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Interactions among proteins in living cells can lead to molecular assemblies of different sizes
and large-scale coexisting phases formed via phase separation. Both are essential for the spatial
organization of cells and for regulating biological function and dysfunction. A key challenge is
understanding the interplay between molecular assembly and phase separation. However, a corre-
sponding theoretical framework that relies on thermodynamic principles is lacking. Here, we present
a non-equilibrium thermodynamic theory for a multi-component mixture that contains assemblies of
different sizes, which can form, dissolve, and phase-separate from the solvent. We show that the size
distributions of assemblies differ between the phases and that the dense phase can gelate. Moreover,
we unravel the mechanisms involved in growth and compositional changes of the coexisting phases
during assembly kinetics. Our theory can explain how molecular assembly is intertwined with phase
separation, and our results are consistent with recent experimental observations on protein phase

separation.

I. SIGNIFICANCE STATEMENT

Most biological functions and dysfunctions rely on two
fundamental processes, molecular assembly and the for-
mation of condensed phases such as biomolecular con-
densates. Condensed phases generally form via phase
separation, while molecular assemblies are assemblies of
molecules of various sizes, shapes, and functionality. We
developed a theory that relies on thermodynamic princi-
ples to understand the interplay between molecular as-
sembly and phase separation. We obtain results con-
sistent with recent in vitro experimental observations of
reconstituted proteins, including anomalous size distribu-
tion of assemblies and the gelation of condensed phases.
Our theory provides the framework to unravel the mech-
anisms underlying physiological assemblies essential for
cellular function, and aberrant assemblies that are asso-
ciated with several neurodegenerative disorders.

II. INTRODUCTION

Due to their structural complexity, proteins can inter-
act in different ways, leading to coexisting phases or as-
semblies such as fibers and aggregates. Long-lived assem-
blies are often kept together by strong adhesive forces,
with corresponding binding free energies ranging from
9 kpT in the case of insulin dimers [I], over 2.5 kT
per beta sheet in amyloid fibers, to the 0.9 kgT per
beta-sheet in the formation of assemblies of specific FUS
segments called low-complexity aromatic-rich kinked seg-
ments [2]. Weak interactions are often responsible for
the separation into liquid phases, each of distinct molec-
ular compositions. The interaction free energies associ-
ated with the formation of P granules via phase separa-

tion in living cells are about 0.5 kT per molecule [3].
The biological function of both assemblies and phase-
separated compartments relies on the recruitment of spe-
cific biomolecules such as proteins, RNA or DNA [4H7].
Since assemblies and condensed phases can adhere to
membrane surfaces, both not only mediate mechanisms
for sorting and transport of molecules [§] but also affect
the composition, shape and properties of intra-cellular
surfaces [9HI2].

Despite these similarities, molecular assemblies and co-
existing phases also exhibit crucial differences. While the
size of a condensed phase at equilibrium increases with
the size of the system [I3], this is not necessarily the case
for molecular assemblies [I4HI6]. Moreover, the assembly
kinetics tends to an equilibrium characterised by assem-
blies of different sizes [T4HI6], while condensed phases
equilibrate the physio-chemical properties such as tem-
perature, pressure and chemical potential between the
spatially separated phases [I3]. These differences sug-
gest a rich interplay in a system where the molecular
constituents can both oligomerise forming assemblies and
give rise to coexisting phases [I7H22].

In the last years, the interplay between phase separa-
tion and assembly formation has been the focus of many
experimental efforts. Different proteins capable of form-
ing condensed phases were shown to form oligomers be-
low the saturation concentration [23] [24]. Moreover, dif-
ferent proteins capable of forming condensed phases were
shown to form oligomers below the saturation concentra-
tion [23] 24]. The authors proposed that such oligomers
affect the phase separation propensity, however, the de-
tailed mechanism remains elusive. Moreover, several ex-
perimental studies of protein phase separation indicate
that proteins in the dense phase are linked, reminiscent
of a physical gel [25H27]. Molecular simulations were per-
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formed that aimed at the sequence-specific origin of such
phenomena [28H31]. However, even in elegantly coarse-
grained simulation approaches, the large number of pa-
rameters makes it difficult to extract the general, mech-
anisms across different proteins. To develop an under-
standing of such general mechanisms that underlie the
interplay between phase separation and molecular as-
sembly, a theoretical framework that relies on thermo-
dynamic principles is lacking.

While the theory of phase separation of a low num-
ber of different components [13, [32], as well as the
formation of molecular assemblies in dilute environ-
ments [14] B3], 34], are well developed, only a few works
addressed assembly formation beyond the dilute limit,
where assemblies can form and also phase separate. For
example, it has been shown that, in the presence of co-
existing phases, the assembly size distributions at equi-
librium can vary in the two phases and that the dense
phase can gelate [35H38]. These studies account for the
scaling of the internal free energies of assemblies with
their size but neglect the size dependence of the inter-
action propensities. Moreover, a discussion of the cou-
pled phase separation and assembly kinetics is lacking.
Other authors focused on systems composed of a scaffold
component, that drives phase separation, and study the
dilute assembly kinetics of a second component that can
interact with the scaffold [39+H42]. In these works, the
assemblies are considered to be dilute and the feedback
of the assembly kinetics on the phase-separated compart-
ment is neglected.

In this work, we introduce a framework that unifies
the thermodynamic theories for phase separation with
the theories developed for the formation of micelles and
molecular assemblies at dilute conditions. We introduce
two classes of size-dependent interactions that are in-
spired by biologically relevant proteins. We discuss the
emergence of anomalous size distribution below satura-
tion and the gelation of condensed phases above satu-
ration, and characterise for which class and parameter
values these phenomena manifest. Furthermore, we pro-
pose a non-equilibrium thermodynamic theory for the
kinetics of molecular assembly at non-dilute conditions
which can lead to macroscopic, condensed phases above
the saturation concentration. The complexity of our the-
ory is reflected in a high dimensional phase space that
is set by the number of differently sized assemblies. We
developed efficient numerical schemes to study the kinet-
ics of such systems for the case where diffusion is fast
compared to assembly kinetics. We could thus identify
various properties of molecular assemblies that distinctly
originate from non-dilute conditions. Our theory could
be key to interpreting and understanding recent obser-
vations of protein condensation in vitro [43], in the cell
cytoplasm [24] 27, [44] [45].

IIT. ASSEMBLY AND PHASE EQUILIBRIA

We begin by reviewing the equilibrium theory of
multi-component mixtures composed of solvent (s) and
monomers (¢ = 1) that can form assemblies composed of i
monomers, see Fig. [Th. In the case when monomers and
assemblies are dissolved in the solvent, the free energy
density of the solution can be written as [35], 37, [46), [47]:

M M
kgT o (¢z> w; Xij
sol — —In(— + i + 1 Pj
=7, ;pi o) T RT T 2 ST O
w, M Xi
sl s - s = 1¥s ) 1
+¢n¢+kBT¢+;kBT¢¢> (1)

where p; = v; /v, are the relative molecular volumes, v;
is the molecular volume of assembly of size i, and v is the
solvent molecular volume. The solvent volume fraction
can be expressed as a function of the assembly volume
fractions via ¢ = 1 — Ef\il ¢;. The first and fourth
terms in Eq. are the mixing entropies. The second
and fifth terms of fy, characterize the internal free ener-
gies. Here, wy denotes the internal free energy of the sol-
vent, and w; are the internal free energies per monomer
of an assembly of size i. Note that we chose to keep
¢;/i in the logarithm argument instead of reabsorbing
the linear term —¢;In(4) /¢ in the internal free energies
w;. With this choice, w;, depends only on bond free ener-
gies, see App.|Al Ref. [46], and the recent overview in the
SI of Ref. [41]. The third and last terms in Eq. cap-
ture the interactions of monomers belonging to different
assemblies and with the solvent, where x;; is the corre-
sponding interaction parameter. The exchange chemical
potentials of monomers belonging to an assembly of size
1 reads

