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1 Abstract19

Lyme disease is the most common wildlife-to-human transmitted disease reported20

in North America. The study of this disease requires an understanding of the ecology of the21

complex communities of ticks and host species involved in harboring and transmitting this22

disease. Much of the ecology of this system is well understood, such as the life cycle of23

ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but24

there is much to be explored about how the population dynamics of different host species25

and communities impact disease risk to humans. One way in which we can study disease26

effectively is through the use of theoretical models. These are powerful tools that allow in-27

vestigation of complex species interactions before staging complicated and expensive stud-28

ies that may not be productive. We construct a model to investigate how host population29

dynamics can affect disease risk to humans. The model describes a tick population and a30

simple community of three species in which mouse populations are made to fluctuate on an31

annual basis. We tested the model under different environmental conditions to examine the32

effect of environment on the interactions of host dynamics and disease risk. Results indi-33

cate that host dynamics reduce mean nymphal infection prevalence and increase the yearly34

amplitude of nymphal infection prevalence and the density of infected nymphs. Effects35

were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection36

prevalence varied across locations. These results highlight the importance of further study37

of the effect of communitiy dynamics on disease risk. This will involve the construction of38

further theoretical models and collection of robust field data to inform these models. With39

a more complete understanding of disease dynamics we can begin to better determine how40

to predict and manage disease risk using these models.41

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538192doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538192


2 Introduction42

Emerging infectious diseases present an ever-growing threat to human health,43

agriculture, and native flora and fauna [1–3]. In humans, around 75% of emerging diseases44

are wildlife zoonoses. These diseases cause millions of cases each year, and many new45

diseases are emerging or reemerging every year. Across species, diseases spread by vector46

organisms are the most common, and a growing proportion of new emerging diseases in47

humans are vector-borne [1, 2, 4, 5]. These disease systems involve complex dynamics48

between wildlife hosts, vector organisms, and the disease itself. The study of vector-borne49

diseases is of interest to many fields, including ecology, epidemiology, climatology, and50

many other disciplines.51

A key problem is understanding how to predict and control the proliferation of52

vector-borne diseases. With the complexity of the different organisms involved in these53

diseases, they are best thought of as webs of different interacting species [3, 6]. Study-54

ing the community ecology of these disease systems is fundamental to understanding how55

they develop and spread. The community ecology of disease is a rapidly developing field,56

but still relatively in its infancy [3]. Much research has focused on "simpler" applications57

of community and population ecology, such as single host-parasite interactions. The tools58

of community ecology allow an understanding of the mechanisms leading to the particu-59

lar community assemblages we see today and the dynamics that shape the systems across60

time and space, including the emergence and spread of vector-borne diseases [4, 5]. This61

has particular benefit in informing how host communities and parasite communities de-62

velop and interact between levels and different scales, from within the individual to across63

ecosystems.64

In studies on vector-borne diseases, research has aimed to understand the impact65

of different species and species communities on disease risk [6–15]. The impact of host66
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and community dynamics on Lyme disease risk is fairly uncertain considering the known67

and widely implicated potential of these dynamics to have a significant impact on how B.68

burgdorferi flows through wildlife communities. Rodents in particular are known to serve69

as important reservoir hosts for B. burgdorferi, and populations of these species often un-70

dergo extreme fluctuations in density driven by resources, predators, and environmental71

effects [6, 16–18]. Other important host species undergo population dynamics and many72

species are subject to changing populations and extinctions as a result of human caused73

disturbances [6, 16]. Research has been equivocal in determining the effect of host dynam-74

ics on disease, showing no effect or an inconsistent effect [19–22]. Understanding this pro-75

cess will allow us to better understand how different systems experience disease risk, and76

inform how disease may vary regionally or as species extinctions and invasions develop.77

Lyme disease is one of the most prominent wildlife vector-borne diseases impact-78

ing health in the United States, with estimates of as 476,000 cases per year [23]. Disease79

models of Lyme disease treat hosts as static parameter values, with only a few models in-80

vestigating the impact of using dynamic population data, and none investigating the impact81

that dynamics have on this system [21, 24–27]. To investigate the impact of host dynamics82

on Lyme disease risk, we have created a mathematical model which simulates the flow of83

disease between a detailed tick population and a small community of hosts. To investigate84

the impact of host dynamics on the model, densities of the primary rodent host, mice, are85

varied on an annual basis. By changing the mean density and variation from the mean in a86

collection of simulations, we will use our model to explore the impact that simple host dy-87

namics have on disease risk measures of the model for a range of possible scenarios. This88

model will direct future research into the effect of host dynamics and disease risk and high-89

light the need for the further development of models and empirical studies investigating90

this topic.91
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3 Results92

3.1 Site-specific effects of variance93

We examined model data grouped by simulations run with zero variance (con-94

stant mouse densities) or the entire range of variances (1-99 mice) (S1 Table). DIN and95

