
Dating ancient humans splits by estimating1

Poisson rates from mitochondrial DNA2

parity samples3

Keren Levinstein Hallak
Department of Statistics, University of Tel Aviv

and
Saharon Rosset

Department of Statistics, University of Tel Aviv

4

April 20, 20235

Abstract6

We tackle the problem of estimating species divergence times, given a genome se-7

quence from each species and a large known phylogenetic tree with a known structure8

(typically from one of the species). The number of transitions at each site from the9

first sequence to the other is assumed to be Poisson distributed, and only the parity10

of the number of transitions is observed. The detailed phylogenetic tree contains in-11

formation about the transition rates in each site. We use this formulation to develop12

and analyze multiple estimators of the divergence between the species. To test our13

methods, we use mtDNA substitution statistics from the well-established Phylotree14

as a baseline for data simulation such that the substitution rate per site mimics the15

real-world observed rates. We evaluate our methods using simulated data and com-16

pare them to the Bayesian optimizing software BEAST2, showing that our proposed17

estimators are accurate for a wide range of divergence times and significantly outper-18

form BEAST2. We then apply the proposed estimators on Neanderthal, Denisovan,19

and Chimpanzee mtDNA genomes to better estimate their TMRCA (Time to Most20

Recent Common Ancestor) with modern humans and find that their TMRCA is sub-21

stantially later, compared to values cited recently in the literature.22
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23

24

1 Introduction25

Dating species divergence has been studied extensively for the last few decades using ap-26

proaches based on genetics, archaeological findings, and radiocarbon dating [8, 32]. Finding27

accurate timing is crucial in analyzing morphological and molecular changes in the DNA,28

in demographic research, and in dating key fossils. One approach for estimating the diver-29

gence times is based on the molecular clock hypothesis [38, 37] which states that the rate30

of evolutionary change of any specified protein is approximately constant over time and31

different lineages. Subsequently, statistical inference can be applied to a given phylogenetic32

tree to infer the dating of each node up to calibration.33

Our work focuses on this estimation problem and proposes new statistical methods to34

date the TMRCA of two species given a detailed phylogenetic tree for one of the species35

with the same transition rates per site. We formulate the problem by modeling the number36

of transitions (A↔ G,C ↔ T ) in each site using a Poisson process with a different rate per37

site; sites containing transversions are neglected due to their sparsity (indeed, we include38

sparse transversions in the simulations and show that our methods are robust to their39

occurrences). The phylogenetic tree is used for estimating the transition rates per site.40

Hence, our problem reduces to two binary sequences where the parity of the number of41

transitions of each site is the relevant statistic from which we can infer the time difference42

between them.43
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We can roughly divide the approaches to solve this problem into two. The frequentist44

approach seeks to maximize the likelihood of the observed data. Most notable is the PAML45

[36] package of programs for phylogenetic analyses of DNA and the MEGA software [18].46

Alternatively, the Bayesian approach considers a prior of all the problem’s parameters47

and maximizes the posterior distribution of the observations. Leading representatives of48

the Bayesian approach are BEAST2 [5] and MrBayes [27], which are publicly available49

programs for Bayesian inference and model choice across a wide range of phylogenetic and50

evolutionary models.51

In this work, we developed several distinct estimators from frequentist and Bayesian52

approaches to find the divergence time directly. The proposed estimators differ in their53

assumptions on the generated data, the approximations they make, and their numerical54

stability. We explain each estimator in detail and discuss its properties.55

A critical difference between our proposed solutions and existing methods is that we56

seek to estimate only one specific problem parameter. At the same time, software packages57

such as BEAST2 and PAML optimize over a broad set of unknown parameters averaging58

the error on all of them (the tree structure, the timing of every node, the per-site substi-59

tution rates, etc.). Subsequently, the resources they require for finding a locally optimal60

instantiation of the tree and dating all its nodes can be very high in terms of memory and61

computational complexity. Consequently, the amount of sequences they can consider simul-62

taneously is highly limited. Thus, unlike previous solutions, we utilize transition statistics63

from all available sequences, in the form of a previously built phylogenetic tree.64

We develop a novel approach to simulate realistic data to test our proposed solutions.65

To do so, we employ Phylotree [33] – a complete, highly detailed, constantly updated66

reconstruction of the human mitochondrial DNA phylogenetic tree. We sample transitions67

of similar statistics to Phylotree and use it to simulate a sequence at a predefined trajectory68
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from Phylotree’s root.69

We then empirically test the different estimators on simulated data and compare our re-70

sults to the BEAST2 software. Our proposed estimators are calculated substantially faster71

while utilizing the transitions statistics from all available sequences (Phylotree considers72

24,275 sequences), unlike BEAST2 which can consider only dozens of sequences due to its73

complexity. Comparing with the ground truth, we show that BEAST2 overestimates the74

divergence time for low TMRCA values (e.g. human-Neanderthals and human-Denisovan),75

but performs an underestimation for larger divergence times (e.g. human-Chimpanzee),76

while our estimates provide more accurate results. Finally, we use our estimators to date77

the TMRCA (given in kya – kilo-years ago) of modern humans with Neanderthals, Deniso-78

van and Chimpanzee based on their mtDNA. Surprisingly, the divergence times we find79

(human-Neanderthals ∼408 kya, human-Denisovans ∼824 kya, human-Chimpanzee ∼5,00980

kya) – are considerably later than those accepted today.81

2 Materials and Methods82

2.1 Estimation methods83

First, we describe an idealized reduced mathematical formulation for estimating divergence84

times and our proposed solutions. In Section 2.2, we describe the reduction process in85

greater detail.86

Consider the following scenario: we have a set of n Poisson rates, denoted as {λi}ni=187

where n ∈ N. Let ~X be a vector of length n such that each element Xi is independently88

distributed as Pois(λi). Similarly, let ~Y be a vector of length n such that each element89

