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Abstract

In recent years, the development of natural lan-001
guage process (NLP) technologies and deep002
learning hardware has led to significant im-003
provement in large language models(LLMs).004
The ChatGPT, the state-of-the-art LLM built005
on GPT-3.5, shows excellent capabilities in006
general language understanding and reasoning.007
Researchers also tested the GPTs on a vari-008
ety of NLP related tasks and benchmarks and009
got excellent results. To evaluate the perfor-010
mance of ChatGPT on biomedical related tasks,011
this paper presents a comprehensive benchmark012
study on the use of ChatGPT for biomedical013
corpus, including article abstracts, clinical tri-014
als description, biomedical questions and so on.015
Through a series of experiments, we demon-016
strated the effectiveness and versatility of Chat-017
GPT in biomedical text understanding, reason-018
ing and generation.019

1 Introduction020

In recent years, there has been a tremendous growth021

in the field of natural language processing (NLP)022

and machine learning. One of the most signif-023

icant advancements in NLP is the development024

of large language models such as GPT (Genera-025

tive Pre-trained Transformer)(Radford et al., 2018,026

2019; Brown et al., 2020) and its various variants,027

which have shown remarkable performance in a028

number of language tasks. Usually GPT models029

were initially pre-trained on massive text data and030

then fine-tuned on specific downstream tasks to031

generate human-like languages.032

In the domain of biomedical text mining, NLP033

techniques have demonstrated the potential to revo-034

lutionize research and clinical practice. However,035

the complexity of biomedical language and the vast036

amount of data size still make it a challenging task037

to develop robust models for text generation and038
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mining. In this paper, we present a comprehensive 039

benchmark study on evaluating the performance of 040

ChatGPT model(Ouyang et al., 2022), a large-scale 041

GPT-based language model, for biomedical text 042

generation and mining. 043

The paper is organized as following. Firstly, we 044

will provide an overview of the related work in 045

biomedical textmining and highlight the strength 046

and limitations of current approaches. Secondly, 047

the ChatGPT model and its applications in NLP 048

will be described. Thirdly, we will discuss the 049

benchmarking and experimental protocols con- 050

ducted in this study. Finally, we will present the 051

performance of ChatGPT in various biomedical 052

text generation and mining tasks along with other 053

baseline biomedical NLP models and discuss the 054

potential applications and future directions of Chat- 055

GPT in biomedical research and clinical practice. 056

Overall, this paper aims to contribute to the grow- 057

ing body of research in the field of biomedical NLP 058

by providing a comprehensive evaluation of Chat- 059

GPT model on biomedical text generation and min- 060

ing. By comparing the performance of ChatGPT 061

with other SOTA biomedical models on several 062

biomedical related NLP benchmark sets, we hope 063

to provide the pros and cons of ChatGPT model in 064

dealing with biomedical related tasks, which may 065

inspire further development of more advanced NLP 066

models for biomedical data analysis. 067

2 Background and Related Work 068

In recent years, natural language processing (NLP) 069

techniques have gained significant attention in the 070

biomedical domain due to the vast amount of 071

textual data generated by scientific publications, 072

electronic health records, and social medias etc. 073

Biomedical text mining, a sub-field of NLP, aims to 074

extract, analyze and summarize useful information, 075

and derive insightful knowledge from either struc- 076

tured or unstructured biomedical texts. Usually, ex- 077

tracting knowledge from biomedical text requires 078
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substantial human effort and is time-consuming.079

