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44 Abstract

45 Few methicillin-resistant Staphylococcus aureus (MRSA) from the early years of its global 

46 emergence have been sequenced. Knowledge about evolutionary factors promoting the success 

47 of specific MRSA multi-locus sequence types (MLSTs) remains scarce. We aimed to characterize 

48 a legacy MRSA collection isolated from 1965 to 1987 and compare it against publicly available 

49 international and local genomes. 

50 We accessed 451 ancient (1965-1987) Swiss MRSA isolates, stored in the Culture Collection of 

51 Switzerland. We determined phenotypic antimicrobial resistance (AMR) and performed Illumina 

52 short-read sequencing on all isolates and long-read sequencing on a selection with Oxford 

53 Nanopore Technology. For context, we included 103 publicly available international genomes 

54 from 1960 to 1992 and sequenced 1207 modern Swiss MRSA isolates from 2007 to 2022. We 

55 analyzed the core genome (cg)MLST and predicted SCCmec cassette types, AMR, and virulence 

56 genes.

57 Among the 451 ancient Swiss MRSA isolates, we found 17 sequence types (STs) of which 11 

58 have been previously described. Two STs were novel combinations of known loci and six isolates 

59 carried previously unsubmitted MLST alleles, representing five new STs (ST7843, ST7844, 

60 ST7837, ST7839, and ST7842). Most isolates (83% 376/451) represented ST247-MRSA-I 

61 isolated in the 1960s, followed by ST7844 (6% 25/451), a novel single locus variant (SLV) of 

62 ST239. Analysis by cgMLST indicated that isolates belonging to ST7844-MRSA-III cluster within 

63 the diversity of ST239-MRSA-IIII. Early MRSA were predominantly from clonal complex (CC) 8. 

64 From 1980 to the end of the 20th century we observed that CC22 and CC5 as well as CC8 were 

65 present, both locally and internationally. 

66 The combined analysis of 1761 ancient and contemporary MRSA isolates across more than 50 

67 years uncovered novel STs and allowed us a glimpse into the lineage flux between Swiss and 

68 international MRSA across time.

69

70
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71 Background

72 The introduction of penicillin during the 1930s and early 1940s was quickly followed by the rise of 

73 penicillin resistant Staphylococcus aureus due to penicillinase blaZ (1–3). Methicillin, a 

74 penicillinase-resistant antibiotic, was introduced in 1961, and within a year, the first methicillin 

75 resistant S. aureus (MRSA) isolate carrying the mecA gene emerged and established itself as a 

76 major nosocomial pathogen (4). The mecA gene is found on a mobile genetic element, the 

77 Staphylococcal Cassette Chromosome mec (SCCmec), of which different types have evolved, 

78 and which spreads via horizontal gene transfer (5).  The acquisition of mecA has been dated back 

79 to the mid-1940s (6), and it is hypothesized that the SCCmec cassette originated from the mecA 

80 gene of Staphylococcus fleurettii and its surrounding chromosomal region (7). While one study 

81 advanced the hypothesis that the acquisition of the SCCmec cassette was a single evolutionary 

82 event (8), more recent studies supported the theory that MRSA emerged multiple times through 

83 independent events (9–11) and that cassette substitution can also occur, although far less 

84 frequently than cassette acquisition (12). 

85 Molecular typing of MRSA isolates is a very important part of any local, national, and international 

86 epidemiology management strategy (13). Current unified MRSA clone nomenclature incorporates 

87 information on the genomic ancestry as multi-locus sequence typing (MLST), methicillin 

88 resistance status, and the SCCmec cassette type (e.g. ST250-MRSA-I or ST8-MSSA) (9).

89 The emergence of antibiotic-resistant S. aureus throughout the twentieth century can be roughly 

90 classified into four waves. First, the advent of penicillin resistance provided the first resistant S. 

91 aureus (1940-1960). Second came methicillin resistance, mostly linked to European hospitals 

92 (1960-1980), which spawned the term hospital-associated MRSA (HA-MRSA). In the third wave 

93 methicillin resistance spread worldwide (1980-1990). The fourth wave defines the rise of 

94 community-associated and livestock associated MRSA (CA-MRSA, LA-MRSA) (1990-2000) (14), 

95 coinciding with the development of resistance to ciprofloxacin and vancomycin (15,16). During 

96 this time, major clonal populations with specific STs emerged and disappeared through 

97 displacement by new, more successful epidemic clones (17). The first epidemic MRSA clone was 
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98 identified as ST250 in the 1960s, within clonal complex (CC) 8. It is hypothesized that it arose as 

99 a single locus variant (SLV) of ST8-MSSA, which then acquired the SCCmec type I (9) and spread 

100 throughout Europe. ST250-MRSA-I was subsequently replaced by its SLV ST247-MRSA-I, first 

101 in Denmark around 1964 (18) and then globally, gaining resistance to further antimicrobials (9). 