DON show similar patterns between groups, with the maximum and amplitude of each96

being much larger in simulations with variance than those with constant mouse density.97

Further analysis continued to show similar effects between DIN and DON, and DIN is of a98

more direct concern, so we will focus on results for DIN as a proxy for both. NIP metrics99

show lowered averages and medians for mean, min, and max NIP, and increased ampli-100

tude between variance and no variance groups. Minimum and maximum values remained101

constant for most NIP metrics.102

Mean DIN shows a positive linear relationship with mean mouse density, and a103

variable relationship with variance, ranging from a positive and slightly nonlinear relation-104

ship at low means to a negative and slightly non-linear relationship at high density (Fig 1A).105

Similar positive relationships with variance and mean mouse density are demonstrated for106

amplitude, minimum, and maximum DIN (Figs 2A and 3A).107

Fig 1. Response of mean density of infected nymphs and nymphal infection108

prevalence to variance in the mouse population and mean mouse density. A) shows109

the response of mean DIN to mouse variation and mean density. The relationship to mean110

mouse density is positive and linear, while the relationship to variance is weakly nonlinear,111

and shifts from a positive relationship to a negative relationship at low or high mean den-112

sity, respectively. Contour lines plotted on the variance × mean plane and coloring reveal113

surface features. B) shows the response of mean NIP to mouse variation and mean density.114

The relationship between mean NIP and mean mouse density is a positive saturating curve115
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under low variation in the mouse population, which becomes a near linear relationship for116

high variance. The relationship between variance and NIP is negative, with higher variance117

decreasing NIP at the given mean mouse density. At low mean densities, very high variance118

begins to slow this decrease and even reverse it. Contour lines and coloration again reveal119

surface features.120

Fig 2. Response of amplitude in density of infected nymphs and nymphal in-121

fection prevalence to variance in the mouse population and mean mouse density. A)122

shows the response of amplitude in DIN to mouse variation and mean density. The relation-123

ship to mean mouse density is positive and linear, while the relationship to mouse variance124

appears close to linear and is positive. Contour lines plotted on the variance × mean plane125

and coloring reveal surface features. B) shows the response of amplitude in NIP to mouse126

variation and mean density. The relationship between NIP and mean mouse density is a127

positive saturating curve under low variation in the mouse population, which becomes lin-128

ear as variance increases. The relationship is a positive saturating curve between variance129

and amplitude in NIP. At high mean densities the relationship to variance is near linear, and130

shows signs of beginning to become negative at very high means and variances. Contour131

lines and coloration again reveal surface features.132

Fig 3. Response of minimum density of infected nymphs and nymphal in-133

fection prevalence to variance in the mouse population and mean mouse density. A)134

shows the response of minimum DIN to mouse variation and mean density. The relationship135

to mean mouse density is positive and linear, while the relationship to mouse variance ap-136

pears weakly nonlinear, and shifts from a slight positive relationship at low mean density to137

a slight negative relationship at high mean density. Contour lines plotted on the variance ×138

mean plane and coloring reveal surface features. B) shows the response of minimum NIP139

to mouse variation and mean density. There is a nonlinear positive relationship between140

minimum NIP and mean mouse density. The relationship between variance and minimum141
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NIP is negative, with higher variance decreasing minimum NIP at the given mean mouse142

density. At low mean densities, very high variance shows the slightest sign of beginning to143

increase the minimum NIP. Contour lines and coloration again reveal surface features.144

Measures for NIP show nonlinear relationships with both mean mouse density145

and variance. These measures are positively related with mean mouse density (Figs 1B, 2B,146

and 3B). At low variance this relationship is a saturating curve, while with higher variance147

this relationship becomes linear. Mean NIP decreases with variance, but high variance at148

low means begins to slow and eventually reverse this decrease (Fig 1B). The minimum149

point of this shift changes to higher variance as the mean mouse density increases, with150

no minimum appearing in the range of explored variances for higher mean densities. The151

amplitude of NIP follows a saturating curve across variance levels, reaching a maximum152

and decreasing for high variance and high mean mouse density (Fig 2B). The minimum153