Ifso
i = 1 8'];11 . (2)

Assembly equilibrium. Assemblies can grow and shrink
via association and dissociation. Such transitions among
assemblies of different sizes are reminiscent of chemical
transitions, see Fig. [[h. The condition of chemical equi-
librium reads [16]:

Wi =y =const. Vi=2..M, (3)

where p; is the exchange chemical potential of monomers
belonging to an assembly of size i; see Eq. . Using
the free energy Eq. and the equilibrium conditions
Eq. 7 we can express the volume fraction of the assem-
bly of size ¢ as a function of the monomer volume fraction
¢1 in the following form:

(e . wi — w1
Di = p; (Pl> exp |ri| 1 T (4)
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The equation above together with the conservation of
monomers

M
Prot = Y i s (5)
1=1

allows us to rewrite the volume fraction ¢; of each assem-
bly of size i, as a function of the conserved quantity ¢ot-
This relation ¢; = ¢;(dtor) has an analytical expression
in the case d = 1, see Eq. and Eq. in SI
Phase equilibrium. Two phases in an incompressible,
multi-component system are at phase equilibrium when
the chemical potentials p; and the osmotic pressure II =
—fso1 + Zf\il 0i0 fs01/0¢; balance in each phase [13] [48]:

= (62)
' =1 (6b)

where the superscripts I and II indicate the ¢y¢-rich
and IT the ¢or-poor phase, respectively. Thermodynamic
equilibrium. Our system is at thermodynamic equilib-
rium when assembly and phase equilibrium hold simulta-
neously. The conditions above for phase equilibrium can
thus be rewritten using ¢; (dwot) (Eq. ) In particular,
the free energy density Eq. can be recasted in terms
of the conserved variable, ¢o [49, [60]. The phase dia-
gram of the system can be then obtained via the common
tangent construction (i.e., Maxwell construction). This
construction corresponds to the balance between the ex-
change chemical potentials and the osmotic pressure in
both phases, see Chapter 2 in Ref. [49, [50]:

1(Dtor) = 1(lo) (7a)
11
M((b{ot) = f501(¢t0t)

tot ¢t ot

fSOl(qb{ot) . (7b)

IV. SCALING OF MOLECULAR VOLUMES,
INTERNAL FREE ENERGIES AND
INTERACTION ENERGIES WITH ASSEMBLY
SIZE

The composition of the phase-separated compartments
and the size distributions of the assemblies in each phase
will depend on the scaling form of the key parameters of
the model: the relative molecular volumes (r;), the in-
ternal free energy of assemblies (w;), and the interaction
energies of assemblies among themselves (x;;), and with
the solvent (x;s). For simplicity, we choose r; = 4 for the
results shown in this work. In Appendix [A] we derive
the scaling relationships for the internal free energies of
rod-like (d = 1), disk-like (d = 2) and spherical (d = 3)
assemblies:

€int — SintT
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FIG. 1. Illustration of assembly reaction scheme and

classification. a Illustration of the chemical reaction net-
work associated with the formation of assemblies A; with size
i, in the special case where growth and shrinkage occur only
via monomer pick-up and release. b Identification of three
classes based on assembly dimension: d=1,2,3. ¢ Classifica-
tion of assemblies based on the scaling of their Flory-Huggins
interaction propensity.

Here, wo = lim; o w; is a constant that does not af-
fect chemical nor phase equilibrium, except in the limit
M — oo, which will be discussed later. Moreover,
éint — Sint 1, is the free energy of an internal bond that
keeps each assembly together, which can be separated
into an enthalpic and an entropic contribution, ej,; and
Sint, respectively.

For the scaling of interaction energies x;; and x;s, we
introduce two classes inspired by biologically relevant
classes of proteins that can form assemblies and phase
separate:

1. Class 1: Constant assembly-solvent interac-
tions.
This class corresponds to the case where each
monomer, independently of the assembly it is part
of, interacts equally with the solvent x;s = X, see
App. [A] Moreover, monomers in assemblies of dif-
ferent sizes interact equally with each other, imply-
ing that the corresponding Flory-Huggins parame-
ter x;; vanishes:
Xis = X » X’L]ZO (9)
This class is inspired by biologically relevant pro-
teins for which the oligomerization domains are
well separated along the protein from hydropho-
bic phase separation domains. In this case, when
monomers form an assembly, their phase sep-
aration domains remain exposed, leading to a
monomer-solvent interaction that does not depend
on assembly size. Examples belonging to this
class include synthetic constructs like the so-called
"Corelets’ [51], realised tethering intrinsically dis-
ordered protein fragments to oligomerizing do-
mains [51], and proteins like NPM1, whose N-
terminal oligomerization domain (that allows for
the formation of pentamers) is considered to be
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separated from the disordered region (responsible
for phase separation) and the RNA binding do-
main [52] 53].

2. Class 2: Size-dependent assembly-solvent in-
teractions. This class describes the case where
monomers in the assembly bulk and monomers at
the assembly boundary have different interaction
propensities with the solvent (x’ and x respectively,
see Appendix [A| for details). Similar to class 1,
monomers in assemblies of different sizes interact
equally with each other, leading to

X —x
Xis :X/+W’ Xij =0. (10)

This class corresponds to the general case in which
the oligomerization domains of protein overlap with
the phase separation domains. This case applies
to segments of the intrinsically disordered region
of the protein FUS, for example. In fact, re-
cent experiments have shown the formation of as-
semblies in solutions containing specific FUS do-
mains, called low-complexity aromatic-rich kinked
segments (LARKS) [2, B4]. Strikingly, it was
shown that hydrophobic domains along LARKS
were buried in the formation of these assemblies
and the author could quantify the hydrophobic area
buried upon assembly formation. Another example
could be Whi3, since it has been recently found that
mutation that enhances oligomerization strength,
lowers the density of Whi3 in the RNP conden-
sates [45], suggesting that the formation of assem-
blies could screen Whi3 phase separation propen-
sity.

V. ASSEMBLY SIZE DISTRIBUTIONS BELOW
AND ABOVE SATURATION

We first consider systems that are spatially homoge-
neous and composed of linear assemblies (d = 1). Ho-
mogeneity can be realized in dilute solutions if the to-
tal protein volume fraction ¢ lies below the saturation
concentration of phase separation ¢t (T') (definition see
Section [[1I). Homogeneous systems governed by Eq.
at equilibrium and the conservation Eq. exhibit two
limiting behaviours depending on the value of the con-
served variable ¢yor. We define the assembly threshold
¢*(T), that separates these two behaviours as the value
of ¢ror (see Eq. ) for which the distribution ¢; has a

maximum corresponding to monomers:

99i
0i

= 07 imax(¢*) =1. (11)

Tmax

Indeed, for ¢yt < ¢* the size distribution of linear
assemblies (d = 1) is dominated by monomers (¢1 =~ ¢iot)
while larger assemblies have vanishing volume fraction.
For higher volume total volume fractions (¢ior 2 ¢*), the

monomer concentration saturates at ¢; < ¢* and bigger
assemblies start to populate the mixture. Above ¢*, the
distribution becomes peaked at a value i,,,« > 1 and then
exponentially decays for larger i; see App. Fig. [f] Both
the maximum and the average of the distribution ¢; scale
with /@0t indicating that as ¢iot is increased larger and
larger assembly populate the system; see Appendix [B]for
a detailed discussion for Class [Il

Now we consider systems that can phase separate. As
outlined in Sec. [[Tl} at assembly equilibrium, we can re-
cast the free energy as a function of the conserved vari-
able ¢y by using Eq. . For sufficiently large assembly-
solvent interaction parameters y and x’, the system can
demix into two phases with different total volume frac-
tions ¢}, and ¢}l , which are the solutions of Eq. (7).
By means of qﬁié{, we can calculate the whole assembly
size distribution in the two phases, i.e., QSE/H, via Eq.
and Eq. .