Thus, automated text generation and mining tech-080

niques can greatly assist researchers via extracting081

or deriving valuable insights from the available big082

data in biomedical literature.083

Recently, one of the most promising advances084

in NLP field is the development of so called large-085

scale language models (LLMs) to using hundreds086

of billions of parameters and to training on giga-087

bytes of text (Brown et al., 2020; Ouyang et al.,088

2022). These models have been shown to achieve089

state-of-the-art (SOTA) performance in several090

NLP tasks, including text generation, question and091

answering (QA), and text summarisation. The capa-092

bility of these models to generate coherent and con-093

textually relevant text makes them ideal candidates094

for biomedical text generation and mining. By095

identifying critical data points for clinical trials and096

drug discovery, LLMs can assist in advancing the097

creation of new drugs and treatment approaches.098

Several studies have demonstrated the potential099

of these language models in biomedical text mining.100

For instance, BioLinkBERT was an LM pretraining101

method that leverages links between biomedical102

documents. SciFive (Phan et al., 2021) applied a103

domain-specific T5 model (Raffel et al., 2020) that104

has been pre-trained on large biomedical corpora.105

Moreover, pre-train, prompt and predict (Liu106

et al., 2023) is an emerging paradigm for apply-107

ing LLMs to new problems without fine-tuning108

the weights on the task. Prompt-based learning in-109

volves enhancing the problem statement with spe-110

cific instructions so that the model’s response to111

the prompt results in a solution. This methodol-112

ogy enables LLMs to learn from a limited set of113

examples, referred to as shots, which are integrated114

into the prompts themselves(Brown et al., 2020).115

ChatGPT (Ouyang et al., 2022) has garnered enor-116

mous attention due to its remarkable success in117

instruction understanding and human-like response118

generation. According to recent research, the Chat-119

GPT language model created by OpenAI has shown120

promising results in performing at par with humans121

on MBA exams conducted by the Wharton Busi-122

ness School.(Rosenblatt, 2023)This indicates that123

AI language models like ChatGPT have the poten-124

tial to compete with human knowledge and could125

be utilized to assist professionals.(Choi et al., 2023;126

Baidoo-Anu and Owusu Ansah, 2023). Also, their127

impressive performance on diverse NLP tasks, cou-128

pled with their ability to generalize to unfamiliar129

tasks, highlights their potential as a versatile solu- 130

tion for a variety of challenges in natural language 131

understanding, text generation, and conversational 132

AI. 133

While these studies have demonstrated the poten- 134

tial of LLMs in biomedical text mining, there is still 135

a lack of comprehensive evaluation of LLMs on 136

broad biomedical tasks. This study aims to provide 137

a large scale study of the latest ChatGPT model 138

in biomedical text generation and mining. We in- 139

vestigated the performance of ChatGPT in several 140

biomedical NLP tasks, including entity recogni- 141

tion, paragraph summarization, and answer genera- 142

tion etc. We also explored the possibility of using 143

ChatGPT to assist researchers in extracting useful 144

knowledge from the available biomedical data. 145

Further, (Wei et al., 2022) demonstrates that 146

LLMs could be achieved by generating a chain 147

of thought(a series of intermediate reasoning steps) 148

to improve the ability of large language models 149

to perform complex reasoning, coined "Chain-of- 150

Thought" (CoT). This prompt not only appears to 151

expose valid reasoning but also translates into su- 152

perior zero-shot performances. (See example in 153

Results and Discussions.) 154

3 ChatGPT for Biomedical NLP 155

The volume of biomedical literature has signifi- 156

cantly expanded in recent years, leading to a urging 157

need for robust text mining tools for biomedical 158

application. Numerous studies have shown that 159

pre-trained language model can help accelerate the 160

progress of general biomedical NLP applications. 161

A common workflow for training domain spe- 162

cific language model is to pretrain models on large 163

general data sets to learn general features of lan- 164

guages and then fine-tune on more focused domain 165

specific data. Large models, e.g. BERT-based or 166

GPT-based models, were firstly pretrained with 167

huge amount of text data either supervisedly, semi- 168

supervisedly or unsupervisedly. The pre-trained 169

models offer representation, or in another word, 170

featurization for the input text, which is regarded 171

as general understanding of the model for the in- 172

put sentences. Then for any downstream task, the 173

pre-trained model is combined with a prediction 174

head and fine-tuned together with a relatively small 175

domain specific train set in a supervised pattern. 176

In some studies, the parameters of the pre-trained 177

model may also be frozen. The prediction head 178

gives a desired output that can be utilized to evalu- 179
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Figure 1: An overview of the workflow for Biomedical NLP using ChatGPT.