NIP shows a strong negative response to variance (Fig 3B), while the maximum shows an154

unclear and relatively weak effect (S1 Fig), with a slight positive relationship at low mean155

mouse density shifting to a slightly negative relationship at high density.156

The distributions of mean, minimum, and maximum NIP shows a negative shift157

in the median NIP measure with increasing variance, with this shift being strongest in158

minimum NIP (S1 Table). Median amplitude in NIP shows a positive shift with increasing159

variance (S1 Table). The median of mean and minimum DIN remains fairly stable, while160

amplitude and maximum DIN increase with variance (S1 Table). The median of mean DIN161

remains nearly constant, while amplitude DIN increases, and the median of minimum and162

maximum DIN decrease and increase, respectively with variance (S1 Table).163

3.2 Effects of variance across variable weather inputs164

We examined disease metrics across the selected locations to investigate patterns165

between sites and general geographic regions. DIN measures showed somewhat of an in-166
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crease in mean, minimum, and maximum DIN under warmer environmental conditions, but167

showed no discernible changes in the pattern of this effect. Mean, minimum, and maximum168

NIP across locations shows very similar effects of mouse population variance, with the169

range and interquartile range remaining similar while the median shifts down in response170

to variance. This effect is apparent between geographic regions as well, though regions171

differ in their distributions for both DIN and NIP. Amplitude of DIN has a consistent pat-172

tern between locations and regions with or without variance (Fig 4A). NIP amplitude has a173

markedly similar response to variance across locations and regions despite variability with174

stable host populations (Fig 4B).175

Fig 4. Impact of variance in mouse population on amplitude of density of in-176

fected nymphs and nymphal infection prevalence under varying environmental con-177

ditions. A) displays the distributions of amplitude in DIN for locations with no variance178

or variance for medium variance levels (σ = 33− 67). The left column shows boxplots179

for each location, while the right column shows boxplots for locations grouped by rough180

geographic area, with "West" indicating sites on the western range of Lyme disease and181

Eastern black-legged ticks. B) displays the same information for amplitude in NIP.182

3.3 Sensitivity Analysis183

Parameters for temperature induced activity and survival were important param-184

eters for all measures of DIN,DON, and NIP. Parameters for maximum on-host survival185

of immature ticks and hardening nymphs and engorgement index also were correlated with186

disease measures. Weekly cumulative degree week thresholds also proved to be important,187

as well as parameters related to host survival rates.188

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538192doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538192


4 Discussion189

Host dynamics appear to have little effect on the density of infected ticks, while190

the proportion of infected ticks is affected. Our knowledge of the complexity of the species191

involved in these disease systems indicates that the study of host dynamics is important to192

our understanding of disease risk to humans. Yet, few studies have thoroughly investigated193

this. Here, we have investigated this possibility by developing a Lyme disease model which194

incorporates simulated host dynamics in rodent hosts, and investigating the impacts on dis-195

ease risk predictions. The study of emerging infectious diseases continues to become more196

important as increasing numbers of diseases emerge or reemerge. Vector-borne diseases197

pose a particular threat with expanding ranges and the complex dynamics of spread.198

4.1 Associations Between Host Dynamics and Disease Risk199

Model results indicate that variance in the mouse population has only a small and200

inconsistent effect on mean DIN and DON. While somewhat counterintuitive, this result is201

not as surprising as it may seem. With the high association between small mammal den-202

sity and DIN [16, 19], host density is a very reliable predictor of tick density. Tick density203

tracks host density, rising and falling in response to corresponding changes in the host pop-204

ulation. The result is that mean tick density trends to the average expected from the mean205

host density in the model. Modeling studies have demonstrated that incorporating long-206

term empirical data on host density yields more accurate predictions of tick density when207

predicting disease risk at specific sites [21]. The effect on overall model output has not208

been determined, with research focusing on the qualitative accuracy of predictions on short209

timescales rather than multi-year simulations or investigation of model behavior. Studies210

that have considered host dynamics have focused solely on the effect of host density on dis-211

ease risk rather than the effect of changing host density on disease dynamics. The results of212
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our model still align with this research, and demonstrate the direct impact of host density213

on DIN and DON.214

Long term measurements of interannual variation in infection prevalence is lack-215

ing, and few modeling studies report yearly predicted NIP e.g. ????? [21]. Available re-216

sults show little variation in mean NIP with a constant host population, while simulations217

incorporating field data on host populations demonstrate lowered and more variable NIP.218