We first discuss linear assemblies belonging to class
in the regime of high assembly strength —ej,./x > 1; see
Fig. Ph-c. In Fig. 2h, we show the corresponding phase
diagram as a function of ¢o and the rescaled tempera-
ture T/Ty with Tp = x/kp. The domain enclosed by the
binodal corresponds to phase separation. As indicated by
the colour code (depicting the monomer fraction ¢1/¢iot)
each phase can have different assembly composition. In
green we plot the assembly threshold ¢*(7T'), at which
intermediate-sized assemblies start to appear. Note that,
with this choice of parameters, the assembly threshold
precedes in ¢ the dilute branch of the binodal. We can
thus define regions corresponding to qualitatively differ-
ent phase and assembly behaviours. In particular, start-
ing from a homogeneous system composed of monomers
only (region “i”), increasing ¢t leads to the emergence
of intermediate-sized assemblies (region “ii”). Increasing
otot further, the system demixes into two phases both of
which are rich in intermediate assemblies (region “iii”).
Representative size distributions and illustrations of the
state of the systems in the different regions are shown in
Fig.[2b and Fig. [2c, respectively. This analysis showcases
the potential of this framework to describe the appear-
ance of mesoscopic clusters below the saturation concen-
tration, as recently observed experimentally in Ref. [24].

Remaining within class [1, we now discuss the case of
low assembly strength —e;n/x ~; see Fig. —f. The in-
terception between the binodal and the assembly thresh-
old ¢* defines two new regions, “iv” and “v”, see Fig[2]d.
In particular, in region “iv” both binodal branches lie be-
low the assembly threshold, resulting in monomers dom-
inating both coexisting phases, see Fig [2b, centre. On
the other hand, in region “iv” the dense phase exceeds
the assembly threshold, resulting in phases with differ-
ent compositions: the dilute phase is populated only by
monomers while intermediate-sized assemblies develop in
the dense phase, see Fig [2p right. In Fig[2f, we illustrate
states corresponding to fixed ¢yot and decreasing temper-
ature T. Starting from a homogeneous monomeric state,
region “i”, the system transitions into a demixed state
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FIG. 2. Phase diagram and assembly size distributions for different classes and assembly strengths. a Phase
diagram as a function of ¢ioy and rescaled temperature T'/Ty (with Tp = x/ks) in the regime of high assembly strength, i.e.
—eint/Xx > 1. The green line is the volume fraction threshold ¢*(7") at which intermediate-sized assemblies start to appear,
which in this regime precedes the binodal (coloured curve). As indicated by the colour code, the monomer fraction ¢1 /¢tor mildly
varies in the two phases. b Size distributions and c pictorial representations corresponding to different regions of the phase
diagram, defined by the relative position of the binodal and the assembly threshold. In region “i”, the system is homogeneous
and composed of monomers only. Increasing the total volume fraction of assemblies ¢ior beyond the assembly threshold ¢*,
the system enters region “ii” where intermediate assemblies appear. Here, the sizes corresponding to the maximum and the
average of the distribution ¢; scale with v/¢iot, see Appendix Finally, once ¢ot exceeds the binodal, the system enters region
“y” and demixes in two phases, both rich in intermediate assemblies. In d-f we focus on the low assembly strength regime, i.e.
—eint/X ~ 1. In phase diagram d, the binodal now precedes in ¢¢ot the assembly threshold. e In region “iv”, the system phase
separates but in both phases monomers dominate the size distribution, while in region “v” the dense phase becomes populated
by intermediate-sized assemblies. Progressively lowering the temperature allows switching between these regions, as depicted
in f. g,h Behaviour of dilute mixtures as a function of assembly strength, for the two different classes. Notably, assembly below
saturation becomes much more accessible for class|2] as can be seen by comparing the green regions “ii” in g and h.

with the same composition, region “iv”, and finally to classes defined in Sec. [[V] In particular, we characterise

a demixed state with monomers only in one phase and how mixtures behave with increasing ¢yo4, varying the

[

larger assemblies in the other, region “v”. assembly strength e, /x but keeping the temperature T'

fixed. In particular, for class [l the emergence of assem-
We now highlight the differences between the two
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FIG. 3. Gelation transition in phase-separating systems. a Phase diagram for disk-like (d=2) and spherical (d=3)
assemblies in the limit M — oo, as a function of ¢ior and the rescaled temperature T'//To (with To = x/kg). The coloured curve
represents the binodal associated with the free energy f, which accounts for the emergence of an infinite assembly. The colour
code of the binodal line depicts the monomer fraction ¢1/¢wot in the phases. In the region labelled as “sol-sol”, the system
demixes into two phases both populated mainly by monomers, see panel b, with gb{é? < 1. In the region labelled as “sol-gel”,
on the other hand, a phase (the “sol”), obeying ¢35 < 1, coexists with a phase (the “gel”) that is a macroscopic assembly,
containing no solvent ( o) = 1). The latter scenario is represented in panel b, right side. ¢ Lowering the temperature allows
transitions from the “sol-sol” to the “sol-gel” region, which manifest with a jump in the total volume fraction of the dense

phase.

blies before saturation typically occurs for a very narrow equilibrium requires that Eq. is satisfied. As pointed
interval of volume fractions, see the green region labelled out in Sect. we aim to find an expression for ¢;(dtot)
with “i” in Fig 2. Strikingly, for class[2 assembly be-  via Eq. (3) and Eq. (f]), and then substitute it into the

low saturation are more favoured; see again region “ii” free energy Eq. (1)). However, for disk-like (d = 2) and
in Fig [2h. This difference arises because, within class spherical assemblies, (d = 3), performing the thermody-
monomers in the bulk of an assembly have reduced inter- namic limit M — oo leads to a free energy composed of

action propensity with respect to the boundary ones. As series that cannot be analytically calculated. We know
a consequence, the formation of large clusters shifts the that this is a consequence of the gelation transition, and
onset of phase separation to higher ¢ values. this limitation can be dealt with by introducing explicitly
the infinite-sized gel in the free energy. For this reason,
we write the system free energy as a composition of the

VI. GELATION OF THE DENSE PHASE solvent free energy fso1 and the gel free energy foel:

Here, we discuss the case of disk-like (d = 2) and spher- J= Jaor + fga (12)
ical assemblies, (d = 3), referring for simplicity to sys-  where fyo is defined in Eq. (I)). The gel free energy reads
tems belonging to Class In this case, as shown in w
App. [C] even when neglecting protein solvent interac- Jeel = —=6(1 = ¢rot) (13)
tions (x = 0), the system can undergo a phase transition .
in the thermodynamic limit M — oo. In fact, above the  with () denoting the delta distribution. The gel free
volume fraction ¢*¢ (for a definition see Eq. ), we  energy fgel is the free energy of a state with no solvent,
observe the emergence of a macroscopic assembly occu- where all monomers belong to an assembly of size i — oco.
pying a finite fraction of the system volume that contains In fact, in the limit ¢; = 0 for all finite ¢ and ¢yt = 1, the
a macroscopic fraction of all monomers in the system; a  free energy in Eq. simplifies to wy, /vg. For a detailed
behaviour reminiscent of Bose-Einstein condensation, see discussion of the role of ws, see App. [C]
for example Chapter 7.3 of Ref [37]. Since we do not ex- We can now perform a Maxwell construction by using
plicitly include the solvent in assembly formation (see Eq. in Eq. . The resulting phase diagram is dis-
reaction scheme in Fig. ), we will consider the gel as a  played in Fig. [Bh, where the binodal is coloured by the
phase without solvent and thus ¢y = 1. monomer fraction ¢y /¢yt in the coexisting phases.