102 ST247-MRSA-I was later displaced in Europe by other successful lineages in the late 1990s. 

103 ST239-MRSA-III, which also evolved from ST8-MRSA-III (9), was first identified in Australian 

104 hospitals in 1979 (19). Subsequently it was found in Brazilian hospitals in 1992 (20) and competed 

105 with ST247-MRSA-I in Portuguese hospitals throughout the 1990s (21,22). Later in the century, 

106 ST8-MSSA also acquired resistance to methicillin: one of the most successful contemporary CA-

107 MRSA, USA300, belongs to ST8 (23,24). US300 has become endemic in North America and is 

108 still finding niches to colonize around the globe, with repeated introductions of USA300 into 

109 Europe reported (25–29). ST22-MRSA-IV, another global lineage, has been reported in many 

110 countries since the 1990s. ST22-MRSA-IV became a dominant HA-MRSA in England (UK-

111 EMRSA-15) (30–32), and by the year 2000 was responsible for 65% of British MRSA bacteremia 

112 episodes (33). ST5 is a pandemic lineage reported in Europe, Asia, and North America (31). 

113 Previous comparative WGS studies have highlighted a recent increase in MRSA diversity, 

114 combined with success in ecological niches (30,34). This success is bolstered by new genetic 

115 elements associated with either increased invasiveness or lower fitness cost (26,35). 

116 The molecular epidemiological situation of MRSA within Switzerland in a historic and international 

117 context has so far not been evaluated. The Culture Collection of Switzerland (CCoS)(36) is a 

118 national repository for microorganisms and contains ancient clinical S. aureus isolates collected 

119 between 1965 and 1987 based on unusual phenotypes, such as antibiotic resistance. This is the 

120 time-period when MRSA was establishing itself as a major nosocomial pathogen, from when the 

121 number of publicly available whole genomes is quite limited, with just 103 from isolates between 

122 1960 and 1992. Therefore, we aimed to perform an in-depth characterization of this Swiss legacy 

123 collection using whole genome sequencing and to position the results in a global context through 

124 comparison with publicly available genomes and modern Swiss MRSA. 
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125 Results and discussion

126 Epidemiological context of the CCoS 

127 We collected and analyzed a legacy MRSA collection from Switzerland (CCoS; n=451, collected 

128 between 1965-1987), all publicly available genomes from a similar time-period (public 

129 repositories; n=103, mainly from UK, Denmark, and Asia, collected between 1950 and 1992), and 

130 modern Swiss MRSA isolates collected at the University Hospital Basel (USB; n=1207, deriving 

131 from different Swiss institutions, collected between 2009 and 2022). We characterized the 

132 genomes using MLST, core genome MLST (cgMLST), and whole genome phylogeny.

133 The complete dataset of 1761 genomes comprise 81 STs, of which 75 have been previously 

134 described (Figure 1, Supplementary material 1). Prior to 2000, 554 genomes were analysed, 

135 belonging to 17 STs. Of these, six STs were previously undescribed and include 32 isolates. 

136 These six undescribed STs comprise two novel combinations of known loci (ST7844 and ST7842) 

137 and four exhibiting previously undescribed alleles (ST7638, ST7837, ST7839, and ST7843) 

138 (Figure 1).
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139

140 Figure 1: Epidemic distribution of MLST sequence types by collection year and dataset (A: Public repositories, B: Culture Collection 
141 of Switzerland, C: Contemporary Swiss MRSA, D: Legend). Samples with no collection year are not represented, n=6. STs present 
142 in low numbers are only shown as “other” (gray). Be aware that each subfigure has a different y-axis.

143 In both ancient datasets (Figure 1A, 1C) most of the samples were collected between 1960 and 

144 1972. The CCoS collection was dominated by ST247 isolates from the mid 1960s to the early 

145 1970s, coinciding with low levels of ST250 and ST239 (Figure 1C). A decade later, these STs 

146 were still present but we also registered ST254 and ST7844. The STs from public repositories of 

147 the same time period are similar (Figure 1A). From 1980 onwards, the STs represented in the 

148 international collection are ST239, ST8, ST5, and ST22. Of note, all the previously mentioned 

149 STs, except for ST5 and ST22, belong to CC8, as seen in the MLST minimum spanning tree 

150 (MST, Figure 2). Among modern Swiss MRSAs, we observed many more STs with the most 

151 common being ST22, ST5, and ST8 (Figure 1B). Other STs common in the CCoS are detected 

152 in small numbers among modern samples (ST239 and ST247). 
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153

154 Figure 2: MLST minimum spanning tree generated by Ridom SeqSphere+ (n=1761). Nodes colored by ST with CC superimposed. 
155 CCs are defined as all STs which match their central genotype (ST) in four or more loci. Branch labels show number of allelic 
156 differences.

