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Abstract 46 

A causal relationship exists among the aging process, organ decay and dis-function, and the 47 
occurrence of various diseases including cancer. A genetically engineered mouse model, 48 
termed EklfK74R/K74R or Eklf(K74R), carrying mutation on the well-conserved sumoylation site 49 
of the hematopoietic transcription factor KLF1/ EKLF has been generated that possesses 50 
extended lifespan and healthy characteristics including cancer resistance. We show that the 51 
high anti-cancer capability of the Eklf(K74R) mice are gender-, age- and genetic 52 
background-independent. Significantly, the anti-cancer capability and extended lifespan 53 
characteristics of Eklf(K74R) mice could be transferred to wild-type mice via transplantation 54 
of their bone marrow mononuclear cells. Targeted/global gene expression profiling analysis 55 
has identified changes of the expression of specific proteins and cellular pathways in the 56 
leukocytes of the Eklf(K74R) that are in the directions of anti-cancer and/or anti-aging. This 57 
study demonstrates the feasibility of developing a novel hematopoietic/ blood system for 58 
long-term anti-cancer and, potentially, for anti-aging. 59 
 60 
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 73 

Introduction 74 

Aging of animals, including humans, is accompanied by lifespan-dependent organ 75 
deterioration and the occurrence of chronic diseases such as cancer, diabetes, cardiovascular 76 
failure and neurodegeneration1,2. To extend healthspan and lifespan, various biomedical- and 77 
biotechnology-related strategies have been intensively developed and applied, including the 78 
therapy of different diseases such as cancer3-5. The hematopoietic/ blood system is an 79 
important biomedical target for anti-aging and anti-cancer research development. Multiple 80 
blood cell lineages arise from hematopoietic stem cells (HSCs), with the lymphoid lineage 81 
giving rise to T, B, and natural killer (NK) cell populations, whereas the myeloid lineage 82 
differentiates into megakaryocytes, erythrocytes, granulocytes, monocytes and 83 
macrophages6-8. The genetic constituents and homeostasis of the hematopoietic system are 84 
regulated epigenetically and via environmental factors to maintain animal health6,9. 85 

EKLF, also named KLF1, is a Krüppel-like factor that is expressed in a range of blood 86 
cells including erythrocytes, megakaryocytes, T cells, NK cells, as well as in various 87 
hematopoietic progenitors including common-myeloid-progenitor, 88 
megakaryocyte-erythroid-progenitor (MEP), and granulocyte-macrophage-progenitor10-12. 89 
The factor regulates erythropoiesis13 and the differentiation of MEP to megakaryocytes and 90 
erythrocytes10,14 as well as of monocytes to macrophages15. EKLF is also expressed in HSC 91 
and regulates their differentiation16. The factor can positively or negatively regulate 92 
transcription through binding of its zinc finger domain to the CACCC motif of the regulatory 93 
regions of a diverse array of genes16-19.  94 

EKLF could be sumoylated in vitro and in vivo, and sumoylation of the lysine at codon 95 
74 of mouse EKLF altered the transcriptional regulatory function10 as well as nuclear import20 96 
of the factor. Surprisingly, homozygosity of a single amino acid substitution, lysine(K) to 97 
arginine(R), at the sumoylation site of EKLF results in the generation of a novel mouse model 98 
with healthy longevity. These mice, termed EklfK74R/K74R or Eklf(K74R), exhibited extended 99 
healthspan and lifespan. In particular, the Eklf(K74R) mice showed delay of the 100 
age-dependent decline of physical performance, such as the motor function and spatial 101 
learning/memory capability, and deterioration of the structure/function of tissues including 102 
the heart, liver, and kidney. Furthermore, the Eklf(K74R) mice appeared to have significantly 103 
higher anti-cancer capability than the WT mice21.  104 
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As described in the following, we have since characterized the high anti-cancer 105 
capability of the Eklf(K74R) mice with respect to its dependence on the age, gender and 106 
genetic background. More importantly, we have demonstrated that the high anti-cancer ability 107 
of these genetically engineered mice could be transferred to wild type mice (WT) through 108 
hematopoietic transplantation of the bone marrow mononuclear cells (BMMNC). 109 
Furthermore, we show that the higher anti-cancer capability and extended life span of 110 
Eklf(K74R) mice are associated with changes of the global protein expression profile and 111 
specific aging-/cancer-associated cellular signaling pathways in their white blood cells 112 
(WBC), or leukocytes.  113 
 114 
 115 

Result 116 

Characterization of the cancer resistance of Eklf(K74R) mice in relation to age, gender, 117 
and genetic background 118 

The Eklf(K74R) mice appeared to be cancer resistant to carcinogenesis as manifested by 119 
their lower spontaneous cancer incidence (12.5%) in life than WT mice (75%). The 120 
Eklf(K74R) mutation also protected the mice from metastasis in the experimental metastasis 121 
assay and it reduced tumor growth in the subcutaneous cancer cell inoculation assay21. We 122 
have used the pulmonary melanoma foci assay to further characterize the higher cancer 123 
resistance of the Eklf(K74R) mice with respect to the effects of gender/age/genetic 124 
background of the mice and the requirement of the homozygous K74R mutation. 125 