ate the model performance. ChatGPT is a genera-180

tive model based on GPT-3.5 and fine-tuned to ac-181

complish text generating tasks. As the exact model182

structure and parameters are not released by Ope-183

nAI yet, it is impossible to directly fine-tune the184

model toward user supplied data. However, it has185

been shown that ChatGPT can achieve human-like186

dialogue results through chatting with specifically187

engineered prompts. Here, we employed prompt188

engineering method to engage ChatGPT model in189

biomedical related NLP tasks and then evaluate its190

performance. In most of cases, the ChatGPT model191

was challenged in a zero-shot or few-shot manner192

(as part of the prompt).193

The design of the prompt is crucial for the output194

of ChatGPT. In general, the prompt should at least195

consist of a body of background context, an instruc-196

tion part telling ChatGPT what’s the task supposed197

to be done, and a constrain part for formating the198

output and content. For instance in a yes/no QA199

task, ChatGPT should be told to ’answer in a simple200

yes or no’ so that we can obtain structured results201

and calculate performance metrics. But there are202

still cases that output of ChatGPT does not obey the203

constrains, e.g. supplying reasons after a ’yes’ for204

a QA task or answering entities that does not exist205

in the text for a named entity recognization (NER)206

task. To deal with these exceptions, we choose207

to judge the answer at first and then emphasize208

again the constrains. This requires multiple rounds209

of question and answering. Figure 1 provides An210

example of zero-shot biomedical NLP task using211

ChatGPT.212

4 Experiments213

We applied the pattern proposed in Section 3 to214

test the performance of ChatGPT on Biomedical215

NLP tasks. Considering the model accessibility and216

computation speed, we tested the ChatGPT model 217

built on GPT-3.5 to evaluate the performance on 218

Biomedical NLP tasks. In this section, we will 219

first introduce the benchmark data sets, followed 220

by a description of our evaluation tasks and their 221

respective implementation details. Finally, we will 222

present the results of ChatGPT. 223

4.1 BLURB Benchmark 224

BLURB. We utilized a comprehensive benchmark 225

data set for Biomedical NLP, the Biomedical Lan- 226

guage Understanding & Reasoning Benchmark 227

(BLURB)1, which is an extensive collection of 228

biomedical NLP tasks derived from publicly ac- 229

cessible data sources and contains 13 biomedical 230

NLP subsets grouped in six types of task. These 231

tasks include NER, evidence-based medical infor- 232

mation extraction (PICO), biomeidical relation ex- 233

traction(BRE), sentence similarity, document clas- 234

sification, and QA. An overview of the BLURB 235

datasets can be found in Table 1. 236

Evaluation Metrics. To calculate the overall 237

score for BLURB, the simplest approach would be 238

to report the average score across all tasks. How- 239

ever, this may be biased by some high-scored tasks. 240

Therefore, we provided both average score per task 241

class which reflect the performance on data sets 242

belonging to the same task type, and the average 243

overall score among all task types. 244

4.2 Biomedical NLP Tasks 245

In order to achieve optimal performance for Chat- 246

GPT model across different tasks, specific prompts 247

for various tasks were designed based on the pat- 248

tern proposed in Section 3. 249

1https://microsoft.github.io/BLURB/
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Table 1: Overview of the BLURB benchmark. We list the numbers of instances in train, dev, and test, as well as
their respective evaluation metrics.

Dataset Task Train Dev Test Evaluation Metrics
BC5-chem NER 5203 5347 5385 F1 entity-level

BC5-disease NER 4182 4244 4424 F1 entity-level
NCBI-disease NER 5134 787 960 F1 entity-level

BC2GM NER 15197 3061 6325 F1 entity-level
JNLPBA NER 46750 4551 8662 F1 entity-level

EMB PICO PICO 339167 85321 16364 Macro F1 word-level
ChemProt BRE 18035 11268 15745 Micro F1

DDI BRE 25296 2496 5716 Micro F1
GAD BRE 4261 535 534 Micro F1

BIOSSES Sentence Similarity 64 16 20 Pearson
HoC Document Classification 1295 186 371 Acerage Micro F1