Empirical studies demonstrate this same variability in annual NIP, [19, 28, 29] which our219

results align with. Studies which examine variation in the host population also focus on220

the predictive ability of host density for NIP. The density of small mammal hosts has been221

found to be a poor predictor of disease risk [16, 19]. On the other hand, resources such222

as acorns can be a good predictor of mean NIP. This likely results from direct changes in223

the proportion of competent host species in the system, e.g. seed predators. The density of224

hosts does not necessarily indicate changing host proportions, and may instead result from225

community-wide effects that change overall host density. In this model, we have demon-226

strated the scenario in which the proportion of competent hosts is changing by directly227

changing the density of a single host, and thus the proportional density, of hosts in the228

model system. The resulting effect on mean NIP is apparent in the results, and demon-229

strates the importance of considering relative host densities of competent and incompetent230

species rather than focusing on specific hosts or total host density in a system.231

Results further show that the strength of host density variability is important, with232

a parabolic response of NIP to variance apparent in model results (Fig 1B). This likely re-233

sults because all means 0− 99 mice−ha2
are simulated, and for each mean, variance from234

0−99 mice−ha2
is also simulated. For mean host densities < 99, the range of variance will235

overlap with 0 from 0−99. Mouse density is bounded by 0, as negative density of course236

makes no sense. With greater variance the mean density of mice in a simulation will be237

higher than the mean of the distribution. The decrease of NIP in response to variance be-238
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gins to flatten out with boost in mouse density, and eventually even starts to increase NIP239

as the proportion of mice shifts. Figs 1-3 could rather show the relation between true simu-240

lated mouse density, variance, and NIP, but this neglects to show the nature of the response241

of NIP to variance at a simulated mean. The variance must exceed the mean mouse den-242

sity before mean NIP begins to rise again (Fig 1B), showing that the high variance has a243

strongly negative effect on NIP that remains even after mean host density has been boosted244

significantly.245

4.2 Temporal Dynamics in Disease Risk246

In the model, what we have defined as amplitude serves as an indicator of the247

range of a disease measure, and thus disease risk, over the course of a year. This quantifies248

how variance and mean host density affects disease predictions in the model. A greater249

amplitude indicates greater contrast between least and most risky seasons, and a smaller250

range indicates similar risk between seasons. Understanding this range gives a sense of251

the pattern of disease as predicted by a model. The density of infected nymphs and total252

nymphs fluctuates seasonally, with both measures typically peaking in late spring or early253

summer to later in the year depending on how DIN is measured in a study. Changes in the254

amplitude of DIN/DON represent a change in the regular pattern of disease. The positive255

shift in amplitude for DIN shows a change in this pattern, and is a result of high host256

burdens supporting increased ‘crops’ of ticks in high host density years. The minimum257

unsurprisingly shifts very little, as this represents the sharp drop in tick densities as a result258

of mortality during periods of low activity and cold temperatures during the winter.259

Intraannual variation data for NIP is very lacking, but the few studies that have260

been conducted indicate that seasonal NIP variability is indeed present in wild popula-261

tions, and thus may present an important consideration when forecasting and managing262

disease risk through human behavioral changes [30, 31], and might also have value in sea-263
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sonally focused wildlife management and disease prediction [32]. Mathematical models264

of Lyme disease, which often operate on sub-yearly time scales, predict this seasonality.265

This behavior is a feature of modeled interactions between populations of susceptible and266

infected ticks and hosts, which fluctuate throughout the course of a year in response to host267

births, deaths, and infection rates, which are related to periods of tick activity. Our model268

shows that host variation affects the amplitude of NIP in a year. The minimum range of269

NIP was most strongly affected, which suggests that host variation may be important in270

determining the magnitude of periods of low and high risk, likely in response to changes271

in the birth/death ratio throughout a year. Prior modeling studies have suggested that co-272

occurrence of host density increases and high questing tick activity may boost tick density273

[32], but it is not known how this would affect NIP, and this was not explored in our model.274

