across 13 di↵erent species

for a non-protein-specific property (thermostability), so it includes both local and global

variations. The total number of data points in the GB1, AAV, and Meltome sets are 8,733,

284,009, and 27,951, respectively. In the AAV set, 82,583 are sampled (mutations) and

201,426 are designed. For AAV, only the 82,583 sampled sequences are used for the Random

and 7 vs. Rest tasks, while all 284,009 are used for the Sampled vs. Designed task.

The names of several of the tasks were changed slightly from the original FLIP nomen-

clature for clarity: GB1/Random was originally called GB1/Sampled, AAV/Random was

originally called AAV/Sampled, AAV/7 vs. Rest was originally called AAV/7 vs. Many,

AAV/Sampled vs. Designed was originally called AAV/Mut-Des, and Meltome/Random

was originally called Meltome/Mixed.

4.3 ESM Embeddings

We used the pretrained, 650M-parameter ESM-1b model (esm1b t33 650M UR50S) from (15 )

to generate embeddings of the protein sequences in this study and to compare these embed-

dings to one-hot encoding representations. Sequence embeddings from the final represen-

tation layer (layer 33) were mean pooled per amino acid over the length of each protein

sequence, which resulted in a fixed embedding size of 1280 for each sequence.

4.4 Base CNN Model Architectures

The base architecture of all CNN models in this work was taken from the CNNs in the FLIP

benchmark (3 ). For the one-hot encoding inputs, this was comprised of a convolution with

1024 channels and kernel width 5, a ReLU non-linear activation function, a linear mapping

to 2048 dimensions, a max pool over the sequence, and a linear mapping to 1 dimension.

For ESM embedding inputs, the architecture was the same except with 1280 input channels

rather than 1024, and a linear mapping to 2560 dimensions rather than 2048.
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4.5 CNN Model Training Procedures

To train our CNN models, we used a batch size of 256 (GB1, AAV) or 30 (Meltome). Adam

(32 ) was used for optimization with the following learning rates: 0.001 for the convolution

weights, 0.00005 for the first linear mapping, and 0.000005 for the second linear mapping.

Weight decay was set to 0.05 for both the first and second linear mappings. CNNs were

trained with early stopping using a patience of 20 epochs. Each model was trained on an

NVIDIA Volta V100 GPU. Code, data, and instructions needed to reproduce results can be

found at https://github.com/microsoft/protein-uq.

4.6 Uncertainty Methods

For all models and landscapes, the sequences were featurized using either one-hot encodings

or embeddings from a pretrained language model (see Section 4.3).

We used the scikit-learn (33 ) implementation of Bayesian ridge regression (BRR)

with default hyperparameters. BRR for one-hot encodings of the Meltome/Random split

was not feasible because the required work array was too large to perform the computation

with standard 32-bit LAPACK in scipy.

For Gaussian processes (GPs), we used the GPyTorch (34 ) implementation with the

constant mean module, scaled rational quadratic (RQ) kernel covariance module, and Gaus-

sian likelihood. Some GP models (for AAV one-hot encodings and ESM embeddings, and

Meltome one-hot encodings) were not feasible to train due to GPU-memory requirements

for exact GP models, so these are omitted from the results.

For our uncertainty methods that rely on sampling (dropout, ensemble, and SVI), the

final model prediction is defined as the mean of the set of inference samples, and the uncer-

tainty is the standard deviation of these samples. In other words, for a set of predictions

E = {G1(x), G2(x), ..., Gn(x)} (each coming from an individual model Gi), the final predic-

tion is defined as
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Ĝ(x) =
X

G2E

G(x)

n

and the uncertainty U(x) is defined as

U(x) =

vuut
X

G2E

(Ĝ(x)�G(x))2

n

The uncertainty is sometimes defined as the variance U2, but using the standard deviation

puts the uncertainty in the same units as the predictions.

For dropout uncertainty (19 ), a single model G was trained normally. At inference time,

we applied n = 10 random dropout masks with dropout probability p to obtain the set of

predictions E for each input xi. We tested dropout rates of p 2 {0.1, 0.2, 0.3, 0.4, 0.5} and

reported the model with the lowest miscalibration area.