157
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158 Within CC8, ST250, ST254, and ST239 are single locus variants (SLVs) of ST8, while ST247 is 

159 a SLV of ST250. The novel STs 7844 and 7842 are SLVs of ST239 and ST247, respectively. The 

160 high prevalence of ST247 among the CCoS sample set mirrors the epidemiological situation of 

161 other European countries at the time (9,18,37). In addition, the Swiss ST239 from 1972 (n=5) 

162 demonstrate that ST239 isolates were already present in Europe in the early 1970s and provides 

163 the earliest sequenced ST239 MRSA available (19). The results were visualized on a map 

164 (Supplementary material 14). An interactive version of the map can also be found online under 

165 https://github.com/svannib/ancient_MRSA/tree/main/ancient_MRSA_map.

166

167 Identification of successful ancient lineages through cgMLST clustering

168 The average S. aureus genome contains 2872 coding sequences (CDSs), of which 1861 are 

169 present in the S. aureus core genome MLST scheme (38,39). The cgMLST analysis of all ancient 

170 genomes (n=554) yielded a cgMLST MST whose nodes have been colored by ST (Figure 3), 

171 isolation country (Supplementary material 2), and collection decade (Supplementary material 

172 3). Isolates of the same ST can be seen to generally cluster together. However, we observed that 

173 some STs exhibit higher diversity between isolates than others. For example, distances among 

174 ST247 isolates rarely exceed 30 alleles, while ST5 samples often lie more than 200 alleles apart. 

175 The isolates of these STs were sampled over very different time periods (ST247 mainly from 1963 

176 to 1987 with three sample after 2000, while ST5 is more evenly distributed from 1980 to 2022, 

177 both with a gap in from mid-1990s to the mid-2000s) so this wide sampling could explain, at least 

178 in part, this higher diversity. Generally, STs with higher diversity contain samples isolated over a 

179 longer period. Another example is ST239, which shows a high diversity by cgMLST (allelic 

180 divergence between 50 and 120), with isolates from geographically distant countries (Australia, 

181 Singapore, United States, and Switzerland) and collected between 1972 and 2021. The genomes 

182 from the earliest ST239 (n=5) are central to this group (Supplementary figure 2, highlighted in 

183 red). ST5 isolates are distant from other STs (1382 allele differences), displaying allelic distances 
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184 up to 207 within this ST. ST22 samples are also distant from other groups (1599 allele 

185 differences), were isolated from different regions of Britain, and show allele differences of up to 

186 37. The biggest allelic differences are seen between CCs, exceeding 1000 allele differences in 

187 all cases, while inside CCs distances never exceed 500 allelic differences. 

188 We identified seven putative transmission clusters, using a cluster cutoff of 24 allele differences 

189 (Figure 3). Cluster 1 contains ST247 samples collected between 1960 and 1999, suggesting that 

190 isolates within this cluster remained successfully circulating throughout the decades. Cluster 2 

191 also encompasses ST247 samples isolated in the 1960s from Switzerland and Denmark, where 

192 the first ST247 was identified. Cluster 3 includes both Swiss (n=20) and British (n=1) ST239 

193 isolates, along with ST7844, the two STs separated by 11 allelic differences. Clusters 4 and 5 

194 contain Swiss isolates mainly from the 1960s and 1970s, respectively. Cluster 6 contains British 

195 ST250 samples from the 1960s, representing the first described MRSA. Cluster 7 covers German 

196 ST254 whose closest relative is ST250 (203 allelic differences), this ST is usually associated with 

197 infection in horses, and is rarely seen in humans (40). 

198

199 Changing epidemiological landscape at the turn of the century

200 Analysing all MRSA in our collection, from 1960 to 2022 (Supplementary material 4), we observe 

201 that CC8, dominant in 1960s-1970s, is not the main CC represented across modern samples. 

202 The only ST within CC8 which plays a main role after the turn of the century is ST8 (n=141/1207, 

203 12% of modern Swiss samples). This might be due to the international predominance of ST8 CA-

204 MRSA in the last decades (41). Particularly interesting is the strong modern presence of CC5 

205 (n=306/1207, 25% of modern Swiss samples) and CC22 (n=210/1207, 17% of modern Swiss 

206 samples) isolates, which were present at the international (but not Swiss) level in the 1980s and 

207 1990s. This suggests that international lineages arrived in Switzerland around the turn of the 

208 century. Furthermore, other complexes are present in modern Swiss hospitals such as CC1 

209 (n=85/1207, 7%), CC30 (n=86/1207, 7%) and CC45 (n=53/1207, 4%).
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210 In general, clones associated with HA-MRSA infections are the most prevalent both in ancient 

211 Swiss and public assemblies, possibly due to sampling bias. Modern global epidemiology shows 

212 less homogeneity, with lineages associated with community infections being more prevalent (42). 