PubMedQA QA 450 50 500 Accuracy
BioASQ QA 670 75 140 Accuracy

4.2.1 Named Entity Recognition250

NER task is a process for identifying and pre-251

dicting named entities, such as name of chemi-252

cal substance, disease, gene, and protein, within253

given input text. Five NER datasets from the254

BLURB benchmark were investigated, includ-255

ing BC5-Chemical, BC5-Disease, NCBI-Disease,256

BC2GM, and JNLPBA. For these datasets, the same257

splits for train, validation, and test set as utilized by258

(Crichton et al., 2017) were used in current study.259

BC2GM is a corpus data set, which consists of260

over 20,000 abstracts and full-text articles from the261

MEDLINE database published during the period262

1991-2003. Each document in the corpus was anno-263

tated by domain experts with gene names and syn-264

onyms, as well as their corresponding Entrez Gene265

IDs. The NER task on the BC2GM dataset requires266

a predictive model to identify all gene entities men-267

tioned in a text (Smith et al., 2008). The BC5-chem268

and BC5-disease data sets were retrieved from the269

BioCreative challenge and were respectively de-270

signed for NER tasks towards chemical and disease271

entities. The former data set contains over 1,500272

documents with approximately 42,000 chemical an-273

notations, while the latter one contains over 1,500274

documents with approximately 24,000 disease an-275

notations. The NCBI-disease corpus was created by276

the National Center for Biotechnology Information277

(NCBI) for disease recognition tasks in biomedical278

natural language processing (Doğan et al., 2014).279

It consists of over 20,000 PubMed abstracts that280

were manually annotated by domain experts with281

disease names and their corresponding disease IDs 282

from the Medical Subject Headings (MeSH) vocab- 283

ulary. The JNLPBA (Joint Workshop on Natural 284

Language Processing in Biomedicine and its Ap- 285

plications) corpus was provided by the JNLPBA 286

conference specifically for gene entity recognition 287

(Collier and Kim, 2004). It consists of over 2,000 288

PubMed abstracts, manually annotated by domain 289

experts. These corpora cover a diverse range of 290

biomedical topics, making it a valuable resource 291

for training and evaluating machine learning mod- 292

els for NER tasks. In the BLURB, the annotation 293

format in the corpus was unified for five NER data 294

sets. Specifically, a pair of entity type masks were 295

added before and after the words representing the 296

entity name. For example, the mask “gene* [entity] 297

*gene” was inserted to the text to label the gene 298

entity in the bracket. The disease and chemical 299

entities were masked similarly. In this study, Chat- 300

GPT was employed to recognize the entity name in 301

the text without any prior knowledge. The prompt 302

was designed as: 303

Paragraph: <Paragraph ID> | <text> Please ex- 304

tract all chemicals/genes/diseases mentioned in the 305

paragraph. Answer with the format "<Paragraph 306

ID> | <recognized entities>" 307

4.2.2 PICO 308

PICO stands for Patient/Population, Intervention, 309

Comparison and Outcomes. PICO model is used 310

to construct a clinical question. The practice of ev- 311

idence based medicine (EBM) aspires to inform 312

4
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Table 2: Performance on BLURB benchmark. We list the overall BLURB Score and the score for each task in gray
shaded cells.

PubMedBERT BioLinkBERT-Base BioLinkBERT-Large ChatGPT
Named entity recognition 86.27 86.19 86.89 48.27

BC5-chem(Li et al., 2016) 93.33 93.75 94.04 60.30
BC5-disease(Li et al., 2016) 85.62 86.10 86.39 51.77
NCBI-disease(Dogan et al., 2014) 87.82 88.18 88.76 50.49
BC2GM(Smith et al., 2008) 84.52 84.90 85.18 37.54
JNLPBA(Collier and Kim, 2004) 80.06 79.03 80.06 41.25

PICO extraction 73.38 73.97 74.19 55.59
EBM PICO(Nye et al., 2018) 73.38 73.97 74.19 55.59

Relation extraction 80.65 81.56 82.74 46.08
ChemProt(Krallinger et al., 2017) 77.24 77.57 79.98 34.16*
DDI(Herrero-Zazo et al., 2013) 82.36 82.72 83.35 51.62
GAD(Krallinger et al., 2017) 82.34 84.39 84.90 52.43

Sentence similarity 92.30 93.25 93.63 43.75
BIOSSES(Soğancıoğlu et al., 2017) 92.30 93.25 93.63 43.75

Document classification 82.34 84.39 84.90 51.22
HoC(Baker et al., 2016a) 82.34 84.39 84.90 51.22

