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Abstract 
Neural networks have proven to be an immensely powerful tool in predicting functional genomic 
regions, in particular with many recent successes in deciphering gene regulatory logic. 
However, how model architecture and training strategy choices affect model performance has 
not been systematically evaluated for genomics models. To address this gap, we held a 
DREAM Challenge where competitors trained models on a dataset of millions of random 
promoter DNA sequences and corresponding experimentally determined expression levels to 
best capture the relationship between regulatory DNA and gene expression in yeast. To robustly 
evaluate the models, we designed a comprehensive suite of benchmarks encompassing various 
sequence types. While some benchmarks produced similar results across all models, others 
differed substantially. For some sequence types, model performances exhibited correlation 
scores as high as 0.98, while for others, substantial improvement is still required. The top-
performing models were all neural networks, which demonstrated substantial performance gains 
by customizing model architectures to the nature of the experiment and utilizing novel training 
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strategies tailored to genomics sequence data. Overall, our DREAM Challenge highlights the 
need to benchmark genomics models across different scenarios to uncover their limitations. 

Introduction 
In eukaryotes, transcription factors (TFs) play a crucial role in regulating gene expression and 
are critical components of the cis-regulatory mechanism (1). TFs compete with nucleosomes 
and each other for DNA binding and can enhance each other’s binding through biochemical 
cooperativity and mutual competition with nucleosomes (2). Cis-regulatory complexity grows 
with the square of the number of TFs involved due to the number of potential pairwise 
interactions between TFs. Since yeast has about 8.5x fewer TFs than humans (~200 vs. ~1700) 
(1,3), the cis-regulatory code is theoretically about ~72x less complex in yeast, making it an 
ideal system to test our understanding of eukaryotic cis-regulation. While the field has made 
substantial progress in characterizing regulatory mechanisms (4–9), a quantitative 
understanding of cis-regulation remains a major challenge.  

Neural Networks (NNs) have shown immense potential in deciphering gene regulation. While 
different network architectures, such as CNNs (4,5,7,10), RNNs(11), and transformers (8,12), 
have been used to create genomics models, there is limited research on how NN architectures 
and training strategies affect their performance. Standard datasets provide a common 
benchmark to evaluate and compare algorithms, leading to improved performance and continual 
progress in the field (13). For instance, the computer vision and natural language processing 
(NLP) fields have seen a continual improvement of NNs facilitated by standard datasets, such 
as the ImageNet data (13), MS COCO (14), etc. In contrast, genomics models are often created 
ad hoc for analyzing a specific dataset, and it remains unclear whether a model’s improved 
performance results from improved model architecture or training data. In many cases, the 
models created are not directly comparable to previous models due to substantial differences in 
the underlying data used to train and test the models. 

We organized the Random Promoter DREAM Challenge (15) to address the lack of 
standardized evaluation and continual improvement of genomics models. Here, we asked the 
participants to design sequence-to-expression models and train them on expression 
measurements of promoters with random DNA sequences. The models would receive 
regulatory DNA sequence as input and use it to predict the corresponding gene expression 
value. We designed a separate set of sequences to test the limits of and provide insight into 
model performance. Our evaluation across various benchmarks revealed that, for some 
sequence types, model performances are approaching the previously-estimated inter-replicate 
experimental reproducibility for this datatype (6), while considerable improvement remains 
necessary for others. The top-performing solutions in the challenge exceeded performance of all 
previous state-of-the-art models for similar data and demonstrated that designing NNs inspired 
by the state-of-the-art models from computer vision and NLP, incorporating the nature of the 
experiment into NN design, properly tuning hyperparameters, and novel training strategies that 
are more suited to genomics sequence data can result in considerable performance gains. 
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Summary of the challenge and the data 

 

Figure 1: Overview of the challenge. Competitors received a training dataset of random 
promoters and corresponding expression values (left). They continually refined their models and 
competed for dominance in a public leaderboard (middle). At the end of the challenge, they 
submitted a final model for evaluation (right) using a test dataset consisting of eight sequence 
types: (i) high expression, (ii) low expression, (iii) native, (iv) random, (v) challenging, (vi) SNVs, 
(vii) motif perturbation, and (viii) motif tiling. 

To generate the competition training data, we conducted a high-throughput experiment to 
measure the regulatory effect of millions of random DNA sequences. Prior research has shown 
that random DNA can display activity levels akin to genomic regulatory DNA, due to the 
coincidental occurrence of numerous TF binding sites (6,12,16). As a result, leveraging a vast 
array of random regulatory sequences enables the learning of intricate regulatory mechanisms 
from the ground up, without succumbing to biases associated with overrepresented genomic 
sequences. 