Similarly for last-layer stochastic variational inference (SVI) (23 ), we obtained E using

n = 10 samples from a set of models where each Gi has the weight and bias terms of its last

layer themselves sampled from a distribution q(✓) that has been trained to approximate the

true posterior p(✓|D).

Traditional model ensembling calculated E using n = 5 models trained using di↵erent

random seeds for initialization of the CNN parameters and batching / stochastic gradient

descent. The computational cost of this approach is 5 times that of a standard CNN model

since the cost scales linearly with the size of the ensemble.

In mean-variance estimation (MVE) models, we adapt the base CNN architecture to

produce 2 outputs (✓ = {µ, �2}) for each data point (xi, yi) in the last layer rather than 1,

and we train using the negative log-likelihood loss:

L(✓) = 1

N

NX

i=1

(yi � µ(xi))2

2�2(xi)
+

1

2
log(2⇡�2(xi))

In practice, the variance (�2) is clamped to a minimum value of 10�6 to prevent division by
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0.

Evidential deep learning modifies the loss function of the traditional CNN to jointly

maximize the model’s fit to data while also minimizing its evidence on errors (increasing

uncertainty on unreliable predictions) (21 ):

L(x) = LNLL(x) + �LR(x)

where LNLL(x) is the negative log-likelihood, LR(x) is the evidence regularizer, and � con-

trols the trade-o↵ between these two terms. In this study, we use � = 1 for all evidential

models. In these models, the last layer of the model produces 4 outputs m = {�, ⌫,↵, �}

that parameterize the Normal-Inverse-Gamma distribution. This distribution assumes that

targets yi are drawn i.i.d. from a Gaussian distribution with unknown mean and variance

✓ = {µ, �2}, where the mean is drawn from a Gaussian and the variance is drawn from an

Inverse-Gamma distribution. The output of the evidential model can be divided into the

prediction and the epistemic (model) and aleatoric (data) uncertainty components following

the analysis of Amini et al. (21 ):

E[µ] = �| {z }
prediction

, E[�2] =
�

↵� 1| {z }
aleatoric

, Var[µ] =
�

⌫(↵� 1)| {z }
epistemic

We report the sum of the aleatoric and epistemic uncertainties as the total uncertainty.

4.7 Evaluation Metrics

To give a comprehensive report of model accuracy, we computed the following metrics on

the test sets: root mean square error (RMSE), mean absolute error (MAE), coe�cient of

determination (R2), and Spearman rank correlation (⇢). RMSE is more sensitive to outliers

than MAE, so while both are informative independently, the combination of the two gives

additional information about the distribution of errors. R2 and ⇢ are both unitless and are
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thus more easily interpreted and compared across datasets.

We evaluated the quality of the uncertainty estimates using four metrics. First, ⇢unc is

the Spearman rank correlation between uncertainty and absolute prediction error. Following

Kompa et al. (35 ), we measured the coverage as the percentage of true values that fall within

the 95% confidence interval (±2�) of each prediction. Kompa et al. (35 ) define the width as

the size of the 95% confidence region (4�), but we normalized this width relative to the range

(R) of the training set as 4�/R to make these values unitless and thus more interpretable

across datasets. Finally, the miscalibration area (also called the area under the calibration

error curve or AUCE) quantifies the absolute di↵erence between the calibration plot and

perfect calibration in a single number (36 ).

4.8 Active Learning

Each active learning run began with a random sample of 10% of the full training data.

We evaluated several alternatives for adding to this initial dataset using di↵erent sampling

strategies (acquisition functions): explorative greedy, explorative sample, and random. “Ex-

plorative greedy” sampled the sequences with the highest uncertainty; “explorative sample”

sampled the data according to the probability of sampling a sequence equal to the ratio of its

uncertainty to the sum of all uncertainties in the dataset (i.e. random sampling weighted by

uncertainty); and “random” sampled the data uniformly from all unobserved sequences. We

employed these sampling strategies 5 times in each active learning run, with the 5 training set

sizes equally spaced on a log scale. We repeated this process using 3 folds (di↵erent random

seeds for sampling initial dataset and “explorative sample” probabilities) and calculated the

mean and standard deviation across these folds.
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1 Code Availability

The code for the models, uncertainty methods, and evaluation metrics in this work is available

at https://github.com/microsoft/protein-uq.