Yi is independently distributed as Pois(λi · p) for a fixed unknown p. We denote ~Z as the90
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coordinate-wise parity of ~Y , meaning that Zi = 1 if Yi is odd and Zi = 0 otherwise. Our91

goal is to estimate p given ~X and ~Z.92

Remark 1: Note that the number of unknown Poisson rate parameters n in the problem93

{λi}ni=1 grows with the number of observations {(Xi, Zi)}ni=1. However, our focus is solely94

on estimating p, so additional observations do provide more information.95

Remark 2: The larger the value of p · λi, the less information on p is provided in Zi96

as it approaches a Bernoulli distribution with a probability of 0.5. On the other hand,97

the smaller λi is, the harder it will be to infer λi from Xi. As a result, the problem of98

estimating p should be easier in settings where λi is high and p is low.99

2.1.1 Preliminaries100

First, we derive the distribution of Zi; All proofs are provided in the Supplementary material101

(Section 1).102

Lemma 1. Let Y ∼ Pois(Λ) and Z be the parity of Y . Then Z ∼ Ber(1
2
(1− e−2Λ)).103

We use this result to calculate the likelihood and log-likelihood of p and ~λ given ~X and104

~Z. The likelihood is given by:105

L
(
~X, ~Z; p,~λ

)
=

n∏
i=1

e−λi
λi
Xi

Xi!

1

2

(
1 + (−1)Zie−2λip

)
, (1)

and the log-likelihood is:106

l
(
~X, ~Z; p,~λ

)
=

n∑
i=1

[
−λi +Xi log λi + log

(
1 + (−1)Zie−2λip

)]
+ Const. (2)

This result follows immediately from the independence of each coordinate.107
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2.1.2 Cramer-Rao bound108

We begin our analysis by computing the Cramer-Rao bound (CRB; [7, 25]). In Section 3.1,109

we compare the CRB to the error of the estimators.110

Theorem 1. Denote the Fisher information matrix for the estimation problem above by

I ∈ R(n+1,n+1), where the first n indexes correspond to {λi}ni=1 and the last index (n + 1)

corresponds to p. For clarity denote Ip,p
.
= In+1,n+1, Ii,p

.
= Ii,n+1, Ip,i

.
= In+1,i. Then:

∀i 6= j, 1 ≤ i, j ≤ n : Ii,j = 0, Ii,i =
1

λi
+

4p2

e4λip − 1
, Ii,p = Ip,i =

4pλi
e4λip − 1

,

Ip,p = 4
n∑
i=1

λ2
i

e4λip − 1
. (3)

Consequently, an unbiased estimator p̂ holds:111

E
[
(p− p̂)2

]
≥

[
4

n∑
i=1

λ2
i

e4λip − 1 + 4p2λi

]−1

. (4)

If ∀i = 1..n : λi = λ, we can further simplify the expression:112

E
[
(p− p̂)2

]
≥ e4λp − 1 + 4p2λ

4nλ2
. (5)

The CRB, despite its known looseness in many problems, provides insights into the sen-113

sitivity of the error to each parameter. This expression supports our previous observation114

that the error of an unbiased estimator increases exponentially with mini{λi · p}. However,115

for constant λi · p, the error improves for higher values of λi. We now proceed to describe116

and analyze several estimators for p.117

2.1.3 Method 1 - Maximum Likelihood Estimator118

Proposition 1. Following equation 1, the maximum likelihood estimators p̂, λ̂i hold:119

n∑
i=1

λ̂i =
n∑
i=1

Xi, Xi = λ̂i +
2p̂λ̂i

(−1)Zie2λ̂ip̂ + 1
,

n∑
i=1

λ̂i

(−1)Zie2λ̂ip̂ + 1
= 0. (6)
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Proposition 1 provides n separable equations for maximum likelihood estimation (MLE).120

Our first estimator sweeps over values of p̂ (grid searching in a relevant area) and then for121

each i = 1..n finds the optimal λ̂i numerically. The solution is then selected by choosing122

the pair (p̂, {λ̂i}ni=1) that maximizes the log-likelihood calculated using equation 2.123

The obtained MLE equations are solvable, yet, finding the MLE still requires solving n124

numerical equations, which might be time-consuming. More importantly, MLE estimation125

is statistically problematic when the number of parameters is of the same order as the126

number of observations [6]. Subsequently, we propose alternative methods that may yield127

better practical results.128

2.1.4 Method 2 - λi-conditional estimation129

We propose a simple estimate of ~λ based solely on Xi, followed by an estimate of p as if130

~λ is known, considering only ~Z. This method is expected to perform well when λi values131

are large, as in these cases, Xi conveys more information about λi than Zi. This approach132

enables us to avoid estimating both ~λ and p simultaneously, leading to a simpler numerical133

solution.134

When p ≤ 1, we can mimic Yi’s distribution as a sub-sample from Xi, i.e. we assume135

that Yi|Xi ∼ Bin(n = Xi, p). Then, we find the maximum likelihood estimate of p:136

Proposition 2. If Yi|Xi ∼ Bin(Xi, p), then:137

1. Yi ∼ Pois(λi · p), which justifies this approach.138

2. Zi|Xi ∼ Ber
(

1
2

(
1− (1− 2p)Xi

))
, so we can compute the likelihood of p without139

considering λi.140
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3. The maximum likelihood estimate of p given
n∑
i=1

Zi holds:141

n∑
i=1

(1− 2p̂)Xi = n− 2
n∑
i=1

Zi (7)