Question answering 71.70 80.82 83.50 82.51
PubMedQA(Jin et al., 2019b) 55.84 70.20 72.18 76.45
BioASQ(Nentidis et al., 2020a) 87.56 91.43 94.82 88.57

BLURB Score 81.10 83.39 84.30 58.50
*: We also tested the data set in a one-shot manner and the corresponding score is 48.64%.

healthcare decision using the total relevant evi-313

dence.(Nye et al., 2018) EBM-NLP is an biomedi-314

cal corpus comprising 4993 medical abstracts de-315

scribing clinical trials, containing spans of token316

corresponding to three categories, ie. Populations,317

Interventions and Outcomes in the clinical trial.318

Each P/I/O span is further annotated with more de-319

tailed labels, e.g. Age, Sex information etc.(Huang320

et al., 2006). The test set contains 191 abstracts321

where 16364 out of around 54000 tokens are re-322

lated to P/I/O categories and others are labeled as323

"None". Comparison(C) is not annotated in this cor-324

pus. This is like a token-wise multi-classification325

task as typical classifiers did. But it is inconvenient326

to ask ChatGPT to classify each word one by one.327

In practice, we designed prompts similar to the328

NER tasks for asking ChatGPT to extract all the329

words related to P/I/O class and the rest of words330

were attributed as ’None’. A natural-language-like331

prompt was designed as:332

Reference: <abstract> The reference describe333

a clinical trial. Which words are about the par-334

ticipants/interventions/outcomes? You can only335

answer with words or phrase in the reference. If 336

nothing mentioned, answer "None". 337

The PICO task is somehow similar to a NER 338

task but there are still some differences between 339

the tasks. For example, the words annotated as 340

P/I/O can not only be entity names, but also sen- 341

tences composed of prepositions, adverbs and even 342

punctuations etc, which describe the target span. 343

As the result is evaluated with macro word-level 344

F1 score, a neural network classifier can make a 345

prediction for each token(word), but it’s imprac- 346

tical for ChatGPT, a generative model, to do the 347

task in such a word-wise way. For example, Chat- 348

GPT only answers a word for one time even if the 349

word appears several times in the abstract. In order 350

to properly evaluate the performance of ChatGPT, 351

these words were weighted with the number of ap- 352

pearance when counting the confusion matrix, and 353

the punctuations were excluded. 354

4.2.3 Biomedical Relation Extraction 355

Biomedical relation extraction (BRE) task focuses 356

on identifying and extracting relationships between 357

medical entities in input text, such as connections 358

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.19.537463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.19.537463
http://creativecommons.org/licenses/by-nc-nd/4.0/