It appeared that male as well as female Eklf(K74R) mice in the B6 genetic background 126 
had significantly fewer pulmonary melanoma foci than the corresponding WT mice (Figure 1). 127 
Because of this result, we used male mice for all of the studies describe below. First, both 128 
young (2-month-old) and aged (24-month-old) Eklf(K74R) mice had higher anti-metastasis 129 
ability against the injected melanoma cells than WT mice of age-dependent groups (Figure 130 
1A and 1B). Secondly, homozygosity of the K74R substitution was required for the higher 131 
cancer resistance of the Eklf(K74R) mice (Figure S1). Consistent with the previous study21, 132 
the Eklf(K74R) mice survived longer than the WT mice after the injection of B16-F10 cells. 133 
Importantly, the Eklf(K74R) mice in the FVB background also exhibited high cancer 134 
resistance than FVB WT mice by this assay (Figure 1C), suggesting that cancer resistance of 135 
Eklf(K74R) mice conferred by the homozygous K74R substitution was likely genetic 136 
background-independent. Finally, the higher anti-cancer capability of the Eklf(K74R) mice 137 
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did not appear to depend on the arginine at codon 74, since Eklf(K74A) mice carrying KA 138 
amino acid substitution at the K74 sumoylation site also exhibited higher anti-metastasis 139 
capability than WT mice in the pulmonary foci assay (Figure 1D). 140 
 141 
Transfer of the anti-cancer capability and extended lifespan of Eklf(K74R) mice to WT 142 
mice via BMT 143 

Since EKLF is a hematopoietic transcription factor expressed not only in mature blood 144 
cells but also in HSCs and hematopoietic stem progenitor cells, this cancer resistance may be 145 
transferable by means of BMT. This possibility was tested with uses of male mice and a 146 
standard BMT protocol22. BMMNC were purified from the bone marrow of 2-month-old 147 
CD45.2 Eklf(K74R) or WT mice and injected into the tail vein of CD45.1 WT recipient mice. 148 
Blood replacement of recipient mice with 10Gy -irradiation by that of the donor mice 149 
reached 90% at 7th-week (Figure 2A and 2B). After 2 weeks, the recipient mice were injected 150 
with B16-F10 cells and then sacrificed a further 2 weeks later to quantify pulmonary tumor 151 
foci. We found that WT mice transplanted with WT BMMNC had similarly high numbers of 152 
tumor foci relative to WT mice without BMT (Figure 2C and 1A). However, similar to 153 
Eklf(K74R) mice challenged with B16-F10 cells (Figure 1B), WT mice that received 154 
BMMNC from Eklf(K74R) mice presented significantly fewer tumor foci on their lungs 155 
(Figure 2C). Notably, BMT using 24-month-old donor mice gave similar result (Figure S2A). 156 

In order to determine if WT mice having more restricted blood replacement upon BMT 157 
from Eklf(K74R) mice still exhibited a higher anti-cancer capability, we also carried out BMT 158 
experiments with lower doses of -irradiation. BMT using two lower doses of -irradiation 159 
(2.5Gy/5Gy) still resulted in transfer of cancer resistance from Eklf(K74R) to WT mice. 160 
Approximately 40% of recipient blood cells were substituted by donor cells upon BMT with 161 
5Gy -irradiation. Consequently, at that irradiation dosage, BMT from Eklf(K74R) mouse 162 
donors reduced the average number of pulmonary tumor foci in recipient WT mice to 5. On 163 
the other hand, only 20% blood replacement was achieved in the recipient mice with 2.5Gy 164 
-irradiation (Figure 2D). However, the WT mice receiving BMT from Eklf(K74R) mice 165 
again developed less number (~10/mouse) of pulmonary tumor foci than those WT mice 166 
receiving BMT from the WT mice (Figure 2D). Thus, even at a low level of 20% blood 167 
replacement, BMT still enabled effective transfer of cancer resistance from Eklf(K74R) mice 168 
to WT mice.  169 

In addition, we also attempted to transfer the extended lifespan characteristics of the 170 
Eklf(K74R) mice to WT mice by BMT. Significantly, the medium lifespan of WT mice 171 
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receiving BMT from Eklf(K74R) mice was 5 months longer than that of WT mice receiving 172 
BMT from WT mice (Figure S2B). Thus, the longer lifespan characteristics of the Eklf(K74R) 173 
mice was also transferable via BMT. 174 

 175 
Inhibition of tumor growth by transplanted BMMNC from Eklf K74R) mice  176 

Our experiments indicated that Eklf(K74R) bone marrow carried the anti-metastasis 177 
capability that prevented melanoma cell colonization on the lungs of recipient mice (Figures. 178 
1 and 2). To determine if Eklf(K74R) BMT could inhibit tumor growth, we examined the 179 
effect of BMT on growth of tumors with B16-F10-luc cells. As outlined in Figure 3A, ten 180 
days after injection of cancerous cells, the formation of bioluminescent signals in the recipient 181 
mice were confirmed by the observation of in vivo bioluminescence. The following day, we 182 
transplanted the recipient mice with BMMNC from WT or Eklf(K74R) mice and then 183 
measured the intensities of bioluminescence signals from tumors 7 and 14 days later. As 184 
shown, tumor growth in mice subjected to BMT from Eklf(K74R) mice was significantly 185 
slower relative to those receiving BMMNC from WT mice (Figure 3B and 3C). Thus, 186 
Eklf(K74R) BMMNC indeed can inhibit the growth of tumor more effectively than WT 187 
BMMNC. 188 
 189 
Differential expression of specific immune-, ageing- and/or cancer- associated 190 
biomolecules in the blood of Eklf(K74R) mice 191 