Here, we cloned 80 bp random DNA sequences into a promoter-like context upstream of a 
yellow fluorescent protein (YFP), transformed the resulting library into yeast, grew the yeast in 
chardonnay grape must, and measured expression by fluorescent activated cell sorting and 
sequencing, as previously described (6,17,18) (Methods). This resulted in a training dataset of 
6,739,258 random promoter sequences and their corresponding mean expression values. We 
provided these data to the competitors, who could use them however they like to train their 
model. However, competitors were not allowed to use external datasets in any form to ensure 
that everyone was training models on the same dataset. Ensemble predictions were also 
disallowed as they would almost certainly provide a boost in performance but without providing 
any insight into the best model types and training strategies. 

We evaluated the models on a set of “test” sequences designed to probe the predictive ability of 
the models in different ways. The measured expressions of these sequences were quantified in 
the same way as the training data but in a separate experiment with more cells sorted per 
sequence (~100), yielding more accurate estimated expression levels compared to the training 
data measurements and providing higher confidence in the challenge evaluation. The test set 
consisted of 71,103 sequences from several promoter sequence types. We included both 
random sequences and sequences from the yeast genome to get an estimate of performance 
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difference between the random sequences in the training domain and the evolved sequences. 
We also included sequences designed to capture known failure modes of previous models 
trained on similar data, namely sequences at the high/low extremes of expression and 
sequences designed to maximize the disagreement between a previously developed CNN and 
a physics-informed neural network (“biochemical model”) (6,12). We previously found that 
predicting changes in expression between closely related sequences (i.e., nearly identical DNA 
sequences) is substantially more challenging, and so we included subsets where models had to 
predict changes that result from single nucleotide variants (SNVs), perturbations of specific TF 
binding sites, and tiling of TF binding sites across background sequences. Each test subset was 
given a different weight proportional to the number of sequences in the set and how important 
we considered it to be (Table 1). For instance, predicting the effects of SNVs on gene 
expression is a critical challenge for the field due to its relevance to complex trait genetics (19), 
and so many such sequence pairs were included and given the highest weight in the test set. 
Within each sequence subset, we determined model performance using Pearson 𝑟𝑟2 and 
Spearman ρ, which captured the linear correlation and monotonic relationship between the 
predicted and measured expression levels (or expression differences), respectively. The 
weighted sum of each performance metric across test subsets yielded our two final performance 
measurements, which we call Pearson Score and Spearman Score.  

The competition ran for 12 weeks in the summer of 2022 and included two evaluation stages: 
the public leaderboard phase and the private evaluation phase (Fig. 1). The leaderboard 
opened six weeks into the competition and allowed teams to submit up to 20 predictions on the 
test data per week. At this stage, we used 13% of the test data for leaderboard evaluation and 
displayed only the overall Pearson 𝑟𝑟2, Spearman ρ, Pearson Score, and Spearman Score to the 
participants, while keeping the performance on the promoter subsets and the specific 
sequences used for the evaluation hidden. The participating teams achieved increasing 
performance each week (Supplementary Fig. 1), showcasing the effectiveness of such 
challenges in motivating the development of better machine learning models. Over 110 teams 
from all over the globe competed in this stage. At the end of the challenge, 28 teams submitted 
their models for final evaluation. We used the rest of the test data (~87%) for the final model 
evaluation. 

Top-performing submissions in the challenge  
The top-performing submissions were all NNs. Despite recent findings suggesting the 
prominence of attention-based architectures (12), only one of the top five submissions in the 
challenge used transformers, placing 3rd. The best-performing submissions were dominated by 
fully convolutional NNs, with 1st, 4th, and 5th places taken by them. The best-performing solution 
was based on the EfficientNetV2 architecture (20,21), and the 4th and 5th solutions were based 
on the ResNet architecture (22). Moreover, all teams used convolutional layers as the starting 
point in their model design. A recurrent neural network (RNN) with bidirectional long-short-term 
memory (Bi-LSTM) layers (23,24) placed 2nd. Overall, the teams converged on many similar 
training strategies (e.g., using Adam (25) or AdamW (26) optimizers), but had substantial 
differences as well (Table 1). 

