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 2 

Abstract 24 

Objective: Ultrafast ultrasound imaging has been used to measure intramuscular mechanical 25 

dynamics associated with single motor unit (MU) activations. Detecting MU activity from 26 

ultrasound sequences requires decomposing a displacement velocity field into components 27 

consisting of spatial maps and temporal displacement signals. These components can be 28 

associated with putative MU activity or spurious movements (noise). The differentiation 29 

between putative MUs and noise has been accomplished by comparing the temporal 30 

displacement signals with MU firings obtained from needle EMG. Here, we examined whether 31 

the repeatability of the spatial maps over brief time intervals can serve as a criterion for 32 

distinguishing putative MUs from noise in low-force isometric contractions.  33 

Approach: In five healthy subjects, ultrafast ultrasound images and high-density surface EMG 34 

(HDsEMG) were recorded simultaneously from biceps brachii. MUs identified through 35 

HDsEMG decomposition were used as a reference to assess the outcomes of the ultrasound-36 

based decomposition. For each contraction, displacement velocity sequences from the same 37 

eight-second ultrasound recording were separated into consecutive two-second epochs and 38 

decomposed. The Jaccard Similarity Coefficient (JSC) was employed to evaluate the 39 

repeatability of components’ spatial maps across epochs. Finally, the association between the 40 

ultrasound components and the MUs decomposed from HDsEMG was assessed. 41 

Main results: All the MU-matched components had JSC > 0.38, indicating they were 42 

repeatable and accounted for about one-third of the HDsEMG-detected MUs (1.8 ± 1.6 matches 43 

over 4.9 ± 1.8 MUs). The repeatable components (with JSC over the empirical threshold of 44 

0.38) represented 14% of the total components (6.5 ± 3.3 components). These findings align 45 

with our hypothesis that intra-sequence repeatability can differentiate putative MUs from 46 

spurious components and can be used for data reduction. 47 
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Significance: The results of our study provide the foundation for developing stand-alone 48 

methods to identify MU in ultrafast ultrasound sequences and represent a step forward towards 49 

real-time imaging of active MU territories. These methods are relevant for studying muscle 50 

neuromechanics and designing novel neural interfaces. 51 

 52 

Keywords: motor unit, ultrafast ultrasound, electromyography, decomposition, territory 53 

 54 

Introduction 55 

Recently, neuromuscular imaging based on ultrafast ultrasound (UUS) has evolved 56 

considerably, opening new fronts in studying muscle contraction at the single motor unit (MU) 57 

level [1–9]. High-resolution imaging of active muscle tissue can provide spatiotemporal 58 

mechanics of individual MU fibres, complementing the information accessible with standard 59 

electrophysiological techniques for assessing single MU properties, i.e., invasive needle 60 

electromyography (nEMG) [10–12] and non-invasive surface EMG (sEMG) [13,14]. The 61 

added information on spatial and temporal mechanics can foster basic studies on muscle 62 

neuromechanics and force generation mechanisms [15], along with providing biomarkers for 63 

myopathic disorders [16–18], and innovative neural interfaces relevant, e.g., in rehabilitation 64 

and prosthetic control [19–21]. 65 

 66 

The methodology of identifying single MU activity in UUS recordings during isometric 67 

voluntary contractions was recently proposed based on a two-step approach [3]. First, the subtle 68 

intramuscular displacement velocities were estimated [22], and then these displacement 69 

velocities were decomposed into multiple components. Each component comprises a spatial 70 

map (location of the component, related to MU territory) and a temporal signal (time course of 71 

its displacement velocity, related to MU spike train). To separate spurious components (noise) 72 
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from those associated with single MU activation, a procedure based on temporal signal 73 

characteristics was adopted and later validated against single MU identification based on needle 74 

EMG [4]. It was found that a large proportion of the components’ temporal twitch-by-twitch 75 

signals could not be matched with MU firings [4,6]. Two factors may contribute to this 76 

relatively low agreement between the two measures. The first is the heterogenic composition 77 

of linear and non-linear elastic tissue constituents, causing a non-linear combination of MU 78 

twitches. The second one concerns MU firing variability. Indeed, although the MU pool should 79 

be stable during these contractions, the firing rate of MUs varies, which has been shown to 80 

influence the temporal twitch parameters, i.e., alter the temporal signal (sequence of twitches) 81 