We now focus on systems that phase separate as the In phase-separated systems, gelation can be considered
result of interactions with the solvent (y # 0) and discuss ~ as a special case of phase coexistence between a dilute
the interplay with gelation. Volume fractions in the co- phase (“sol”), in which ¢**! < 1, and the gel phase, cor-
existing phases are determined by Eq. @ and assembly responding to $2¢! = 1. The domain in the phase diagram
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FIG. 4. Assembly kinetics at phase equilibrium. As-

suming that the relaxation to phase equilibrium is fast com-
pared to assembly kinetics, we study the slow relaxation to
assembly equilibrium in a compartmentalized system. a In
the sketch, assemblies selectively appear in the dense phase,
increasing its volume V! and total volume fraction ¢l,. b
As time proceeds, phase volumes change. This is reminiscent
of recent experimental findings that quantify droplet volume
changes along with droplet ageing [55]. c the total macro-
molecule volume fraction in the two phases, cbi(/)?, changes in
time. In particular, the ¢¢ot-dense phase becomes denser and
the dilute phase more dilute. In d and e we show the time
evolution of the full size distribution in the dilute and dense
phases, respectively, starting from an initial state composed
of monomers and solvent only.

where a gel phase coexists with a soluble phase is shaded
in blue and labelled as “sol-gel” in Fig. [Bh. In the same
panel, we show that lowering the temperature for large
Dot leads to a transition from the homogeneous state to
the sol-gel coexistence. By contrast, for intermediate vol-
ume fractions, the system transits first through a domain
corresponding to two-phase coexistence; see light blue do-
main labelled as “sol-sol” in Fig. Bh, where ¢y < 1 in
both phases. In Fig. b, we show assembly size distribu-
tions representative of the “sol-sol” and “sol-gel” regions.
The transition from the “sol-sol” to the “sol-gel” region is
accompanied by a jump in the dense phase total volume
fraction ¢}, see Fig.|3c for an illustration.

VII. KINETIC THEORY OF ASSEMBLY AT
PHASE EQUILIBRIUM

Building upon the thermodynamic framework de-
veloped in the previous sections, we devise a non-
equilibrium kinetic theory for molecular assembly at non-
dilute conditions, where the interactions can give rise to
coexisting phases. Here, we restrict ourselves to the case
where each phase is homogeneous and at phase equilib-
rium but not at assembly equilibrium [56]; see Sect.
for the equilibrium conditions. This partial equilibrium
holds when the molecular transitions among assemblies
are slow compared to phase separation, i.e., the system
is reaction-limited [57, [58]. This limit applies particu-
larly well to molecular assemblies involving biological en-
zymes [59]. For simplicity, we present the kinetic theory
and discuss the results for two coexisting phases. Follow-
ing the concepts developed in Ref. [50], in each phase,
the kinetics of the respective volume fractions of the as-

sembly of size 1, ¢£/H for i = 1,2,..., M, is governed by

d yn __ yn  a/m o/ d /11
%Qsi =r' —J - mav ) (14)
where rlk/ " are the assembly rates in the correspond-

ing phases of volumes VY and j,IC/ ™ are the diffu-
sive exchange rates between phases. The last term in
Eq. accounts for variations in volume fractions due
to the changes of the respective phase volumes V1/1T,
The kinetics of phase volumes follow (d/dt)In V' =

2?11 i(ri/ll — jg/H). In both phases, the solvent volume

fraction can be expressed as qbé/ R {é?, where
M
1/11 1/11
tét = Z ¢i/ (15)
i=1

is the total volume fraction of all assemblies. Consis-
tently, assembly kinetics conserves ¢io; in both phases.
As a result, the assembly rates satisfy, Zf\il rg/ "= 0in
each phase, leading to the simplified kinetic equation for

compartment volume

d M
/11
g nvit= =3 (16)

i=1

Moreover, volume conservation also implies that the ex-
change currents fulfil

-1 -11 VH
Ji =~ VI

(17)

This condition makes sure that the volume dynamics
obey (d/dt)(V! + V1) = 0. The currents are deter-
mined by the conditions that maintain phase equilibrium,
dul/dt = dult/dt together with dII'/dt = dlI"/dt, where

/11

u;" denote the chemical potentials of the monomers in
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an assembly of size i, and II the osmotic pressure; for
more information, see SI[F]

Utilizing our kinetic theory, we can study the relax-
ation toward thermodynamic equilibrium which corre-
sponds to phase and assembly equilibrium. Here, we
focus on assembly growth and shrinkage occurring via
monomer pick-up and release, see reaction scheme in
Fig. [l However, note that our framework can be eas-
ily generalised to include other assembly mechanisms,
including primary and secondary nucleation, association,
and dissociation [60]. With these assumptions, the phase-
dependent assembly rates for monomer exchange between
assemblies of sizes i and 7+ 1 are related to the chemical
potentials via

L+
Tit1,: = ki [exp kel

_exp ((z’—i— ”Z;}lﬂ ,

where k; is a size-dependent rate coefficient. The
monomer exchange rate r; ;41 determines the assembly
rates of each assembly i via

(18)

M-1

I 111 . 110

T = "Taa *E YT
i=1

r/M = (-t i fori=2,.M — 1, (19)

T}\KIH =(M-1) "MoM-1-

VIII. ASSEMBLY KINETICS IN COEXISTING

PHASES

By integrating Eq. numerically, we obtain the time
evolution of gbi/ (1) and V(t), provided their initial val-
uesatt =0, VI(t =0)/V, and qsﬁ/“(t = 0), at phase equi-
librium. Specifically, we consider an initial state solely
composed of solvent and monomers which are separated
from each other and we focus on linear assemblies (d = 1)
belonging to class[I} for parameters see caption of Fig. [4
As monomers begin to form assemblies, the mixing en-
tropy decreases. As a result, the total amount of protein
in the monomer-rich phase, ¢l,,, increases while ¢, de-
creases (Fig. [dp). Such changes in total protein volume
fractions induce phase volume variations (Fig. ) In
particular, if the monomer enrichment of phase I is less
pronounced than the monomer depletion of phase II, the
volume of the dense phase V! increases, and vice versa.