The K74R substitution did not alter the expression levels of EKLF in the bone marrow, 192 
fetal liver21 and the PB cells (Figure S1D), neither did it affect much the PB populations as 193 
shown by CBC analysis21. We further analyzed the PB populations by flow cytometry of WT 194 
and Eklf(K74R) mice of the ages 3 and 24 months, respectively. The frequency of Eklf(K74R) 195 
NK1.1+ cells were higher than WT NK1.1+ cells at aged mice. The latter observation 196 
correlated with the finding by Shyu et al. that the NKT cells in PB cells of 24-month-old 197 
Eklf(K74R) mice was higher than that of 24-month-old WT mice (Figure S3). 198 

We first used RT-qPCR to analyze the levels in PB cells of mRNAs encoding the 199 
immune checkpoint genes (ICGs) PD-1/PD-L123 in view of the cancer resistance of 200 
Eklf(K74R) mice (Figure 4) as well as increased levels of PD-1 and PD-L1 in aged or 201 
tumorigenic mice24. As shown in Figure 4, the mRNA levels of Pd-1 and Pd-l1 in the PB, B 202 
cells and T cells of WT mice were both increased during aging. In great contrast, the mRNA 203 
levels and protein levels of these two genes were lower in 3-month-old Eklf(K74R) mice than 204 
the age-matched WT mice, and they remained low during ageing of the Eklf(K74R) mice. 205 
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Importantly, EKLF positively regulated expression of both Pd-1 and Pd-l1 at the 206 
transcriptional level, as demonstrated by RNAi knockdown experiments in splenic CD3+ T 207 
cells (Figure 4C). As expected, lower levels of Pd-1 and Pd-11 expression were also observed 208 
in the PB of mice receiving BMT from Eklf(K74R) mice (Figure S2C). These findings 209 
indicate that the low tumorigenesis rate of Eklf(K74R) mice arises in part from low 210 
expression of the ICGs, Pd-1 and Pd-l1. 211 

We have also examined, by bead-based multiplex assay25,26, the expression patterns of 212 
several ageing- and/or cancer- associated cytokines. As shown in Figure S4, there was no 213 
significant difference in the serum levels of IL-1β, IL-2, IL-10, IL-12p70, INF-γ or TNF-α 214 
between WT and Eklf(K74R) mice at 24-month-old. In contrast, the level of IL-4, an 215 
anti-inflammatory cytokine27 beneficial to the hippocampus of aging mice28, in 24-month-old 216 
Eklf(K74R) mice was 3-4 fold higher than the 24-month-old WT mice. On the other hand, the 217 
level of IL-6, a key factor in chronic inflammatory diseases, autoimmunity, cytokine storm 218 
and cancer26,29, increased only moderately during aging of the Eklf(K74R) mice (Figure S4). 219 
Thus, similar to PD-1 and PD-L1, the altered expression of some of the cytokines in the blood 220 
likely contributes to the anti-aging and/or anti-cancer characteristics of the Eklf(K74R) mice.  221 
 222 
Comparative proteomics analysis of the leukocytes of Eklf(K74R) mice and WT mice 223 

We proceeded to examine age-dependent cell-intrinsic changes in the proteomes of the 224 
leukocytes from the WT and Eklf(K74R) mice in two different age groups. 259 and 306 225 
differentially expressed proteins (DEPs) were identified between the two age groups for the 226 
WT and Eklf(K74R) mice, respectively (Figure S5A). To understand the correlations of these 227 
proteins with aging and cancer, we performed the GSEA and found that the age-dependent 228 
DEPs changed in the concordant direction in the WT and Eklf(K74R) mice were enriched for 229 
several known aging-related pathways, e.g. IL-6-JAK-STAT3 signaling, DNA repair, etc30 230 
(Figure S5B). Meanwhile, the age-dependent DEPs changed in the reverse directions in the 231 
WT and Eklf(K74R) mice were enriched for nine other aging-related pathways (Figure S5C).  232 

We further performed DEP analyses between WT and Eklf(K74R) mice and identified 233 
strain-dependent DEPs in the two age groups. As shown in Figure S5D, only 7 DEPs were 234 
identified in the 3-month-old mice but 40 DEPs in the 24-month-old ones. Of the 40 DEPs in 235 
the elder mice, 3 and 37 were upregulated in Eklf(K74R) and WT mice, respectively (Figure 236 
S4D). Significantly, GSEA analysis of these DEPs showed that elder Eklf(K74R) leukocytes 237 
were enriched for the anti-aging pathways related to hypoxia, and p53 signaling, etc.31,32, 238 
while the elder WT leukocytes were enriched for the aging-associated pathways related to 239 
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apoptosis, and mTORC1 signaling, etc31,33. On the other hand, the DEPs in elder Eklf(K74R) 240 
leukocytes were also enriched for anti-cancer pathways related to the interferon-α response, 241 
and TGF-β signaling, etc.34-36 (Figure S5E), while DEPs in the elder WT leukocytes were 242 
enriched for the pro-cancer pathways related to IL-6-JAK-STAT3 signaling and 243 
angiogenesis37. These data together have demonstrated that Eklf(K74R) leukocytes contribute 244 
to their anti-cancer capability and long lifespan through several specific cellular signaling 245 
pathways. 246 