[15]. 82 

 83 

In contrast to the temporal firing characteristics, the location of MU fibres within the muscle 84 

cross-section should represent an invariant feature during constant force and isometric 85 

contractions. It follows that components with a stable spatial map throughout the contraction 86 

are more likely to be associated with actual MU activations. Hence, we hypothesise that the 87 

spatial repeatability of a component across short epochs (intra-sequence repeatability) is a 88 

feature associated with MU activity and may be used as a criterion for data reduction of the 89 

initial decomposed components. In this study, we aimed to identify intra-sequence spatially 90 

repeatable components and examine whether repeatability can be used to separate MUs from 91 

noise in stable low-force isometric contractions. For this purpose, we decomposed displacement 92 

velocity images in consecutive two-second epochs from eight-second UUS recordings. We 93 

quantified the repeatability of the components’ spatial map across epochs and examined 94 

whether the repeatable components were associated with actual MU activity. To this end, we 95 

used a set of reference MUs identified with an independent and validated decomposition 96 

method (HDsEMG decomposition [23]), applied to experimental signals detected 97 
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simultaneously with the ultrasound images. Finally, we determined whether the analysis based 98 

on two-second intervals (required to assess the repeatability) affects the number of MU-99 

matched components compared with the decomposition of the recordings’ full length (eight 100 

seconds). 101 

 102 

Methods 103 

Experimental protocol 104 

Five subjects (31 ± 6 years, three males, and two females) performed three low-level isometric 105 

constant-force elbow flexions (from 2% to 10% of the maximum voluntary contraction). The 106 

details of the experimental protocol are reported in Carbonaro et al. [6]. Briefly, for each 107 

contraction, eight-second-long UUS recordings (Verasonics Vantage 128, Verasonics Inc., 108 

Kirkland, WA) were recorded simultaneously [24] with HDsEMG (MEACS, LISiN, 109 

Politecnico di Torino, Turin, Italy [25]). A grid of 64 surface-EMG electrodes transparent to 110 

ultrasounds (8x8, 10 mm inter-electrode distance [26]) was placed on the muscle belly with the 111 

ultrasound transducer (L11-5v, 7.81 MHz centre frequency, 31.25 MHz sampling rate, and 112 

2500 Hz frame rate) positioned between the fourth and the fifth row of electrodes; i.e. 113 

transversally with respect to the muscle fibres’ direction (Fig. 1A). The study was conducted 114 

following the Declaration of Helsinki and approved by the Regional Ethics Committee. 115 

Informed consent was obtained from all subjects.  116 

 117 

UUS and HDsEMG data processing 118 

The radio frequency UUS data comprised 20000 frames (2176x128 pixels, i.e., approximately 119 

53x40 mm). After traditional delay-and-sum beamforming, each eight-second dataset was 120 

processed in two-second epochs [3,4] with one-second overlapping ([0:2] s, [1:3] s, …, [5:7] s, 121 
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[6:8] s) resulting in seven sub-datasets of two seconds (Fig. 1C). Each pixel in each sub-dataset 122 

was filtered over time with a 1D median filter with the order equal to 10 ms [3,4]. The image 123 

was cropped to 20x40 mm (850x128 pixels) [6,7] (Fig. 1D). For each epoch, displacement 124 

velocity images were calculated using 2D autocorrelation velocity tracking [22,27] with 1 mm 125 

in-depth and a sliding window of 10 ms (Fig. 1E). The temporal evolution of each pixel in the 126 

velocity images was high pass filtered at 3 Hz using 3rd order Butterworth filter (zero-phase) to 127 

attenuate slow movements not associated with muscle contraction [3]. Finally, the velocity 128 

images were down-sampled to 63x128 pixels, corresponding to approximately 0.3x0.3 mm per 129 

pixel. 130 

 131 

HDsEMG signals were bandpass filtered (20-400 Hz) and decomposed into individual MU 132 

spike trains [23] (Fig. 1K). The spike trains were edited [28] and resampled at the ultrasound 133 

frame rate. MU action potential (MUAP) amplitude distributions and their centroids were 134 

calculated using the longitudinal single differential MUAP decomposed from HDsEMG [29]. 135 

