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ABSTRACT
Object classification has been proposed as a principal objective of the primate ventral visual stream.
However, optimizing for object classification alone does not constrain how other variables may be
encoded in high-level visual representations. Here, we studied how the latent sources of variation in a
visual scene are encoded within high-dimensional population codes in primate visual cortex and in
deep neural networks (DNNs). In particular, we focused on the degree to which different sources of
variation are represented in non-overlapping (“factorized”) subspaces of population activity. In the
monkey ventral visual hierarchy, we found that factorization of object pose and background
information from object identity increased in higher-level regions. To test the importance of
factorization in computational models of the brain, we then conducted a detailed large-scale analysis
of factorization of individual scene parameters – lighting, background, camera viewpoint, and object
pose – in a diverse library of DNN models of the visual system. Models which best matched neural,
fMRI and behavioral data from both monkeys and humans across 12 datasets tended to be those
which factorized scene parameters most strongly. In contrast, invariance to object pose and camera
viewpoint in models was negatively associated with a match to neural and behavioral data.
Intriguingly, we found that factorization was similar in magnitude and complementary to
classification performance as an indicator of the most brainlike models suggesting a new principle.
Thus, we propose that factorization of visual scene information is a widely used strategy in brains
and DNN models.

INTRODUCTION
Artificial deep neural networks (DNNs) are the most predictive models of neural responses to images
in the primate high-level visual cortex1,2. Many studies have reported that DNNs trained to perform
image classification produce internal feature representations broadly similar to those in areas V4 and
IT of the primate cortex, and that this similarity tends to be greater in models with better classification
performance3. However, beyond a certain threshold level of object classification performance, further
improvement fails to produce a concomitant improvement in predicting primate neural responses2,4.
This weakening trend motivates finding new normative principles, besides object classification ability,
that push models to better match primate visual representations. In particular, high-level cortical
areas in the ventral visual cortex are known to encode other properties of visual input besides object
identity5–8. Here, we introduce a framework for understanding the relationships between different
types of visual information in a population code (e.g., object identity, pose, and camera viewpoint).
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Intuitively, if the variance driven by one parameter is encoded independently from the variance driven
by other scene parameters, we say this code is factorized. Factorization is a useful strategy for
representing information about multiple scene parameters, to support different visually guided
behaviors, in an easily decodable fashion9. Here, we found evidence for factorized representations in
high-level primate visual areas. Testing across a broad library of DNN models that varied in their
architecture and training objectives, we found that factorization of scene parameters in DNN feature
representations was associated with models’ matches to neural and behavioral data. Whereas
simple invariance to some scene parameters (background scene and lighting conditions) predicted
neural fits, invariance to others (object pose and camera viewpoint) did not. Our results generalized
across both monkey and human datasets using different measures (neural spiking, fMRI, and
behavior; 12 datasets total) and could not be accounted for by models’ classification performance.
Thus, we suggest that factorized encoding of multiple behaviorally-relevant scene variables is an
important consideration in building more brainlike models of visual scene representations.

RESULTS
Decoding object identity from population responses can be enhanced by invariance of responses to
non-identity scene parameters or by factorizing non-identity-driven response variance into isolated
(factorized) subspaces (Figure 1A). To formalize these notions, we introduced measures of
factorization and invariance to scene parameters in neural population responses (see Equations 1
and 2 inMethods). Factorization, unlike invariance, has the potential to enable the simultaneous
representation of multiple scene parameters in a decodable fashion. To clarify the benefits of
factorization for decoding, we simulated a simple task requiring simultaneous decoding of multiple
variables. The extent to which the variables of interest were represented in a factorized way (i.e.,
along orthogonal axes, rather than correlated axes, in population activity space) influenced the ability
of a linear discriminator to successfully decode both variables in a generalizable fashion from a few
training samples (Figure 1B).

We next asked whether previously collected neural data from the macaque high-level visual
cortex (Table S1) exhibited factorized structure10. Specifically, we took advantage of an existing
dataset in which the tested images independently varied object identity versus object pose plus
background context. We found that both V4 and IT responses exhibited more significant factorization
of object identity information from non-identity information than a shuffle control (Figure S1), and
that the degree of factorization increased from V4 to IT (Figure 1C). Consistent with prior studies, we
also found that invariance to non-identity information was increased from V4 to IT in our analysis
(Figure 1D, black lines)11. Invariance to non-identity information was even more pronounced when
measured in the subspace of population activity containing the bulk (90%) of identity-driven variance,
as a consequence of increased factorization of identity from non-identity factors (Figure 1D, orange
lines). To illustrate the particular benefit of factorization for decoding performance, we analyzed a
transformed neural representation obtained by rotating the population data so that inter-class
variance more strongly overlapped with the principal components of the within-class variance in the
data (seeMethods). This transformation, designed to decrease factorization while leaving invariance
to non-class variables and other activity statistics intact (such as mean neural firing rates and
covariance structure of the population) had the effect of significantly reducing object identity
decoding performance in both V4 and IT (Figure 1E).