The competing teams introduced several innovative approaches to solve the expression 
prediction problem. Autosome.org, the best-performing team, transformed the task into a soft-
classification problem by training their network to predict a vector of expression bin probabilities, 
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which was then averaged to yield an estimated expression level, effectively recreating how the 
data were generated in the experiment. They also used a distinct data encoding method by 
adding additional channels to the traditional 4-d one-hot encoding of the DNA sequence used by 
most teams. The two additional channels indicated (i) whether the sequence provided as input 
was likely measured in only a single cell (which results in an integer expression value), and (ii) 
whether the input sequence is being provided in the reverse complement orientation. 
Furthermore, Autosome.org's model, with only two million parameters, challenged the current 
trend of designing deep NNs with numerous parameters, demonstrating that efficient design can 
considerably reduce the necessary number of parameters. Autosome.org and BHI were distinct 
in training their final model on the entirety of the provided training data (i.e., no sequences 
withheld for validation) for a prespecified number of epochs (determined previously using cross-
validation using validation subsets). Unlock_DNA, the 3rd team, took a novel approach by 
randomly masking 5% of the input DNA sequence and having the model predict both the 
masked nucleotides and gene expression. This approach used the masked nucleotide 
predictions as a regularizer, adding a reconstruction loss to the model loss function, which 
stabilized the training of their large NN. BUGF, the 9th team, used a somewhat similar strategy 
where they randomly mutated 15% of the sequence and calculated an additional binary 
crossentropy loss predicting whether any bp in the sequence had been mutated. However, 
BUGF predicted expression using the original unchanged sequence, whereas Unlock_DNA 
predicted expression using the masked sequence. The 5th team, NAD, employed GloVe (27) to 
generate embedding vectors for each base position and used these vectors as inputs for their 
NN, whereas the other teams utilized traditional one-hot encoded DNA sequences. Two teams, 
SYSU-SAIL-2022 (11th) and Davuluri lab (16th), attempted to train DNA language models (28) on 
the challenge data, which involved pretraining a BERT language model (29) on the challenge 
data and subsequently using the BERT embeddings to train an expression predictor. SYSU-
SAIL-2022's pretraining strategy differed from Davuluri lab's, as they only used the top 20% of 
sequences in terms of expression. However, the predictors used by these two teams were not 
identical, and it is not possible to definitively conclude that SYSU-SAIL-2022's pretraining 
strategy was superior for training language models on the random sequence space. Due to the 
varied network architectures and training strategies (Table 1), determining the exact factors that 
led to the success of the top submissions remains a substantial challenge. 

Table 1: Breakdown of the top-performing models into key components 
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Autosome.org 
CNN 

(EfficientNetV2 
(21)) 

OHE 70 

Data aug. 
(additional 
channel) + 

Model 
(additional 
channel) 

100-0 1.9 AdamW 
(26) 

Kullback-
Leibler 

divergence 

One Cycle 
LR 𝑟𝑟, ρ* 

BHI CNN + RNN (Bi-
LSTM) (23) OHE 30 

Post-hoc 
conjoined 

setting (30)  
100-0 6.8 AdamW 

(26) Huber 
Cosine 

Anneal LR 𝑟𝑟, ρ* 
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Unlock_DNA Transformer OHE 20 

Input to 
model 

(concat. with 
forward 
strand) 

95-5 47.4 Adam (25) MSE + 
custom 

One Cycle 
LR 𝑟𝑟 

Camformers CNN (ResNet 
(22)) OHE 30 None 90-10 16.6 AdamW 

(26) L1 
Reduce 
LR On 
Plateau 

𝑟𝑟, ρ 

NAD CNN + 
Transformer 

Glove 
(27) 0 None 90-10 15.5 

AdamW 
(26) + 
GSAM 

(31) 

smooth L1 Linear LR 𝑟𝑟 

wztr CNN (ResNet 
(22)) OHE 62 

Input to 
model 

(concat. with 
forward 
strand) 

99-1 4.8 Adam (25) MSE 
Reduce 
LR On 
Plateau 

𝑟𝑟 

High Schoolers 
Are All You 
Need (High 
Schoolers) 

CNN + 
Transformer + 

MLP 
OHE 31 

Model (RC 
parameter 

sharing) (30) 
98-2 4.7 

Adam (25) 
+ SWA 

(32) 
MSE 

 
Multi Step 

LR 
𝑟𝑟 

BioNML Vision 
Transformer (33) OHE 30 

Model (RC 
parameter 

sharing) (30) 
86-14 78.7 

Adamax 
(25) + L2 

regularizer 
Huber 

 
Multi Step 

LR 
𝑟𝑟, CoD 

BUGF Transformer Embed
ding 32 None 94-6 4.5 RAdam 

(34) 

Multi-label 
focal loss 

(35) + 
custom 

None 𝑟𝑟 

mt GRU (36) +CNN OHE 62 
Model (RC 
parameter 

sharing) (30) 

99.8-
0.2 3.1 Adam (25) binary cross. None 𝑟𝑟, 

CoD* 

*These teams employed the metrics in a cross-validation setting to determine the optimal number of epochs for their 
models and ultimately saved the model weights after running for the n epochs, without relying on validation metric 
scores. In contrast, other teams utilized validation metric scores to select the best-performing model. 