Considering that the mediolateral surface covered by the HDsEMG grid is larger than that of 136 

the ultrasound transducer (Fig. 1A), all the centroids with the mediolateral coordinate outside 137 

the ultrasound field of view were truncated to the position of the first or last element of the 138 

probe (i.e., element 1 or 128). 139 

 140 

Spatiotemporal decomposition of displacement velocity images 141 

As described in previous papers, the displacement velocity images were processed over five 142 

partially overlapping Region of Interest (ROIs) of 20x20 mm (5 mm increments) [4,6,8] (Fig. 143 

1F). We used spatiotemporal independent component analysis (stICA) [30] with 𝛼 = 1.0 [8] to 144 

obtain 25 spatial components (spatial maps) and corresponding temporal components 145 
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(temporal signals) per ROI [4,8] (Fig. 1G). Hence, we obtained 125 spatiotemporal ultrasound 146 

components for each recording. 147 

 148 

We clustered the intensities of each spatial map using the k-means algorithm with five clusters 149 

based on Euclidean distance (Fig. 1H). The cluster with the highest intensity values was 150 

assumed to be the localised spatial region (territory) of interest. Given this cluster, a binary map 151 

was generated. Objects with less than 25 connected pixels (~1.5x1.5 mm2) were removed to 152 

remove noisy pixels at other regions in the image. 153 

 154 

Repeatability analysis: selecting similar spatial maps across epochs  155 

 A Jaccard Similarity Coefficient (JSC) criterion based on the binary maps was used to select a 156 

set of similar spatial maps across different time epochs. Specifically, the 25 spatial maps of the 157 

first two-second epoch for each ROI were regarded as reference maps (Fig. 1I). Jaccard 158 

Similarity Coefficients were calculated between each reference map and the 25 maps obtained 159 

from each of the remaining six epochs. For each epoch, the map with the highest JSC was 160 

retained. This procedure provided, for each reference map, a selection of six spatial maps 161 

maximally similar to it. The mean spatial map and mean JSC (indicating the level of 162 

repeatability of a component) were then computed using the selected maps. In total, 25 mean 163 

spatial maps were identified for each of the five ROIs (125 mean spatial maps, including all 164 

five ROIs). 165 

 166 

Association of selected similar components with MUs from HDsEMG 167 

We studied the association between the ultrasound components selected in the previous 168 

paragraph and the characteristics of individual MUs identified through HDsEMG 169 
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decomposition. To this end, we considered the temporal signal corresponding to the selected 170 

spatial maps and the firing pattern of the MUs identified from HDsEMG. 171 

 172 

 The temporal signals of each set of selected components were spike-triggered averaged (Fig. 173 

1J) using the spike train of individual MUs identified from HDsEMG (Fig. 1K). This procedure 174 

was applied to all the combinations of selected ultrasound components and HDsEMG MUs, 175 

leading to a large set of putative twitches (Fig. 1J). Only those whose peak-to-peak amplitude 176 

exceeded a noise threshold were retained among these putative twitches. Among this subset, 177 

the pair (ultrasound component – HDsEMG MU) leading to the highest twitch amplitude was 178 

called the MU-matched component. The noise threshold was calculated by generating 125 179 

temporal components of coloured noise (5-30 Hz bandwidth of white noise) and spike-triggered 180 

averaged with 100 random spike trains (mean firing rates between 8-20 Hz and standard 181 

deviation of 15% of the mean inter-pulse interval [31]). The threshold value was computed as 182 

the mean plus two standard deviations of the peak-to-peak amplitudes of all the combinations 183 

of random components and spike trains. 184 

 185 

Number of matched components with MUs from HDsEMG: intra and full sequence 186 

approach 187 

We intended to assess whether the analysis on two-second intervals, required to assess the 188 

repeatability, affected the number of MU-matched components. Therefore, we compared the 189 

number of MU-matched components found with the intra-sequence repeatability approach with 190 

the components decomposed from the stICA applied over the full sequence recording [4]. In 191 

both approaches, the matching with HDsEMG MUs was performed using the same method 192 

described in the previous paragraph. 193 

 194 
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Statistical analysis 195 