213 These changes in epidemiological landscape mirror the recent growth in MRSA biodiversity 

214 reported internationally (30,34). 

215

216

217 Figure 3: cgMLST MST of CCoS and public repository genomes of MRSA (1960-1992, n = 554), nodes colored by sequence type 
218 and CCs are shaded. Clusters are shown with a maximal cluster distance of 24 allele differences and a minimal cluster size of 15. 
219 The earliest ST239 (1972) isolates are circled in red.

220

221 Genotypic antimicrobial resistance (AMR) prediction and core genome phylogeny

222 To analyze the genomic data on a SNP rather than allele basis, core genome SNP phylogenies 

223 were calculated, calculated first on genomes from the CCoS and from public repositories sampled 

224 between 1960 and 1992 (n=554; 2034 core genes present in over 99% of 554 isolates) 
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225 (Supplementary material 5), and subsequently with all MRSA covering a period from 1960 to 

226 2022 (n=1761; 1225 core genes across 777 genomes) (Supplementary material 6). Both 

227 phylogenies show isolates from the same ST clustering together, as seen with cgMLST. We also 

228 observe the previously mentioned increased diversity among modern MRSA, with samples 

229 isolated after 2009 having a broader variety of STs. 

230 Prediction of AMR from the genome was limited to antibiotics that are important: (i) for 

231 classification of MRSAs (oxacillin); (ii) for the history of MRSA (penicillin); or (iii) current clinically 

232 relevant antimicrobials (tetracycline, erythromycin, clindamycin, gentamicin, and ciprofloxacin). 

233 Sensitivity of the methods, the ability to correctly predict AMR, and specificity, the ability to 

234 correctly predict susceptibility, were calculated by comparing genotypic predictions to available 

235 phenotypic data (Table 1). 

236 Table 1: Sensitivity and specificity of AMR prediction for selected antibiotics and their respective antibiotic resistance encoding genes 
237 (ARG). The number of resistant and sensitive phenotypes given are based on the antibiograms (n = 451, EUCAST).

238

239 The detection of antibiotic resistance genes (ARGs) of S. aureus to predict phenotypic resistance 

240 can reach specificity and sensitivity similar to routine susceptibility testing (43,44). In our case, 

241 sensitivity to clindamycin and erythromycin seem to be particularly challenging to predict. Both 

242 phenotypic and predicted antibiotic susceptibility data are displayed adjacent to the core genome 

243 phylogeny in Figure 4 with a binary heatmap showing concordance between the two to facilitate 

244 interpretation. As expected in an MRSA-only dataset, all isolates are resistant to meropenem, 

245 which was consequently removed from the visualization. However, four samples from the CCoS 

246 display an oxacillin-resistant phenotype despite no mecA or other mec variants being identified 

247 within the genomes. This could be due to beta-lactam resistance caused by mechanisms other 

248 than mecA, such as expression of penicillin-binding-proteins with low antibiotic affinity (45,46) or 

249 overexpression beta-lactamases (47) or loss of the cassette after the phenotype was determined. 
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250 Penicillin resistance (blaZ) is widespread in this dataset (99.8%, 450/451 penicillin resistant 

251 phenotypes, 94.9%, 526/554 ancient genomes possess blaZ), being absent only from the majority 

252 of ST5 and some ST254 isolates (Figure 4). MRSA possessing blaZ has been previously 

253 documented: since the late 1960s to this day, isolates are often resistant to penicillin (48,49). 

254 Also, among modern Swiss MRSA, blaZ is still present in the majority of isolates (89.5%, 

255 1080/1207 genomes), a finding supported by other studies on European S. aureus (50). 

256 Resistance to tetracycline is widespread (94.0%, 521/554) except for within ST5, ST22, and some 

257 ST250 genomes. Clindamycin resistance and erythromycin resistance are common among 

258 ST247 samples, except for ancient Danish genomes, present in some ST5 and ST22, and rare 

259 in ST250. Gentamicin resistance is a common feature among ST239, ST254, and ST7844, while 

260 being sparsely present throughout the rest of the dataset; ST22 and ST250 are uniformly 

261 gentamicin sensitive. Ciprofloxacin resistance is rare across the entire dataset. However, 

262 prediction of ciprofloxacin resistance is not very sensitive (Table 1), and the more recent 

263 introduction of the antibiotic on the market (1987) (51) might explain the limited numbers of 

264 resistant isolates in ST239, ST5, and ST22. Higher incidence of ciprofloxacin resistance is 

265 registered in modern Swiss MRSA (37%, 452/1207).
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266