We next sought to explore the high-level representation of other forms of visual information
besides object identity. Existing experiments, however, have not recorded neural responses to image
datasets that independently vary other scene parameters besides object identity at sufficient scale to
enable an analysis like the above. Hence, we turned to a modeling-based approach and studied the
degree of factorization of and invariance to specific scene parameters in representations learned by
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DNNs (Figure 2A). We generated an augmented image set, based on the images used in the previous
dataset (Figure 1C), in which we independently varied the foreground object identity, foreground
object pose, background identity, scene lighting, and 2D scene viewpoint. Specifically for each base
image from the original dataset, we generated sets of images that varied exactly one of the above
scene parameters while keeping the others constant (Figure 2B; 100 base scenes and 10
transformed images for each source of variation). By presenting this image dataset to models (4000
images total), we could compute the relative degree of representational factorization and invariance
for each scene parameter. We conducted this analysis across a broad range of DNNs varying in
architecture and objective as well as other implementational choices. These included models using
supervised training for object classification12,13, contrastive self-supervised training14,15, and
self-supervised models trained using auxiliary objective functions16–19 (seeMethods and Table S2).

First, we observed that the final representational layers of trained networks exhibited
consistent increases in factorization of all tested scene parameters relative to a randomly initialized
(untrained) baseline with the same architecture (Figure 2C, top row, rightward shift relative to black
cross, a randomly initialized ResNet-50). Moreover, we found that models’ factorization scores
correlated with the degree to which they predicted neural responses to natural images for single-unit
IT data (Figure 2C, top row). Interestingly, we saw a different pattern for invariance to a scene
parameter. First, training produced mixed effects on invariance, typically increasing it for background
and lighting but reducing it for object pose and camera viewpoint (Figure 2C, bottom row, leftward
shift relative to black cross for left two panels). Second, invariance across models showed mixed
correlations with neural predictivity (Figure 2C, bottom row).

Similar patterns were observed across a large number of previously collected neural and
behavioral datasets from different primate species and visual regions (6 macaque datasets10,20,21: two
V4, two IT, and two behavior; 6 human datasets21–23: two V4, two HVC, and two behavior; Table S1).
Consistently, increased factorization of scene parameters in late model layers correlated with models
being more predictive of neural spiking, voxel BOLD signal, and behavioral responses to images
(Figure 3A, black bars; see Figure S2 for scatter plots across all datasets). Although invariance to
appearance factors (background identity and scene lighting) correlated with more brainlike models,
invariance for spatial transforms (object pose and camera viewpoint) consistently did not (zero or
negative correlation values; Figure 3A, gray bars). Figure 3C summarizes these results across
datasets. Our results were preserved when we re-ran the analyses using only the subset of models
with the identical architecture (ResNet-50) (Figure S3) or when we evaluated model predictivity using
representational dissimilarity matrices of the population (RDM) instead of linear regression fits of
individual neurons or fMRI voxels (Figure S4). Furthermore, the main finding of a positive correlation
between factorization and neural predictivity was robust to the particular choice of PCA threshold we
used to quantify factorization (Figure S5).

Next, we tested whether our results generalized across image sets used for computing the
model factorization scores. Here, instead of relying on our synthetically generated images, we
re-computed factorization from two datasets of natural movies, one in which the observer moves in
an urban environment (approximates camera viewpoint changes)24 and another in which objects
move in front of a fairly stationary observer (approximates object pose changes)25. Similar to the
previous results using augmentations of naturalistic static images, factorization of frame-by-frame
variance (local in time) from other sources of variance (non-local in time) across natural movies was
correlated with improved neural predictivity in both macaque and human data, while invariance to
these parameters was not (Figure 3B; black versus gray bars).

It is possible that the observed correlations between scene parameter factorization and neural
fit could be entirely captured by the known correlation between classification performance and neural
fits2,3. However, we found that factorization significantly boosted cross-validated predictive power
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over simply using classification alone (Figure 3D), rectifying the saturating correlation between
classification performance and neural fits (Figure 3E).