Remark: We use the maximum likelihood estimation of p given
∑n

i=1 Zi by applying142

Le-Cam’s theorem [20]. This eliminates the need for a heuristic solution of the pathological143

case Xi = 0, Zi = 1.144

2.1.5 Method 3 - Gamma distributed Poisson rates145

The Bayesian statistics approach incorporates prior assumptions about the parameters.146

A common prior for the rate parameters ~λ is the Gamma distribution, which is used in147

popular Bayesian divergence time estimation programs such as MCMCtree [36], BEAST2148

[5], and MrBayes [27]. Specifically, we have λi ∼ Γ(α, β), and for p, we use a uniform prior149

over the positive real line.150

Proposition 3. Let λi ∼ Γ(α, β), then the maximum a posteriori estimator of p holds:151

∂l

∂p
=

n∑
i=1

Xi + α

(−1)Zi
(

1 + 2p
β+1

)Xi+α
+ 1

= 0 (8)

Subsequently, given estimated values for α and β, we can be find an estimator for p152

numerically to hold Equation 8. Unfortunately, the derivative with respect to α does not153

have a closed-form expression, nor is it possible to waive the dependence on ~Z, p. Hence,154

we suggest using Negative-Binomial regression [12] to estimate α and β given ~X .155
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2.2 Estimating ancient divergence times using a large modern156

phylogeny157

In this section, we apply the methods described in Section 2.1 to estimate the non-calibrated158

divergence times between humans and their closest relatives by comparing mitochondrial159

DNA (mtDNA) sequences. Our approach assumes the following assumptions:160

1. Molecular clock assumption - the rate of accumulation of transitions (base changes)161

over time and across different lineages is constant, as first proposed by Zuckerkandl162

and Pauling [38] and widely used since.163

2. Poisson distribution - The number of transitions along the human and human’s clos-164

est relatives mtDNA lineages follows a Poisson distribution with site-dependent rate165

parameter λi per time unit.166

3. No transversions - We only consider sites with no transversions and assume a constant167

transition rate per site (λi,A→G = λi,G→A, or λi,T→C = λi,C→T ).168

4. Independence of sites - The number of transitions at each site is independent of those169

at other sites.170

5. Phylogenetic tree - The phylogenetic tree presented in the Phylotree database includes171

all transitions and transversions that occurred along the described lineages.172

As the Phylotree database is based on tens of thousands of sequences, the branches in173

the tree correspond to relatively short time intervals, making multiple mutations per site174

unlikely in each branch [29]. However, when considering the mtDNA sequence of other175

species, the branches in the tree correspond to much longer time intervals, meaning that176

many underlying transitions are unobserved. For instance, when comparing two human177
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sequences that differ in a specific site, Phylotree can determine whether the trajectory178

between the sequences was A → G, A → G → A → G, or A → T → G. However, when179

comparing sequences of ancient species, an elaborate phylogenetic tree like Phylotree is not180

available, making it impossible to discriminate between these different trajectories.181

We use the following notation:182

1. Let ~XmtDNA denote the number of transitions observed at each site along the human183

mtDNA phylogenetic tree as described by Phylotree. Each coordinate corresponds to184

a different site out of the 16,569 sites. The number of transitions at site i, XmtDNA,i,185

follows a Poisson distribution with parameter λi.186

2. Let ~Y denote the number of transitions between two examined sequences (e.g. modern187

human and Neanderthal). We normalize the length of the tree edges so that the sum188

of all Phylotree’s edges is one. The estimated parameter p relates to the edge distance189

between the two examined sequences. Subsequently, Yi follows a Poisson distribution190

with parameter λi · p.191

3. Let ~Z denote the parity of ~Y .192

Using ~X and ~Z, we can estimate p using the methods in Section 2.1. The TMRCA is given193

by: 1
2
(Tsequence 1 + Tsequence 2 + p) when Tsequence 1,2 are the estimated times of the examined194

sequences measured in (uncalibrated) units of phylotree’s total tree length.195

2.3 Calibration196

Our methods output p, which is the ratio of two values:197

1. The sum of the edges between the two examined sequences and their most recent198

common ancestor (MRCA).199
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2. The total sum of Phylotree’s edges.200

Similarly to BEAST2, to calibrate p to years, we use the per-site per-year substitution rate201

for the coding region given in [10] µ = 1.57 x 10E-8. We then calculate the total sum of202

Phylotree’s edges in years by dividing the average number of substitutions in the coding203

region per site (1.4) by µ.204

2.4 Data Availability Statement205

The code used in this work is available at: https://github.com/Kerenlh/DivergenceTimes.206

A full description of all simulations is available in the Materials and Methods section, pages207

8-10, and in the Supplementary Material, pages 26-28.208

3 Results209

3.1 Comparative Study on Raw Simulations210

To compare the performance of the three estimation methods described in 2.1, we con-211

ducted experiments using simulated data. The Poisson rates λ were generated to reflect212

the substitution rates observed in mtDNA data using either a Categorical or a Gamma213

distribution. The parameters for the Gamma distribution (α = 0.23, β = 0.164) were esti-214

mated directly from the data, while the parameters for the Categorical distribution were215

chosen such that both distributions have the same mean and variance. One of the Cate-216

gorical values (ε = 0.1) corresponds to the rate of low activity sites in the mtDNA data.217

The other value (a = 11.87) and the probabilities (0.11, 0.89) were chosen accordingly. The218

results of the comparison are shown in Figure 1 with the Cramer-Rao bound for reference.219

To provide a qualitative comparison, we performed a one-sided paired Wilcoxon signed220
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rank test on every pair of models, correcting for multiple comparisons using the Bonferroni221

correction. Our results show that Method 2 has the lowest squared error while Method222

1 has the highest squared error, for both distributions. It is noteworthy that although223

Method 3 assumes a Gamma distribution, it still performs well even when there is a model224

mismatch.225

Figure 1: Estimation errors for different λ distributions.