4.3 Varying Patterns in Disease Risk Under a Changing Envi-275

ronment276

While this model is not intended to be predictive of the specific dynamics of a277

particular area, qualitative changes in the response to host dynamics under different en-278

vironmental conditions are of interest. We used the environmental conditions of different279

geographic locations to explore this idea. Model results show a latitudinal gradient in the280

magnitude of DIN and the pattern of the response of NIP. The increase in DIN measures at281

locations with higher annual temperatures is expected, as warmer winters result in greater282

tick survival and activity. The consistency of the response between locations for most mea-283

sures is rather surprising, and suggests that similar communities of species will have similar284

disease dynamics at different locations, though the disease risk may be different between285

sites. The changing pattern in the effect of variance on the amplitude of NIP at differ-286

ent locations, however, demonstrates the importance of considering host dynamics. It is287
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apparent that environmental conditions may alter how disease risk interacts with host den-288

sity and host variance at different sites. Incorporation of host dynamics should allow for289

greater understanding of the particular disease dynamics when forecasting disease risk at290

specific locations using mathematical models. Further study of how different kinds of host291

dynamics affects the prediction of disease risk will be valuable for better understanding our292

models of disease as well as patterns in disease under real world patterns of host dynamics.293

4.4 Further Directions294

Our results suggest that host dynamics, and more specifically the magnitude of295

variation in host population densities is as an important consideration when modeling Lyme296

disease. More research is needed to understand how these dynamics may affect the use297

of theoretical models as exploratory and predictive tools. This might include simple to298

detailed modeling of host dynamics, or direct use of long term population data. Predictive299

models should rely on either detailed modeling of host dynamics or, preferably, long-term300

host data to investigate location-specific disease dynamics. This will allow these models to301

more accurately describe disease at specific locations and will further the use of theoretical302

studies as investigative tools for management of disease risk.303

In our model, we assume instantaneous births at the beginning of a year, which304

will impact the ratio of infected to susceptible hosts when the host density is increasing.305

While this is a biologically unrealistic scenario, it presents a situation in which this shift306

in infected host prevalence drops as a result of reproduction, one of the important ways307

by which host dynamics are likely to impact disease risk, and especially the prevalence of308

infection. Any process that significantly shifts the proportion of susceptible hosts is likely309

to have repercussions on disease dynamics. This might occur in the real world as a result of310

normal population dynamics such as overwintering deaths in host species, seasonal periods311

of reproduction, or as a result of increased resource levels. In future models, host population312
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dynamics might be modeled on a shorter timescale, reflecting seasonal birth and death rates313

or the response to resource levels such as seed masting.314

An important point to investigate is how the density of hosts in one year impacts315

disease measures in successive years in a host dynamics simulation. This can be explored316

using current model data to investigate how the relationship between host density and dis-317

ease changes at different host variance levels. It will also be important to determine how318

the timing of host population changes might affect the timing of peaks in disease risk. It319

has been shown that this can affect tick density [32], but the interactions of patterns in host320

density with DIN and NIP have not been explored. This can be examined in our model by321

changing the week in which the new mouse population is chosen or by introducing a more322

complex model of mouse population dynamics. As has been suggested with DON and the323

interaction between host density and tick density peaks, the timing of tick activity, quest-324

ing, and life stage peaks is likely to factor into further layers by which hosts may influence325

disease dynamics.326

This project has demonstrated the importance of considering population dynam-327

ics in tick hosts when modeling Lyme disease. This model only begins to touch on potential328

outcomes on model behavior with the incorporation of very simple host dynamics. Poten-329

tial avenues of expansion and further exploration with this model are many, and they offer330

strong potential to further our understanding of Lyme disease. With a complete understand-331

ing of how host, tick, and disease dynamics interact, we can begin to understand when and332

when not to emphasize different pieces of this complex system. Further exploration of the333

impact of host dynamics on disease risk will hopefully increase our knowledge of how334

Lyme disease spreads and behaves, and aide the development of models which are able to335

more accurately study and predict disease risk.336
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5 Methods337

5.1 Tick Population Structure338

The model consists of a collection of discrete-time difference equations repre-339

senting the populations of a tick species and three hosts (S1 File). The tick population is340

stage structured and details each of the main life stages and substages through which an341

Ixodid tick will evolve (Fig 5, S2 Table).342

Fig 5. Flow of ticks through different developmental stages and infection. The343

structure and flow of the tick population through different developmental stages is shown.344

Infected ticks go through the same stages but are kept as a separate population. Infection345

occurs during blood meals on hosts, which can transmit to and from ticks and their hosts.346

