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Abstract 
 
Perception has long been envisioned to use an internal model of the world to infer the causes of 
sensory signals. However, tests of inferential accounts of perception have been limited by 
computational intractability, as inference requires searching through complex hypothesis spaces. 
Here we revisit the idea of perception as inference in a world model, using auditory scene analysis 
as a case study. We applied contemporary computational tools to enable Bayesian inference in 
a structured generative model of auditory scenes. Model inferences accounted for many classic 
illusions. Unlike most previous accounts of auditory illusions, our model can be evaluated on any 
sound, and exhibited human-like perceptual organization for real-world sound mixtures. The 
combination of stimulus-computability and interpretable structure enable ‘rich falsification’, 
revealing additional assumptions about sound generation needed to explain perception. The 
results show how a single generative theory can account for the perception of both classic illusions 
and everyday sensory signals. 
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Introduction 
 
Our perception of the world results from patterns of energy transduced by sensory receptors. But 
these sensory inputs alone do not specify the distal structure in the world that we perceive. For 
instance, many different three-dimensional objects are consistent with the same two-dimensional 
image, and many different combinations of sound sources are consistent with any observed 
sound waveform. Illusions show that out of many possible ways to interpret sensory inputs, human 
observers tend toward particular percepts, revealing constraints on perception that help resolve 
the ill-posed nature of perceptual problems. A key goal of perceptual science is to characterize 
these constraints and understand how they enable our real-world perceptual competencies. 
 
Gestalt principles were an early approach to characterizing constraints on visual perception (1, 
2), with analogues in auditory perception (3, 4). Nowadays these principles are taken to describe 
properties of a stimulus (“cues”) that determine its perceptual interpretation. For instance, in 
auditory perception, the principle of “common onset” states that sound components that begin at 
the same time tend to be grouped together. In modern extensions of the Gestalt approach (5), 
grouping cues are conceived as regularities that result from the causes of sensory data in the 
world. For example, the principle of common onset reflects the intuition that a single event would 
produce many frequency components simultaneously – so if such components are detected, they 
should be grouped.  
 
These verbally-stated principles led to computational accounts of perception in which cue features 
are detected in sensory signals and used to determine stimulus grouping (3, 6–13). Models based 
on grouping cues have been used to explain targeted perceptual phenomena, such as contour 
grouping, figure/ground assignment, or grouping of tone sequences, but in practice do not come 
close to comprehensively accounting for the perceptual interpretation of real images or sounds. 
These limitations reflect the difficulty in specifying features that are predictive of perception. For 
instance, local features tend to be ambiguous, and can be interpreted differently depending on 
the surrounding context (14–19). 
 
An alternative possibility is that perceptual systems might more directly utilize constraints on how 
sensory data is generated (20, 21). For instance, natural images are constrained by optics, which 
describes how light interacts with surfaces to create shading and shadows evident as luminance 
gradients in the resulting image. Similarly, natural sounds are constrained by acoustics, which 
describes how different types of physical or biological processes generate different types of 
sounds. Perceptual systems could capture these constraints using an internal ‘world model’ of 
how causes generate signals (Figure 1A).  
 
In vision, this world model might resemble a model of optics that describes how illumination and 
three-dimensional objects (causes) interact to produce luminance patterns (signal). Perception 
could be a process of using such a world model to infer the causes that are likely to have 
generated the incoming signal (Figure 1B). In principle, probabilistic (Bayesian) inference 
provides the basis for inverting the world model to determine causes from signals (Figure 1A): 
given an input signal, the output of inference is a set of possible causes, each with an associated 
probability. While different causes can generate the same signal (i.e., perceptual inference is ill-
posed), some causes are more likely to have generated the signal than others, and a sufficiently 
accurate internal world model and inference procedure could enable us to arrive at an accurate 
perceptual interpretation most of the time (Figure 1B, alternative). The causes in the world model 
thus simultaneously specify what is inferred by perception and provide the constraints necessary 
to (probabilistically) solve the ill-posed computation. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.538626doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.27.538626
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