An important finding of our work is that the distribu-
tion of assembly size evolves differently in each phase
(Fig. 7b; see SI Movie 1). In phase II, which is
initially poor in monomers, assemblies grow slowly to-
ward an equilibrium distribution which monotonously de-
creases with assembly size following an exponential de-
cay. The kinetics in the initially monomer-rich phase

class 2

ﬁgi d=1 class 1 b %g@hﬁﬁg d=1

— Initial binodal (o)
Final binodal (tF)

1/ Drot
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.
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growth \shrinkage

0.0

FIG. 5. Identification of shrinkage and growth regions
for different classes. Here, we study phase-separating sys-
tems initially composed of monomers only and we monitor
phase volume changes as they relax to thermodynamic equi-
librium. a For linear assemblies (d=1) belonging to class
the final binodal line (coloured curve) is wider than the ini-
tial one (black curve), corresponding to monomers and solvent
only (black curve). Areas in orange and light blue correspond
to growth and shrinkage of the ¢ot-dense phase (phase I),
respectively. b The hehaviour of linear assemblies (d=1) be-
longing belonging to class [2| is remarkably different. Since,
in this class, the interaction with the solvent is screened, the
final binodal is shrunk compared to the initial one. As a con-
sequence of the shrinkage, the domain corresponding to phase
I growth (light blue area) precedes in ¢sor the shrinkage do-
main (orange area), for class

I is fundamentally different. First, a very pronounced
peak of intermediate-sized assemblies develops quickly.
The faster kinetics compared to phase II is caused by
monomer diffusion from II to I, which leads to nega-
tive feedback for assembly in II and positive feedback
in I. This observation is reminiscent of studies on dilute,
irreversible aggregation in coexisting phases [39]. The
most abundant populations of intermediate-sized assem-
blies shrink slowly in time feeding the growth of larger
assemblies. The resulting equilibrium distribution shows
a notable peak of intermediate-sized assemblies followed
by an exponential decay. Thus, the difference in the ki-
netics between the phases is dominantly a consequence
of the fact that each phase strives towards a significantly
different equilibrium distribution.

IX. ASSEMBLY FORMATION CAN INCREASE
OR DECREASE CONDENSATE VOLUME

Here, we discuss changes in phase volumes caused by
the assembly kinetics introduced in Sec. [VII} In particu-
lar, we focus on mixtures initially demixed in two phases,
both composed of monomers only, and let the system re-
lax to thermodynamic equilibrium. We then assess for
which values of the control parameters ¢y and T, the
formation of assemblies in both phases leads to a growth
of the ¢iot-rich phase (phase I) and vice versa. More-
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over, we distinguish the two protein classes introduced
in Sec. [Vl

To this end, we compare the phase diagram corre-
sponding to the initial system, composed of monomers
only, with the equilibrium phase diagram in which large
assemblies populate the mixture. In figure Fig. B, we
show the initial and final equilibrium binodals (black
and coloured curve, respectively), for the case of linear
assemblies (d = 1) belonging to class In this case,
the domain corresponding to demixing enlarges once the
system reaches its equilibrium state, i.e., assembly facil-
itates phase separation. We focus on the ¢ot-7 domain
enclosed by the black curve, where the system is phase
separated at all times, and compute the initial and final
dense phase volumes via the total volume fraction con-
servation V! (8)/V = (drot — Gro(t))/ (Drox(t) — dice(t))-
As displayed in Fig. [Bh, this allows us to identify two
parameter regimes: at low @0y (orange area), the dense
phase grows as assemblies form, while above the dashed
grey line (light blue area), it shrinks. Remarkably, lin-
ear assemblies (d = 1) belonging to class [2 exhibit a
completely different behaviour, see Fig. [Bb. In this case,
assembly formation shrinks the domain corresponding to
demixing, thereby suppressing phase separation. In the
domain enclosing the coloured curve, we can compute the
initial and final dense phase volume for each value of ¢t
and T'. In contrast to the previous case, we find that at
low ¢ot (light blue area), the dense phase shrinks as as-
semblies are formed, while for higher ¢ values (orange
area) condensate volume grows, as illustrated in Fig. .

X. CONCLUSION

We extended the classical theory of molecular as-
sembly [14HI6] to non-dilute conditions and thereby to
regimes where assemblies can phase-separate from the
solvent. Our theory relies on a thermodynamic free en-
ergy governing the interactions among the constituents.
This free energy contains energetic parameters with an
assembly size dependence that we obtained by scaling
considerations. Our theory applies to reversible and irre-
versible assembly processes. We showed that the assem-
bly kinetics in each phase is governed by a set of coupled
ordinary differential equations if the exchange between
the phases is fast compared to the transition rates among
assemblies of different sizes. In this limit, we determined
the kinetics of size distributions of assemblies in each
phase, relaxing toward thermodynamic equilibrium.

Using our theory, we obtained several key findings re-
lated to non-dilute conditions and the ability of the as-
semblies to form a condensed phase. First, size distribu-
tions, in general, differ between the phases. In particular,
monomers are not necessarily the most abundant species,
and distribution tails can significantly deviate from the
exponential decay known for classical assembly at di-
lute conditions. Interestingly, this statement also applies
to conditions below the saturation concentration beyond

which phase separation can occur. Second, we showed
that by lowering the temperature, the dense phase can
gelate, i.e., it consists of a single connected assembly of
volume equal to the dense phase (a gel). Third, as as-
semblies form, the volume of the protein-dense phase can
grow or shrink depending on the molecular interactions
among the constituents.

Our key findings are consistent with recent experimen-
tal observations in living cells and in vitro assays using
purified proteins. A decrease in droplet volume has been
observed in phase-separated condensates composed of pu-
rified FUS proteins [55]. Up to now, it has remained
unclear whether this kinetics relies on a glass transition
as suggested in the discussion of Ref. [55] or on the for-
mation of FUS oligomers in the dense phase. However,
a potential hint comes from independent studies, which
indicate that FUS can form amyloid-like assemblies, that
are associated with neurodegenerative disorders [6], at
similar conditions [61} [62]. The transition to a gelated
condensate is believed to provide a protection mechanism
for the protein expression machinery in the case of intra-
cellular stress. Recent in vitro experiments using purified
proteins indicate anomalous size distributions of phase-
separating proteins below saturation [24]. More careful
experimental measurements using single molecule tech-
niques such as FRET are necessary to scrutinize such
preliminary distributions to our theoretical predictions.

Though many biologically-relevant assembly processes
are reversible and governed by thermodynamic princi-
ples, there are also a large number of assemblies that
are persistently maintained away from equilibrium. An
important class is assemblies where the formation or dis-
assembly relies on the hydrolysis of a fuel component
such as ATP or GTP turning over to the corresponding
waste, ADP or GDP. Since the fuel levels are kept con-
stant in living cells, fuel-driven assembly processes are
maintained away from equilibrium and thus cannot relax
to thermodynamic equilibrium. It is an exciting exten-
sion of our work to consider fuel and waste components
and how distributions of assembly sizes and the gelation
of condensates are affected when maintained away from
equilibrium.

Appendix A: Scaling laws for internal and
interaction energies

Here we provide a physical interpretation of the in-
ternal free energy w;. For simplicity, we consider a ho-
mogeneous system solely composed of assemblies of size
i, characterized by the volume fraction vector ¢(), with
qﬁl@ =1 and gby) = 0 for i # j. Making use of Eq. (1)),
the internal free energy of such systems can be written

as
wi = f(¢Nvy —kpT i ' Ini™?t, (A1)

with f(¢()v; being the free energy associated with each
monomer belonging to the ¢-th assembly. The second
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term in the equation above is the conformational entropy
that stems from having more accessible states with in-
creasing assembly size. Thus, Eq. allows interpret-
ing w; as the free energy of monomers inside an assembly
of size i, coming only from bonds between monomers. To
quantify it, we introduce the number of binding sites for
each monomer, z. Following Ref. [I6], we distinguish be-
tween mp, monomers at the boundaries of the assembly,
and (¢ —np) in the assembly bulk. Monomers in the bulk
can saturate all their z binding sites while, in general,
monomers at the boundaries are able to saturate only
zp < z. Thus, we get

i = 2(i — nb)."’ b A
B 21 " (A2)
iAw—(z—zb)Z—?Aw,

where Aw = ejy — T'sing 18 the free energy associated
with the formation of every single bond, decomposed in
its energetic and entropic contribution, ej,; and Sin, re-
spectively. The factor two avoids double counting.