2 OHE Results
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A

C

B

Figure S1: Miscalibration area vs. root mean square error (RMSE) for the (a) AAV, (b)
Meltome, and (c) GB1 landscapes. Miscalibration area (also called the area under the
calibration error curve or AUCE) quantifies the absolute di↵erence between the calibration
plot and perfect calibration. It is desirable to have a model that is both accurate and well-
calibrated, so the best performing points are those closest to the lower left corner of the plots.
The GP Continuous model is not shown for the AAV landscape due to memory constraints for
training these models. The GP Continuous and Linear Bayesian Ridge models are not shown
for the Meltome landscape due to memory constraints and limitations of 32-bit LAPACK,
respectively.
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A

C

B

Figure S2: Coverage vs. average width / range for the (a) AAV, (b) Meltome, and (c) GB1
landscapes. Coverage is the percentage of true values that fall within the 95% confidence
interval (±2�) of each prediction, and the width is the size of the 95% confidence region
relative to the range of the training set (4�/R where R is the range of the training set). A
good model exhibits high coverage and low width, which corresponds to the upper left of
each plot. The horizontal dashed line indicates 95% coverage. The GP Continuous model is
not shown for the AAV landscape due to memory constraints for training these models. The
GP Continuous and Linear Bayesian Ridge models are not shown for the Meltome landscape
due to memory constraints and limitations of 32-bit LAPACK, respectively.
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B

A

Figure S3: Spearman rank correlations of (a) predictions (⇢) and (b) uncertainties (⇢unc) vs.
extrapolation. Within each landscape (AAV, Meltome, and GB1), splits are qualitatively
ordered by the amount of domain shift between train and test sets, with the lowest domain
shift on the left and the highest domain shift on the right. Error bars on the CNN results
represent the 95% confidence interval calculated from 5 di↵erent random initializations of
the CNN parameters.
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3 OHE vs. ESM Comparison

Figure S4: Comparison of prediction (⇢) and uncertainty (⇢unc) performance between the
OHE and ESM representations across all models and tasks. Red cells indicate that the
ESM representation performed better, while blue cells indicate that the OHE representation
performed better.

4 Prediction and Uncertainty Evaluation Metrics

Table S1: Test set RMSE for models trained on OHE representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 1.618 1.563 1.736 1.641 1.639 NaN 4.634
Random 1.226 1.194 1.155 1.146 1.316 NaN 1.899
Sampled vs. Designed 2.175 2.152 2.150 2.168 2.191 NaN 3.850

GB1 1 vs. Rest 1.231 1.231 1.238 1.231 1.231 1.351 1.766
2 vs. Rest 1.238 1.237 1.222 1.233 1.238 1.029 1.288
3 vs. Rest 0.850 0.844 0.914 0.872 0.872 0.776 1.010
Random 0.573 0.559 0.747 0.692 0.629 0.453 0.856

Meltome Random 9.066 8.569 8.703 8.965 8.887 NaN NaN
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Table S2: Test set MAE for models trained on OHE representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 1.274 1.229 1.350 1.268 1.311 NaN 3.364
Random 0.937 0.909 0.863 0.863 1.017 NaN 1.499
Sampled vs. Designed 1.720 1.682 1.670 1.703 1.732 NaN 2.676

GB1 1 vs. Rest 0.908 0.909 0.903 0.909 0.909 1.161 1.472
2 vs. Rest 0.990 0.986 0.913 0.977 0.984 0.675 1.002
3 vs. Rest 0.617 0.609 0.599 0.592 0.630 0.511 0.780
Random 0.400 0.382 0.461 0.431 0.438 0.302 0.648

Meltome Random 7.019 6.597 6.539 6.795 6.845 NaN NaN

Table S3: Test set R2 for models trained on OHE representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.366 0.409 0.271 0.348 0.347 NaN -4.195
Random 0.841 0.850 0.859 0.861 0.816 NaN 0.620
Sampled vs. Designed 0.608 0.616 0.617 0.610 0.602 NaN -0.229