New eggs from infected and uninfected adults produce the next generation of uninfected347

ticks.348

The tick population is highly detailed to ensure realistic dynamics in vector abun-349

dance and disease transmission. Ticks that enter a stage in a given week are tracked as a350

cohort and undergo the appropriate processes for that stage (Fig 5, S3 Table). Ticks of a351

stage in one week are a function of those that have survived from the previous week, with a352

gain or loss of density in one stage from development, survival, host finding, and infection353

of susceptible ticks.354

The maximum time which a tick may spend in a life stage is unclear from labora-355

tory [33, 34] and field studies [35–37], and models have incorporated a variety of assump-356

tions to give life stage limits [21, 24, 25, 27]. We have set 52 weeks as a maximum limit357

that ticks of a cohort are tracked. We used cumulative degree weeks (CDW) to determine358

development rates between major life stages (egg, larvae, nymph, adult) as CDW has been359

shown to relate well to tick phenology and is a standard in many models [21, 25, 38, 39].360
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The cuticle hardening period undergone by free-living stages is a final point of confusion,361

with estimates ranging from 0-4 weeks, and some models only considering hardening in362

larvae. We have chosen a hardening period of one week for all free-living stages.363

5.2 Host Population Structure364

There are three hosts in the model: mice, a "medium" mammal species, and deer.365

Medium mammals and deer remain at constant densities of 4 and 0.4 ind. ha−1, respec-366

tively. These values were selected from the literature to keep tick densities within that367

predicted by previous models and aide in potential comparisons [21]. Both species have a368

constant survival rate to provide lifespans of 2 and 3 years, respectively. This rate allows369

infection to “clear” from the population as offspring are assumed to be born susceptible.370

Mice have a clearing rate for a 1 year lifespan. Lifespans were estimated from literature371

for mice [40–42] and deer [43], and 2 years was chosen for medium mammals to provide a372

suitable intermediate host.373

Mouse densities (M) are drawn from a normal distribution (N) to simulate pop-374

ulation dynamics. Density values are bounded by zero, and by varying the mean (µ) and375

variance (σ2) of the distribution a range of population dynamics can be simulated, including376

σ2 = 0, or constant mouse density (Fig 6). For an increase in mice, the difference (±∆M)377

is added to the population of susceptible (S) individuals, while a decrease proportionately378

affects both susceptible and infected (I) individuals.379

Fig 6. Sample time series of model output with or without mouse variance.380

Data from two simulation runs are shown in the left and right columns, with a mean density381

of mice µ = 30 individuals per hectare and zero variance (σ = 0) or a standard deviation of382

25 individuals per hectare around this same mean. All other input and parameters remain383

the same. Shading indicates each segment of 52 weeks or one year. (a) and (d) show the384

total density of eggs and questing larvae, nymphs, and adults. As is apparent, the quest-385
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ing populations of nymphs and adults are significantly smaller than the total population of386

questing larvae, as most larvae do not manage to survive and find hosts. Populations fluc-387

tuate on an annual basis but with different phases. In (d) differences in density are apparent388

as a result of variable host populations. (b) and (e) show the populations of on host larvae,389

nymphs, and adults over time. Again, these densities cycle yearly, and changes in on host390

density are apparent with σ = 25 in (e). (c) and (f) demonstrate the difference in mouse391

density for a simulation without variation (c) and with variation (f) in mouse density. At392

the beginning of each year the population of mice is changed via a random distribution.393

My+1 = N(µ,σ2) (2.2.1)394

∆M = My+1 − (Sy + Iy) (2.2.2)395

Sy+1 = Sy +∆M, ∆M > 0 (2.2.3)396

Sy+1 = Sy +∆M ×
Sy

Sy + Iy
, Iy+1 = Sy +∆M ×

Sy

Sy + Iy
, ∆M<0 (2.2.4)397

5.3 Activity and Host Finding398

Questing ticks seek out hosts each week. The total rate at which hosts are found399

is determined by the host finding rate and the tick activity rate. The host finding rate (Fx) for400

a host species (x) is modeled as in other discrete-time tick models [21, 25] as this strategy401

yielded realistic rates of host finding for a sustained tick population. In Equation ??, a is a402

host species and tick life stage (i) dependent coefficient, which relates the base finding rate403

of a tick to host density (Hx). The exponent of 0.515 scales down the rate of host finding to404

produce realistic densities [25]. The host finding rate is scaled via the level of tick activity,405

with Fx being the maximum host finding rate assuming 100% tick activity. Tick activity406