Figure 1. Box-plot of the log squared estimation errors of the three proposed methods for

selected values of p, expressed as percentage of the total length of Phylotree’s edges (outliers are

marked with ∗). The simulations were run 10, 000 times for each value of p. The CRB is shown in

black for reference and the circles represent the log of the mean values which are comparable to

the CRB. The experiments were conducted for two different distributions of λ: (Left) Categorical

distribution with two values: ε = 0.1 with probability η = 0.11 and a = 11.87 with probability

1− η. (Right) Gamma distribution with parameters α and β.
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3.2 Phylogenetic Tree Simulations226

We validated our methods by testing their performance in a more realistic scenario of sim-227

ulating a phylogenetic tree. Our methods take as input the observed transitions along228

Phylotree ( ~XmtDNA) and a binary vector ~Z denoting the differences between two sequences,229

which we aim to estimate the distance between. We compared our methods to the well-230

known BEAST2 software [5], which, similarly to other well-established methods (such as231

MCMCtree [36], MrBayes [27], etc.) considers sequences along with their phylogenetic232

tree to produce time estimations. The software BEAST2 performs Bayesian analysis using233

MCMC to average over the space of possible trees. However, it is limited in its computa-234

tional capacity, so it cannot handle a large number of sequences like those in Phylotree.235

For this reason, we used a limited set of diverse sequences, including mtDNA genomes of 53236

humans [13], the revised Cambridge Reference Sequence (rCRS) [2], the root of the human237

phylogenetic mtDNA tree, termed Reconstructed Sapiens Reference Sequence (RSRS) [4],238

and 10 ancient modern humans [10]. More details about the parameters used by BEAST2239

are available in the Supplementary material, Section 2.2. To evaluate our methods, we240

added a simulated sequence with a predefined distance from the RSRS.241

Our aim is to generate a vector ~λ that produces a vector ~X that has a similar distri-242

bution to ~XmtDNA. The human mtDNA tree has 16,569 sites, of which 15,629 have no243

transversions. The MLE of λi at each site is the observed number of transitions, XmtDNA,i.244

However, simulating ~λ as ~XmtDNA leads to an undercount of transitions because 10,411 sites245

(67% of the total number of sites considered) had no transitions along the tree and their246

Poisson rate is taken to be zero. To mitigate this issue, the rates for these sites were chosen247

to be ε, the value that minimizes the Kolmogorov-Smirnov statistic [16, 28] (details are248

provided in the Supplementary material, Section 2.1).249
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The results are presented in Figure 2. BEAST2 overestimates the true p when p is250

smaller than approximately 2%, and underestimates it when p is higher. Additionally,251

BEAST2 has a much longer running time (roughly 3 hours) compared to our methods (less252

than a second). As shown in Figure 1, Method 1 has a larger error than Methods 2 and 3253

for values of p within the simulated region, and the gap widens with increasing p. Methods254

2 and 3 provide the best results for the entire range of p.255

3.3 Real data results256

As the final step of our experiments, we apply our methods on real-world data to determine257

the TMRCA of the modern human and Neanderthal, Denisovan, and chimpanzee mtDNA258

genomes. Table 1 displays the uncalibrated distances between modern human and each259

sequence, compared to the estimates from BEAST2. The presented TMRCA represents260

an average of the TMRCA obtained from 55 modern human mtDNA sequences of diverse261

origins [13]. Table 2 presents the TMRCA in kya (kilo-years ago) of the modern human262

and each sequence.263

The estimates from real-world sequences presented in Table 1 are consistent with those264

obtained for the simulated dataset in Section 3.2. For low values of p, our three methods all265

produce similar estimates while BEAST2’s has a slightly higher estimate. For the human-266

Chimpanzee uncalibrated distance, which is relatively high, Method 1 provides a higher267

estimate than that obtained by Methods 2 and 3, while BEAST2 provides a substantially268

lower estimate. The results in Table 2 show the TMRCA estimates, which are significantly269

smaller for our methods than those obtained from BEAST2 for human-Neanderthals and270

human-Denisovans. For example, BEAST2 estimated the human – Sima de los Huesos –271

Denisovans divergence time as ∼ 934 kya, while our best-performing method (2) estimated272

it as ∼ 824 kya. This divergence time is estimated as (540-1,410 kya) in [22]. Similarly,273
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Figure 2: Comparison of estimators applied on a simulated long branch.

Figure 2. Comparison of our methods with BEAST2 estimator using simulated data. The right

plot shows a zoom-in view of the left plot, focusing on values of p between 0 and 10%. Each

point in the plot represents the average of 5 runs, while the shaded regions indicate the range of

estimations obtained.