We describe three species of assemblies: rod-like, disc-
like and spherical. These can be realised by varying the
number of binding sites and their orientation. Rod-like
assemblies (d = 1) are defined to have only two bind-
ing sites with a fixed orientation. They can be pictured
as one-dimensional assemblies with no loops, leading to
np = 2, z = 2 and 2, = 1. Disk-like assemblies (d = 2)
are defined to have z > 2 co-planar binding sites, for
which ny, =~ v/i. Spherical assemblies (d = 3) are charac-
terized by z > 2 binding sites with no precise orientation
leading to ny, ~ i3. Summing up, we get

d—1

np~id (A3)

that inserted in Eq. leads to Eq. 7 recalling that
Aw = ejny — T'Sint.-

In this equation, we grouped the constant terms in
Woso, Which does not affect chemical equilibrium, since
they drop in any chemical potential difference that drives
chemical transitions. Moreover, w,, does also not affect
phase equilibrium. However, in the case of d = 2,3 and
M — 00, ws is important to study the gelation of the
dense phase, see App. In Eq. , the second term
represents a boundary interaction penalty, accounting for
the fact that monomers at the assembly boundary can re-
alise fewer internal bonds than monomers at the assem-
bly bulk, in analogy with the physical origin of surface
tension.

We now discuss the size dependence of the interac-
tion parameters Yx;;. Starting from a lattice model,
these parameters can be expressed in terms of the ener-
getic parameters e;; corresponding to having two neigh-
bouring monomers belonging to ¢ and j. In particu-
lar, x;; = 2e;; — e;; — €j;. Assuming that the energies
associated with monomer-monomer interactions do not
vary within assemblies, i.e., e;; = ej; is constant, we
get xi; = 0. Moreover, we now discuss the scaling of
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FIG. 6. A volume fraction threshold separates two
assembly regimes in homogeneous systems. a Illustra-
tion of assemblies belonging to Class [I] with different spatial
dimension. b Assembly size distribution for M = 50, at low
total macromolecular volume fraction: ¢or < ¢*. Disregard-
ing assembly dimension, d, the macromolecules are mainly in
the monomer state, i.e., ¢1 >~ Prot. € For ¢ror > ¢, the
monomer concentration saturates at ¢1 ~ ¢* and big assem-
blys begin to populate the system. For rod-like assemblies
(corresponding to d = 1 in Eq. (8)), the distribution becomes
peaked at an intermediate value imax > 1 and then exponen-
tially cut off. For disk-like and spherical assemblies, d = 2,3
, the distribution becomes bimodal, with peaks at ¢ = 1 and
1 = M, the maximum assembly size (M = 50). This bimodal
behaviour hints at the emergence of a gelation transition in
the limit M — oo. In the insets, we show the scaling of con-
centrations ¢; with assembly size. For d = 2,3 and above the
¢* threshold, we find deviations from the classical exponen-
tial decay.

Xis = 2€i5 — €4; — €ss. 1f the monomer-solvent interactions
are also chosen to be size-independent, i.e., e;s = e15, we
get xis = 2e15 — €11 — ess = X. This explains the scaling

in Class [I] (see Eq. (9)).

However, many proteins of interest screen their hy-
drophobic interaction when forming assemblies [2] [45], [54]
implying that the interactions between monomers in as-
sembly ¢ with solvent (s) e;s varies with assembly size 1.
In each assembly, this energy per monomer comes from
two contributions. The first corresponds to monomers
in the bulk which are (n — np) and have interaction
with solvent e},. The second one corresponds to the ny,
monomers at the assembly boundary, characterised by
interaction with solvent e;s. We get

ehs(i —ny) + ersny
; .

(A4)

€is =

Using the scaling of ny, /¢ already introduced above in
the discussion of the internal free energy scaling, see

we obtain Eq. .

by abbreviating x}, = 2ej, — e11 — ess =: X; this case
corresponds to Class
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Appendix B: Linear assemblies belonging to class

For class|l|{and d = 1, Eq. reads

. ¢)
wmi (2)'6,

where we have introduced the characteristic volume frac-

tion
7 €int — SintT
= _— 1.
¢ = exp < T )

(B1)

(B2)

It is straightforward to verify that the latter volume frac-
tion is proportional to the assembly threshold defined in
Eq. , ie. ¢ = e/(1 —e)?¢p*. In Fig. @ we show
the assembly size distribution in homogeneous mixtures
obtained by numerically solving Eq. together with
Eq. , with a cut-off M = 50. We characterise the
behaviour of assemblies with different spatial dimensions
d =1,2,3, see Fig. [0h. For dilute solutions, correspond-
ing to ¢ror K ¢*, the size distribution is dominated by
monomers while larger assemblies have vanishing volume
fraction, i.e., ¢1 =~ ¢ior, see Fig. @) For ¢t > 0%,
the monomer concentration saturates at ¢, =~ ¢* and
assemblies begin to populate the system. As depicted
in Fig. [6b, above this threshold the size distribution de-
pends crucially on assembly dimension d. For rod-like
assemblies (d = 1 in Eq. (8)), the distribution becomes
peaked at a value M > 1 and then exponentially de-
cays. For disk-like and spherical assemblies, d = 2,3
in Eq. , the distribution becomes bimodal peaked at
i =1 and i = M, the maximum assembly size (M = 50
in Fig. @:) The behaviour of the system at high density
can be quantitatively studied by performing the thermo-
dynamic limit, i.e., M — oco. Within this limit, the series
defined in the conservation law, Eq. can be explicitly
solved, leading to

1+42%0 /1 4 g0

Prot
24>

<

ﬁz‘

Recalling that ¢ = e/(1 — e)2¢*, this leads to ¢1 ~ Grot,
in the regime ¢y € ¢*, while for ¢y > ¢*, we get
¢~ 9.

The maximum of the volume fraction distribution in
Eq. (B1) can be obtained imposing 9;¢; = 0, leading to

N N (B4)

T @)\

The approximate expression on the right hand is obtained
using Eq. (B3) and expanding for ¢ror/¢ > 1.
The average (i) = > i¢;/ > ¢; is given by
_ 03—/ ¢
Grot (1 — 1 /)3

(3) ~ 2%max ,

(B5)
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FIG. 7. Gel-sol free energies. a The coloured curved indi-
cates the binodal obtained with the Maxwell construction for
the fso1 only, its colour code depicting the monomer fraction
@1/ ¢rot In the coexisting phases. The black line represents
¢°¢(T), defined in Eq. . In the absence of phase sep-
aration, ¢°¢ estimates the volume fraction at which the gel
appears. The two temperatures Tt"°® and T"P are used to
determine the value of wes in fgel, see Eq. . This allows us
to perform the Maxwell construction now on f = fso1+ fgel- b
In phase-separating systems, gelation can be considered as a
special case of phase coexistence between a dilute phase (the
“so]”) in which ¢**' < 1 and the gel phase, corresponding to
2! = 1. c-e Maxwell construction for three different temper-
ature values, the coloured and dashed curves represent convex
and concave branches of f, respectively.

where we expanded for ¢ot/ (Z) > 1 to obtain the approx-
imate expression.