 We calculated descriptive statistics associated with the components (epochs and full sequence) 196 

and the MUs decomposed from HDsEMG. Based on the matched components with MU, we 197 

calculated the area, equivalent diameter (square root of 4xArea/p as in [3]), and depth of the 198 

centroid of the component below the skin. In addition, the distance between the mediolateral 199 

centroids of the spatial map (based on the binary map) and MUAP spatial distribution (based 200 

on the spike-triggered average on the HDsEMG signals using the MU spike trains [29]) for 201 

each matched component and MU was calculated. 202 

 203 

We tested the pairwise difference between the number of MU-matched components between 204 

the intra-sequence repeatability and the full sequence approach using a two-sided Wilcoxon 205 

signed rank test. In addition, we tested the difference in median JSC and normalised peak-to-206 

peak amplitude, respectively, between the MU- and non-MU-matched components using the 207 

Mann-Whitney U test. The significance level was set to 0.05. 208 

 209 

Results 210 

Out of 20 recordings, 99 MUs (4.9 ± 1.8 MUs per recording) were identified by decomposing 211 

HDsEMG signals. The MUs had stable spike trains over the eight-second recordings with firing 212 

rates of 12.3 ± 2.1 Hz.  213 

 214 

We observed various degrees of intra-sequence repeatability across the 125 ultrasound 215 

components per recording, as shown by the large variability of JSC values (Fig. S1 in 216 

Supplementary material). Fig. 2 depicts two examples of repeatable components (high mean 217 

JSC) and one non-repeatable component (low mean JSC) from one ROI of a representative 218 

subject recording. 219 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.537211doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.537211
http://creativecommons.org/licenses/by-nd/4.0/


 

 10 

 220 

Association of selected similar components with MUs from HDsEMG 221 

The scatterplot of Fig. 3 shows the relationship between JSC values and the amplitude of the 222 

(spike-triggered averaged) putative twitches from all subjects and trials. Each data point in Fig. 223 

3 represents an ultrasound component and an HDsEMG MU that provided the putative twitch 224 

with the highest amplitude. Those below the noise thresholds (grey dots in Fig. 3) were 225 

discarded among these data points. In some instances, the above threshold putative twitches 226 

(coloured dots in Fig. 3) was obtained by combining the same MU and different ultrasound 227 

components. In these cases, the combination leading to the highest putative twitch was retained 228 

(MU-matched components, red circles in Fig. 3). The MU-matched components had a higher 229 

JSC than the non-MU-matched (grey dots) components (0.61 ± 0.12 vs 0.26 ± 0.26; p < 0.001) 230 

(Fig. 3). Noteworthy, the MU-matched components had a mean JSC always greater than 0.38, 231 

suggesting good repeatability (Fig. 2). In addition, defining the components as repeatable using 232 

this empirical threshold of 0.38, each recording had 6.5 ± 3.3 repeatable components.  233 

 234 

Fig. 4 shows three representative examples illustrating the spatial agreement between MUAP 235 

distributions and spatial maps of the MU-matched components together with the corresponding 236 

velocity twitches obtained with spike trigger averaging over all the MU firings of all epochs. 237 

 MU-matched components were spatially (medio-laterally) adjacent to the MUAP distribution 238 

(Table 1), as demonstrated by the mediolateral distance between the centroid of the MUAP 239 

distributions and the centroid of the spatial maps (5.35 ± 5.17 mm, N = 35 MU). The centroids 240 

of the mean spatial maps were distributed across the whole field of view with depths between 241 

2.90 mm and 14.01 mm (Table 1). In addition, the MU-matched components had a diameter of 242 

4.03 ± 1.28 mm, similar to previously reported findings of MU territory size using scanning-243 