Discussion 247 

Because of the complexity and intercrosses of the different pathways regulating the 248 
health and the aging process, genetic manipulation of non-human animals38,39 and non-genetic 249 
approaches on animals including human4,40,41 targeting these pathways inevitably lead to 250 
moderate-to-severe side effects such as body weight loss, adiposity, etc.. With respect to the 251 
above, the Eklf(K74R) mice21 is ideal as an animal model for further insightful understanding 252 
of the ageing process as well as for biomedical development of new anti-ageing tools and 253 
approaches. Indeed, the studies reported above on the hematopoietic transfer of the 254 
anti-cancer capability and extended lifespan of Eklf(K74R) mice have demonstrated the 255 
feasibility of a novel hematopoietic blood system for anti-disease and anti-ageing. 256 

The anti-cancer capability of the Eklf(K74R) mice have rendered them relatively free 257 
from spontaneous cancer occurrence21, which is also reflected by their resistance to 258 
tumorigenesis of the B16-F10 cells and LLC1 cells in the cancer-growth inhibition assay21 259 
(Figures. 1 and 3). Furthermore, the cancer resistance of Eklf(K74R) mice appears to be 260 
independent of the gender, age, and genetic background (Figure 1). The anti-metastasis 261 
property of the Eklf(K74A) mice in the pulmonary foci assay (Figure 1D) also indicates that 262 
the anti-cancer capability of the Eklf(K74R) mice is not due to the structural and/or 263 
post-translational properties of the arginine introduced at codon 74 of EKLF. Importantly, we 264 
have shown that the anti-cancer capability and the extended lifespan characteristics of 265 
Eklf(K74R) mice are transferrable through BMT (Figures. 2, 3, and S2B). In particular, we 266 
show that BMMNC from Eklf(K74R) mice (Figure 2A and S2A) could confer 2-month-old 267 
WT recipient mice with the anti-cancer capability. Furthermore, ~20% of blood substitution 268 
would allow the recipient mice to become cancer resistant in the pulmonary foci assay (Figure 269 
2D). Also, WT mice receiving BMMNC at 2-month-old Eklf(K74R) mice would live longer 270 
than those receiving WT BMMNC (Figure S2B). In interesting parallel, infusion of 271 
HSC(K74R) could extend the life span of aged WT recipient mice21. Hematopoietic stem cell 272 
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therapy for different diseases42-45 including cancer has been intensively explored and practiced 273 
such as leukemia, and neuroblastoma, etc46,47. Also, certain characteristics of the young mice 274 
could be transferred to old mice via heterochronic parabiosis or heterochronic 275 
transplantation48-51. Similarly, plasma proteins from human umbilical cord blood can 276 
revitalize hippocampal function and neuroplasticity in aged mice52,53. Thus, 277 
transplantation/transfer of the blood MNC carrying homozygous mutation at the sumoylation 278 
site of EKLF could be developed as a new approach for anti-cancer cell, long-term anti-aging 279 
and rejuvenation. 280 

The tumorigenesis resistance and long lifespan exhibited by the Eklf(K74R) mice are 281 
most likely due to changes in the transcription regulatory properties of the mutant 282 
EKLF(K74R) protein relative to WT54. As exemplified in Figure 4A and 4B, expression 283 
levels of the ICGs Pd-1 and Pd-l1 in the PB, B, and T cells of Eklf(K74R) mice are reduced 284 
in comparison to the WT mice. Notably, cancer incidence increases with aging55, which is 285 
accompanied by increased expression of PD-1 and PD-L156. The lower expression of ICGs 286 
would contribute to the anti-cancer capabilities of the Eklf(K74R) blood to fight against 287 
cancer (Figures. 1, 2, and 3) and to extension of the lifespan of cancer-bearing mice21. Given 288 
that EKLF is expressed in HSCs16, B cells, T cells12, NK cells and macrophages (bio-GPS 289 
database), and that RNAi knockdown of Eklf expression significantly reduced Pd-1 and Pd-l1 290 
mRNA levels in splenic CD3+ T cells (Figure 4C), we assert that this protein is an upstream 291 
transcriptional regulator of the Pd-1 and Pd-l1 genes and, more generally, it regulates the 292 
transcriptomes of a diverse range of hematopoietic cells. Indeed, similar to ICGs, the 293 
expression levels of several cytokines in the Eklf(K74R) blood/serum are also different from 294 
the WT blood and some of the changes during ageing or carcinogenesis in the Eklf(K74R) 295 
blood are opposite to the blood/serum of WT mice 26 (Figure S4).  296 

Previously, the transcriptome data have been used to dissect the regulation of leukocyte 297 
aging 30,57,58. In addition, proteomic analysis has revealed the signaling pathways that regulate 298 
aging of specific types of leukocyte such as the lymphocyte and neutrophils cells59,60. In this 299 
study, we have performed proteomics analysis of leukocytes from WT and Eklf(K74R) mice 300 
in two age groups, and found that for the elder mice, the strain-dependent DEPs in the 301 
leukocytes are enriched for a number of signaling pathways. Among these signaling pathways, 302 
at least 12 of them are closely associated with the aging process, which include hypoxia, 303 
DNA repair, etc. (Figure S5E). As summarized by the model in Figure S5F, it appears that 304 
changes of these pathways in the elder Eklf(K74R) leukocytes relative to the elder WT 305 
leukocytes are mostly in the direction of anti-aging. The data of Figure S4 together strongly 306 
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suggest that the Eklf(K74R) amino acid substitution causes a change in the global gene 307 
expression profile of the leukocytes, which contributes to the high anti-cancer capability and 308 
long lifespan of the Eklf(K74R) mice. 309 
    In sum, we have characterized the cancer resistance of the Eklf(K74R) mice, among their 310 
other healthy characteristics, in relation to gender, age, and genetic background. We also have 311 
identified cell populations, gene expression profiles and cellular signaling pathways of the 312 
white blood cells of young and old mutant mice, in comparison to the WT ones, that are 313 
changed in the anti-cancer and/or anti-ageing directions. Finally, the transferability of the 314 
cancer resistance and extended life-span of the mutant mice via transplantation of BMMNC 315 
suggests the possibility of future development of hematopoietic blood cells genome-edited at 316 
the conserved sumoylation site of EKLF for anti-cancer and the extension of healthspan 317 
and/or lifespan in animals including human. 318 
 319 
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Material and Methods 356 