GB1 1 vs. Rest -0.016 -0.015 -0.027 -0.015 -0.015 -0.223 -1.090
2 vs. Rest -0.012 -0.010 0.013 -0.004 -0.012 0.300 -0.095
3 vs. Rest 0.556 0.562 0.487 0.532 0.533 0.629 0.373
Random 0.774 0.785 0.616 0.670 0.727 0.859 0.496

Meltome Random 0.391 0.456 0.439 0.405 0.415 NaN NaN

Table S4: Test set ⇢ for models trained on OHE representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.727 0.737 0.738 0.742 0.713 NaN 0.640
Random 0.918 0.922 0.926 0.927 0.916 NaN 0.834
Sampled vs. Designed 0.762 0.769 0.770 0.765 0.762 NaN 0.657

GB1 1 vs. Rest 0.018 0.071 -0.081 -0.006 0.126 0.211 0.249
2 vs. Rest 0.156 0.304 0.351 0.268 0.313 0.694 0.555
3 vs. Rest 0.815 0.817 0.818 0.815 0.808 0.850 0.753
Random 0.890 0.894 0.872 0.881 0.880 0.922 0.789

Meltome Random 0.340 0.373 0.441 0.403 0.344 NaN NaN

Table S5: Test set ⇢unc for models trained on OHE representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.001 0.013 0.142 0.178 -0.114 NaN 0.145
Random -0.019 0.064 0.194 0.229 -0.030 NaN -0.007
Sampled vs. Designed 0.074 0.120 0.216 0.093 0.173 NaN 0.486

GB1 1 vs. Rest -0.005 -0.059 -0.015 0.009 -0.032 0.004 0.153
2 vs. Rest -0.006 0.022 0.088 0.181 -0.067 -0.323 0.092
3 vs. Rest 0.050 0.060 0.598 0.563 0.028 -0.621 -0.246
Random -0.016 0.085 0.718 0.752 -0.003 -0.370 -0.254

Meltome Random -0.097 0.053 0.267 0.331 -0.203 NaN NaN

Table S6: Test set % coverage for models trained on OHE representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.519 0.354 1.000 0.276 0.198 NaN 0.767
Random 0.641 0.356 1.000 0.438 0.268 NaN 0.955
Sampled vs. Designed 0.400 0.264 1.000 0.161 0.154 NaN 0.805

GB1 1 vs. Rest 0.025 0.010 0.795 0.372 0.020 0.942 0.026
2 vs. Rest 0.066 0.024 0.990 0.907 0.050 0.884 0.783
3 vs. Rest 0.412 0.182 1.000 0.440 0.185 0.933 0.902
Random 0.727 0.392 0.999 0.431 0.378 0.977 0.959

Meltome Random 0.554 0.457 1.000 0.494 0.277 NaN NaN
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Table S7: Test set 4�/R for models trained on OHE representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.006 0.003 0.115 0.003 0.002 NaN 0.438
Random 0.006 0.003 0.132 0.003 0.002 NaN 0.184
Sampled vs. Designed 0.006 0.003 0.103 0.002 0.002 NaN 0.191

GB1 1 vs. Rest 0.063 0.026 1.791 0.881 0.049 0.274 0.015
2 vs. Rest 0.010 0.003 0.336 0.137 0.007 0.116 0.107
3 vs. Rest 0.018 0.008 0.457 0.030 0.007 0.098 0.099
Random 0.015 0.005 0.332 0.016 0.006 0.052 0.069

Meltome Random 0.003 0.002 0.098 0.003 0.001 NaN NaN

Table S8: Test set miscalibration area for models trained on OHE representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.281 0.355 0.404 0.387 0.421 NaN 0.102
Random 0.215 0.354 0.445 0.318 0.392 NaN 0.004
Sampled vs. Designed 0.336 0.393 0.373 0.435 0.438 NaN 0.095

GB1 1 vs. Rest 0.489 0.495 0.218 0.357 0.492 0.198 0.488
2 vs. Rest 0.473 0.490 0.188 0.124 0.479 0.078 0.137
3 vs. Rest 0.332 0.425 0.402 0.324 0.426 0.122 0.045
Random 0.125 0.329 0.432 0.317 0.342 0.186 0.038