BEAST2 estimated the human – Neanderthal divergence time as ∼ 502 kya, while our274

methods estimated it as ∼ 408 kya. Preceding literature estimates this time closer to ours275

(∼400 kya [23, 9, 26]) while recent literature provides a much earlier estimate (∼800 kya276

[11]). Finally, BEAST2 estimates the human-Chimpanzee TMRCA as ∼3,712 kya whereas277
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our estimate is ∼5,001 kya, much closer to the literature value of 5 – 8 million years ago278

[17, 19, 1, 30].279

4 Conclusion280

We investigated an estimation problem arising in statistical genetics when estimating di-281

vergence times between species. The problem’s formulation, estimating Poisson rates from282

parity samples, leads to multiple estimators with varying assumptions. We calculated283

the CRB for this estimation problem and compared our methods against commonly used284

BEAST2 in different empirical settings, including a simple sampling scheme (Section 3.1),285

a more elaborate generative scheme based on real-world mtDNA data (Section 3.2), and286

the calculation of the TMRCA of modern humans and other hominins using their mtDNA287

genomes (Section 3.3).288

Our results indicate that our proposed methods are significantly faster and more accu-289

rate than BEAST2, especially for earlier divergence times such as the human-Chimpanzee.290

Our methods utilize the transition statistics from the entire known human mtDNA phylo-291

genetic tree (Phylotree) without the need for reconstructing a tree containing the sequences292

of interest. Our results show that the human – Neanderthal divergence time is ∼ 408, 000293

years ago, considerably later than the values obtained by BEAST2 (∼ 502, 000 years ago)294

and other values cited in the literature.295
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Table 1: Uncalibrated distances between modern humans and selected hominins.

Sample BEAST2 Method 1 Method 2 Method 3
Altai

Denisova15
HST

Mezmaiskaya1
Chagyrskaya08
ElSidron1253
Vindija33.17
Feldhofer1
GoyetQ56-1
GoyetQ57-2

Les Cottes Z4-1514
Mezmaiskaya2

Vindija33.16
Vindija33.25
GoyetQ305-7

GoyetQ374a-1
Spy 94a

Sima de los Huesos
Denisova2
Denisova8
Denisova4
Denisova3

Chimpanzee

0.97 (±0.07) 0.8 (±0.08) 0.79 (±0.08) 0.79 (±0.08)
0.97 (±0.07) 0.81 (±0.08) 0.8 (±0.08) 0.8 (±0.08)
0.97 (±0.07) 0.78 (±0.08) 0.78 (±0.08) 0.77 (±0.08)
1.01 (±0.07) 0.86 (±0.09) 0.85 (±0.09) 0.85 (±0.09)
1.03 (±0.07) 0.84 (±0.09) 0.83 (±0.09) 0.83 (±0.08)
1.05 (±0.07) 0.83 (±0.08) 0.82 (±0.08) 0.82 (±0.08)
1.06 (±0.07) 0.86 (±0.09) 0.85 (±0.09) 0.85 (±0.09)
1.07 (±0.07) 0.85 (±0.09) 0.84 (±0.08) 0.83 (±0.08)
1.08 (±0.07) 0.88 (±0.09) 0.88 (±0.09) 0.87 (±0.09)
1.08 (±0.07) 0.84 (±0.09) 0.83 (±0.08) 0.83 (±0.08)
1.08 (±0.07) 0.91 (±0.09) 0.91 (±0.09) 0.9 (±0.09)
1.07 (±0.07) 0.84 (±0.09) 0.83 (±0.09) 0.83 (±0.08)
1.07 (±0.07) 0.87 (±0.09) 0.86 (±0.09) 0.86 (±0.09)
1.07 (±0.07) 0.85 (±0.09) 0.84 (±0.09) 0.83 (±0.09)
1.08 (±0.07) 0.89 (±0.09) 0.89 (±0.09) 0.88 (±0.09)
1.08 (±0.07) 0.89 (±0.09) 0.89 (±0.09) 0.88 (±0.09)
1.08 (±0.07) 0.88 (±0.09) 0.88 (±0.09) 0.87 (±0.09)
1.7 (±0.09) 1.42 (±0.12) 1.39 (±0.11) 1.39 (±0.11)
1.88 (±0.1) 1.68 (±0.13) 1.65 (±0.12) 1.64 (±0.12)
1.92 (±0.1) 1.69 (±0.13) 1.66 (±0.13) 1.65 (±0.12)

2 (±0.1) 1.83 (±0.14) 1.79 (±0.13) 1.78 (±0.13)
2.01 (±0.1) 1.82 (±0.13) 1.78 (±0.13) 1.77 (±0.13)

8.31 (±0.25) 12.75 (±0.68) 11.21 (±0.53) 11.21 (±0.53)

Table 1. Uncalibrated distances expressed as a percentage of the total length of Phylotree’s edges,

as determined by our methods compared with BEAST2. The values correspond to p, and indicate

the estimation’s location in Figure 2. In the parentheses we provide the standard deviation for

each estimator, obtained from bootstrapping 100 site samples for every modern human – ancient

sequence pair in the dataset. Note that the BEAST2 values presented here were de-calibrated as

described in Section 2.3.
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Table 2: Estimated divergence times between modern human and selected hominins.

Sample BEAST2 Method 1 Method 2 Method 3
Altai

Denisova15
HST

Mezmaiskaya1
Chagyrskaya08
ElSidron1253
Vindija33.17
Feldhofer1
GoyetQ56-1
GoyetQ57-2

Les Cottes Z4-1514
Mezmaiskaya2

Vindija33.16
Vindija33.25
GoyetQ305-7

GoyetQ374a-1
Spy 94a

Humans-Neandertals 501.87 (±31.01) 410.91 (±7.19) 408.48 (±7.09) 406.12 (±7.03)
Sima de los Huesos

Denisova2
Denisova8
Denisova4
Denisova3

Humans-Denisovans-Sima 934.12 (±46.54) 838.84 (±27.38) 823.9 (±26.47) 820.16 (±26.3)
Humans-Chimpanzee 3,711.79 (±112.13) 5,693.51 (±302.59) 5,009.78 (±235.05) 5,005.39 (±237.13)

426.68 (±39.79) 424.44 (±39.36) 422.02 (±38.91)
428.8 (±39.25) 426.32 (±38.78) 423.94 (±38.41)