Top two models robustly outperform others 
In order to determine the relative performance of the models, we performed a bootstrapping 
analysis. Here, we sampled 10% of the test data 10,000 times and, for each sample, calculated 
the performance of each model and the rankings of the models for both Pearson and Spearman 
Scores (Methods). We averaged the ranks from both metrics to decide their final ranks. Teams 
Autosome.org and BHI robustly outperformed the others, coming in 1st and 2nd place, 
respectively (Fig. 2), with Autosome.org coming second to BHI in only 0.1% and 2.25% of the 
time for Pearson Score and Spearman Score, respectively. In none of the bootstraps did 
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another team outperform Autosome.org or BHI. Interestingly, Pearson Score and Spearman 
Score do not agree after the top two teams, indicating that they capture performance in distinct 
ways. For instance, Unlock_DNA, the 3rd-place team, substantially outperformed 4th-place 
Camformers by Pearson Score, but performed slightly worse than Camformers by Spearman 
Score. We consider 5th-place to be a tie between NAD and wztr as their mean ranks (5.81105 
and 5.8152, respectively) were very close. 

 

Figure 2: Bootstrapping provides a robust comparison of the model predictions. (A, B) 
Distribution of ranks in 𝑛𝑛=10,000 samples from the test dataset (y-axes) for the top-performing 
teams (x-axes), for (A) Pearson Score and (B) Spearman Score. 

Distinct model performances on test subsets 
Analysis of model performance on the different test subsets revealed distinct and shared 
challenges for each model. We retrained the transformer model proposed by Vaishnav et al. 
(12), the previous best performing model for this type of data, on the challenge data and used 
as a reference in the leaderboard (“reference model”). The top submissions’ overall 
performance was substantially better than the reference model (Fig. 3). Interestingly, the top 
two models were ranked 1st and 2nd (sometimes with ties) for each test subset regardless of 
score metric, showcasing that their superior performance cannot be attributed to any single test 
subset. Further, the rankings within each test subset sometimes differed between Pearson 
Score and Spearman Score, reinforcing that these two measures capture performance in 
distinct ways. 

Interestingly, models were highly variable in their ability to accurately predict variation within the 
extremes of gene expression. The cell sorter has a reduced signal-to-noise ratio for the highest 
and lowest expression levels, and the sorting bin placement can truncate the tails of the 
expression distribution (6,12). We included these test subsets (high and low) because we 
previously found that the Vaishnav et. Al model (12) tends to have limited predictive power 
within each expression extreme. Overall, model performance was most variable across teams in 
these subsets (e.g., the median difference in Pearson r2, between highest and lowest 
performance, was 48% for high and low test subsets and 16% for the others, as shown in Fig. 
3), suggesting that the challenge models were able to overcome this issue to varying degrees. 
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Figure 3: Performance of the top-performing teams in each test data subset. (A,B) Model 
performance (colour and numerical values) of each team (y-axes) in each test subset (x-axes), 
for (A) Pearson 𝑟𝑟2 and (B) Spearman ⍴. Heatmap colour palettes are min-max normalized 
column-wise. (C,D) Performance disparities observed between the best and worst models (x-
axes) in different test subsets (y-axes) for (C) Pearson 𝑟𝑟2 and (D) Spearman ⍴. The calculation 
of the percentage difference is relative to the best model performance for each test subset. 

Importantly, the models differed in their abilities to predict the expression levels of promoter 
sequences from the yeast genome. While the ranking of models is similar for both random and 
native sequences, the difference in model performance is more substantial for native 
sequences. We see 17.6% and 9.6% performance difference in Pearson 𝑟𝑟2 and Spearman ⍴ 
between top vs. bottom model for native sequences, respectively, while there are only 5% and 
2.7% differences for random sequences (Fig. 3), suggesting that top models have learned more 
of regulatory grammar that evolution has produced. Although there is likely more experimental 
noise present in the native promoter data, owing to the propensity of native DNA to include 
repetitive sequences, which results in lower sequence coverage and poorer quality data  
(Supplementary Fig. 2), the substantial discrepancy between performance on native and 
random sequences suggests that there is yet more regulatory logic to learn. 
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Expression differences between closely related sequences also revealed differences in model 
performance (Fig. 3, Supplementary Fig. 3). For instance, perturbing TF binding sites (TFBSs) 
(e.g., mutating sequences strongly matching the cognate motif for an important TF or variable 
numbers of binding sites added) is a comparatively large perturbation and could be predicted 
with simple models that capture the binding of these TFs and can count TFBS instances. 
However, when TFBSs are tiled across a background sequence, the same TFBS is present in 
every sequence, and the model must have learned how its position affects its activity, as well as 
capturing all the secondary TFBSs that are created or destroyed as the motif is tiled. Finally, 
SNVs are even harder to predict because nearly everything about the sequence is identical but 
for a single nucleotide that may affect the binding of multiple TFs in potentially subtle ways. 
Accordingly, model performance was highest for Motif Perturbation, intermediate for Motif Tiling, 
and lowest for SNVs. However, it is important to note that this partly results from smaller 
changes in expression being more dominated by experimental noise. Nonetheless, the 
differences in model performance suggest that the top-performing models have better captured 
the subtleties of cis-regulation since the differences in model performance are more substantial 
for subtler changes (% difference between best and worst compared to best in Pearson 𝑟𝑟2 and 
Spearman ⍴: 6.5% and 4% for Motif Perturbation, 17.7% and 7% for Motif Tiling, and 14.6% and 
9.6% for SNVs; Fig. 3). 