267 Figure 4 Predicted resistance/sensitivity, phenotypical resistance/sensitivity and concordance between the two mapped to a Maximum 
268 likelihood core genome SNP tree of ancient Swiss and international MRSA (1960 -1992, n = 554). Leaves colored by sequence type. 
269 Outgroup (S. epidermis) line shortened through X-axis break for visualization purposes.
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270 This dataset suggests that ancient ST247 gained genes leading to a broader resistance profile 

271 (clindamycin, erythromycin, and tetracycline) compared to some early ST250. This might be one 

272 of the factors which contributed to the success of the former and to the decline of the latter ST as 

273 epidemic MRSA clones (9). This is supported by other studies conducted on early MRSA isolates 

274 (6). The early Danish ST247 samples in this dataset are erythromycin and clindamycin sensitive, 

275 but they may present a biased portrayal of isolates of the time, since widespread erythromycin 

276 and clindamycin resistance in ST247 isolates from the same period have been reported (18). The 

277 phylogeny of the dereplicated dataset (Supplementary material 7) suggests that modern Swiss 

278 MRSA have a higher variability of resistance patterns than ancient MRSA, even among closely 

279 related isolates. This could be due to the isolates coming from geographically separated Swiss 

280 hospitals, or may be an artefact of the analytical dereplication performed on the modern Swiss 

281 MRSAs, as groups of very similar genomes are collapsed into one datapoint.

282

283 Virulence genes

284 Across all datasets, 35 unique virulence encoding genes were identified, the most common being 

285 for hemolysins and proteases, present in more than 90% of all isolates. Also common were 

286 staphylokinase (sak), staphylococcal complement inhibitor (scn), and toxin encoding genes such 

287 as lukD, lukE, sek, seq, and seb. Other staphylococcal enterotoxins (se_) were far less common, 

288 while the arginine catabolic mobile element (ACME) and toxic shock syndrome toxin (tst) were 

289 present in under 1% of samples. A virulence gene presence/absence heatmap was mapped to a 

290 phylogenetic core genome tree of the isolates (Figure 5), showing frequent co-occurrence of sak 

291 and scn. Furthermore, international ST5 and ST22 isolates exhibit a general lack of serine-like 

292 proteases (splA/B/E) and toxins (lukD, lukE, seb, sek, seq) in favor of another group of 

293 staphylococcal enterotoxins (seg, sei, sem, sen, seo, seu, sec, sel). This strong co-occurrence to 

294 one another may suggest a pathogenicity island. ST239 and ST7844 broadly lack seb while 

295 generally displaying sea presence. However, ST7844 and its most closely related Swiss ST239 

296 group also lack sek and seq. Previously described pathogenicity islands which could play a role 
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297 in the distribution and dissemination of the virulence genes seen in the dataset are vSAβ (sea, 

298 seg, sei, sem, sen, seo, splA, slpB, slpE, lukD, lukE), saPI3 (seb,sek,seq), and plB485 (sej, sed) 

299 (52). The major toxin Panton-Valentine Leukocidin (lukF-PV, lukS-PV) which heightens the 

300 virulence of MRSA (53) is sparsely present in modern Swiss MRSA, but completely absent from 

301 isolates prior to 2009 (supplementary material 8). This lies in contrast with the high rates of 

302 Leukocidin reported in the US (54) .A limitation of this virulome analysis is its reliance on WGS 

303 and gene presence/absence instead of diagnostic tests. Still, this approach has shown high 

304 concordance with phenotype-based methods (55).

305

306 SCCmec Types

307 Among 777 dereplicated genomes, six unique SCCmec cassette types were detected, as well as 

308 several ambiguous predictions. For isolates which were predicted as methicillin-sensitive despite 

309 having a resistant phenotype (n=5), no cassette was found in their genomes. SCCmec type I is 

310 by far the most prevalent (462/777, 59%), followed by type IV (144/777, 19%), and type III 

311 (61/777, 8%). SCCmec cassette types mapped to the core genome phylogeny (Supplementary 

312 material 9) illustrate strong co-occurrence between cassette types and ST lineages. SCCmec I 

313 is strongly represented within ST247 and ST250 among ancient isolates (27). SCCmec type IV 

314 (2B) is common among ancient and modern ST22, ST5, and ST8 isolates (Supplementary 

315 material 10). Three of the five major ST8-related epidemic MRSA clones are represented in this 

316 dataset (27). ST247-MRSA-I, ST250-MRSA-I (accounting for 80% (442/554) of the ancient 

317 genomes), and ST8-MRSA-IV. Another strongly represented epidemic MRSA, although it rose to 

318 prominence later than ST250-MRSA-I and ST247-MRSA-I, is ST239-MRSA-III (27), which has 

319 the same cassette as the SLV ST7844-MRSA-III. 