EMG [32].  244 
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 245 

Number of matched components with MUs from HDsEMG: intra and full sequence 246 

approach 247 

The intra-sequence analysis led to 35 MU-matched components, i.e., 35.4% of the MUs 248 

identified by HDsEMG (Table S1, Supplementary material). By decomposing the full eight-249 

second UUS, we found 36 matches, i.e., 36.4% of the MUs identified by HDsEMG. We found 250 

no difference in the number of matched MUs across all recordings concerning the two 251 

approaches (p = 0.9844). 252 

 253 

Discussion 254 

This study investigated whether the spatial repeatability of components extracted from UUS 255 

sequences can be used as a criterion to separate muscle tissue displacements associated with 256 

single MU activation from noise during stable low-force isometric contractions. First, we 257 

decomposed displacement velocity sequences from consecutive two-second epochs of eight-258 

second UUS recordings. Then, we quantified the repeatability of the components’ spatial map 259 

across epochs and examined whether there was an association between the repeatability level 260 

and the degree of matching with reference MUs identified through HDsEMG decomposition. 261 

Finally, we investigated whether this intra-sequence approach using short epochs affects the 262 

number of matched MUs by comparing it with the decomposition of the recordings’ full length 263 

(eight seconds). We obtained three main findings: 1) all the MU-matched components had a 264 

JSC larger than 0.38 and accounted for about one-third of the HDsEMG-detected MU, (2) The 265 

components with JSC > 0.38 represented approximately 14% of the 125 initial components 266 

from each recording, and (3) the number of MU-component matches did not differ between the 267 

intra- and full-sequence approaches.  268 

 269 
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About 14% of the spatiotemporal components identified applying stICA to UUS sequences 270 

were matched with MUs decomposed independently from HDsEMG. A common characteristic 271 

of all the MU-matched components was the high JSC (Fig. 3) of their spatial maps. This 272 

evidence suggests that spatial repeatability across a short epoch is a relevant feature useful to 273 

identify putative MUs and implement data reduction methods on the initial set of ultrasound 274 

components. This result confirms the initial hypothesis, i.e., since the location of the MU fibres 275 

is an invariant feature of the MU during stable isometric contractions, repeatable spatial maps 276 

are more likely to be associated with actual MUs. Whether this hypothesis applies to conditions 277 

other than isometric or constant force contractions likely depends on how MU territory is 278 

represented in the ultrasound scanning plane and how this representation changes during a 279 

contraction. For instance, muscle shape changes occurring during dynamic contractions may 280 

lead to a shift or a shape change of the area where MU fibres’ activation induces movement 281 

within the muscle cross-section, i.e., within the ultrasound scanning plane. This would clearly 282 

undermine the assumption of MU territory spatial invariance, which is the basis for our 283 

hypothesis. Although to a lesser extent, similar variations in MU territory representation can 284 

also occur during isometric contractions, for instance, during force-varying contractions, 285 

fatiguing contractions or any condition inducing a progressive MU recruitment or de-286 

recruitment. Further studies are required to quantify the effects of these factors on UUS 287 

decomposition. 288 

 289 

About one-third of MUs decomposed from HDsEMG matched with repeatable ultrasound 290 

components. This is similar to the number of successful identifications found in previous 291 

studies. It has been previously associated with differences in detection volume and 292 

characteristics of two detection systems (EMG and ultrasound) [4,6,33]. In addition to the 293 

characteristics of the two measuring techniques, it is worth noting that the measured system is 294 
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expected to be non-linear due to the heterogenic composition of linear and non-linear elastic 295 

constituents. Already at 5-10% MVC, many MUs are active and may suppress or distort the 296 

triggered twitch amplitude. Another aspect to consider is that, in this study, we found more 297 

repeatable ultrasound components for each recording (6.5 ± 3.3) than HDsEMG MUs (4.9 ± 298 

1.8). Although ultrasound provides a larger field of view and higher spatial resolution than 299 