 

 
 
Figure 1. Overview of perception as inference in a world model. A) Generative processes in the world produce 
sound, which can be described with models of sound generation (acoustics). Perceptual systems could use an internal 
model of how causes generate signals (a “world model”) to infer the causes which generated the data, through Bayesian 
inference. B) Example of inference in a visual world model (20). We perceive the image on the left to be a set of solid 
blue cylinders that is lit from the left. This percept can be considered an explanation of the image in terms of interacting 
causal variables like illumination and surface reflectance (shown in middle). But there are many alternative causal 
explanations for this image, for instance that the cylinders are lit uniformly and have gradients that are painted onto 
their surface (right). Perception could avoid this alternative explanation due to the low prior probability of surfaces being 
painted and illuminated in this way. C) High-level description of the proposed internal generative model of auditory 
scenes. Sources are sampled from a source prior distribution. Sources emit events that create sound. The model is 
expressed with a probabilistic program, which allows for scene descriptions that vary in dimensionality (the schematic 
here should not be mistaken for a graphical model, which would not allow for variable dimensionality). D) Analysis-by-
synthesis. Given an observed sound, we infer a distribution over possible scenes that are likely to have generated the 
sound ("Inferred scenes up to time t"). This inference process proceeds sequentially, considering increasingly longer 
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durations of audio, at each step combining a bottom-up “analysis” step with a top-down “synthesis” step. First, a deep 
neural network proposes events from the sound, and these events are combined into sources to create scene 
hypotheses (bottom-up). For each hypothesis, variational inference through the fully differentiable generative model is 
used to update the scene to maximize the prior and likelihood (top-down).  Last, the probabilities are compared to find 
the best scenes given the observed sound. For image attributions, see acknowledgments. 
 
 
Inference in generative models typically involves a search through the space of possible causes 
to find those that are plausible given the data. Despite the appeal of generative models for 
explaining perception (22), in practice, this search is computationally intractable for all but the 
simplest models, which has limited their scope as accounts of perception. With few exceptions 
(23, 24), prior applications of Bayesian inference to human perception have been limited to few- 
or fixed-dimensional domains (17, 25–33), operated on symbolic data rather than actual sensory 
signals (34–39), or faced intractable inference issues that prevented them from being fully 
evaluated (22, 40, 41). 
 
Here we consider auditory scene analysis as a case study in perceptual organization, with which 
to revisit generative approaches to perception. Auditory scenes are an appealing starting point 
for a generative account of perception, because relatively simple generative models can 
synthesize a wide variety of naturalistic sounds. Nonetheless, one prevailing challenge is the 
difficulty of integrating structured models with raw audio signals as input. Most existing models 
are restricted to symbolic rather than acoustic input (37, 38, 42), and thus are only applicable to 
synthetic stimuli with simple symbolic descriptions (e.g. tone sequences). Because of this, we 
have lacked a comprehensive account of key phenomena in auditory scene analysis, despite 
many proposed conceptual approaches (43). It is also unclear whether putative principles for 
auditory perceptual organization which apply to synthetic sounds could also extend to explaining 
auditory scene analysis in everyday sounds (44).  
 
To realize a theory of perception as inference in world model (20, 21), we leverage contemporary 
technical developments to render Bayesian inference in world models newly approachable. To 
build a rich, structured model of auditory scenes (Figure 1C), we use a generalization of graphical 
models called probabilistic programs (23, 45). To implement search, we take an “analysis-by-
synthesis” approach (Figure 1D), assessing bottom-up proposals about potential causes 
(“analysis”) via top-down “synthesis” using the generative model (4, 46). This strategy combines 
the benefits of fast pattern recognition with the explanatory power of Bayesian inference. To make 
analysis-by-synthesis tractable, we use deep learning to make bottom-up proposals (“amortized 
inference”) (47) and assess them top-down using stochastic variational inference to approximate 
the posterior, leveraging a differentiable generative model (48, 49). We compare our approach to 
deep neural networks that have had success in source separation tasks with naturalistic audio 
(i.e., reconstructing premixture waveforms from audio mixtures, which might be viewed as a form 
of auditory scene analysis).  
 