320 In modern Swiss MRSA, SCCmec type IV in ST5, ST8, and ST22 isolates is the dominant 

321 cassette type. These lineages have often been reported as dominant in many countries spanning 

322 the globe (56–61). The wide presence of type IV in different MRSA lineages and other 

323 staphylococcal species might suggest an improved horizontal genetic transfer rate and/or lower 

324 fitness cost (35,62,63).
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325

326 Figure 5: Virulence gene presence/absence heatmap mapped to a maximum likelihood core genes phylogenetic tree of ancient Swiss 
327 and international MRSA (n = 554). Leaves colored by sequence type. Outgroup (S. epidermis) line shortened through X-axis break 
328 for visualization purposes.

329
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330 International lineages shaped modern Swiss MRSA epidemiology

331 Based on cgMLST and core SNP trees, three groups were chosen for whole genome SNP 

332 analysis: ST239, ST7844 and closest STs (group 1, Supplementary material 11A-B); ST250 

333 together with ST247 (group 2, Supplementary material 12A-B); and ST22 (group 3, 

334 Supplementary material 13A-B). SNP phylogenies were generated using hybrid assembled 

335 Illumina/Nanopore reference genomes from within the cluster to best capture the diversity, and 

336 time trees were used to estimate the temporal origins of each group. 

337 The resulting phylogenic tree of ST239 indicates that group 1 strains evolved from an ST239 

338 ancestor, with SNP in MLST target genes resulting in SLV within the group. One example is a 

339 mutation in glpf which gave rise to ST7844 in a lineage which appears to previously have been 

340 successful, but which is not represented in modern Swiss MRSA. 

341 One cluster within this group contains Swiss, German, and British ST239 and ST7844, which 

342 were collected before 1990 (Bayesian cluster 3). It has no modern samples, hinting at its 

343 disappearance from Switzerland. Another cluster contains the earliest ST239 from Switzerland 

344 and international isolates from the 1980s and 1990s (cluster 4). Interestingly, some modern 

345 ST239 isolates (cluster 1-2) are closer to cluster 4 than to other modern samples. Cluster 5 covers 

346 both ancient ST239 from Singapore and modern Swiss ST368 and ST241, pointing to an 

347 introduction of this group into Switzerland at the turn of the century. The root of group 1 was dated 

348 to approximately 1950 (95% confidence interval (CI): 1941-1957).

349 The SNP phylogeny of ST247 and ST250 (group 2) shows that six Bayesian clusters of ST247 

350 are present in the CCoS (Supplementary File 12A-B). Bayesian cluster 6 covers both Swiss and 

351 Danish samples collected in the 1960s, alluding to international transmission within Europe at the 

352 time. Modern ST247 play a small role in the modern Swiss epidemiology of MRSA, but these 

353 modern isolates cluster with ancient Swiss, British, and Belgian ST250s. The root of this group 

354 was dated to 1870 (95% CI: 1851-1885).

355 The ST22 phylogeny (group 3, Supplementary material 13A-B) (origin dated to 1914 (95% CI: 

356 1907-1918)) again hints at the international origin of lineages circulating today in Switzerland, as 
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357 British isolates from the 1980s are closely related to the ancestors of 85 modern Swiss samples 

358 (clusters 5 and 4). 

359 Overall, SNP phylogeny of cgMLST clusters provides evidence as to which of the old international 

360 MRSA lineages appeared briefly in Switzerland before being displaced, and which contributed to 

361 the MRSA diversity we see in modern Switzerland. 

362 Conclusion

363 Since the 1960s, MRSA has been a challenging bacterial pathogen faced by clinicians worldwide. 

364 This study sheds light on the spread and relationships of major early MRSA clones. Our genome 

365 collection includes 451 MRSA samples from CCoS isolates between 1965 and 1987s, alongside 

366 103 ancient MRSA genomes from public repositories and 1207 modern MRSA isolated in Swiss 

367 hospitals. Despite being a sample set which is potentially unrepresentative of the diversity in 

368 Switzerland at the time, our data reveal an ancient epidemiological landscape within Switzerland 

369 similar to that in the rest of Europe at the time. MRSA lineages which played an important role 

370 across European and Swiss hospitals from the 1960s to the 1990s, such as ST247-MRSA-I, 

371 ST250-MRSA-I and the earliest ST239-MRSA-III are represented in the CCoS. Today, these 

372 clones appear to have been displaced in Switzerland, with international lineages from the last 

373 quarter of the 20th century, including ST5-MRSA-IV, ST8-MRSA-IV, and ST22-MRSA-IV now the 

374 major players in Swiss hospitals. An analysis of the AMR and virulence profiles showed how 

375 different STs are associated with different AMR and virulence encoding genes. The limitations of 

376 this study are: a) the lack of sequenced Swiss isolates between 1988 and 2008, which prevents 