Meltome Random 0.263 0.306 0.450 0.289 0.387 NaN NaN

Table S9: Test set NLL for models trained on OHE representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 5.427 18.148 3.342 26.312 51.394 NaN 3.667
Random 3.678 19.773 3.430 7.856 24.652 NaN 2.058
Sampled vs. Designed 9.132 31.511 3.266 64.200 62.343 NaN 3.183

GB1 1 vs. Rest 2977.270 23918.764 3.259 12.176 3946.655 1.937 9871.345
2 vs. Rest 251.599 2695.786 1.834 1.790 380.500 1.596 2.076
3 vs. Rest 12.551 96.398 2.294 56.250 74.424 1.216 1.488
Random 2.413 29.654 2.165 90.282 24.882 0.757 1.265

Meltome Random 7.764 11.874 5.580 28.920 27.409 NaN NaN

Table S10: Test set NLLopt for models trained on OHE representation

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 1.237 1.202 1.282 1.214 1.277 NaN 2.183
Random 0.899 0.868 0.797 0.805 0.991 NaN 1.408
Sampled vs. Designed 1.538 1.498 1.481 1.517 1.542 NaN 1.834

GB1 1 vs. Rest 0.878 0.879 0.855 0.881 0.883 1.293 1.483
2 vs. Rest 1.055 1.049 0.908 1.033 1.042 0.418 0.977
3 vs. Rest 0.438 0.414 0.269 0.308 0.433 0.037 0.730
Random -0.079 -0.180 -0.223 -0.451 0.025 -0.374 0.541

Meltome Random 2.929 2.851 2.820 2.875 2.891 NaN NaN

Table S11: Test set NLL / NLLopt ratio for models trained on OHE representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 4.387 15.102 2.608 21.684 38.925 NaN 1.680
Random 4.089 22.765 4.305 9.750 24.970 NaN 1.462
Sampled vs. Designed 5.939 21.014 2.206 42.262 40.329 NaN 1.736

GB1 1 vs. Rest 3390.230 27281.195 3.810 13.818 4474.286 1.498 6656.782
2 vs. Rest 238.554 2564.788 2.024 1.732 365.159 3.816 2.125
3 vs. Rest 28.691 232.149 8.737 175.004 173.197 33.170 2.038
Random -49.594 -161.397 -10.754 -204.256 220.658 -2.026 2.339

Meltome Random 2.652 4.164 1.979 10.050 9.483 NaN NaN
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Table S12: Test set RMSE for models trained on ESM representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 2.241 2.213 2.157 2.168 2.217 NaN 4.083
Random 1.875 1.734 1.719 1.793 1.855 NaN 1.582
Sampled vs. Designed 2.648 2.555 2.581 2.639 2.649 NaN 2.942

GB1 1 vs. Rest 1.333 1.314 1.306 1.328 1.383 1.360 2.413
2 vs. Rest 1.127 1.111 1.086 1.118 1.140 1.111 1.484
3 vs. Rest 0.918 0.885 0.908 0.911 0.930 0.920 0.949
Random 0.761 0.719 0.812 0.775 0.780 0.669 0.631

Meltome Random 6.722 6.536 6.598 6.764 6.713 6.447 6.936

Table S13: Test set MAE for models trained on ESM representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 1.844 1.822 1.738 1.769 1.819 NaN 2.798
Random 1.474 1.354 1.306 1.400 1.458 NaN 1.235
Sampled vs. Designed 2.218 2.140 2.137 2.199 2.203 NaN 2.044

GB1 1 vs. Rest 1.143 1.127 1.110 1.137 1.188 1.173 1.949
2 vs. Rest 0.868 0.858 0.819 0.862 0.886 0.845 1.123
3 vs. Rest 0.687 0.656 0.627 0.654 0.697 0.680 0.731
Random 0.537 0.502 0.513 0.515 0.556 0.471 0.478

Meltome Random 5.024 4.862 4.806 4.974 4.999 4.777 5.218

Table S14: Test set R2 for models trained on ESM representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest -0.216 -0.187 -0.128 -0.140 -0.193 NaN -3.034
Random 0.628 0.683 0.687 0.659 0.636 NaN 0.736
Sampled vs. Designed 0.418 0.459 0.447 0.422 0.418 NaN 0.282