Mice 357 
C57BL/6, B6, and FVB mice were purchased from Jackson Laboratories (Bar Harbor, 358 

Maine). The B6 Eklf(K74R), B6 Eklf(K74A) and FVB Eklf(K74R) mice were established 359 
with the assistance of the Transgenic Core Facility (TCF), IMB, Academia Sinica, Taiwan. 360 
As described previously21, the K74R mutation was introduced by homologous recombination 361 
into exon 2 (E2) of the Eklf gene of B6 mice by means of a recombinant retrovirus containing 362 
the construct loxP-PGK-gb2-neo-loxP-E2 (K74R), before excising the neomycin (neo) 363 
selection marker by crossing with Ella-Cre mice. The heterozygous Eklf(K74R/+) mice were 364 
then crossed to obtain homozygous mutant Eklf(K74R/K74R) mice, hereafter termed 365 
Eklf(K74R) mice.  366 

On the other hand, Eklf(K74A) mice were generated by using the CRISPR/Cas9 system. 367 
Female B6 mice (7- to 8-week-old) were mated with B6 males and the fertilized embryos 368 
were collected from the oviducts. For oligos injection, Cas mRNA (100 ng/μl), sgRNA (50 369 
ng/μl), and donor oligos (100 ng/μl) were mixed and injected into the zygotes at the pronuclei 370 
stage. The F0 mice were genotyped by PCR and DNA sequencing. The heterozygous 371 
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Eklf(K74A/+) mice were crossed to establish the germ-line stable homozygous Eklf(K74A) 372 
F1 strain. 373 

Eklf(K74R) mice in the FVB background were generated using an in vitro fertilization 374 
strategy. Briefly, sperm from male B6 Eklf(K74R) mice was used to fertilize FVB mouse 375 
oocytes. In vitro fertilizations of FVB oocytes were carried out consecutively for five 376 
generations. The resulting chimeric mice with >90% FVB background were then crossed with 377 
FVB mice for another five generations or more. 378 
 379 
Cell lines 380 

Murine B16-F10 melanoma cell lines were purchased from ATCC (CRL-6475). 381 
B16-F10 cells expressing luciferase (B16-F10-luc) were generated as described previously61. 382 
All cell lines were derived from cryopreserved stocks split fewer than three times and they 383 
were confirmed as mycoplasma-free prior to use. B16-F10 cells were cultured at 37 °C and 5 384 
% CO2 in DMEM medium supplemented with 10 % FBS, 1 % penicillin/streptomycin, and 2 385 
mM L-glutamine. B16-F10-luc cells were selected at 37 °C and 5 % CO2 in a DMEM 386 
medium supplemented with 0.2 mg/mL zeocin (Invitrogen), 10 % FBS, 1 % 387 
penicillin/streptomycin, and 2 mM L-glutamine.  388 
 389 
Experimental melanoma metastasis assay 390 

Cultured B16-F10 melanoma cells (1x105, 2x105, 5x105 cells/mouse) were injected into 391 
mouse tail vein of 8- to 9-week-old or 24-month-old Eklf(K74R) and WT mice with/ without 392 
bone marrow transplantation. Two weeks after injection, the mice were sacrificed and the 393 
number of tumor foci on their lungs was quantified62.  394 
 395 
Flow cytometric analysis and cell sorting 396 

Single cell suspensions of the peripheral blood cells and spleen tissue of B6 mice were 397 
prepared by lysing red blood cells and then passing them through a 40-μm cell strainer 398 
(Falcon®). Bone marrow mononuclear cells (BMMNCs) were prepared as described below in 399 
the section Bone marrow transplantation (BMT). The peripheral blood cells and 400 
splenocytes were stained extracellularly for 30 min at room temperature using different 401 
combinations of the following antibodies: anti-CD45.1 (eBioscience); anti-CD45.2 402 
(eBioscience); anti-CD3e (eBioscience); anti-CD45R (eBioscience); anti-NK1.1 403 
(eBioscience); anti-PD-1 (eBioscience) and anti-PD-L1 (eBioscience). The various 404 
hematopoietic progenitor cell compartments of bone marrow were also stained extracellularly 405 
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for 30 min at room temperature by using different combination of the following antibodies: 406 
anti-Lineage (eBioscience), anti-c-Kit (eBioscience), anti-Sca-1 (eBioscience), anti-CD34 407 
(eBioscience), anti-Flt-3 (eBioscience). All the immuno-stained cells were subsequently 408 
washed with 1% PBS three times and resuspended for FACS analysis and sorting. Small 409 
amounts of the cell samples were run on a FACS Analyzer LSRII-12P (BD Bioscience) to 410 
determine the proportions of different cell preparations. FACS AriaII SORP (BD Bioscience) 411 
was then used to sort the indicated cell populations. The detail gating subsets for all the cell as 412 
described above are shown in Table S1. Data analysis was performed using FlowJo software.  413 