HDsEMG, it remains unclear whether these unmatched repeatable components are MUs and 300 

whether they identify different MUs in the whole active MU population. In the present study, 301 

the number of successful identifications may have been biased by one subject for which our 302 

matching criteria led to no matched MUs. This case was most likely due to the poor quality of 303 

the displacement velocity images. The exclusion of this subject would have increased the 304 

percentage of MU-matches from 35.4% to 42.7% for the intra-sequence repeatability approach 305 

and from 36.4% to 43.9% for the original decomposition over the full sequence (Table S1, 306 

Supplementary Material). 307 

 308 

Decomposing displacement velocity images into components using stICA over partially 309 

overlapping windows likely resulted in component duplicates. Fig. 5a shows two examples of 310 

duplicates in which three different components decomposed in three consecutive ROIs showed 311 

an amplitude of the twitches (related to the same MU firings) over the noise threshold. In this 312 

case, the component providing the highest twitch amplitude was selected and regarded as the 313 

MU-matched component. Moreover, it is worth noting that the stICA approach we used 314 

assumes spatial independence to decompose the dataset [30,34]. For this reason, it may split 315 

MU territories into separate components if the MU activation results in complex movements, 316 

e.g. due to the interaction between active and passive tissue [35,36] or tissue rotation due to so-317 

called MU twisting [1,7]. In this regard, Fig. 5b shows two examples of MU twisting of two 318 

identified MUs. Two components (matched with the same MU) are spatially separated in two 319 
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regions of activation (blue and green spots in Fig. 5b) close to each other with inverted twitch 320 

shapes (blue and green twitches in Fig. 5b). The shape of the twitch is related to the direction 321 

of the movement. In Fig. 5b, the green twitches are negative (i.e., towards the probe/up), while 322 

the blue ones are positive (i.e., away from the probe/down). All these examples of duplicate 323 

components are now separated and contribute to the above-threshold components in Fig. 3 324 

(small orange points). In future studies, components belonging to the same MU may be merged 325 

considering the spatial overlay or a correlation approach based on, e.g., the temporal signals.  326 

 327 

Although finding repeatable components requires eight seconds with the intra-sequence 328 

approach herein proposed, the results of this study confirm previous studies that the UUS 329 

decomposition method can identify possible MU activity in recordings as short as two seconds 330 

[4]. Identifying MUs from a short sequence is an advantage over other methods, such as spike-331 

triggered averaging [9], which requires longer recordings due to other simultaneously active 332 

MUs and the motion of non-muscular structures hiding large parts of the movement caused by 333 

the target MU. Therefore, the blind source separation approach provides advantages compared 334 

to the spike-trigger averaging approach, such as lower memory and storage requirements and a 335 

potential to be used for, e.g., real-time imaging [37] and dynamic contractions applications. For 336 

these applications, future studies must consider the lower bound in terms of the recording 337 

duration to identify MUs and improve the classification of components into MUs or non-MUs 338 

using robust features or training a classifier. For example, the Gaussian-like 2D distribution of 339 

velocities reported in this work for the most repeatable components and similar to what has 340 

been found in previous studies [1,4,6,7], may be a feature for the classification of a component 341 

as a MU. Thus, having a classifier for MU/non-MU-associated components enables the UUS 342 

approach to be stand-alone from HDsEMG. 343 

 344 
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In conclusion, this study investigated the association of intra-sequence repeatable components 345 

with individual MU activity. We found that 1) spatial repeatability can be used as a data 346 

reduction to select putative MU activity during stable isometric contractions, and 2) the UUS 347 

decomposition method can identify possible MU activity in two-second recordings equally well 348 

as in eight-second recordings. These findings provide a foundation for developing stand-alone 349 

methods to identify MU in ultrafast ultrasound and represent a step towards real-time imaging 350 

of active MU territories.  351 
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Figures 470 

 471 

Figure 1. Illustration of the ultrasound data processing and identification of repeatable spatial maps. A. 472 

Experimental setup with simultaneous ultrafast ultrasound (UUS) and high-density surface electromyography 473 