(A) is calculated with a normal distribution (N) centered on an optimal activity temperature407
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(topt), with a variance (σ2), both determined from empirical measurements of activity levels408

across temperature [44, 45]. The final number of questing ticks (Q) which find a host x in a409

given week is the product of these rates and the total questing density. Each host species has410

a maximum host burden. If new questing ticks will cause hosts to exceed their burden in the411

successive week, ticks which exceed this threshold will remain in the questing population.412

Fx = ai,x(Hx)
0.515 (2.3.1)413

A = N(topt ,σ
2) (2.3.2)414

Qx = Fx ·A ·Q (2.3.3)415

5.4 Survival416

Eggs, questing, and engorged ticks exhibit environmentally dependent survival

(Se), modeled with normal distributions for temperature (Ts) and precipitation index (Ps).

Optimal temperature (ts) and precipitation index (ps) values were chosen from the literature

and the variance of distributions were adjusted to produce reasonable tick densities [21,

25, 35, 37]. This eliminates assumptions made in previous models, as exact relationships

between environmental conditions and survival have not been determined.

Ts = N(ts,σ2), Ps = N(ps,σ
2) (2.4.1)

Se = Ts ·Ps (2.4.2)

On-host ticks exhibit density dependent survival. Studies demonstrate this may417

result from true density dependence or from density dependent host grooming behaviors418

as a result of tick exposure. To implement this, an exposure index (EI) is calculated which419

measures the total number of ticks on each host type (x), scaled proportionately by mass420
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of each life stage for the previous 8 weeks, with a loss of exposure of 0.44 per week.421

For each host type and tick life stage, there are given estimated minimum and maximum422

survival rates for high and low exposure rates. In between these bounds, on-host survival is423

determined by Equation ??, which yields a linear decrease in survival for increased EI.424

EI =
9

∑
i=1

0.44i−1 · (0.0021L(t−i)+0.014N(t−i)+A(t−i)) (2.4.3)

So =
Smin −Smax

EImax −EImin
· (EI −EImin)+Smax (2.4.4)

Ticks in the hardening stages are modeled with a constant survival, as molting425

success becomes the primary determinant of survival. Parameterization is based off of pre-426

vious models to ensure realistic rates [21, 25].427

5.5 Infection428

Transmission occurs during the on-host stages, starting in larvae, and passes up-429

wards through life stages, but will not transmit from adult ticks to eggs [46]. Ticks disperse430

evenly between infected and susceptible hosts of the same species, and the rate of infection431

from hosts to ticks is determined by the competency of each host species, the proportion432

of infected hosts of each species, and the density of ticks per host. Competency for mice433

is set to 75%, and deer to 0% [6, 13, 14, 19, 47]. The intermediate host serves as a generic434

species to maintain infection in the system in the absence of mice, and has a competency435

of 50%, in line with other small to medium sized mammal species [6, 13, 16].436

Host infection is slightly more complicated. Infected ticks distribute evenly among437

hosts, but infected tick burdens may be in the range of only a few to no ticks per host438

throughout parts of the year. During these periods, it is expected that some hosts may have439
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several ticks while others have none. We used a modification of a method established previ-440

ously [21] which uses a Monte Carlo simulation to predict the rate of host infection, given441

the number of infected ticks per host (IT H) and assuming an infection rate of 100%, which442

is then scaled by the expected infection rate of ticks. This calculation is made several hun-443

dred times to ensure a robust calculation for infected tick burdens from 0.01 to 7.5 IT H,444

the upper range of which is sufficient to provide > 99.9% chance of infection. The IT H is445

scaled by an infection rate of 0.9 to provide a 90% chance of infection per infected tick to446

host. For sufficiently high IT H there will be an effectively 100% infection rate.447

5.6 Environmental Data448

Average temperature and relative humidity are indicated as the most significant449

environmental factors which affect survival and development in Ixodid ticks [35–37, 48].450

In the northeastern United States, where Lyme disease is most prevalent, humidity does not451

appear to play as significant a role, as humidity ranges do not typically fall outside of those452

optimal for tick survival [27]. As long term humidity data is less easily available, precipita-453

tion is sometimes used as a stand-in, which we have chosen to do. The average temperature454

is calculated as the average of the minimum and maximum temperature recordings for455

a day, and precipitation is calculated as an index, (PI), measured as 1/10 th the current456

week’s (w+1) rainfall (R) in mm with a loss of 65% from the previous week’s (w) index.457