Unlike previous symbolic models, our model can be evaluated on any sound signal, enabling it to 
be tested on both classic illusions and natural sounds. Experiments with human listeners show 
that the model inferences capture human perception for recorded environmental audio. The ability 
to evaluate the model on natural sounds also allows the model to be “richly falsified”, highlighting 
structure in natural sounds that our perceptual systems are attuned to, and that might otherwise 
be overlooked. Unlike neural networks for source separation, which reconstruct waveforms, our 
model outputs probabilities over symbolic scene descriptions that specify the number of sources, 
the properties of the inferred sources and the sound events that each source emits. We found 
that our model accounted for a variety of classic illusions in auditory perceptual organization, 
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whereas source separation networks did not. These results show that rich Bayesian models of 
perception are now within reach, and can bridge traditional psychophysics with the perception of 
everyday sensory signals. 
 

Results 
 
Overview 
To investigate the extent to which auditory scene analysis can be explained by a generative model 
of sound, we considered how to simply describe and render a variety of sounds. The resulting 
generative model provides a hypothesis for the internal model that might underlie human auditory 
scene analysis (Figure 1C), constituting a computational-level explanation in the sense of Marr 
(50). The model is accompanied by an analysis-by-synthesis inference procedure that we built to 
search the model space, enabling us to evaluate the model on audio signals (Figure 1D). To test 
how well the generative model aligns with human perception, we first assessed whether inference 
in the model accounts for a set of classic auditory scene analysis illusions. These illusions are 
widely thought to elucidate principles of human hearing and thus provide a clear starting set of 
phenomena that any model should account for. We tested the role and importance of different 
aspects of the model by assessing the effect of various model "lesions". To establish baseline 
performance on these illusions using alternative scene analysis strategies, we compared our 
model with an assortment of contemporary deep neural network source separation systems (as 
these are the main widely used alternative class of stimulus-computable model at present). 
Finally, we leveraged the ability to apply the model to any sound waveform, performing inference 
on mixtures of recorded everyday sounds. We ran experiments on human listeners to assess 
whether the model accounted for human perceptual organization of these real-world auditory 
scenes, using the model “failures” to reveal previously unappreciated constraints on human 
perception. 
 
The model and inference procedure are briefly described in the following sections, with the intent 
of providing a high-level description that will enable the reader to understand the main results of 
the paper. For a full description of both the generative model and our inference procedure, see 
the Methods. The interested reader is also referred to Supplementary Algorithm 1 for pseudocode 
defining the model. 
 
Generative model 
A generative model specifies 1) the structure of possible latent causes of sensory data, with 
associated prior probabilities describing how likely each cause is to occur in the world, and 2) a 
description of how these causes generate data, determining the likelihood of observed data under 
each possible cause. Together, these components provide probabilistic constraints that 
determine the Bayesian posterior distribution over causes given an observed sensory signal, 
p(cause|signal). 
 
Our proposed model is inspired by observations of generative principles in everyday sounds, 
balanced by simplicity to enable tractable inference. Because everyday auditory scenes can 
include variable numbers and kinds of sources, we defined the model as a probabilistic program 
(23, 45) to allow for this variable structure. As for any generative model, the program consists of 
the prior and likelihood components mentioned above: 
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1. A sampling procedure which generates a hierarchical symbolic description of a scene, 𝑆, 
in terms of sources and the events they emit. The sampling procedure defines the prior 
distribution 𝑝(𝑆) over this space of possible causes of sound, providing constraints on 
what sources and events are probable a priori. 

2. A renderer which uses this symbolic scene representation 𝑆 to generate an audio 
signal.  The rendered sound can, in conjunction with a noise model, be used to evaluate 
the model likelihood 𝑝(𝑋|𝑆) for any observed sound 𝑋 (a noise model is needed to account 
for measurement error in sensory data and to allow for imperfect matches between model-
generated and observed data). The likelihood assesses how likely a scene description is 
to generate a particular sound.  