DISCUSSION
Object classification, which has been proposed as a normative principle for the function of the ventral
visual stream, can be supported by qualitatively different representational geometries3,26. These
include representations that are completely invariant to non-class information27,28 and representations
that retain a high-dimensional but factorized encoding of non-class information. Here, we presented
evidence that factorization of non-class information is an important strategy used, along with
invariance, by the high-level visual cortex and by DNNs that are predictive of primate neural and
behavioral data. Concurrent work has shown that DNN models with high-dimensional embeddings of
natural images yielded better fits to neural data29. Our work complements this finding and provides a
potential interpretation, namely that high-dimensional representations are employed by visual areas in
order to maintain orthogonal encodings for different sources of scene variation. We note that the
degree of factorization measured in neural data is significantly greater than that of a shuffle control
with the same dimensionality, indicating that the factorized encoding found in cortical responses
goes beyond what would be inherited from a random high-dimensional representation (Figure S1).

Going forward, we expect factorization could prove to be a useful objective function for
optimizing neural network models that better resemble primate visual systems. Our results
complement prior theoretical studies that show benefits of orthogonal encoding of different sources
of variance for generalization performance of trained decoders9,30. An important limitation of our
work is that we do not specify the details of how a particular scene parameter is encoded within its
factorized subspace. Neural codes could adopt different strategies resulting in similar factorization
scores at the population level, each with some support in visual cortex literature: (1) Each neuron
encodes a single latent variable31,32, (2) Separate brain subregions encode qualitatively different latent
variables but using distributed representations within a region33–35, (3) Each neuron encodes multiple
variables in a distributed population code, such that the factorization of different variables is only
apparent when assessed in high-dimensional population activity space31,36. Future work can
disambiguate among these possibilities by systematically examining subregions of the ventral visual
stream and single-neuron tuning curves within them37,38.

METHODS
Monkey datasets. We used three sources of data from macaque monkeys, corresponding to
single-unit neural recordings20, multi-unit neural recordings10, and object recognition behavior21.
Single-unit spiking responses to natural images were measured in V4 and anterior ventral IT20. These
IT recordings were obtained from penetrating electrodes targeting the anterior ventral portion of IT
near the base of the skull, reflecting the highest level of the IT hierarchy. On the other hand, the
multi-unit dataset was obtained from across IT with a bias toward where multi-unit arrays were more
easily placed such as CIT and PIT10, complementing the recording locations of the single-unit dataset.
An advantage of the multi-unit dataset using chronic recording arrays is that an order of magnitude
more images were tested per recording site (see dataset comparisons in Table S1). Finally, the
monkey behavioral dataset came from a third study examining the image-by-image object
classification performance of macaques and humans21.

Human datasets. Three datasets from humans were used: two fMRI datasets and one object
recognition behavior dataset4,21,22. The fMRI datasets used different images (color versus grayscale)
but otherwise used similar number of images and voxel resolution in imaging. The human behavioral
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dataset measured image-by-image classification performance and was collected in the same study
as the monkey behavioral signatures21.

Computational models. A variety of approaches to training DNN vision models have been developed
that learn representations that can be used for downstream classification (and other) tasks (see
Table S2 for a list of models used and corresponding references). Models differ in a variety of
implementational choices including in their architecture, objective function, and training dataset. In
the models we sampled, objectives included supervised learning of object classification (AlexNet,
ResNet), self-supervised contrastive learning (MoCo, SimCLR), and other unsupervised learning
algorithms based on auxiliary tasks (e.g., reconstruction, or colorization). A majority of the models
that we considered relied on the widely used, performant ResNet-50 architecture trained on the
ImageNet dataset, though some in our library utilized different architectures. The randomly initialized
network control utilized ResNet-50 (see Figure 2C,D).

Simulation of factorized versus non-factorized representational geometries. For the simulation in
Figure 1B, we generated data in the following way. First we randomly sampled the values of N=10
binary features. Feature values corresponded to positions in an N-dimensional vector space as
follows: each feature was assigned an axis in N-dimensional space, and the value of each feature (+1
or -1) was treated as a coefficient indicating the position along that axis. All but two of the feature
axes were orthogonal to the rest. The last two features, which served as targets for the trained linear
decoders, were assigned axes whose alignment ranged from 0 (orthogonal) to 1 (identical). In the
noiseless case, factorization (according to our definition) of these two variables with respect to one
another is given by subtracting the square of the cosine of the angle between the axes from 1. We
added Gaussian noise to the positions of each data point and randomly sampled K positive and
negative examples for each variable of interest to use as training data for the linear classifier (a
support vector machine).