PIw+1 = Rw+1 +0.65PIw (2.6.1)

We obtained daily measurements of minimum and maximum temperature and458

precipitation from 22 sites throughout North America [49]. Data were selected to cover a459

range of locations and climate conditions from 1971-2021. Data were converted to weekly460
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measurements and mean temperature and precipitation indices were calculated. Portland,461

Maine weather data was used as the primary location of focus for investigating model462

behavior.463

5.7 Simulation464

All Simulations were run in Julia version 1.6.1 [50]. A variety of packages were465

used in the process of conducting simulations, analyzing data, and plotting in Julia [51–60]466

and in R [61–63]. To investigate the impact of host population dynamics on disease flow in467

the model, 10,000 simulations were run with mean and variance of the density distribution468

for all combinations of each variable ranging from 0−99 in increments of 1. Ranges were469

chosen to cover empirical measurements of density in the white-footed mouse, Peromyscus470

leucopus, and potential variation in these densities [17]. Simulations were repeated for each471

of the 22 chosen locations to investigate how changing environmental data affects model472

behavior. Simulation output consists of weekly time-series data for all tick and host stage473

classes within the model. A single simulation involves calculating the output of the discrete474

difference equations at each time step of one week, and using these result to calculate475

again for each successive time step until the completion of the desired number of weeks of476

simulation. The result is the time series data as described above, stored in large matrices477

for each life stage and host type.478

5.8 Model Analysis479

Analysis of model data was conducted in Julia version 1.6.1, and plotting con-480

ducted with Julia and R version 4.0.5. To determine model prediction of disease risk, we481

calculated the mean, minimum, and maximum densities of infected and susceptible nymphs482

per year for the last 10 years of each simulation. These data were used to calculate standard483

20

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.24.538192doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.24.538192


disease risk measures. The density of infected nymphs, DIN was calculated as the mean,484

minimum, and maximum density of questing infected nymphs over the course of a year,485

with minimum and maximum density not necessarily aligned with the density of questing486

susceptible and infected nymphs. Density of nymphs, DON was calculated as the mean,487

minimum, and maximum density of the combined population of susceptible and infected488

nymphs. Nymphal infection prevalence, NIP was calculated as the mean, minimum, and489

maximum measures of the infected population divided by the combined population of sus-490

ceptible and infected nymphs. Amplitude is measured as the yearly minimum subtracted491

from the maximum for these disease metrics. The mean over 10 years for each metric was492

used when analyzing results.493

We completed a sensitivity analysis to determine the sensitivity of results to par-494

ticular variables. Parameters were varied with a one at a time approach across a range from495

-10% to 10% of the baseline value. Sensitivity was calulcated as the percent change in496

the output measures (as are described above) divided by percent change in the parameter.497

Portland, Maine environmental data was used as well as a constant mouse density of 50.498
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7 Supporting Information724

S1 Fig. Response of maximum density of infected nymphs and nymphal in-725

fection prevalence to variance in the mouse population and mean mouse density. A)726

shows the response of maximum DIN to mouse variation and mean density. The relation-727

ship to mean mouse density is positive and linear, as is the relationship to mouse variance.728

Contour lines plotted on the variance × mean plane and coloring reveal surface features.729

B) shows the response of maximum NIP to mouse variation and mean density. There is730

a nonlinear positive relationship between maximum NIP and mean mouse density. The731

relationship between mouse population variance and maximum NIP is inconsistent, with732

higher variance increasing maximum NIP at the low mean mouse density. At higher mean733

densities, maximum NIP transitions to decreasing with variance. Contour lines and col-734

oration again reveal surface features.735

S1 Table. Summary Statistics, Grouped by Variance, DIN, NIP This table736

presents summary statistics for disease risk metrics, grouped by different levels of mouse737

population variance.738

S2 Table. Tick life stages. Tick life and developmental stages represented in the739

model.740

S3 Table. Demographic Tick Processes. Tick demographic processes repre-741

sented in the model.742

S4 Table. Parameters used in the model.743

S5 Table. Parameters used in the model, continued.744

S1 File. Model equations. The equations representing tick, host, and infection745

processes in the model are presented here. See S4 and S4 Tables for parameter names and746

purposes.747
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