We can also derive an expression for the free energy as
a function of the conserved quantity alone ¢, making
use of Eq. together with Eq. (B3):

fsor = hnl (1 = drot) In(1 — Grot) + Ptot In (Ll
141 ¢
b1 X
ey et (1 = Got) | - (BO)

Appendix C: Gelation transition for two and
three-dimensional assemblies

As outlined in Fig. [f]for d = 2,3, at high ¢y for M fi-
nite, the size distribution shows a bimodal behaviour.
This suggests for the limit M — oo that the system
undergoes a gelation transition, which is defined as the
emergence of an assembly that is comparable with the
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system size [16], 37, [38]. To precisely locate the ¢yt value
at which the transition occurs, we recall Eq. and con-
sider the series

Z@:Zi(q;l)lexp<li;iddl—1) (G
i=1 i=1

We note that when N — oo, this series converges only if
¢1/¢ < 1. Thus, we get an upper bound for the series,
namely

> i Aw  a-1
7,< ) 4 — 1) =¢%8.
;; _;@eXp(kBT@ . ) s

Approximating the series with the integral, we get an
estimation for ¢°¢:

— w w27 UJS it
¢sg{2(6 6Aw+3A A )¢> d=2

(C2)

AUJ4 )

3 Aw® )ng d=3

’ (C3)
2 (2—2Aw+Aw? .

By a Maxwell construction, Eq. with free energy
Eq. , we can study the interplay between the gelation
transition and phase separation. To ensure that at high
drot, Where we expect no phase separation to occur, the
system gelates at ¢ = ¢°% we chose

Woo = €oo — T'Soo - (C4)
In particular, we need two conditions to fix e, and Se.
For this purpose, we first perform the Maxwell construc-
tion on the fs contribution only. In Fig. [th, we display
the result of the construction, coloured curve, together
with the gelation threshold ¢°8(T), black line. Here, the
coloured curve represents the binodal, and its colour code
depicts the monomer fraction ¢1/¢ior in the coexisting
phases. In the regime where both binodal branches lie
below the gelation threshold, we indeed expect fs,1 to be
the only relevant contribution to f. This allows us to
locate the temperature 77" at which the binodal and
¢ intersect. Imposing at Tt"™®° that the feel is such
that the system exhibits three-phase coexistence between
the two binodal points and the gel, gives the first con-
dition to determine w.,. For the second condition, we
start locating upper gelation temperature TP, at which
¢*8(T) = 1. Then we impose the volume fractions of the
two coexisting phases collapse to 1 at the upper gela-
tion temperature, i.e qﬁié? — 1 for T — T"P. These two
conditions uniquely determine e, and So, and thus ws
through Eq. . We can now use the full f = foo1+ fgel
in the Maxwell construction. The result of the construc-
tion is displayed in Fig. [Tp. Notice that the binodal and
the gelation threshold ¢°8(T") are indeed overlapping. In
Fig. [7] we display the free energy for three temperature
values corresponding to sol-gel coexistence (Fig. m:), sol-
sol and sol-gel coexistence (Fig. mi), and sol-sol coexis-
tence only (Fig. [7e). The dashed lines represent values
where f is not convex. Notice that, for consistency, we
use values of fs, only up to ¢*¢ (denoted by a vertical
black line).
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%%gi d=1 class 1 Assembly facilitates phase separation

a &1/ b
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0.50 0.5
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0.
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class 2 Assembly hinders phase separation
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FIG. 8. The influence of assemblies on the system
phase behaviour. a Focusing on systems with d = 1 be-
longing to class[I} we compare three binodals corresponding
to assembly strength eins/x = 0.5, —1,—2 (coloured curves)
and the reference binary mixture composed of monomers and
solvent only (black curve). The latter can be associated with
the limit eint/x — oo0. The region enclosed by the binodal,
corresponding to phase separation, expands even for assem-
blies with no assembly energy eint/x = 0. This can be ex-
plained by the entropic advantage caused by size polydisper-
sity. b Dependence of the critical volume fraction and critical
temperature on the assembly strength eint/x. The presence
of assemblies causes T and ¢° to deviate from the reference
values (black dashed lines) corresponding to a binary mixture
with monomers and solvent only (eint/x — 00). In particular,
for Class[I} making assemblies more energetically favourable,
i.e. decreasing ein;/X, induces an increase in T° and a de-
crease in ¢°, in turn making phase separation more accessi-
ble. ¢ Comparison between three binodal lines corresponding
to systems belonging to class 2] and d = 1, with assembly
energies eins/x = 0, —0.5, —1 (coloured curves) and the refer-
ence binary mixture composed of monomers and solvent only
(black curve). d For Class decreasing eint/x, causes T°
and ¢° to decrease, overall hindering phase separation. This
is caused by the interaction propensity screening in monomers
at the bulk of assemblies belonging to class |2 see Eq.

Appendix D: Mutual feedback between phase
separation and assembly equilibria

We first discuss how assemblies can shape the phase
diagram. For linear assemblies (d = 1) belonging to
Class [I] assemblies facilitate phase separation. Indeed,
as illustrated in Fig. [8h-b, increasing the relative assem-
bly strength, i.e., decreasing ej,;/x, leads to an upshift
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FIG. 9. The influence of phase separation on as-
sembly size. a Comparison between the size distribution
in a homogeneous system, and in the corresponding phase-
separated system (averaged in both compartments). Here, we
consider rod-like assemblies (d = 1), M — 00, ¢tor = 0.016
and T/To = 0.2. We note that the presence of compartments
can favour assembly formation, even when the corresponding
homogeneous mixture is populated mainly by monomers. The
difference in distributions can be quantified utilizing the func-
tional distance, defined in Eq. . b The magnitude of this
distance depends on the droplet size and the temperature cho-
sen. The volume corresponding to the maximum distribution
distance shifts towards lower values with decreasing temper-
ature T/T0. The distributions separated by the maximum
distance, for T/T0 = 0.2, are the ones displayed in a

in critical temperature and a downshift in critical vol-
ume fraction. This trend can be explained by consid-
ering that assembly formation, even if energetically dis-
favoured, reduces the mixing entropy (see the first term
in Eq. ) In Fig. , we show the binodal lines cor-
responding to three representative values of the assem-
bly strength: ej/x = 0,—1,—2. We compare them
to the black curve, which corresponds to a binary mix-
ture made of monomers and solvent only (black curve).
This reference case can be thought of as the limiting
case in which assemblies have an infinite energy penalty,
i.e, eint/x =— oo. In Fig. , we quantify the changes
in critical temperature and critical volume fraction as
a function of the relative assembly strength ej,:/x. In
Fig. [Bc-d, we illustrate the behaviour of linear assemblies
(d = 1) belonging to Class In contrast to Class
assemblies can suppress phase separation. Indeed, mak-
ing assemblies more favourable by decreasing eint /X, the
critical temperature decreases, and even if the critical
density decreases and the binodal shrinks, see Fig. [B.
In Fig. [Bd, we display critical temperatures and critical
volume fraction variations as a function of the relative
assembly strength ejng/x.