GB1 1 vs. Rest -0.191 -0.157 -0.144 -0.183 -0.284 -0.240 -2.900
2 vs. Rest 0.162 0.185 0.222 0.174 0.142 0.185 -0.455
3 vs. Rest 0.481 0.518 0.493 0.489 0.467 0.480 0.446
Random 0.600 0.644 0.546 0.585 0.580 0.692 0.726

Meltome Random 0.665 0.684 0.678 0.661 0.666 0.692 0.644

Table S15: Test set ⇢ for models trained on ESM representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.522 0.557 0.557 0.542 0.531 NaN 0.586
Random 0.816 0.842 0.837 0.826 0.813 NaN 0.876
Sampled vs. Designed 0.682 0.714 0.701 0.692 0.681 NaN 0.696

GB1 1 vs. Rest 0.202 0.303 0.222 0.200 0.152 0.315 0.279
2 vs. Rest 0.509 0.535 0.552 0.530 0.490 0.523 0.528
3 vs. Rest 0.769 0.788 0.790 0.776 0.762 0.779 0.809
Random 0.822 0.842 0.837 0.832 0.813 0.861 0.871

Meltome Random 0.638 0.664 0.668 0.654 0.633 0.650 0.591

Table S16: Test set ⇢unc for models trained on ESM representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest -0.235 0.129 -0.069 0.084 -0.162 NaN 0.441
Random -0.194 0.143 -0.016 0.274 -0.110 NaN 0.008
Sampled vs. Designed -0.142 0.075 0.206 0.005 -0.066 NaN 0.349

GB1 1 vs. Rest 0.136 0.099 -0.057 0.099 0.166 0.233 0.087
2 vs. Rest 0.037 0.084 0.323 0.358 0.018 0.068 0.245
3 vs. Rest -0.033 0.043 0.501 0.554 -0.027 -0.237 0.056
Random 0.054 0.223 0.621 0.647 0.145 -0.347 -0.072

Meltome Random 0.214 0.241 0.327 0.376 0.275 0.109 0.119
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Table S17: Test set % coverage for models trained on ESM representation (")

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.082 0.289 1.000 0.499 0.052 NaN 0.721
Random 0.110 0.352 1.000 0.759 0.047 NaN 0.950
Sampled vs. Designed 0.064 0.195 1.000 0.378 0.039 NaN 0.817

GB1 1 vs. Rest 0.104 0.126 0.985 0.639 0.079 0.943 0.012
2 vs. Rest 0.146 0.183 0.798 0.264 0.099 0.913 0.801
3 vs. Rest 0.127 0.289 0.998 0.571 0.076 0.935 0.890
Random 0.161 0.377 1.000 0.586 0.102 0.968 0.947

Meltome Random 0.097 0.283 1.000 0.711 0.059 0.956 0.932

Table S18: Test set 4�/R for models trained on ESM representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.001 0.005 2.989 0.008 0.001 NaN 0.162
Random 0.001 0.004 0.157 0.011 0.000 NaN 0.155
Sampled vs. Designed 0.001 0.004 0.425 0.008 0.001 NaN 0.152

GB1 1 vs. Rest 0.054 0.062 0.555 0.254 0.042 0.275 0.008
2 vs. Rest 0.013 0.018 0.127 0.031 0.009 0.120 0.124
3 vs. Rest 0.006 0.013 0.271 0.042 0.003 0.102 0.088
Random 0.002 0.006 0.148 0.019 0.002 0.063 0.050

Meltome Random 0.000 0.001 0.030 0.003 0.000 0.605 0.580

Table S19: Test set miscalibration area for models trained on ESM representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 0.467 0.387 0.457 0.297 0.479 NaN 0.173
Random 0.455 0.356 0.392 0.162 0.481 NaN 0.016
Sampled vs. Designed 0.474 0.423 0.414 0.348 0.484 NaN 0.107