Model ensemble provides marginal performance boost 

 

Figure 4: An ensemble of the top-performing model predictions does not improve 
performance substantially since the top-performing models make similar predictions. 
(A,B) Minimal improvement in Pearson Score and Spearman score (y-axes) achieved by linear 
regressors (x-axes) trained on top of the model predictions. (C)The pairwise Pearson correlation 
(colour) between different pairs of models and the ground truth (x- and y-axes). 

We created ensembles of the top-performing models by training a linear regressor with the 
individual models’ predictions as input. However, the improvement in performance was only 
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slight in comparison to the individual top model performance (Fig. 4A,B). A pairwise comparison 
of the models’ predictions on the test data showed a higher correlation between the models to 
each other than to the ground truth (Fig. 4C, Supplementary Fig. 4). Furthermore, we 
observed that the correlation remained high for individual test subsets with the exception of two 
sequence types (Supplementary Fig. 5). Interestingly, these two sequence types represented 
the extremes of expression space, and the networks might have learned them differently due to 
the low signal-to-noise ratio present in the training data at these extremes, which is evident by 
the differing relationships between predicted and actual expression, particularly at the high end 
of expression (Supplementary Fig. 6). Overall, the results suggest that the models have a 
similar understanding of the underlying biology but vary in how much of it they have captured. 
The models may be approaching the extent of cis-regulation that is learnable from the DREAM 
Challenge training data. 

Discussion 
The random promoter DREAM Challenge 2022 presented a unique opportunity for participants 
to propose novel model architectures and training strategies for modeling regulatory sequences. 
The top-performing models challenged the trend of using increasingly complex architectures by 
demonstrating that simpler NN models with fewer parameters can effectively capture much of 
cis-regulation. In particular, 3/5 of the top submissions did not use transformers, including the 
best-performing team (which also had the fewest parameters of the top 10), illustrating that 
attention may not be the most efficient way of capturing cis-regulatory logic in short sequences. 
This emphasizes the need for further exploration of the architectures and training strategies best 
suited for genomics sequence data. 

The varied results across test subsets illustrate the complexity in evaluating cis-regulatory 
models effectively. For instance, performance on random sequences, which are in the same 
domain as the training data (also random sequences), was relatively uniform (Fig. 3). Whereas 
the domain shift to native sequences, where the relative frequencies of different regulatory 
mechanisms likely differ since these originated through evolution, highlights the disparities 
between models (Fig. 3). This indicates that a model that excels in modeling overall cis-
regulation may still perform poorly for sequences involving certain regulatory mechanisms that 
are difficult to learn from the training data, leading to incorrect predictions of biochemical 
mechanisms and variant effects for sequences that use these mechanisms. This emphasizes 
the importance of multifaceted evaluation of genomics models (37), and designing specific 
datasets that test the limits of these models. 

Methods 

Designing the test sequences 
High- and low-expression sequences were designed as described in Vaishnav et al.(12). Native 
test subset sequences were designed by sectioning native yeast promoters into 80 bp 
fragments (6). Random sequences were sampled from a previous experiment where the tested 
DNA was synthesized randomly (as in the training data) and quantified (6). Challenging 
sequences were designed using a combination of a convolutional neural network model (12) 
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and a biochemical model (a type of physics-informed neural network) (6). Most of the SNVs 
represent sequence trajectories from Vaishnav et al. (12), but also include random mutations 
added to random, designed, and native promoter sequences. Motif Perturbation included Reb1 
and Hsf1 perturbations. Sequences with perturbed Reb1 binding sites were created by inserting 
Reb1 consensus binding sites (strong or medium affinity; sense and reverse complement 
orientations), and then adding between 1 and 3 SNVs to each possible location of each motif 
occurrence and inserting canonical and mutated motif occurrence into 10 randomly generated 
sequences at position 20/80. Sequences with Hsf1 motif occurrence were designed by tiling 
random background sequences with between 1 and 10 Hsf1 monomeric consensus sites 
(ATGGAACA), added sequentially from both the right and left of the random starting sequences, 
or added individually within each of the possible 8 positions, or similarly tiling/inserting between 
1-5 trimeric Hsf1 consensus sites (TTCTAGAANNTTCT). The Motif Tiling test subset 
sequences were designed by embedding a single consensus for each motif (poly-A: AAAAA, 
Skn7: GTCTGGCCC, Mga1: TTCT, Ume6: AGCCGCC, Mot3: GCAGGCACG, and Azf1: 
TAAAAGAAA) at every possible position (with the motif contained completely within the 80-bp 
variable region) and orientation for three background sequences as described in de Boer et al. 
(6).  