Fig. [§] clearly shows that the presence of assemblies af-
fects the phase equilibrium of a mixture. We now prove
that, in turn, the total number of assemblies can dif-
fer between phase-separating and homogeneous systems
with the same total protein volume fraction. To show
this, we fix the interaction propensity ¥, the temperature
T/Tp, and the total macromolecule volume fraction ¢os
to values corresponding to two-phase coexistence at ther-
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modynamic equilibrium. We then compare the assembly
size distribution (after averaging over both phases), with
the distribution in the corresponding homogeneous state,
with the same values of T" and ¢;o¢. Recalling that due to
our choice of interaction propensity scaling in Eq. @D that
the size distribution in the homogeneous system, Eq. ,
does not depend on x. For this reason, the homogeneous
state can be thought of as an unstable state correspond-
ing to the same x as the phase separating one, which has
not reached phase equilibrium yet, but also as the equi-
librium state of a system with the same parameters as
the phase separating one, but formed by assemblies that
do not interact with the solvent (x = 0).

In Fig. Op, we display results for rod-like assemblies
(d=1) with T/Ty = 0.2, and ¢yt = 0.016. We compare
the size distribution in the homogeneous system gzb?, with
the weighted average over compartments, defined as

_ VI VH
bi = 7@ + 7@1’ (D1)

in the corresponding phase-separated system. Clearly,
the two distributions differ, showing that the presence of
compartments can lead to larger assemblies. The differ-
ence in size distributions can be quantified utilizing the
so-called total variation distance, defined as

d(h,g) = sup h gi

PSS TS g (D2)

This quantity characterizes the distance between two nor-
malised functions as the largest possible distance among
values that they assign to the same argument. The dis-
tance between the homogeneous size distribution and the
distribution defined in Eq. depends on the temper-
ature T and the total volume fraction ¢y.¢, which in turn
determines the droplet size. In Fig. [Op, we display distri-
bution distances 6(¢", ¢) corresponding to different tem-
peratures and droplet volumes. In the limits VI/V — 0
and V!/V — 1, the system becomes homogeneous. As a
result, the distribution distance §(¢", ¢) vanishes. Note
that the volume corresponding to the maximum distri-
bution distance shifts towards lower values.

Appendix E: Assembly kinetics in homogeneous
mixtures

In this section, we give the details on the kinetic theory
for assembly in non-dilute homogeneous systems that can
relax toward chemical equilibrium. Each component ¢
follows

doi _ .
dt v

(E1)


https://doi.org/10.1101/2023.04.18.537072
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.18.537072; this version posted April 19, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Focusing on monomer exchange among assemblies, the
assembly rates read

M-1
™ = 7AT1 - Z Y:ATl',
=1
ri=(i—1)Ar;_1 —iAr;, for i =2,.M —1,
(E2)

v = (M — 1) AT]\/[_I .

These rates conserve the total volume fraction ¢iot, i.€.,
O¢rot = 0 ;1 i = 0. The assembly flux (i =2,...M)

A’I”i = S5 1-— exp (Z + 1)M1+1 B . (ES)
kT

is determined by differences in chemical potential per
monomer.

For assemblies of class [I} we can use the chemical po-
tential Eq. and write the assembly flux as

i Git1 1)
Ar; =s; | 1 — - K; , E4
( i+1¢; 01 (ED)
where we have introduced
. (Z + l)wi+1 —Ww; — w1
K; =exp (1 T . (E5)

We chose s; = ¢;¢1K;/¢; s in order to recover a finite
rate in the limit ¢1, ¢; < 1. We finally recast the flux in

Eq. (E2) as
Ar; = s <¢¢§51 K, - ?iﬂ) ‘
7 1+ 1

Eq. (E5) is the assembly kernel. In general, this ker-
nel depends on the assembly size i. However, for rod-
like assemblies (d = 1), the assembly kernel K; = K =

exp (1 + é—“}) is independent of size i [15].

(E6)

Appendix F: Assembly kinetics in compartments

Here, we generalise the assembly kinetics described in
the previous section to the case of phase coexistence. To
this end, we focus on passive systems that can relax to-
ward thermodynamic equilibrium. Moreover, we restrict
ourselves to systems that are at phase equilibrium at
any time during the relaxation kinetics toward thermo-
dynamic equilibrium and following the theory originally
developed in Ref. [56]. Chemical kinetics constrained to
phase equilibrium is valid if the chemical reaction rates
are small compared to diffusion rates. By choosing ini-
tial average volume fractions corresponding to two-phase
coexistence, we can consider the system volume to be di-
vided into two homogeneous compartments as a result of
phase separation. We then study the time evolution of
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binodal

[ ] t=0
o t=t

L

¢2

FIG. 10. Kinetic trajectory in the multicomponent
phase diagram Illustration of the assembly kinetics at phase
equilibrium, for systems corresponding to M = 3 and initially
composed of monomers only.

compartment sizes and volume fractions due to chemi-
cal reactions, enforcing instantaneous phase equilibrium
at all times. To this aim, we start with the variation of
particle numbers in compartments I and II:

dn; /1 /11 /11
= S ey (F1)

/11 .. . .
where Ri/ are the variations due to chemical reactions

and Jl-I M describes the exchange of assemblies between
the two phases. Particle conservation during crossing
implies J! = —J1. Due to volume conservation in the
two-phase, we have

M
VI/H = Z NiI/H’UZ' . (F2)
=0

Furthermore, V = VI + VI, We now introduce vol-
ume fractions (byn = NiI/H/VI/II and the rescaled rates
M=y Jil/H/VI/II and ri/H = RyH/VI/H, leading to

K2

/11 dlnV /i

_ _yn /I
Tt 0 dt ’

%I/H

F
% Ji (F3)

which correspond to Eq. (E1|) generalised two-phase co-
existence. We can write the rates in both phases as

M—1
/11 1/11 N V41t
P/ = AT N
1 1 i ’
i=1

M= =A™ —iar™ fori=2,.M -1,
(F4)
1/11 1/11
rﬂf[ =(M - l)Ar]V/Fl,
with
/11 ,1/11 1/11
Ari:s<¢i 1K — ?ZH) ; (F5)
1 i+ 1
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where the assembly kernel is defined in Eq. (E5).
Eq. and Eq. can be combined to get d;V!
T

VYILSM UG Usin% the volume conserving
M 1/1

properties of the rates, Y ~." ;" = 0, we finally get

danI/H M /11
=i (F6)
=0

Assembly mass conservation at the interface implies

VII
Ji = =3 (F7)
with the volume dynamics obeying d; (V! + V1) = 0.
The currents jZ-I/ H satisfy that phase equilibrium is sat-
isfied at all times, which can be expressed by taking a

time derivative of Eq. :

o} d¢; oy Ao}
Z < 94! T Z < 9o dt (F8a)
ortde} L ot del! F8b
Zags; dt & o¢ll dt (F8b)

provided that the initial phase volume and volume frac-
tions V(¢ = 0), and gbI/H(t = 0) are a solution of Eq. (7).
Once an expression for du;/0¢; and O0II/0¢; is calcu-
lated, we can derive an a set of M + 1 equations for j}

inserting Eq. (F3), Eq. (F6), and Eq. (F7) in Eq. (F8]).

These equations are linear and enable us to find an ex-
pression for jg/ a5 a function of q’)I/ T and V1 JV. We
have finally all the ingredients to characterize the dy-

namics of the phase volume and volume fractions ¢; i/ H( t)
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and V1(t), integrating Eq. and Eq. and pro-
vided we can solve the initial phase equilibrium problem
to find VI(t = 0)/V, and ¢I/II( 0). This scheme can
be used to study the kinetics of a system initially com-
posed of two phases filled by monomers only that relax
to its thermodynamic equilibrium. An example of such
relaxation kinetics is depicted in Fig Note that the
currents jg /M restrict the trajectories to lie in the binodal
manifold at all times.
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