The cell population analysis of leukocytes was performed at the Immune Monitoring 414 
Core, TMU. The leukocytes of 3- or 24-month-old WT and Eklf(K74R) mice were analyzed 415 
by flow cytometry to determine the populations of CD3+-B220--T cells, CD3-- B220+-B cells, 416 
CD3--NK1.1+-NK cells, CD3+-B220--CD4+ helper T cells (Th), CD3+-B220--CD8+ cytotoxic 417 
T cells (Tc), CD3+-B220--CD4+-INF-γ+ (Th1), and CD3+-B220--CD4+-IL-4+ (Th2). 418 
 419 
RNAi knockdown of Eklf mRNA from T cells 420 

CD3+ T cells isolated by sorting were cultured in RPMI 1640 medium for one day for 421 
recovery and then transfected with EGFP-plasmid (control), scrambled oligonucleotides (SC 422 
control), Eklf knockdown oligonucleotide 1 (oligo 1), or Eklf knockdown oligonucleotide 2 423 
(oligo 2) in a 96-well plate for 48 h using a LONZA electroporation kit (P3 Primary Cell 424 
4D-NucleofectorTM X Kit) and machine (4D-NucleofectorTM Core Unit). Then the cells 425 
were lysed using a PureLink® RNA Mini kit (Life Technologies) and analyzed by RT-qPCR. 426 
 427 
RT-qPCR and cell treatment 428 

Total RNA from B cells, T cells, white blood cells (WBC) and total blood from the 429 
peripheral blood of Eklf(K74R) and WT mice were extracted using a PureLink® RNA Mini 430 
kit (Life Technologies). The RNAs were reverse-transcribed by means of oligo-dT primers, 431 
Maxima H Minus Reverse Transcriptase (Thermo Scientific™) and SYBR Green reagents 432 
(Applied Biosystems). RT-qPCR was performed using a LightCycler® Nano machine 433 
(Roche). Gene-specific primers for Eklf, Pd-1, Pd-l1, Pd-l2, and Gapdh were designed using 434 
Vector NTI Advance 9 software according to respective mRNA sequences in the NCBI 435 
database (primer sequences are available upon request). Expression levels of mRNAs were 436 
normalized to that of endogenous Gapdh mRNA. 437 
 438 
Western blotting (WB) 439 
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We adopted a previously described WB procedure63. White blood cells (WBC) of 440 
Eklf(K74R) and WT B6 mice were collected from RBC lysis buffer-treated peripheral blood. 441 
The WBC pellets were lysed in sample buffer and run on SDS-PAGE gels. WB with 442 
anti-EKLF (Abcam) and anti-actin (Sigma) antibodies was then used to analyze the levels of 443 
EKLF and actin protein. 444 
 445 
In vivo bioluminescence imaging 446 

Eklf(K74R) and WT B6 mice were physically restrained and 1x105 B16-F10-luc 447 
cells/mouse were intravenously injected into their tail vein. Ten days after melanoma cell 448 
inoculation, mice were anesthetized for 5 min and injected intraperitoneally with D-luciferin 449 
(300 mg/Kg of body weight). Fifteen minutes after maximum luciferin uptake, the mice were 450 
subjected to imaging of the lung and liver regions in an IVIS 50 Bioluminescence imager 451 
(Caliper Life Sciences) to determine metastatic burden. The same mice were used the next 452 
day as recipients of bone marrow transplantation (BMT) from donor WT or Eklf(K74R) mice. 453 
Following BMT, bioluminescence imaging was performed on days 0, 10, 17 and 24. 454 
 455 
Bone marrow transplantation (BMT) 456 

BMT followed the standard protocol described in Imado et al. (2004)22. B6, CD45.1 or 457 
CD45.2 donor mice were sacrificed and their femurs were removed. Bone marrow cells were 458 
harvested by flashing the femurs with RPM I1640 medium (GIBCO) using a 27-gauge needle 459 
and syringe. The cells were then incubated at 37 °C for 30 min in murine complement buffer 460 
containing antibodies against B cells, T cells and NK cells, washed twice with PBS, and then 461 
subjected to Ficoll-Paque PLUS gradient centrifugation to collect bone marrow mononuclear 462 
cells (BMMNCs). BMMNCs (1x106 cells/mouse) from donor mice were injected into the tail 463 
veins of recipient B6, CD45.2 or CD45.1 mice that had been exposed to total body 464 
γ-irradiation of 10, 5 or 2.5 Gy. 465 
 466 
Bead-based multiplex assay of serum cytokines 467 

Serum samples were obtained via submandibular blood collection and allowed to clot in 468 
uncoated tubes for two hours at room temperature. The tubes were centrifuged at 6,000 rpm 469 
and the supernatants were collected for cytokine analysis by bead-based multiplex assay 470 
(MILLIPLEX MAP Mouse High Sensitivity T Cell Panel, Millipore) following the 471 
manufacturer protocol25. 472 
 473 
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Protein extraction 474 
The cell pellets were resuspended in protein extraction buffer (20 mM HEPES, 0.2% 475 

SDS, 1 mM EDTA, 1 mM glycerophosphate, 1 mM Na3VO4, and 2.5 mM Na4P2O7) with 476 
protease inhibitor cocktail (Sigma-Aldrich) and 1 mM phenylmethylsulfonyl fluoride (PMSF). 477 
The lysates were further homogenized using a Bioruptor (Diagenode) at 4 °C for 15 min, and 478 
then centrifuged at 14,000 × g at 4 °C for 20 min. The supernatant was transferred to a new 479 
tube before determining protein concentration by means of BCA protein assay (Pierce, 480 
Thermo Fisher). Protein aliquots were stored at -30 °C until use. 481 