GB1 1 vs. Rest 0.459 0.451 0.053 0.268 0.469 0.202 0.494
2 vs. Rest 0.442 0.427 0.107 0.397 0.461 0.057 0.121
3 vs. Rest 0.449 0.379 0.293 0.273 0.469 0.022 0.066
Random 0.434 0.340 0.345 0.252 0.461 0.123 0.037

Meltome Random 0.460 0.384 0.383 0.190 0.476 0.055 0.019

Table S20: Test set NLL for models trained on ESM representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 453.943 19.534 5.207 10.936 1370.946 NaN 3.667
Random 320.970 16.868 3.338 2.488 1212.551 NaN 1.877
Sampled vs. Designed 444.501 44.511 4.052 9.440 1913.293 NaN 2.724

GB1 1 vs. Rest 64.584 77.056 1.710 2.402 99.813 1.948 25929.804
2 vs. Rest 138.280 76.581 7.136 599.876 293.891 1.595 2.139
3 vs. Rest 273.534 43.638 1.726 39.261 671.193 1.348 1.468
Random 247.572 20.924 1.647 19.394 565.041 1.053 0.966

Meltome Random 301.052 30.996 4.423 4.672 703.508 3.282 3.360

Table S21: Test set NLLopt for models trained on ESM representation

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 1.664 1.653 1.567 1.608 1.644 NaN 1.911
Random 1.367 1.278 1.205 1.310 1.359 NaN 1.188
Sampled vs. Designed 1.871 1.838 1.812 1.855 1.851 NaN 1.639

GB1 1 vs. Rest 1.275 1.259 1.237 1.268 1.309 1.304 1.694
2 vs. Rest 0.847 0.841 0.764 0.836 0.883 0.864 1.053
3 vs. Rest 0.565 0.493 0.384 0.454 0.585 0.543 0.677
Random 0.221 0.135 -0.042 0.029 0.281 0.083 0.235

Meltome Random 2.551 2.510 2.464 2.519 2.537 2.477 2.586
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Table S22: Test set NLL / NLLopt ratio for models trained on ESM representation (#)

Model Dropout Ensemble Evidential MVE SVI GP BRR
Dataset Split

AAV 7 vs. Rest 273.638 11.806 3.324 6.734 826.919 NaN 1.919
Random 228.987 13.229 2.786 1.915 868.280 NaN 1.579
Sampled vs. Designed 235.180 24.210 2.239 5.094 1013.232 NaN 1.662

GB1 1 vs. Rest 50.427 61.282 1.385 1.901 77.453 1.494 15310.669
2 vs. Rest 160.595 91.310 8.750 697.394 328.277 1.846 2.031
3 vs. Rest 453.390 89.292 4.715 90.982 1070.519 2.483 2.168
Random 991.498 168.540 -6.076 42.706 1751.474 12.645 4.110

Meltome Random 117.634 12.360 1.796 1.856 276.206 1.325 1.299
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5 Active Learning

Figure S5: Active learning results for AAV/Sampled vs. Designed using CNN Dropout
uncertainty.
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Figure S6: Active learning results for AAV/Sampled vs. Designed using CNN Ensemble
uncertainty.
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Figure S7: Active learning results for AAV/Sampled vs. Designed using CNN Evidential
uncertainty.
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Figure S8: Active learning results for AAV/Sampled vs. Designed using CNN MVE uncer-
tainty.
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Figure S9: Active learning results for AAV/Sampled vs. Designed using CNN SVI uncer-
tainty.
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Figure S10: Active learning results for AAV/Sampled vs. Designed using Linear Bayesian
Ridge uncertainty.
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Figure S11: Active learning results for AAV/Random using CNN Dropout uncertainty.
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Figure S12: Active learning results for AAV/Random using CNN Ensemble uncertainty.
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Figure S13: Active learning results for AAV/Random using CNN Evidential uncertainty.

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.536962doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.536962
http://creativecommons.org/licenses/by/4.0/


Figure S14: Active learning results for AAV/Random using CNN MVE uncertainty.
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Figure S15: Active learning results for AAV/Random using CNN SVI uncertainty.
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Figure S16: Active learning results for AAV/Random using Linear Bayesian Ridge uncer-
tainty.
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Figure S17: Active learning results for AAV/7 vs. Rest using CNN Dropout uncertainty.
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Figure S18: Active learning results for AAV/7 vs. Rest using CNN Ensemble uncertainty.
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Figure S19: Active learning results for AAV/7 vs. Rest using CNN Evidential uncertainty.
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Figure S20: Active learning results for AAV/7 vs. Rest using CNN MVE uncertainty.