418.96 (±40.46) 416.45 (±40.02) 414.49 (±39.62)
432.86 (±41.1) 430.43 (±40.57) 427.94 (±40.26)

416.04 (±39.86) 413.51 (±39.29) 411.02 (±39)
403.29 (±38.09) 400.85 (±37.58) 398.34 (±37.23)
410.76 (±39.73) 408.25 (±39.18) 405.86 (±38.85)
399.36 (±38.45) 396.93 (±37.91) 394.38 (±37.59)
416.06 (±39.76) 413.6 (±39.11) 411.1 (±38.86)
394.71 (±38.28) 392.29 (±37.78) 389.72 (±37.43)
428.9 (±41.04) 426.3 (±40.42) 423.95 (±40.07)
396 (±38.64) 393.59 (±38.11) 391.03 (±37.74)

409.84 (±39.4) 407.47 (±38.81) 404.79 (±38.53)
399.83 (±39.26) 397.4 (±38.73) 394.84 (±38.39)
418.12 (±40.35) 415.41 (±39.69) 413.27 (±39.4)
418.12 (±39.72) 415.41 (±39.06) 413.27 (±38.8)
415.03 (±40.47) 412.57 (±39.83) 410.07 (±39.55)

808.29 (±61.42) 797.88 (±60.04) 795 (±59.58)
846.56 (±59.86) 831.83 (±57.75) 828.27 (±57.4)
831.07 (±61.34) 815.67 (±59.03) 812.62 (±58.78)
857.56 (±62.64) 840.36 (±60.45) 835.84 (±60)
850.7 (±60.85) 833.74 (±58.65) 829.05 (±58.25)

Table 2. The table displays the estimated divergence times (in kya) between modern humans and

selected hominins, as determined by our methods and compared with BEAST2. The standard de-

viation, which arises from a combination of the standard deviation of our methods and the sample

dating, is given in parentheses. It’s important to note that BEAST2 calculates the TMRCA for

all sequences in the same clade as a single estimate, while our methods estimate the TMRCA for

each sample individually by taking the average of estimations derived from comparing the sample

with every modern human sequence in the dataset.
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296

297

Supplementary Material298

1 Theoretical Details299

1.1 Proof of Lemma 1300

Let Y ∼ Pois(λ) and Z be the parity of Y . Then Z ∼ Ber(1
2
(1− e−2λ)).301

Proof.

P (Zi = 1) =
∞∑
n=0

P (Yi = 2n+ 1) =
∞∑
n=0

e−λ
λ2n+1

(2n+ 1)!
=

= e−λ
1

2

(
∞∑
n=0

λn

n!
−
∞∑
n=0

(−λ)n

n!

)
=
e−λ

2

(
eλ − e−λ

)
=

1

2

(
1− e−2λ

)
.

302

1.2 Proof of Theorem 1303

Denote the Fisher information matrix for the estimation problem above by I ∈ R(n+1,n+1),304

where the first n indexes correspond to {λi}ni=1 and the last index (n + 1) corresponds to305

p. For clarity denote Ip,p
.
= In+1,n+1, Ii,p

.
= Ii,n+1, Ip,i

.
= In+1,i. Then:306

Ii,j = 0, Ii,i =
1

λi
+

4p2

e4λip − 1
, Ii,p = Ip,i =

4pλi
e4λip − 1

, Ip,p = 4
n∑
i=1

λ2
i

e4λip − 1
. (9)
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Consequently, an unbiased estimator p̂ holds:307

E
[
(p− p̂)2

]
≥

[
4

n∑
i=1

λ2
i

e4λip − 1 + 4p2λi

]−1

. (10)

If ∀i = 1..n : λi = λ, we can further simplify the expression:308

E
[
(p− p̂)2

]
≥ e4λp − 1 + 4p2λ

4nλ2
. (11)

Proof. We calculate the second derivative of the log-likelihood. Denote:

βi = −2λip+ jπZi, σ(t) =
et

1 + et
,

then the first derivatives are given by:309

∂l

∂λi
= −1 +

Xi

λi
+

(−2p) (−1)Zi exp (−2λip)

1 + (−1)Zi exp (−2λip)

= −1 +
Xi

λi
− 2pσ (−2λip+ jπZi)

= −1 +
Xi

λi
− 2pσ (βi) ,

(12)

and310

∂l

∂p
=

n∑
i=1

(−2λi) (−1)Zi exp (−2λip)

1 + (−1)Zi exp (−2λip)
= −2

n∑
i=1

λiσ (βi). (13)

The second derivatives are now given by:

∂2l

∂λiλj
= 0

∂2l

∂λi
2 = −Xi

λ2
i

− 2p (−2p)σ (βi) (1− σ (βi)) = −Xi

λ2
i

+ 4p2σ (βi) (1− σ (βi))

∂2l

∂λi∂p
= −2p (−2λi)σ (βi) (1− σ (βi))− 2σ (βi) = 4pλiσ (βi) (1− σ (βi))− 2σ (βi)

∂2l

∂p2
=

n∑
i=1

4λ2
iσ (βi) (1− σ (βi))
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The expectation of these are given by:

E [σ (βi)] =
1

2
(1 + exp (−2λip))

exp (−2λip)

1 + exp (−2λip)
+

1

2
(1− exp (−2λip))

(−1) · exp (−2λip)

1− exp (−2λip)
= 0

E
[
σ2 (βi)

]
=

1

2
(1 + exp (−2λip))

exp (−4λip)

(1 + exp (−2λip))
2 +

1

2
(1− exp (−2λip))

exp (−4λip)

(1− exp (−2λip))
2 =

=
1

2
exp (−4λip)

[
1

1 + exp (−2λip)
+

1

1− exp (−2λip)

]
=

1

e4λip − 1

E
[

∂2l

(∂λi)
2

]
= E

[
−Xi

λ2
i

+ 4p2σ (βi) (1− σ (βi))

]
= − 1

λi
− 4p2

e4λip − 1
= −Ii,i

E
[
∂2l

∂λi∂p

]
= E [4pλiσ (βi) (1− σ (βi))− 2σ (βi)] = − 4pλi

e4λip − 1
= −Ii,p

E
[
∂2l

(∂p)2

]
= E

[
n∑
i=1

4λ2
iσ (βi) (1− σ (βi))

]
= −

n∑
i=1

4λ2
i

e4λip − 1
= −Ip,p.