Macaque neural data analyses. For the shuffle control used as a null model for factorization, we
shuffled the object identity labels of the images (Figure S1). For the transformation of the multi-unit
neural dataset used in Figure 1E, we computed the principal components of the mean neural activity
response to each object class (“class centers”), referred to as the inter-class PCs. We also computed
the principal components of the data with corresponding class centers subtracted from each activity
pattern, referred to as the intra-class PCs. We transformed the data by applying to the class centers a
change of basis matrix that rotated each inter-class PC into the corresponding (according to the rank
of the magnitude of its associated eigenvalue) intra-class PC. That is, the class centers were
transformed by this matrix, but the relative positions of activity patterns for a given class were fixed.
This transformation has the effect of preserving intra-class variance statistics exactly from the
original data and of preserving everything about the statistics of inter-class variance except its
orientation relative to intra-class variance. That is, the transformation is designed to affect
(specifically decrease) factorization while controlling for all other statistics of the activity data that
may be relevant to object classification performance.

Scene parameter variation. Our generated scenes consisted of foreground objects imposed upon
natural backgrounds. To measure variance associated with a particular parameter like the
background identity, we randomly sampled ten different backgrounds while holding the other
variables (e.g., foreground object identity and pose constant). To measure variance associated with
foreground object pose, we randomly varied object angle from [-90, 90] along all three axes
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independently, object position on the two in-plane axes, horizontal [-30%, 30%] and vertical [-60%,
60%], and object size [×1/1.6, ×1.6]. To measure variance associated with camera position, we took
crops of the image with scale uniformly varying from 20% to 100% of the image size, and position
uniformly distributed across the image. To measure variance associated with lighting conditions we
applied random jitters to the brightness, contrast, saturation, and hue of an image, with jitter value
bounds of [-0.4, 0.4] for brightness, contrast, and saturation and [-0.1, 0.1] for hue. These parameter
choices follow standard data augmentation practices for self-supervised neural network training, as
used, for example, in the SimCLR and MoCo models tested here14,15.

Factorization and invariance metrics. Factorization and invariance were measured according to the
following equations:

factorizationparam = 1 - varparam|other_param_subspace / varparam (1)
invarianceparam = 1 - varparam / varall param (2)

Variance induced by a parameter (varparam) is computed by measuring the variance (summed across
all dimensions of neural activity space) of neural responses to the 10 augmented versions of the base
images where the augmentations are those obtained by varying the parameter of interest. This
quantity is then averaged across the 100 base images. The variance induced by all parameters is
simply the sum of the variances across all images and augmentations. To define the
“other-parameter subspace,” we averaged neural responses for a given base image over all
augmentations using the parameter of interest and ran PCA on the resulting set of averaged
responses. The subspace was defined as the space spanned by top PCA components containing
90% of the variance of these responses. Intuitively, this space captures the bulk of the variance
driven by all parameters other than the parameter of interest (due to the averaging step). The
variance of the parameter of interest within this “other-parameter subspace,” varparam|other_param_subspace,
subspace, was computed the same way as varparam, but using the projections of neural activity
responses onto the other-parameter subspace.

Natural movie factorization metrics
For natural movies, variance is not induced by explicit control of a parameter as in our synthetic
scenes but implicitly, by considering contiguous frames (separated by 200ms in real time) as
reflective of changes in one of two motion parameters (object versus observer motion) depending on
how stationary the observer is (MIT Moments in Time movie set: stationary observer; UT-Austin
Egocentric movie set: nonstationary observer)24,25. Here, the all parameters condition is simply the
variance across all movie frames. In the case of MIT Moments in Time dataset, this includes
variance across thousands of video clips taken in many different settings. In the case of the
UT-Austin Egocentric movie dataset, this includes variance across only 4 movies but over long
durations of time during which an observer translates extensively in an environment (3-5 hours).
Thus, movie clips in the MIT Moments in Time movie set contained new scenes with different object
identities, backgrounds, and lightings, capturing variance induced by these non-spatial parameters25.
In the UT Austin Egocentric movie set, new objects are encountered as the subject navigates around
the urban landscape24.