26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.536962doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.536962
http://creativecommons.org/licenses/by/4.0/


Figure S21: Active learning results for AAV/7 vs. Rest using CNN SVI uncertainty.
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Figure S22: Active learning results for AAV/7 vs. Rest using Linear Bayesian Ridge uncer-
tainty.
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Figure S23: Active learning results for GB1/1 vs. Rest using CNN Dropout uncertainty.
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Figure S24: Active learning results for GB1/1 vs. Rest using CNN Ensemble uncertainty.
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Figure S25: Active learning results for GB1/1 vs. Rest using CNN Evidential uncertainty.
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Figure S26: Active learning results for GB1/1 vs. Rest using CNN MVE uncertainty.
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Figure S27: Active learning results for GB1/1 vs. Rest using CNN SVI uncertainty.
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Figure S28: Active learning results for GB1/1 vs. Rest using GP Continuous uncertainty.
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Figure S29: Active learning results for GB1/1 vs. Rest using Linear Bayesian Ridge uncer-
tainty.
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Figure S30: Active learning results for GB1/Random using CNN Dropout uncertainty.
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Figure S31: Active learning results for GB1/Random using CNN Ensemble uncertainty.
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Figure S32: Active learning results for GB1/Random using CNN Evidential uncertainty.
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Figure S33: Active learning results for GB1/Random using CNN MVE uncertainty.
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Figure S34: Active learning results for GB1/Random using CNN SVI uncertainty.
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Figure S35: Active learning results for GB1/Random using GP Continuous uncertainty.
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Figure S36: Active learning results for GB1/Random using Linear Bayesian Ridge uncer-
tainty.
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Figure S37: Active learning results for GB1/3 vs. Rest using CNN Dropout uncertainty.
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Figure S38: Active learning results for GB1/3 vs. Rest using CNN Ensemble uncertainty.
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Figure S39: Active learning results for GB1/3 vs. Rest using CNN Evidential uncertainty.
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Figure S40: Active learning results for GB1/3 vs. Rest using CNN MVE uncertainty.
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Figure S41: Active learning results for GB1/3 vs. Rest using CNN SVI uncertainty.
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Figure S42: Active learning results for GB1/3 vs. Rest using GP Continuous uncertainty.
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Figure S43: Active learning results for GB1/3 vs. Rest using Linear Bayesian Ridge uncer-
tainty.
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Figure S44: Active learning results for GB1/2 vs. Rest using CNN Dropout uncertainty.
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Figure S45: Active learning results for GB1/2 vs. Rest using CNN Ensemble uncertainty.
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Figure S46: Active learning results for GB1/2 vs. Rest using CNN Evidential uncertainty.

52

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.536962doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.536962
http://creativecommons.org/licenses/by/4.0/


Figure S47: Active learning results for GB1/2 vs. Rest using CNN MVE uncertainty.

53

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.536962doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.536962
http://creativecommons.org/licenses/by/4.0/


Figure S48: Active learning results for GB1/2 vs. Rest using CNN SVI uncertainty.
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Figure S49: Active learning results for GB1/2 vs. Rest using GP Continuous uncertainty.
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Figure S50: Active learning results for GB1/2 vs. Rest using Linear Bayesian Ridge uncer-
tainty.
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Figure S51: Active learning results for Meltome/Random using CNN Dropout uncertainty.
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Figure S52: Active learning results for Meltome/Random using CNN Ensemble uncertainty.
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Figure S53: Active learning results for Meltome/Random using CNN Evidential uncertainty.
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Figure S54: Active learning results for Meltome/Random using CNN MVE uncertainty.
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Figure S55: Active learning results for Meltome/Random using CNN SVI uncertainty.
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Figure S56: Active learning results for Meltome/Random using GP Continuous uncertainty.
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Figure S57: Active learning results for Meltome/Random using Linear Bayesian Ridge un-
certainty.
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