(HDsEMG) recordings (adapted from Carbonaro et al. (2022) [6]). B. Eight-second recordings using UUS (40x40 474 

mm, 2500 Hz) plane wave imaging. C. The recordings were divided into seven partially overlapping epochs of 475 

two seconds each. D. A sub-region was selected within the HDsEMG detection volume (20x40 mm). E. Tissue 476 

velocity images were estimated. F. The velocity images were divided into five region-of-interests (ROIs), i.e., 477 

20x20 mm each. G. Each ROI was decomposed into 25 components, i.e., 25 temporal signals (‘S’) and 25 spatial 478 

maps (‘A’). H. The spatial maps were clustered and processed to generate a binary map, with zeros being the 479 

background and ones being the largest intensity of the territory. I. The binary maps were used for calculating the 480 

Jaccard Similarity Coefficient (JSC) for each component in the epoch (second to the seventh) with the first epoch 481 

as a reference. The maximal JSC was retained for each epoch, and then the mean JSC (based on the maximal JSC 482 

for all epochs) was calculated. J. Then, spike-triggered averaging of the components’ temporal signal was 483 

performed using the motor unit (MU) spike trains instants from the K. HDsEMG decomposition. 484 

 485 
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 486 

Figure 2. Examples of repeatable spatial maps from two repeatable components (#1 to #2) and one non-repeatable 487 

component (#3) of the same recording and region-of-interest (ROI) based on the Jaccard Similarity Coefficient 488 

(JSC). The first two-second epoch is the reference (defined as Ref). 489 

 490 

 491 

Figure 3. Relationship between Jaccard Similarity Coefficient (JSC) and putative twitches with the highest spike-492 

triggered averaged twitch amplitude. Grey dots are the putative twitches below the noise threshold that were 493 
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discarded. The red circles correspond to the 35 MU-matched components. All the MU-matched components have 494 

JSC over 0.38 (i.e., repeatable). Orange dots refer to multiple components associated with the same MU (e.g., 495 

twisting/split territory, duplicate components, etc., see Fig. 5).  496 

 497 

 498 

Figure 4. Three representative matches between repeatable components and the motor units (MUs). The upper 499 

panels show the MU action potentials and the centroid of the EMG distribution (red ‘+’). In this representation, 500 

only the four columns of the EMG grid superimposed on the ultrasound probe (blue rectangle) are shown. The 501 

middle panels show the mean spatial map of the repeatable component and the corresponding mean JSC. Finally, 502 

lower panels depict the spike-triggered averaged velocity twitch (black line) based on the triggered signals from 503 

all seven epochs (grey lines) and the corresponding peak-to-peak amplitude. The vertical dotted lines corresponded 504 

to the firing instants of the MUs identified from HDsEMG decomposition and used for the triggering. 505 
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 506 

Figure 5. Examples of multiple components associated with the same MU. A. Two examples of three different 507 

components (belonging to different ROIs) with a similar spatial map (active region) matched with the same MUs. 508 

In this case, the three components were merged into the same repeatable component. B. Two examples of possible 509 

twisting MUs. The MUs were matched with two components showing active regions close to each other and the 510 

average twitches showing opposite profiles. Green twitches are negative (movements towards the probe/skin), and 511 

blue twitches, on the contrary, are positive (movements away from the probe/skin).  512 

  513 
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Tables 514 

Table 1. Descriptive statistics about the motor unit-matched repeatable components. 515 

MU-matched repeatable components N = 35 

Jaccard Similarity Coefficient, JSC 0.61 ± 0.13 
(0.38; 0.89) 

Amplitude (n.u) 1.35 ± 0.49 
(0.76; 2.64) 

Centroid-to-centroid (EMG-UUS) (mm)  5.35 ± 5.17 
(0.01; 15.83) 

Depth (mm) 9.47 ± 2.40 
(2.90; 14.01) 

Diameter (mm) 4.03 ± 1.28 
(1.45; 7.25) 

Area (mm2) 14.06 ± 8.71 
(1.66; 41.30) 

Mean ± SD (min; max), MU = motor unit, EMG = electromyography, UUS = ultrafast ultrasound, n.u. = normalised units. 516 
 517 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.17.537211doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.17.537211
http://creativecommons.org/licenses/by-nd/4.0/