between diseases and drugs, or symptoms and treat-359

ments. Formally, let x represents a sentence con-360

taining two medical entities, e1 and e2, with r be-361

ing the relation between them. The BRE task can362

be framed as a classification problem, where the363

objective is to learn a function f(x, e1, e2) → r,364

with r belonging to the set of possible relations365

R. This function leverages the context provided by366

sentence x to predict the relation between entities367

(e1, e2). The performance of BRE models is gener-368

ally assessed using standard classification metrics,369

such as confusion matrix based Precision, Recall,370

and F1-score etc.371

We evaluated the performance of ChatGPT on372

three biomedical datasets: ChemProt, DDI, and373

GAD.374

To assess ChatGPT’s ability in the BRE task,375

for example, we crafted a prompt (for the GAD376

Dataset) as following: "Does the reference indi-377

cate a relationship between the @DISEASE$ and378

the @GENE$ without specifying the exact disease379

and gene? Response with "yes" or "no"." By do-380

ing in this way, it allowed us to gauge ChatGPT’s381

effectiveness in recognizing and extracting relation-382

ships between medical entities within the context383

of biomedical text.384

As indicated by its name, ChemProt is a data385

set containing around 700000 unique chemicals,386

3000 proteins and 2,000,000 interactions overall387

from around 2500 documents. All the interactions388

are grouped into 10 groups according to biological389

semantic classes. A five-group-subset was used as390

the test set. The five groups in the test set include:391

1) upregulator | activator | indirect upregulator, 2)392

downregulator | inhibitor | indirect downregulator,393

3) agonist | agonist-activator | agonist-inhibitor, 4)394

antagonist, 5) substrate | product of | substrate prod-395

uct of. There are even more groups in the train396

set and validation set. Besides, unrelated chemical397

substance and protein pairs were labeled as ’None’398

to enrich the data set. Clearly, domain knowledge399

is required to help understand what the exact rela-400

tion means and might be missing in general LLMs401

like ChatGPT. To overcome the difficulty, we test402

ChatGPT by adding one sample of the validation403

set for each group into the prompt, in another word,404

with the one-shot learning manner.405

The Drug-Drug Interaction corpus(Herrero-Zazo406

et al., 2013) was created to facilitate research on407

pharmaceutical information extraction, with a par-408

ticular focus on pharmacovigilance. It contains409

sentence-level annotation of drug-drug interactions 410

on PubMed abstracts. 411

Gene-disease associations database (GAD) 412

(Bravo et al., 2015)set is a collection of around 413

5000 published gene/disease associations. The 414

gene name and disease name in the document are 415

recognized and masked. Here, the label indicates 416

whether the document implies an association be- 417

tween the gene and the disease as a binary classifi- 418

cation task. Different from ChemProt, the relations 419

were not strictly defined with a biology terminology 420

and could be ambiguous sometimes. 534 sentences 421

were used as the test set. 422

4.2.4 Sentence Similarity 423

The Sentence Similarity task involves predicting 424

a similarity score based on the likeness of a given 425

pair of sentences. The BLURB benchmark con- 426

tains the BIOSSES dataset consisting of 100 pairs 427

of sentence from Text Analysis Conference(TAC) 428

Biomedical Summarization Track (Soğancıoğlu 429

et al., 2017). The train, validation, and test splits 430

were the same with the ones used before (Peng 431

et al., 2019) and we tested ChatGPT on a test set of 432

20 pairs. The score is in the range of 0-5. The defi- 433

nition is declared in the table 3. Each sample was 434

scored by 5 annotators and the average score was 435

used as the ground truth, leading to a regression- 436

like task. The prompt is designed as: What is the 437

similarity score between the <sentence1> and the 438

<sentence2>? Response with float ranging from 0 439

(no relation) to 4 (equivalent)? 440

4.2.5 Document Classification 441

Document Classification is a procedure of assign- 442

ing one or more pre-defined labels to a document. 443

Evaluation for this task was done at the document 444

level, ie. aggregating labels across all sentences 445

within a document. We utilized the HoC data set 446

from the BLURB benchmark, which was curated 447

by (Baker et al., 2016b) and employed the same 448

splits of train, validation, and test set. 449

We have designed the following prompt to en- 450

able ChatGPT to carry out the document classifica- 451

tion task: "document: <text>; target: The correct 452

category for this document is ? You must choose 453

from the given list of answer categories (introduce 454

what each category is ...)." 455

4.2.6 Question Answering 456

The QA task refers to predicting answers under 457

the given context, in which the first sentence is 458

6
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Table 3: Definition of the scores in the BIOSSES data set

score comment
0 The two sentences are on different topics.
1 The two sentences are not equivalent, but they are on the same topic.
2 The two sentences are not equivalent, but share some details.
3 The two sentences are roughly equivalent, but some import information differs/missing.
4 The two sentences are completely or mostly equivalent, as they mean the same thing.