Model neural encoding fits. Linear mappings between model features and neuron (or voxel)
responses were computed using ridge regression (with regularization coefficient selected by cross
validation) on a low-dimensional linear projection of model features (top 300 PCA components
computed using images in each dataset). We also tested an alternative approach to measuring
representational similarity between models and experimental data based on representational
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similarity analysis (RSA)39, computing dot product similarities of the representations of all pairs of
images and measuring the Spearman’s rank correlation coefficient between these pairwise similarity
matrices obtained from a given model and neural dataset (Figure S4).

Model behavioral signatures. We followed the approach of Rajalingham, Issa et al.21 We took human
and macaque behavioral data from the object classification task and used it to create signatures of
image-level difficulty (the “I1” vector) and image-by-distractor-object confusion rates (the “I2” matrix).
We did the same for the DNN models, extracting model “behavior” by training logistic regression
classifiers to classify object identity in the same image dataset from the experiments of Rajalingham,
Issa et al.21, using model layer activations as inputs. Model behavioral accuracy rates on image by
distractor object pairs were assessed using the classification probabilities output by the logistic
regression model, and these were used to compute I1 and I2 metrics as was done for the true
behavioral data. Behavioral similarity between models and data was assessed by measuring the
correlation between the entries of the I1 vector and I2 matrix (both I1 and I2 results are reported).

Model layer choices. The scatter plots in Figure 2C,D and Figure S2 use metrics (factorization,
invariance, and goodness of neural fit) taken from the final representational layer of the network (the
layer prior to the logits layer used for classification in supervised network, prior to the embedding
head in contrastive learning models, or prior to any auxiliary task-specific layers in unsupervised
models trained using auxiliary tasks). However, representational geometries of model activations,
and their match to neural activity and behavior, vary across layers. This variability arises because
different model layers correspond to different stages of processing in the model (convolutional layers
in some cases, and pooling operations in others), and may even have different dimensionalities. To
ensure that our results do not depend on idiosyncrasies of representations in one particular model
layer and the particular network operations that precede it, summary correlation statistics in all other
figures (Figure 3 and Figures S3-S5) show the results of the analysis in question averaged over the
five final representational layers of the model. That is, the metrics of interest (factorization,
invariance, neural fits, behavioral similarity scores) were computed independently for each of the five
final representational layers of each model, and these five values were averaged prior to computing
correlations between different metrics.

Correlation of model predictions and experimental data. A Spearman’s rank correlation coefficient
was calculated for each model layer x biological dataset combination (6 monkey datasets and 6
human datasets). Here, we do not correct for noise in the biological data when computing the
correlation coefficient, as this would require trial repeats (for computing intertrial variability) that were
limited or not available in the fMRI data used. In any event, normalizing by the data noise ceiling
applies a uniform scaling to all model prediction scores and does not affect model comparison,
which only depends on ranking models as being relatively better or worse in predicting brain data.
Finally, we estimated the effectiveness of model factorization or invariance in combination with
model object classification performance for predicting model neural and behavioral fit by performing
a linear regression on the particular dual metric combination (e.g., classification plus object pose
factorization) and reporting the Spearman correlation coefficient of the linearly weighted metric
combination (Figure 3D). The correlation was assessed on held-out models (80% used for training,
20% for testing) and the results were averaged over 100 randomly sampled train/test splits.
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FIGURES