Table 2: Summary of the test subsets 

Subset no. of 
sequences 

Weight in 
evaluation metric 

Description 

All sequences 71103 1 All sequences in the test data. 

High  968 0.3 Sequences designed to have high 
expression. 

Low  997 0.3 Sequences designed to have low 
expression.  

Native 997 0.3 Sequences that are present in the 
yeast genome. 

Random 6349 0.3 Random DNA sequences. 

Challenging 1953 0.5 Sequences designed to maximize 
the differences between a 
convolutional model and a 
biochemical model trained on the 
same data. 

SNVs 44340 pairs 1.25 Two sequences that differ by only a 
single base. 

Motif Perturbation 
(Reb1+Hsf1) 

3287 pairs 0.3 Two sequences that differ due to 
perturbations to specific known TF 
binding site. 

Motif tiling 2624 pairs 0.4 Two sequences that differ due to 
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tiling known TF binding sites across 
random sequences. 

 

Quantifying promoter expression 
High complexity random DNA libraries that comprised the training data were created as 
described previously (6), with the following modifications. The random promoter library in E. coli 
theoretically contained about 74 million random promoters and was transformed into S288c 
(delta URA3) yeast yielding 200 million transformants, which were selected in SD-Ura media. 1 
L of chardonnay grape must (filtered) was inoculated with the pool to an initiate OD600 of 0.05 
and grown at room temperature without continual shaking, with the culture diluted as needed 
with fresh chardonnay grape must to maintain OD below 0.4, for a total growth time of 48 hours 
and having undergone >5 generations. Prior to each OD, the culture was gently agitated to 
decarbonate it, waiting for the resulting foam to die down before agitating again, and continuing 
until no more bubbles were released. Yeast were then sorted and sequencing libraries prepared 
as described previously (6), with sequencing libraries pooled and sequenced on an Illumina 
NextSeq. 

Data processing for both N80 (training) and designed (test) libraries were done as described 
before (6), except that the expression levels of the designed library sequences were estimated 
using MAUDE (38), using the read abundance in each sorting bin as input, and estimating the 
initial abundance of each sequence as the average relative abundance of that sequence across 
all bins.  

Competition rules  
1. Only the provided training data could be used to train models. Models had to train from 
scratch without any pre-training on external datasets to avoid overfitting to sequences present in 
the test data (e.g. some sequences in the test data are derived from extant yeast promoters). 

2. Reproducibility was a prerequisite for all submissions. The participants had to provide the 
code and instructions to reproduce their models. We retrained the top-performing solutions to 
validate their performance.  

3. Augmenting the provided training data was allowed. Pseudo-labeling the provided test data 
was not allowed. Using the test data for any purpose during training was not allowed. 

4. Ensembles were not allowed.  

Performance evaluation 
We calculated the Pearson r2 and Spearman ⍴ between predictions and measurements for each 
test subset to capture performance on each sequence subset. We used Pearson r, which 
captures the linear correlation between predictions and measured expression levels while being 
robust to the scaling differences that occur between training and test sequences. As the training 
and the test data are not on the same scale but are linearly related by, 𝑦𝑦 =  𝑚𝑚𝑚𝑚 + 𝑏𝑏, where 𝑚𝑚 
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and 𝑏𝑏 are constants that are affected by sorting bin placement during the experiment, Pearson r 
was an appropriate metric for us. We also used Spearman ⍴, which captures the monotonic 
relation between predictions and measured expression levels while being robust to outliers. The 
weighted sum of each performance metric across promoter types yielded our two final 
performance measurements, which we call Pearson Score and Spearman Score. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖 = 0  ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅2𝑖𝑖  / ∑ 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 = 0  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝑤𝑤𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖 = 0 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑖𝑖  / ∑ 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 = 0  

Here, 𝑤𝑤𝑖𝑖 is the weight used for the 𝑖𝑖-th test subset. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅2𝑖𝑖 and  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑖𝑖 are respectively 
the square of Pearson coefficient and the Spearman coefficient for sequences in 𝑖𝑖-th subset. 

Description of the approaches used by the participants 
In this section, we present an overview of the approaches employed by the participants in the 
challenge. For the top-performing teams, we provide a detailed description of their 
methodologies, while for the remaining teams, we offer a concise overview without repeating 
any details that have already been discussed for other teams. The performance of each 
approach is illustrated in Supplementary Fig. 7 for easier comparison. 