question. Answers are either two labels (yes/no) or459

three labels (yes/maybe/no). We utilized the Pub-460

MedQA (Jin et al., 2019a) and BioASQ (Nentidis461

et al., 2020b) data sets for evaluation. For both data462

sets, the original train, validation, and test splits463

within the BLURB benchmark were used.464

For evaluation of ChatGPT on PubMedQA and465

BioAS, we simply designed the following prompt:466

"question: <text>; context: <text>; answer:467

<text>; target: the answer to the question given the468

context is (yes or no)? "469

4.3 Results and Discussions470

We tested the performance of ChatGPT with engi-471

neered prompts as mentioned in previous sections472

and altogether, six types of biomedical text min-473

ing task (NER, PICO, BRE, Sentence Similarity,474

Document Classification and QA) were explored.475

Baseline models. We selected three baseline476

models that are SOTA on the BLURB benchmark477

for comparison with ChatGPT, ie. PubmedBERT,478

BioLinkBERT-Base and BioLinkBERT-Large.479

All the models are based on the BERT architecture.480

PubmedBERT(Gu et al., 2021) was pre-trained on481

PubMed and BioLinkBERT-Base(Yasunaga et al.,482

2022) was pre-trained on PubMed with citation483

links. The BioLinkBERT-Large model was specif-484

ically pre-trained on a large corpus of biomedical485

literature and clinical notes, which allow to cap-486

ture the complex terminology and domain-specific487

knowledge required for biomedical NLP tasks. It488

contains over 335 million parameters, making it489

one of the largest pre-trained models in the biomed-490

ical domain.491

Table 2 shows the performance of ChatGPT and492

baseline models on BLURB benchmark. Although,493

in general, ChatGPT got a BLURB score of 59.46494

which is significantly worse than the SOTA base-495

lines, there are still interesting conclusions can be496

drawn for ChatGPT. On the other hand, we should497

bear in mind that ChatGPT was trained as a general498

language model, while the baselines are models499

particularly trained on biomedical corpus. 500

Among all types of task, QA task is the only 501

type of task that ChatGPT is comparative to the 502

baselines. In this case, ChatGPT (82.5) outper- 503

forms PubMedBERT (71.7) and BioLinkBERT- 504

Base (80.8) and is very close to the BioLinkBERT- 505

Large (83.5). In particular on the PubMedQA data 506

set, ChatGPT exceeded the baselines significantly 507

and the score is close to the human performance 508

of 78.2% (Jin et al., 2019a) and the SOTA score 509

of 79.6% (He et al., 2022). This results suggest 510

that ChatGPT has strong capability in understand- 511

ing these questions and is also able to give simple 512

answers as good as human do. 513

Table 4: Metrics for five NER tasks with BLURB bench-
mark datasets

NER Task F1-score Recall Precision
BC5-disease 0.52 0.59 0.46

BC2GM 0.38 0.46 0.32
BC5-chem 0.60 0.76 0.50

NCBI-disease 0.50 0.51 0.50
JNLPBA 0.41 0.55 0.33

The NER tasks in BLURB are to identify entities 514

of chemical substance, disease and gene name. The 515

recognition accuracy of ChatGPT among various 516

data sets is, from high to low, chemicals (BC5- 517

chem) > diseases (BC5-disease and NCBI-disease) 518

> genes(BC2GM and JNLPBA), which is consis- 519

tent with the baselines. This trend reflects that 520

disease and gene name have higher intrinsic com- 521

plexity than chemical name. We attributes the poor 522

performance of ChatGPT to the missing of super- 523

vised training and lack of training data in biomedi- 524

cal field. As far as we know, ChatGPT was trained 525

mainly on the data of web sites, social media posts, 526

books and articles. But biomedical entities, es- 527

pecially terminologies, are uncommon in the daily 528

usage. It’s probably explainable that ChatGPT does 529

not understand well these texts which need more 530
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domain knowledge to interpret.531