Figure 1. Framework and measurement of factorization in macaque V4 and IT. (A) Schematic illustrating three possible
representations of multiple object classes in population activity space. Axes represent neural firing rates, or linear
combinations thereof. Shapes (sphere or cylinder) depict the distribution of responses to images from each object class.
Bottom row depicts the subspace of activity space that captures between-class variance. Representations which
factorize within-class variance from between-class variance (middle column) are invariant to non-class factors when
projected into this subspace. (B) In a simulated classification task requiring decoding of two binary variables (see
Methods), a decrease in factorization – orthogonality of the relationship between the encoding of the two variables
(square vs. parallelogram) – resulted in worse classifier performance, particularly in the low training sample regime (i.e.,
consider the case of training on the two data points encircled in red and attempting to generalize to the non-encircled dots
in the bottom edge of the parallelogram). (C) Factorization of object identity from other sources of image variability and
position from other sources of image variability increased from macaque V4 to IT (multiunit activity in macaque visual
cortex from dataset E1). (D) Like factorization, invariance to non-identity and non-position factors also increased from V4
to IT (black lines). Within the subspace capturing the variance due to the variable of interest, effective invariance to other
factors was even higher and exhibited a greater increase from V4 to IT than invariance over the whole population activity
space (orange lines, higher slope than corresponding black lines). (E) Applying a transformation to the data that rotated
the relative positions of mean responses to object classes, designed to preserve relevant activity statistics (including
invariance to non-class factors; seeMethods) while decreasing factorization of class information from non-class factors,
has the effect of reducing object class decoding performance (light vs. dark red bars; chance performance = 1/64, using
n=128 multi-unit sites in V4 and 128 in IT for decoding) .
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Figure 2. Measurement of factorization in DNN models and relationship to neural predictivity. (A) Schematic showing
how our analysis on models and neural/behavioral data was conducted. First, we computed various representational
metrics on model layers and measured a model layer’s ability to predict neural and behavioral data across a variety of
datasets. The combination of model-layer metric and model-layer dataset predictivity for a choice of model, layer, metric,
and dataset specifies the coordinates of a single dot on the scatter plots in (C). (B) To compute factorization of and
invariance to a scene parameter, we measured variance in model responses to sets of images obtained by individually
varying each of four scene parameters (n=10 parameter levels) for each base image (n=100 base images, which
contained varied objects and backgrounds). (C) Scatter plots for an example neural dataset (IT single-units, macaque E2
dataset) showing the correlation between a model’s ability to predict IT single-unit neural data versus a model’s ability to
factorize (top row) or become invariant to (bottom row) different scene parameters (each dot is a different model, using
each model’s penultimate layer). Note that factorization in trained models is consistently higher than that for an
untrained, randomly initialized Resnet-50 DNN architecture (top row, rightward shift relative to black cross). Invariance to
background and lighting but not to object pose and viewpoint increased in trained models relative to the untrained control
(bottom row, rightward versus leftward shift relative to black cross). Dot color indicates different classes of model
training objective. (D) Same as (C) except with the y-axis replaced by the model layer’s ability to predict human behavioral
performance patterns on an image classification task (human I2 dataset).

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2023. ; https://doi.org/10.1101/2023.04.22.537916doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.22.537916
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Scene parameter factorization correlates with more brainlike DNN models. (A) Factorization of scene
parameters in model representations consistently correlated with a model better matching neural and behavioral data
across multiple independent datasets (monkey neural data, human fMRI data, or behavioral performance in both
macaques and humans) (black bars). Increased invariance to background and lighting (gray bars, bottom two rows), but
not camera viewpoint or object pose (gray bars, top two rows), was also indicative of brainlike models. In all cases, model
representational metric and neural predictivity score were computed by averaging scores across the last 5 model layers
(seeMethods). Error bars indicate confidence intervals (one standard deviation) obtained by bootstrapping over the
choice of network models. (B) Recomputing camera viewpoint or object pose factorization from natural movie datasets
that primarily contained camera or object motion, respectively (right: example movie frames; seeMethods), gave similar
results as in (A). (C) Summary of the results from (A) across primate datasets (x-axis) for invariance (open symbols)
versus factorization (closed symbols) of different scene variables (colors, same convention as (A)). (D) Average (across
datasets) degree to which classification (faded black bar) and factorization (faded colored bars) predicted neural and
behavioral matches. Adding factorization to classification in a regression model produced significant improvements in
predicting the most brainlike models (solid colored bars exceed dashed line for classification alone as a metric). All
values indicate cross-validated variance explained on held-out models by a regression model trained (on a subset of
models) to predict neural and behavioral matches based on the indicated quantity (or quantities). (E) Example scatter
plots for neural and fMRI datasets (macaque IT multi-unit & single-unit responses corresponding to datasets E1 & E2,
respectively; human fMRI responses to grayscale & color images corresponding to datasets F1 & F2, respectively)
showing a reversing trend in neural (voxel) predictivity for models that are increasingly good at classification (left column).
This saturating/reversing trend is no longer present when adding object pose factorization to classification of object
identity as an additional regressor (right column).
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SUPPLEMENT