By CRB, for an unbiased estimator:

E
[
(p− p̂)2

]
≥ [I−1]p,p =

1

Ip,p − Ip,iI−1
i,i Ii,p

=

 n∑
i=1

4λ2
i

e4λip − 1
−

n∑
i=1

16p2λ2i

[e4λip−1]
2

1
λi

+ 4p2

e4λip−1


−1

=

 n∑
i=1

4λ2
i

(
e4λip − 1

) (
1
λi

+ 4p2

e4λip−1

)
− 4p2

[e4λip − 1]2
(

1
λi

+ 4p2

e4λip−1

)
−1

=

[
4

n∑
i=1

λ2
i

e4λip − 1 + 4p2λi

]−1
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1.3 Proof of Proposition 1312

Proof. Following Equations 12, 13, we compare the first order derivatives to 0:

∂l

∂λi
= −1 +

Xi

λi
− 2p̂

(−1)Zie−2λip̂(
1 + (−1)Zie−2λip̂

) = 0⇒ Xi = λ̂i + 2p̂λ̂i
(−1)Zie−2λ̂ip̂(

1 + (−1)Zie−2λ̂ip̂
)

∂l

∂p
= −

n∑
i=1

2λi
(−1)Zie−2λip̂(

1 + (−1)Zie−2λip̂
) = −

n∑
i=1

λi
p̂

[
−1 +

Xi

λi

]
=0⇒

n∑
i=1

λ̂i =
n∑
i=1

Xi.

Summing the first equation for every i and substituting the second equation results in the313

last part in Equation 6.314

1.4 Proof of Proposition 2315

If Yi|Xi ∼ Bin(Xi, p), then:316

1. Yi ∼ Pois(λi · p), which justifies this approach.317

2. Zi|Xi ∼ Ber
(

1
2

(
1− (1− 2p)Xi

))
, so we can compute the likelihood of p without318

considering λi.319

3. The maximum likelihood estimate of p given Zi holds:320

n∑
i=1

Xi

1 + (−1)Zi (1− 2p)−Xi
= 0 (14)

and the maximum likelihood estimate of p given
n∑
i=1

Zi holds:321

n∑
i=1

(1− 2p̂)Xi = n− 2
n∑
i=1

Zi (15)
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Proof. Denote q ≡ 1− p. For item 1:

Pr(Yi = k) =
∞∑
n=k

Pr(Xi = n) · Pr(Bin(n, p) = k)

=
∞∑
n=k

λni · e−λi
n!

· Pr(

(
n

k

)
)pkqn−k

=
(λi · p)k · e−λip

k!

∞∑
n=k

λn−ki · e−λiq

(n− k)!
· qn−k

=
(λi · p)k · e−λip

k!

∞∑
n=0

λni · e−λiq

n!
· qn =

(λi · p)k · e−λip

k!
.

Now moving on to item 2:

Pr(Zi = 1|Xi) = Pr(Yi is odd|Xi), Yi|Xi ∼ Bin(n = Xi, p)

(q + p)n = Σn
k=0

(
n

k

)
pkq(n−k) = P (Yi is even) + P (Yi is odd)

(q − p)n = Σn
k=0

(
n

k

)
(−p)kq(n−k) = P (Yi is even)− P (Yi is odd)

And summing up these two equations leads to:

P (Yi is even) =
1

2
((q + p)n + (q − p)n) =

1

2
(1 + (1− 2p)n) .

Subsequently, the likelihood of Zi is given by:

l(~Z; p) =
n∏
i=1

1

2

(
1 + (−1)Zi(1− 2p)Xi

)
L(~Z; p) =

n∑
i=1

log
(
1 + (−1)Zi(1− 2p)Xi

)
+ Const

Taking the derivative to 0:322

∂L

∂p
=

n∑
i=1

−2(−1)ZiXi(1− 2p)Xi−1

(1 + (−1)Zi(1− 2p)Xi)
=

n∑
i=1

−2Xi

((−1)Zi(1− 2p)1−Xi + 1− 2p)
= 0, (16)
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and division by −2
1−2p

yields the solution.323

Now, according to Le Cam’s theorem1 [20],
n∑
i=1

Zi ∼ Pois

(
λ =

n∑
i=1

1
2

(
1− (1− 2p)Xi

))
,

and the likelihood is therefore:

L

(
n∑
i=1

Zi = m| ~X; p

)
= λm

e−λ

m!
.