As introduced in the Section 4.2.2, PICO task532

is similar to NER. ChatGPT performs worse than533

the baselines but the gap is smaller comparing to534

NER tasks. PICO task was assumed to be eas-535

ier since many of the target words/sentences are536

commonly used in daily life and easy to under-537

stand. One possible reason for the poor perfor-538

mance is that ChatGPT may miss the short sen-539

tences or phrases while can successfully extract the540

long ones. Among following phrases and sentences541

labeled as P class in a document ’treated hyperten-542

sive patients’, ’hypertensive patients receiving drug543

treatment’, ’hypertensives on chronic, stable anti-544

hypertensive therapy’, ’people with one or more545

cardiovascular risk factors’, ’hypertensives under546

treatment’, ’Fifteen Italian hypertension units stud-547

ied 142 hypertensive patients(76 men, 66 women;548

mean age 59+/-5.9 years) treated with different an-549

tihypertensive drugs’, ChatGPT failed to recognize550

those short phrases/sentences as P class and only551

labeled the last long sentence correctly.552

Relation extraction tasks require a model to be553

able to identify the relation of a pair of entities554

masked in the text. For DDI and GAD data sets,555

whose format is similar to QA tasks requiring the556

model output to be a simple ’yes’ or ’no’, Chat-557

GPT performed poorly. ChemProt set is more com-558

plex due to the requirment of grouped relation and559

ChatGPT got even lower score than other tasks. A560

straightforward guess is that the so-called ’relation’561

is not that clear. It’s hard for ChatGPT to under-562

stand what the relation mentioned in our prompt563

refers to. To validate the guess, we tested ChatGPT564

on ChemProt in one-shot manner, in which one565

sample for each relation group was provided. The566

one-shot method greatly improved the score from567

34.16% to 48.64%. Another thing we noticed from568

the results was that ChatGPT tended to be con-569

fused by other words in the text and often assigned570

relation labels to entity pairs which are actually571

unrelated. The original ChemProt data contains572

only 3458 test samples where the entity pairs are573

all related. While in BLURB benchmark set, this574

set was augmented with 15745 negative pairs. It575

was found that false positive rate(FPR) is as high as576

75%. We tested ChatGPT on the original ChemProt577

data and the F1-score is 79.93%. Through these ex-578

periments, we expect that ChatGPT still has room579

to do a better job on these tasks with more carefully580

designed prompts, e.g. supplying more instructions581

about the relation that the data set concerns and 582

add more shots. 583

Table 5: Performance of ChatGPT on EBM PICO task.
Annotated punctions are excluded

Metrics P I O Macro average
N 4050 3102 7033 -

Precision 73.78 57.76 48.64 -
Recall 49.95 65.96 42.92 -

F1-score 59.57 61.59 45.60 55.59

The document classification task is quite chal- 584

lenge for ChatGPT. On one hand, the number of the 585

answer category is uncertain, it may be an empty 586

category, it may be one of the categories, or it may 587

be multiple categories. On the other hand, this few 588

shot learning scenario is not friendly for ChatGPT, 589

as it is really difficult to understand the labels with- 590

out enough domain knowledge. It can be seen from 591

Table 2 that on the HoC data set, ChatGPT only 592

obtained an F1 value of 51.22%, which is much 593

worse than BERT based models, indicating that the 594

performance of ChatGPT in processing medical 595

text classification tasks with few samples is still far 596

from optimal. 597

Sentence similarity is also a difficult case for 598

ChatGPT with zero-shot. Different from other 599

tasks, the similarity defined on the BIOSSES data 600

is quite subjective and the similarity score could 601

be ambiguous. The Y variable is the average score 602

from 5 annotators and the human opinions are al- 603

ways diverse. The score deviation of a certain pair 604

of sentences could be up to 2. The pearson co- 605

efficient between individual annotations and the 606

ground truth is only 0.5. So, in this sense, Chat- 607

GPT performed actually not worse than human. 608

The baselines got a high score due to the fine-tune 609

process. ChatGPT may work better on this task if 610

we fed some samples from the train set within the 611

prompt. As we focused mainly on the zero-shot 612

method and tried to evaluate the overall capacity of 613

the ChatGPT, we did not test this strategy for this 614

small data set with only 100 pairs of sentences. 615

5 Conclusion 616

Based on our experiments, the ChatGPT built on 617

the early version of GPT-3.5 performed poorly on 618

several biomedical NLP benchmark data sets. The 619

biomedical domain is clearly a challenging profes- 620

sional field to deal with for a general LLM running 621
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in the zero or few shot scenario. Another common622

problem is that ChatGPT is a generative model623

while most benchmark sets are designed for su-624

pervised models, requiring a structured prediction.625

SOTA language models are usually fine-tuned in626

a supervised manner based on a pre-trained large627

model. Though we can add instructions in the628

prompt to constrain the output of the ChatGPT,629

there are still chances that the ChatGPT output630

doesn’t follow the expected format. Having said631

that, the superior version GPT-4 has recently been632

released and demonstrated better ability of natu-633

ral language understanding and reasoning. We are634

looking forward to test newer version of ChatGPT635

on professional NLP tasks to explore the potential-636

ity of LLMs.637
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