Figure S1. Scatter plots for all datasets. Normalized factorization and invariance as in Figure 1C,D but after subtracting
shuffle control for V4 and IT neural dataset. Shuffling the image identities of each population vector accounts for
increases in factorization driven purely by changes in the covariance statistics of population responses between V4 and
IT. However, normalized factorization scores remain significantly above zero for both brain areas.
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Figure S2. Scatter plots for all datasets. Scatter plots as in Figure 2C,D for all datasets. Brain metrics (y-axes) by panel
are: (A) macaque neuron/human voxel fits in V4 cortex, (B) macaque neuron/human voxel fits in ITC/HVC, and (C)
macaque/human per-image classification performance (I1) and image-by-distractor class performance (I2). In all panels,
the plots in the top half use DNN factorization scores on the x-axis while the bottom half use DNN invariance scores.
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Figure S3. Predictivity of factorization and invariance restricting to ResNet-50 model architectures. Same format as
Figure 3C except with the analyses restricted to using only models with the Resnet-50 architecture. The main finding of
factorization of scene parameters in DNNs being generally positively correlated with better predictions of brain data is
replicated using this architecture-matched subset of models, controlling for potential confounds from model architecture.
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Figure S4. Predictivity of factorization and invariance for RDMs. Same format as Figure 3C except for predicting
population representational dissimilarity matrices (RDMs) of macaque neurophysiological and human fMRI data (in the
main analyses linear encoding fits of each single neuron/voxel were used to measure brain predictivity of a model). The
main finding of factorization of scene parameters in DNNs being positively correlated with better predictions of brain data
is replicated using RDMs instead of neural/voxel goodness of fit.
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Figure S5. Effect on neural and behavioral predictivity of PCA threshold for computing factorization, Related to Figure 3.
The % variance threshold used in the main text for estimating a PCA linear subspace capturing the bulk of the variance
induced by all other parameters besides the parameter of interest is somewhat arbitrary. Here we show that results of our
main analysis change little if we vary this parameter from 50-99%. In the main text, a PCA threshold of 90% was used for
computing factorization scores.
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Dataset Key #neurons,
voxels

#subj Image Stimuli #images

DiCarlo-Majaj-Hong 20151

Macaque V4 multi-unit activity
E1 128 2 6o, grayscale, synthetic 5760

DiCarlo-Majaj-Hong 20151

Macaque IT multi-unit activity
E1 168 2 6o, grayscale, synthetic 5760

DiCarlo-Rust 20122

Macaque V4 single neuron
E2 143 2 5o, grayscale, natural 300

DiCarlo-Rust 20122

Macaque IT single neuron
E2 142 2 5o, grayscale, natural 300

DiCarlo-Rajalingham-Issa
20183

Macaque behavior
Image-level classification

I1 N/A 5 6-8o, grayscale, synthetic 240

DiCarlo-Rajalingham-Issa
20183

Macaque behavior
Image x class confusion matrix

I2 N/A 5 6-8o, grayscale, synthetic 240

Gallant-Kay 20084

Human V4 fMRI
(dataset)

F1 2,557 2 20o, grayscale, natural 1870

Gallant-Kay 20084

Human HVC fMRI
(dataset)

F1 1,286 2 20o, grayscale, natural 1870

Horikawa-Kamitani 20195

Human V4 fMRI
(dataset)

F2 3,377 3 12o, color, natural 1250

Horikawa-Kamitani 20195

Human HVC fMRI
(dataset)

F2 14,465 3 12o, color, natural 1250

DiCarlo-Rajalingham-Issa
20183

Human behavior
Image-level classification

I1 N/A 1472 6-8o, grayscale, synthetic 240

DiCarlo-Rajalingham-Issa
20183

Human behavior
Image x class confusion matrix

I2 N/A 1472 6-8o, grayscale, synthetic 240

Table S1. Datasets used for measuring similarity of models to the brain. Datasets from both macaque and human
high-level visual cortex as well as high-level visual behavior were collated for testing the brainlikeness of computational
models. For neural and fMRI datasets, the features in the model were used to predict the image-by-image response
pattern of each neuron or voxel. For behavior datasets, the performance of linear decoders built atop model
representations were compared to performance per image of macaques and humans.
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Model Architecture Loss Function Customization

SimCLR6 ResNet-50 Self-supervised
(contrastive)

--------

SimCLR6 ResNet-50 Self-supervised
(contrastive)

2x wide

SimCLR6 ResNet-152 Self-supervised
(contrastive)

2x wide

SimCLR6 ResNet-50 Self-supervised
(contrastive)

no projection head

SimCLR6 ResNet-50 Self-supervised
(contrastive)

only crop augmentations

SimCLR6 ResNet-50 Self-supervised
(contrastive)

only crop augmentations, temperature 0.2

SimCLR6 ResNet-50 Self-supervised
(contrastive)

only crop augmentations, temperature 0.05

SimCLR6 ResNet-50 Self-supervised
(contrastive)

only crop and blur augmentations

SimCLR6 ResNet-50 Self-supervised
(contrastive)

only crop and non-hue color jitter
augmentations

SimCLR6 ResNet-50 Self-supervised
(contrastive)

only crop, blur, and non-hue color jitter
augmentations

MOCO7 ResNet-50 Self-supervised
(contrastive)