377 us from fully understanding the epidemiological changes which happened over the turn of 

378 the century and b) the lack of phenotypic resistance data for the current Swiss MRSA, which 

379 would make our lineage-resistance association more robust and precise. These data from CCoS 

380 hold high scientific interest, as the collection contains some of the first MRSA ever isolated and 

381 whose whole genome sequences we now present. We have thus significantly increased the public 

382 available genomes from the early period.  The volume of isolates and phenotypic characterization 
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383 make them an important addition to the pool of MRSA genomic data of isolates isolated in the 

384 second half of the 20th century. The analysis of early pathogenic MRSA such as these isolates 

385 leads to a deeper understanding of its epidemiology which may help current and future efforts in 

386 infection control and prevention.

387 Materials & Methods

388 Whole genome sequencing and phenotypic AMR profiling

389 Bacterial genome assemblies from the CCoS and from the University Hospital Basel (USB) were 

390 generated at the Division of Clinical Bacteriology (USB) according to their ISO 17025 accredited 

391 standard procedures. DNA was extracted with a Qiagen BioRobot EZ1 using the QIAamp DNA 

392 Mini Kit (QIAGEN, Hilden, Germany) and according to the manufacturer’s guidelines. Library 

393 preparation was performed using an Illumina Nextera DNA Flex Library Prep Kit and multiplexing 

394 at 96-plex on a NextSeq 500 System using the Mid-Output Kit (Illumina, San Diego, USA). 

395 Resulting fastq files underwent a quality check, where the sequences with a phred score lower 

396 than 30 were discarded (only sequences with a base calling accuracy above 99.9% are kept). 

397 Sequencing data was quality controlled using FastQC (v 0.11.5) (64), MetaPhlAn (v 2.7.7) (65). 

398 Adaptors were trimmed using Trimmomatic (v 0.38) using default parameters 

399 (ILLUMINACLIP:2:30:10 SLIDINGWINDOW:4:15 MINLEN:125) (73). Genome assemblies were 

400 created de novo using Unicycler (v 0.3.0b) (66) and checked with QUAST (v 5.0.2) (67) Further 

401 details can be found in (68).

402 For the isolates from CCoS, a phenotypic antibiotic resistance analysis was conducted as follows: 

403 bacteria were grown on CHROMID/MRSA Agar (bioMérieux, Marcy-l’Étoile, France) at 35 ± 2°C 

404 for 48h. Antibiotic susceptibilities were determined using a microdilution assay (Vitek2, 

405 bioMérieux, Marcy-l’Étoile, France) and interpreted according to breakpoints published by the 

406 European Committee on Antimicrobial Susceptibility Testing (EUCAST), version 9.0 (69).
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407 Nanopore sequencing

408 Ten isolates from the CCoS were chosen for nanopore sequencing. DNA was extracted from the 

409 bacterial pellet using the DNA mini (Qiagen) kit on the QIAcube robot (Gram + Enzymatic lysis 

410 protocol) with 150 μl elution volume. Long read libraries were prepared using the ligation 

411 sequencing kit (SQK-LSK 109). The libraries were sequenced using GridION with R9.4 flow cells 

412 with a default 72h run time. Basecalling and de-multiplexing were carried out within the inbuilt 

413 MinKnow (21.05.12) software. Basecalling was done using Guppy (5.0.12) high accuracy model. 

414 Quality check was carried out using Nanoplot (1.35.4) (70) and MetaPhlAn (3.0.13) (65). Trimming 

415 was done with Porechop (0.2.3) (71). Short reads were removed with Filtlong (0.2.0) (72). 

416 Assembly was performed with flye (2.8.1) (73) and polished with racon (1.4.7) (74), medaka 

417 (1.4.4) (75) and polypolish (v0.4.3) (76). Raw data can be found at the European Nucleotide 

418 Archive under accession number PRJEB59014.

419

420 Collection of public genomes

421 The timeframe covered by the 451 S. aureus isolates from the CCoS is from 1965 to 1987. The 

422 parameters for the search of public genomes were set at a slightly wider timeframe (1960-1992) 

423 to allow for a wider selection of isolates. 108 assembled genomes were downloaded from NCBI 

424 Pathogen Detection (77). NCBI Pathogen. The 108 genomes, and their respective metadata, 

425 were obtained by applying the following criteria: Species: Staphylococcus aureus, Collection date: 

426 1960 to 1992. 150 genomes were downloaded from Pathogenwatch (78,79). The assemblies 

427 were found by searching for Staphylococcus aureus genomes collected between January 1960 

428 and December 1992. 