Now we look at the log-likelihood and take the derivative with respect to p to zero:

l

(
n∑
i=1

Zi = m| ~X; p

)
= m log λ− λ+ Const

= m log

(
n∑
i=1

1

2

(
1− (1− 2p)Xi

))
−

n∑
i=1

1

2

(
1− (1− 2p)Xi

)
+ Const

∂l

∂p
= m

n∑
i=1

Xi(1− 2p)Xi−1

n∑
i=1

1
2

(
1− (1− 2p)Xi

) − n∑
i=1

Xi(1− 2p)Xi−1

=

 m
n∑
i=1

1
2

(
1− (1− 2p)Xi

) − 1

 n∑
i=1

Xi(1− 2p)Xi−1 = 0

Leading to the solution:

n∑
i=1

(1− 2p̂)Xi = n− 2m = n− 2
n∑
i=1

Zi

324

1More precisely:
∞∑
k=0

|P (
n∑

i=1

Zi = k)− 1
k! (

n∑
i=1

1
2 (1− (1− 2p)Xi))ke

−
n∑

i=1

1
2 (1−(1−2p)

Xi

| < 2
n∑

i=1

(
1
2 (1− (1− 2p)Xi)

)2
.
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1.5 Proof of Proposition 3325

Let λi ∼ Γ(α, β), then the maximum a posteriori estimator of p holds:326

∂l

∂p
=

n∑
i=1

Xi + α

(−1)Zi
(

1 + 2p
β+1

)Xi+α
+ 1

= 0 (17)

Subsequently, estimated values for α, β can be substituted for a numerical estimator for p.327

Proof. We first compute the probability for each observation:

Pr (Xi = k, Yi is even) =

∫ ∞
0

P (λi = λ)P (Xi = k|λi = λ)P (Yi is even|λi = λ) dλ

=

∫ ∞
0

λα−1e−λβ
βα

Γ (α)
e−λ

λk

k!

1

2

(
1 + e−2λp

)
dλ

=
βα

2k!Γ (α)

[∫ ∞
0

λα−1+ke−λ(β+1)dλ+

∫ ∞
0

λα−1+ke−λ(β+1+2p)dλ

]
=

βα

2k!Γ (α)

[ Γ (α + k)

(β + 1)α+k

∫ ∞
0

λα−1+ke−λ(β+1) (β + 1)α+k

Γ (α + k)
dλ︸ ︷︷ ︸

=1

+

Γ (α + k)

(β + 1 + 2p)α+k

∫ ∞
0

λα−1+ke−λ(β+1+2p) (β + 1 + 2p)α+k

Γ (α + k)
dλ︸ ︷︷ ︸

=1

]

=
βαΓ (α + k)

2k!Γ (α)

[
1

(β + 1)α+k
+

1

(β + 1 + 2p)α+k

]

=
Γ (α + k)

2k!Γ (α)

[(
β

β + 1

)α(
1

β + 1

)k
+

(
β

β + 1 + 2p

)α(
1

β + 1 + 2p

)k]
Hence, the likelihood is given by:

L
(
~X, ~Z; p, α, β

)
=

=
n∏
i=1

Γ (α + k)

2k!Γ (α)

[(
β

β + 1

)α(
1

β + 1

)Xi
+ (−1)Zi

(
β

β + 1 + 2p

)α(
1

β + 1 + 2p

)Xi]
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and the log-likelihood:

l
(
~X, ~Z; p, α, β

)
=

n∑
i=1

log
Γ (α +Xi)

Xi!Γ (α)
+αlogβ−(Xi+α) log(β+1)+log

[
1 + (−1)Zi

(
β + 1

β + 1 + 2p

)Xi+α]

Now comparing the derivative with respect to p to zero:

∂l

∂p
=

n∑
i=1

− 2
β+1

(−1)Zi (Xi + α)
(

1 + 2p
β+1

)−Xi−α−1

1 + (−1)Zi
(

1 + 2p
β+1

)−Xi−α = 0

328

2 Simulation details329

2.1 Phylogenetic tree simulations330

The rate parameter for sites with no transitions along the tree is denoted as ε, and we esti-331

mate it using the following simulation-based method. To generate ~λ, we use the following332

equation:333

minD = sup
x
|F ( ~XmtDNA)− F ( ~X)| s.t. λi =

XmtDNA,i XmtDNA,i 6= 0

ε XmtDNA,i = 0
(18)

The value of ε is chosen to minimize the Kolmogorov–Smirnov statistic. Figure 3 shows a334

simulation of D(ε), with the mean of 1,000 runs for each ε value. The minimum value of335

D is obtained for ε = 0.0913 (marked in red).336

To make the simulated data closer to the real data, we also model transversions. We337

estimate the transversion rate per site in the same manner as the transition rate, using the338

Kolmogorov–Smirnov statistic to account for sites with no transversions. This results in339
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Figure 3: Kolmogorov–Smirnov statistic as a function of ε.
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Figure 3. We performed 1,000 runs for each value of epsilon. The minimal D(ε) is marked red

and equals ε = 0.0913.

εtransversion = 0.0149. To determine the nucleotide at a given site, we sample whether an340

odd number of transversions have occurred. If so, a random nucleotide is sampled from the341

two available transversion options. The resulting sequence is then input into BEAST2, but342

our methods still use only the sites without observed transversions. Finally, the analysis is343

limited to the gene regions in the genome (11,341 sites).344
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2.2 BEAST2 run parameters345

The sequences used in this work were aligned using mafft [15], and the 11.3 kb of protein-346

coding genes were extracted and used for the analysis. The analysis followed the approach347

described in [34], where the best fitting clock and tree model for the tree were identified348

using path sampling with the model selection package in BEAST2 [14, 3, 21]. Each model349

test was run with 40 path steps, a chain length of 25 million iterations, an alpha parameter350

of 0.3, a pre-burn-in of 75,000 iterations, and an 80% burn-in of the entire chain. The351

mutation rate was set to 1.57 x 10E-8 and a normal distribution (mean: mutation rate,352

sigma: 1.E-10) was used for a strict clock model [10]. The TN93 substitution model [31]353

was used for all models. The tree was calibrated with carbon dating data from ancient354

humans and Neanderthals, where available [24, 10, 35], and modern samples were set to a355

date of 0.356
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