--------

MOCO v28 ResNet-50 Self-supervised
(contrastive)

--------

MOCO v28 ResNet-50 Self-supervised
(contrastive)

only crop augmentations

MOCO v28 ResNet-50 Self-supervised
(contrastive)

only crop, color jitter, and grayscale
augmentations

MOCO v28 ResNet-50 Self-supervised
(contrastive)

only crop augmentations, all image inputs
preprocessed to grayscale

MOCO v28 ResNext-50 Self-supervised
(contrastive)

--------

MOCO v28 ResNet-18 Self-supervised
(contrastive)

--------

Instance discrimination9 ResNet-50 Self-supervised
(image
discrimination)

--------

InfoMin10 ResNet-50 Self-supervised
(contrastive)

--------

InfoMin10 ResNext-101 Self-supervised
(contrastive)

--------
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InfoMin10 ResNext-152 Self-supervised
(contrastive)

--------

SwAV11 ResNet-50 Self-supervised
(cluster)

--------

Deep clustering v212 ResNet-50 Self-supervised
(cluster)

--------

BYOL13 ResNet-50 Self-supervised
(no negative
examples)

--------

BYOL13 ResNet-50 Self-supervised
(no negative
examples)

only crop augmentations during training

BYOL13 ResNet-50 Self-supervised
(no negative
examples)

only crop and blur augmentations

BYOL13 ResNet-50 Self-supervised
(no negative
examples)

without color jitter augmentation

BYOL13 ResNet-50 Self-supervised
(no negative
examples)

without grayscale augmentation

BYOL13 ResNet-50 Self-supervised
(no negative
examples)

batch size 64

BYOL13 ResNet-50 Self-supervised
(no negative
examples)

batch size 512

Relative patch location14 ResNet-50 Auxiliary task
(determine
relative positions
of image
patches)

--------

Rotation prediction14 ResNet-50 Auxiliary task
(infer rotations
that were applied
given a set of
images)

--------

Colorization15 ResNet-50 Auxiliary task:
(colorize
grayscale
images)

--------

Jigsaw puzzle16 ResNet-50 Auxiliary task:
(determine
relative positions
of image
patches)

--------

Big BiGAN17 ResNet-50 Auxiliary task
(autoencoder
objective with

--------
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reconstruction
error
parameterized
using a neural
network
discriminator)

ResNet18 ResNet-50 Supervised
(classification)

--------

ResNet18 ResNet-50 Supervised
(classification)

MOCO data augmentations used during
training

ResNet18 ResNet-50 Supervised
(classification)

no data augmentation used during training

ResNet18 ResNet-18 Supervised
(classification)

--------

ResNet18 ResNet-101 Supervised
(classification)

--------

Wide ResNet19 ResNet-50 Supervised
(classification)

--------

AlexNet20 AlexNet Supervised
(classification)

--------

GoogLeNet21 GoogLeNet Supervised
(classification)

--------

Inception-v322 Inception-v3 Supervised
(classification)

--------

DenseNet23 DenseNet-169 Supervised
(classification)

--------

DenseNet23 DenseNet-121 Supervised
(classification)

--------

VGG24 VGG-11 Supervised
(classification)

--------

VGG24 VGG-13 Supervised
(classification)

--------

VGG24 VGG-16 Supervised
(classification)

--------

VGG24 VGG-19 Supervised
(classification)

--------

MobileNet25 MobileNet Supervised
(classification)

--------

SqueezeNet26 SqueezeNet-10 Supervised
(classification)

--------

SqueezeNet26 SqueezeNet-11 Supervised
(classification)

--------

ResNet27 ResNext-50 Supervised
(classification)

--------
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ResNet27 ResNet-101 Supervised
(classification)

--------

MnasNet28 MnasNet_05 Supervised
(classification)

--------

MnasNet28 MnasNet_10 Supervised
(classification)

--------

ShuffleNet29 ShuffleNet_05 Supervised
(classification)

--------

ShuffleNet29 ShuffleNet_10 Supervised
(classification)

--------

Table S2. Models tested. For each model, we measured representational factorization and invariance in each of the final
five representational layers of the model as well as evaluating their brainlikeness using the datasets in Table S1.
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