 482 
In-solution digestion 483 

Protein solutions were first diluted with 50 mM ammonium bicarbonate (ABC) and 484 
reduced with 5 mM dithiothreitol (DTT, Merck) at 60 °C for 45 min, followed by 485 
cysteine-blocking with 10 mM iodoacetamide (IAM, Sigma) at 25°C for 30 min. The samples 486 
were then diluted with 25 mM ABC and digested with sequencing-grade modified porcine 487 
trypsin (Promega) at 37 °C for 16 h. The peptides were desalted using a homemade C18 488 
microcolumn (SOURCE 15RPC, GE Healthcare) and stored at -30 °C until use. 489 
 490 
LC-MS/MS analysis 491 

The desalted peptides were diluted in HPLC buffer A (0.1% formic acid in 30% 492 
acetonitrile) and loaded onto a homemade SCX column (0.6 × 5 mm, Luna 5 µm SCX 100 Å, 493 
Phenomenex). The eluted peptides were then trapped in a reverse-phase column (Zorbax 494 
300SB-C18, 0.3 × 5 mm; Agilent Technologies), and separated on a homemade column 495 
(HydroRP 2.5 µm, 75 μm I.D. × 15 cm with a 15 μm tip) using a multi-step gradient of HPLC 496 
buffer B (99.9% acetonitrile/0.1% formic acid) for 90 min with a flow rate of 0.3 μl/min. The 497 
LC apparatus was coupled to a 2D linear ion trap mass spectrometer (Orbitrap Elite ETD; 498 
Thermo Fisher) operated using Xcalibur 2.2 software (Thermo Fisher). Full-scan MS was 499 
performed in the Orbitrap over a range of 400 to 2,000 Da and a resolution of 120,000 at m/z 500 
400. Internal calibration was performed using the ion signal of [Si(CH3)2O]6H+ at m/z 501 
536.165365 as lock mass. The 20 data-dependent MS/MS scan events were followed by one 502 
MS scan for the 20 most abundant precursor ions in the preview MS scan. The m/z values 503 
selected for MS/MS were dynamically excluded for 40 sec with a relative mass window of 10 504 
ppm. The electrospray voltage was set to 2.0 kV, and the temperature of the capillary was set 505 
to 200 °C. MS and MS/MS automatic gain control was set to 1,000 ms (full scan) and 200 ms 506 
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(MS/MS), or to 3 × 106 ions (full scan) and 3,000 ions (MS/MS), for maximum accumulated 507 
time or ions, respectively. 508 
 509 
Protein identification 510 

Data analysis was carried out using Proteome Discoverer software (version 1.4, Thermo 511 
Fisher Scientific). The MS/MS spectra were searched against the SwissProt database using 512 
the Mascot search engine (Matrix Science, version 2.5). For peptide identification, 10 ppm 513 
mass tolerance was permitted for intact peptide masses, and 0.5 Da for CID fragment ions 514 
with an allowance for two missed cleavages arising from trypsin digestion, oxidized 515 
methionine and acetyl (protein N-terminal) as variable modifications, and carbamidomethyl 516 
(cysteine) as a static modification. Peptide spectrum matches (PSM) were then filtered based 517 
on high confidence and a Mascot search engine ranking of 1 for peptide identification to 518 
ensure an overall false discovery rate <0.01. Proteins with single peptide hits were removed 519 
from further analysis. 520 
 521 
Gene Set Enrichment Analysis 522 

The absolute abundance of each peptide was calculated from respective peak intensity 523 
based on the PSM abundance. The protein abundance of each sample was calculated from the 524 
sum of the peptide abundance. The abundance data were then background-corrected and 525 
normalized according to variance stabilizing transformation by using the function 526 
“normalize_vsn” in the R package DEP64. Differential expression across groups was 527 
determined using the function “test_diff” based on protein-wise linear models combined with 528 
empirical Bayes statistics. Significantly differentially-expressed proteins were determined 529 
according to a P-value threshold of 0.01 and a fold-change (FC) >1.5. To establish functional 530 
pathways enriched across groups, normalized data for each pair of compared groups were 531 
used to perform Gene Set Enrichment Analysis (GSEA v4.2.0)65 on selected MSigDB gene 532 
sets, including Hallmark (H), curated (C2), and immunologic signature (C7) gene sets, by 533 
using the default parameters. Normalized enrichment scores (NES) were used to plot a 534 
heatmap in the R package pheatmap (v1.0.12). 535 
 536 
Statistical analysis 537 

Data are shown as mean ± standard deviation (SD) or standard error of the mean (SEM). 538 
Comparisons of data under different experimental conditions were carried out using 539 
GraphPad Prism 6.0 software (GraphPad). Each error bar represents SEM unless otherwise 540 
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indicated. Significant differences in tumor growth on mouse lungs were assessed by Student's 541 
t test. A difference between groups was considered statistically significant when the p value 542 
was lower than 0.05.  543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
 551 
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 749 