Autosome.org: The team reformulated the initial regression task as a soft-classification 
problem by replacing the initial target expression value with a vector of 18 probabilities 
corresponding to individual bins, assuming that they can be deduced from the normal 
distribution with mean and variance equal to (expression + 0.5) and 0.5, respectively. To obtain 
a predicted expression value for a sequence during the validation step, the predicted 
probabilities were multiplied by their bin numbers. They used one-hot encoding for the promoter 
sequences, where they added a separate binary channel explicitly marking the objects with 
integer (and thus likely imprecise) expression measurements. They also augmented the dataset 
with the reverse complementary sequences and added a separate binary channel to denote the 
supplied strand explicitly (forward or reverse complementary). The proposed model was based 
on a fully-convolutional network inspired by EfficientNetV2 (21). The following architectural 
choices contributed to the final performance: (i) grouped convolution (39) instead of the 
depthwise convolution of the original EfficientNetV2, (ii) the standard residual blocks were 
substituted with residual channel-wise concatenations, (iii) a bilinear layer was inserted in the 
middle of the EfficientNetV2 SE-block. 

BHI: Their approach adopts a “sandwich” architecture consisting of a one-dimensional 
convolutional layer, a bidirectional long-short-term memory (Bi-LSTM) layer, and another 
convolutional layer. Each convolutional layer used different kernel sizes. Besides the model 
architecture, the team found that training details specialized for DNA sequence-based deep 
learning models were highly important for the overall performance. Among them, the most 
crucial was to use a ‘post-hoc conjoined’ setting (30), which imposes a reverse-complement 
equivariance to the model. Test-time augmentation was also effective. Predictions were made 
for an original sequence, its four shifted variants (generated by -2bp, -1bp, +1bp, and +2bp 
shifting), and their reverse-complement sequences, then those 10 predictions were averaged to 
make a final prediction. While training sequences over 110bp were trimmed to the right, 
sequences shorter than 110bp were randomly padded with the original vector sequences on 
both sides. This informative padding gave a nonnegligible performance boost. Finally, to be as 
unbiased as possible for the distribution of the test set, predictions were quantile-transformed 
using the distribution of expression levels in training data as post-processing. 
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Unlock_DNA: The team used an end-to-end Macaron-like Transformer encoder architecture 
with two half-step feed-forward (FFN) layers at the beginning and end of each encoder block. A 
separable 1D convolution layer was inserted after the first FFN layer and in front of the multi-
head attention layer. The sliding k-mers from one-hot encoded sequences were mapped onto a 
continuous embedding, combined with the learned positional embedding and strand embedding 
(forward strand vs. reverse complement strand) as the sequence input. Along with the sequence 
input, several positions (32 in the final model) of "pseudo" expression values were added as the 
input, where all input expression values were zeros. The model predicted one expression value 
for each "pseudo" expression position and used the mean of the prediction of all positions as 
the final predicted expression value. 

Camformers: This team used a CNN with residual connections. The model included six 
convolutional layers with three residual connections allowing the model to bypass every other 
layer. After the penultimate convolutional layer, a max pooling operation was added to reduce 
the model size and improve generalization. The output of the final convolutional layer was 
flattened and fed into a block of two dense layers, followed by a final dense layer outputting the 
predicted expression level. All layers except the last used a rectified linear unit activation. 

NAD: The approach has two stages: (i) generating the embedding vectors for each base 
position using GloVe (27) and (ii) using the embedding vectors as input of neural networks to 
predict the gene expression level. The proposed model combines a convolutional neural 
network for feature extraction and a transformer for prediction. 

WZTR: The team used a fully CNN-based architecture. The model begins with two 
convolutional layers, and six convolution blocks follow these layers. Each convolution block is 
constructed of 3 convolutional layers and an average pooling at the end. Each convolutional 
layer consists of a hybrid convolution (40), batch normalization, ReLU activation, and residual 
connection. Each hybrid convolution takes in a list of dilation values [1,2,4,6], with 4 
convolutions processing the input in parallel. Finally, there are three fully connected layers and 
an output layer. A linear combination of 256 features extracted from all the previous operations 
on the sequence is used to generate the predicted expression. 

High Schoolers Are All You Need (High Schoolers): This team used a mix of CNN and 
transformer architectures, where the CNN was based on Residualbind's (41) design, with a 
convolutional layer (with exponential activations) followed by a residual block comprised of a 
series of dilated convolutional layers with increasing dilation rates. It was followed by attention 
pooling, a transformer layer with relative positional encodings, and a standard MLP block. 

BioNML: The underlying neural network was configured to have a relatively larger set of 
convolutional kernels and extra dictionaries of short k-mers for spotting potential enriched DNA 
sequence patterns. Strand-specific streams of these patterns were normalized and consolidated 
with Swish activation’s (42) fully learnable thresholding. The encoded patterns were fed into a 
ViT (33) like block but with transformer decoder type of connections and SwiGLU (43) 
activations for modeling any sequential interdependence. A set of suppressed signals of the 
encoded sequence-based patterns as queries for the transformer decoder blocks to respond to.  