429

430 Data filtering

431 Filtering criteria were applied to both the public and in-house sequenced isolates. Only isolates 

432 which satisfy the following conditions were kept: Genome length within ± 10% of reference S. 
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433 aureus genome NCTC 8325; where recorded, read depth greater than 20x; if antibiogram was 

434 present, resistance to oxacillin, otherwise presence of mecA in the genomes was considered as 

435 denoting an MRSA. 46 isolates with an oxacillin-sensitive phenotype were removed to focus the 

436 analysis on MRSA, as oxacillin belongs to the same drug class it shares its mode of action with 

437 methicillin and has replaced methicillin in clinical use. 23 further isolates which possessed no 

438 phenotypic data and were predicted as MSSA during analyses were discarded. Additionally, 131 

439 duplicate genomes were removed. Two CCoS isolates were removed for low read depth (<20x). 

440 Finally, 1207 MRSA genomes isolated in multiple Swiss hospitals and sequenced at the University 

441 Hospital of Basel between 2007 and 2022 were selected to represent a modern collection. After 

442 this process 451 MRSA isolates from the CCoS, 103 from public repositories (18 from 

443 Pathogenwatch and 85 from NCBI Pathogen Detection), and 1207 from the USB were used in 

444 further analysis.

445 Genotyping

446 This work used two genotypic typing methods: multi-locus sequence typing (MLST) and core 

447 genome MLST (cgMLST, (38)). The genomes were typed in Ridom SeqSphere+ (v8.3.0), 

448 generating MSTs of MLST or cgMLST data, and a world map displaying the origin of the isolates 

449 (Map data © Google, INEGI). For all visualizations, colorblind-friendly color palettes were created 

450 with the “coolors” website (80). cgMLST clusters were generated with a minimum cluster size of 

451 15 and a maximum cluster distance of 24 different alleles (38).

452 Phylogenies

453 To improve visualization comprehensibility for this step, the 1207 genomes from the USB were 

454 dereplicated with a 0.005 threshold in Assembly Dereplicator (v0.1.0) (81) resulting in 223 

455 genomes. Assembly dereplicator clusters the genomes with dissimilarity lower than the threshold 

456 and keeps the assembly with the largest N50 for each cluster. An S. epidermis reference genome 

457 (NZ_CP035288.1) was added as an outgroup for rooting purposes. Prokka (v1.14.5) (82) was used 
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458 to annotate the genomes. From the annotated genomes, a the core genome alignment was 

459 generated with roary (v3.13.0) (82).This core genome alignment was processed with IQ-TREE 2 

460 (v 2.2.1) (83). Whole genome alignments of cgMLST clusters were calculated with SKA (v 1.0) 

461 (84), within-house hybrid assemblies used as a reference where available. For ST22, reference 

462 sequence NZ_CP053101.1 was used. From these alignments, phylogenies without 

463 recombination were generated with gubbins (v 3.2.1) (85) and rooted with BactDating (v1.1.1) 

464 (86). Clusters were investigated with fastBAPS  (v 1.0.8) (87). The phylogenies were visualized 

465 in RStudio (v2022.07.1+554).

466 AMR and virulence prediction 

467 In order to predict AMR and virulence, parts of the -finder software suite developed by the Danish 

468 center for genomic epidemiology were used. The Resfinder Software (88) was applied to all 

469 genomes. Leveraging the antibiograms of the isolates, they were compared with the software 

470 prediction to gauge software performance. Virulencefinder (89) was also run on all genomes. The 

471 detected genes were arranged in a presence absence matrix. Subsequently the virulence genes 

472 were classified by using the virulence factors database VFDB (90), Uniprot (91) and by consulting 

473 relevant publications. 

474 SCCmec cassettes

475 SCCmecfinder was also implemented for the genome set after dereplication using the 

476 SCCmecfinder web server (92).

477

478 R packages

479 The following R packages were used: pacman (v0.5.1) (93), tidyverse(v1.3.4) (94), rjson (v0.2.21) 

480 (95), ggtree (v3.2.1) (96), treeio (v1.18.1) (97), tidytree (v0.4.1) (98), ape (v5.6.2) (99), flextable 

481 (v0.8.2) (100), BactDating (v1.1.1) (86), fastbaps (1.0.8) (87), svglite (v2.1.0) (101), knitr (v1.4.0) 

482 (102).
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774 Glossary

775 MRSA = methicillin resistant Staphylococcus aureus
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776 MSSA = methicillin sensitive Staphylococcus aureus

777 HA-MRSA = hospital-associated MRSA

778 CA-MRSA = community-associated MRSA

779 LA-MRSA = livestock-associated MRSA

780 CCoS = Culture Collection of Switzerland

781 USB = University Hospital Basel

782 MLST = multilocus sequence type

783 cgMLST = core genome multilocus sequence type

784 ST = sequence type

785 CC = clonal complex

786 SLV = single locus variant

787 CI = confidence interval
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