 750 

Figure Legends 751 
 752 
Figure 1. Anti-cancer capability of Eklf(K74R) mice as analyzed by the experimental 753 

melanoma metastasis assay. 754 
(A) Flow chart illustrating the strategy of the pulmonary tumor foci assay. Left panels, 755 
representative photographs of pulmonary metastatic foci on the lungs of WT and 756 
Eklf(K74R) male mice in the B6 background two weeks after intravenous injection of 757 
B16-F10 cells (105 cells/ mouse). Statistical comparison of the numbers of pulmonary 758 
foci is shown in the two histograms on the right. N=10 (male) and N=7 (female), **, 759 
p<0.01. Note that only the numbers of large pulmonary foci (>1mm diameter) were 760 
scored. N>6, **, p<0.01. (B) Pulmonary tumor foci assay of 24-month-old WT and 761 
Eklf(K74R) male mice. Statistical comparison is shown in the two histograms. N=10 762 
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(male), *, p<0.05. (C) Pulmonary tumor foci assay of male mice in the FVB 763 
background. Statistical comparison is shown in the histograph on the right. N=10, **, 764 
p<0.01. (D) Pulmonary tumor foci assay of Eklf(K74A) male mice. Statistical 765 
comparison of the 3-month-old WT and Eklf(K74A) mice numbers of pulmonary foci 766 
is shown in the two histograms. N=10 (male), **, p<0.01. 767 

 768 
Figure 2. Transfer of cancer resistance of Eklf(K74R) mice to WT mice by bone marrow 769 

transplantation (BMT) 770 
(A) Flow chart illustrating the experimental strategy. (B) FACS analysis of the 771 
efficiency of BMT with use of 10Gy γ-irradiation. The percentages of CD45.1/CD45.2 772 
cells in the PB of the recipient male mice were analyzed by flow cytometry, with the 773 
representative FACS charts shown on the left and the statistical histobar diagram on the 774 
right. (C) Transfer of the anti-metastasis capability of 8-week-old Eklf(K74R) male 775 
mice to age-equivalent WT male mice by BMT with use of 10Gy γ-irradiation. Left 776 
panels, representative photographs of lungs with pulmonary metastatic foci in the 777 
recipient WT (CD45.1) mice after BMT from WT (CD45.2) or Eklf(K74R) (CD45.2) 778 
donor mice and challenged with B16-F10 cells. Statistical analysis of the numbers of 779 
pulmonary B16-F10 metastatic foci on the lungs is shown in the right histogram. n=10, 780 
*, p<0.05. (D) Transplantation of 8-week-old male WT (CD45.1) mice with BMMNC 781 
from age-equivalent WT (CD45.2) male mice or from Eklf(K74R) (CD45.2) male mice 782 
with use of the γ-irradiation dosage 2.5Gy or 5Gy. The histobar diagram comparing the 783 
percentages of CD45.1 and CD45.2 PB cells of the recipient WT mice after BMT is 784 
shown on the left. The statistical analysis of the average numbers of pulmonary foci on 785 
the lungs of recipient WT mice after BMT and injected with the B16-F10 cells is 786 
shown in the right histogram, N=6. **, p<0.01, ***, p<0.001. 787 

 788 
Figure 3. Inhibition of tumor growth in WT mice by BMT from Eklf(K74R) mice 789 

(A) A flow chart of the experiments. Luciferase-positive B16-F10 cells were injected 790 
into the tail vein of 8-week-old WT male mice (day 0). The mice were then 791 
transplanted with BMMNC from WT or Eklf(K74R) male mice on day 11 after the 792 
luciferase-positive B16-F10 cell injection. In vivo imaging system (IVIS) was used to 793 
follow the tumor growth in mice on day 0, 10, 17 and 24, respectively. (B) 794 
Representative images of bioluminescence reflecting the luciferase activity from 795 
melanoma cancer cells in mice. The color bar indicates the scale of the 796 
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bioluminescence intensity. (C) Statistical analysis of the intensities of bioluminescence 797 
in the cancer-bearing mice (WTWT, purple, N=7; Eklf(K74R)WT, blue, N=8; 798 
Control (no BMT), red, N=3). 799 

 800 
Figure 4. Decrease of Pd-1 and Pd-l1 expression in blood cells of Eklf(K74R) mice 801 

(A) Levels of Pd-1 and Pd-l1 mRNAs in the PB of WT and Eklf(K74R) male mice at 802 
the ages of 3 months and 24 months, respectively, as analyzed by RT-qPCR. Note the 803 
relatively low levels of Pd-1 and Pd-l1 mRNAs in the Eklf(K74R) mice at both ages in 804 
comparison to the WT mice. (B) Upper panels, comparison of the mRNA levels of 805 
Pd-1 and Pd-l1 of CD3+ T cells and B220+ B cells isolated from the PB of 8-week-old 806 
WT and Eklf(K74R) male mice. N=5. *, p<0.05; **, p<0.01. Lower panels, comparison 807 
of the protein levels of PD-1 and PD-L1, as analyzed by flow cytometry, of CD3+ T 808 
cells and B220+ B cells from 8-week-old WT and Eklf(K74R) male mice. N=3. *, 809 
p<0.05; **, p<0.01. (C) Comparison of the levels of Pd-1, Pd-l1 and Eklf mRNAs, as 810 
analyzed by RT-qPCR, in CD3+ T cells, which were isolated from splenocytes, without 811 
or with RNAi knockdown of Eklf mRNA. Two oligos (oligo-1 and oligo-2) were used 812 
to knockdown Eklf mRNA by ~60-70%, which resulted in the reduction of Pd-1 813 
mRNA level by 30-60% and nearly complete depletion of Pd-l1 mRNA. Control, T 814 
cells transfected with GFP-plasmid. SC, T cells transfected with scrambled oligos. N>3. 815 
*, p<0.05; **, p<0.01; ***, p<0.001. 816 

 817 

 818 
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