BUGF: A transformer model was used to predict the expression bin classes, as opposed to 
treating the problem as a regression problem. Random mutations were added to the sequence 
as an data augmentation strategy and the model was trained to predict where the mutations had 
been made to the input sequence. An auxiliary loss was calculated based on this prediction, 
which helped reduce overfitting. 
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mt: The approach uses GRU and CNNs to regress the strength of the targeted promoters using 
information encoded in the forward and reverse DNA strands. 

SYSU-SAIL-2022: The team first trained a 3-layer BERT (29) using part of the train data. Then, 
the BERT embedding was used to train an expression predictor. 

Wen Group: A deep neural network that adopted concepts of U-Net (44), Transformer, and 
Squeeze & Excitation blocks (45) was trained from end to end without any data augmentation. 

Yuanfang Guan: A neural network that consisted of LSTM layers followed by attention layers 
was used to predict expression.  

Metformin-121: A neural network based on bidirectional GRU was used to predict gene 
expression. 

NGT4: A neural network based on XceptionNet (46) was used to predict gene expression. 
During training, the expression values were transformed evenly in the range of i – 0.5 < x < i + 
0.5 (here, i is the integer expression) maintaining the ranking of sequences that was produced 
by a trained model. 

Davuluri lab: The team utilized a transformer-based representation model named DNABERT 
(28) for predicting gene expression.  

*DNABERT was pretrained on human genome, which violated the competition rules. However, 
we consider this to be an important benchmark that shows the limitation of DNA language 
models. 

Wan&Barton_BBK: The team designed a model based on Temporal Convolutional Networks 
(47) to predict expression. 

Peppa: The team designed a model based on the Enformer (8) that took 110 bp as input 
(compared to 200 kbp in the original) and included only 2M parameters (compared to ~200M 
parameters of the original). 

The Dream Team: A neural network was used that incorporated convolutional, multihead 
attention, and LSTM layers. During training, the integer expression values were transformed by 
replacing them with Normal(i,0.3) distribution, where i represents the expression. 

Noisy-Chardonnay: A model composed of convolutional layers followed by BiLSTM layers was 
trained without any data augmentation to predict expression levels. 

KircherLab: The team trained a simple convolutional neural network with a GC correction step 
on the training data to help the model focus its decisions on motifs within the sequence rather 
than the general nucleotide composition.  

MadLab: The model is composed of three building blocks, namely a convolutional network, a 
transformer and a recurrent network. 

Auth: A simple hybrid architecture combining a convolutional layer and a BiLSTM layer followed 
by two fully connected layers was used to predict expression. 

UTKbioinformatics: A neural network based on BERT was used to predict expression. 

DrAshokAndFriends: An attention based ConvLSTM (48) model was used for prediction. 
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QUT_seq2exp: A sequence embedding model, dna2vec (49), was applied on the promoter 
sequences (in a running manner on short k-mers), which are then subsequently used as 
features for a transformer-based deep neural network model. 

Zeta: A transformer model was used for predicting expression. 

Data availability 
The processed training and test data used in this study are available at Zenodo database under 
DOI 10.5281/zenodo.7395397.  
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Supplementary Figures 

 

Supplementary Figure 1: Progression of the top-performing teams’ performance in the 
DREAM Challenge public leaderboard. (A,B) Performance (y-axes) in (A) Pearson Score and 
(B) Spearman Score achieved by the participating teams (colours) each week (x-axes), 
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showcasing the effectiveness of such challenges in motivating the development of better 
machine learning models. 

 

 

Supplementary Figure 2: Library coverage differs between sequence supsets and is 
lowest for native sequences. Cumulative proportion (y-axis) of the number of reads per 
sequence (x-axis) for different sequence types (colours). 
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Supplementary Figure 3: Expression changes (y-axis) are biggest for motif perturbation, 
smallest for SNVs, and intermediate for motif tiling. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.26.538471doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538471
http://creativecommons.org/licenses/by-nc/4.0/


20 

 

Supplementary Figure 4: The pairwise Pearson correlation between the ground truth and 
the predictions made by all models. 
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Supplementary Figure 5: The pairwise Pearson correlation between predictions made by 
different models for different test subsets, (A) random, (B) native, (C) high, (D) low, (E) 
challenging, and (F) SNVs. 
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Supplementary Figure 6: Models capture expression at high levels in different ways. 
Scatter plots displaying the relationship between model predictions (y-axes) and ground truth (x-
axes) for the top-performing teams in the challenge, for: (A) Autosome.org, (B) BHI, (C) 
Unlock_DNA, (D) Camformers, (E) NAD, (F) wztr, (G) High Schoolers, (H) BioNML, (I) BUGF, 
(J) mt, and (K) reference model. 

 
Supplementary Figure 7: Performance of the teams in each test data subset. (A,B) Model 
performance (colour and numerical values) of each team (y-axes) in each test subset (x-axes), 
for (A) Pearson r^2 and (B) Spearman ⍴. Heatmap colour palettes are min-max normalized 
column-wise. 
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