 
Given an observed sound waveform 𝑋, the sampling procedure and renderer induce a posterior 
distribution over auditory scenes by Bayes’ rule: 𝑝(𝑆|𝑋) ∝ 𝑝(𝑆) × 𝑝(𝑋|𝑆). The most probable 
scene descriptions for an observed sound can then in principle be found via inference (searching 
through scene descriptions to find descriptions with high posterior probability). In practice, this 
search has traditionally been intractable due to the high dimensionality of the space of generative 
parameters. We begin by describing the qualitative structure of the sampling procedure and 
renderer, then the prior 𝑝(𝑆) and likelihood 𝑝(𝑋|𝑆), and then the inference procedure we used to 
make the search for probable scene descriptions more tractable.  
 
Generative model: Structure 
Figure 2A shows examples of recorded everyday sounds. We took inspiration from such sounds 
to develop a flexible and widely applicable symbolic description of sound sources. The resulting 
model is considerably more expressive than previous generative models for auditory scene 
analysis, and can generate simple approximations of many everyday sounds. We nonetheless 
intentionally kept its structure as simple as possible so as to facilitate inference. The following 
three observations informed the model's construction.   
 
First, a substantial variety of everyday sounds can be described as coming from three broad 
classes (Figure 2A): noise, harmonic, and whistle sounds. Noise-like sounds are commonly 
produced by turbulence in air or fluids (e.g., waves crashing), or when large numbers of sounds 
superimpose to form textures (e.g., shaking coins) (51, 52); brief impact sounds are also often 
well described as short snippets of noise. Periodic sources produce harmonic sounds; these 
range from spoken vowels (53) to buzzes produced by bees’ rapid wingbeats (54) and squeaks 
produced by rubbing glass (55). Whistles are commonly created by air flow and resonance (e.g., 
in kettles) (56) and are produced in a variety of ways by animals across taxa (e.g., bird chirping) 
(57–59). Although some complex sound sources can involve more than one of these sound types, 
many natural sounds are dominated by a single sound type.  
 
Second, many sounds can be described as being produced by multiple discrete, dynamic 
“events”, corresponding to when a source supplies energy to produce sound. For example, the 
squealing sound produced by rubbing glass starts and stops over time, corresponding to relatively 
discrete time intervals when force is being applied to the glass surface. Within those intervals, the 
sound continuously changes in fundamental frequency. The resulting events may be temporally 
extended over seconds (e.g., a kettle whistling) or more transient (e.g., the chirps of a bird), and 
can change in their properties from event to event (e.g., a dog panting in and out).  
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Figure 2. Generative model, illustrated with everyday recorded sound examples. A) The three sound types with 
natural sound examples. The examples demonstrate a variety of amplitude and frequency modulation, spectral shapes, 
and temporal patterns. Here and in other figures, sound examples are available on the project website, 
https://mcdermottlab.mit.edu/mcusi/bass/. B) A scene consists of any number of sources. Each source belongs to one 
sound type, which defines how the source is parametrized and rendered, and determines which source priors the 
source is sampled from. The sampled source parameters define distributions over events. A source can emit any 
number of events. Events consist of active and rest intervals, time-varying amplitude, and depending on the sound 
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type, possibly a spectrum and/or time-varying fundamental frequency. Events are rendered into sound waveforms by 
combining an excitation and filter (cochleagrams of source sounds are shown only for visualization; they are not part 
of the generative model). The sounds generated by independent sources sum together to create a scene sound, which 
is transformed into a cochleagram for model inference. This scene cochleagram is the basis for the likelihood function. 
The number of sources, the type of sources, and the number of events can all change the dimensionality of the model, 
requiring it to be expressed as a probabilistic program. For image and sound attributions, see acknowledgments. 
 
 
Third, the events emitted by a source reflect source-specific regularities in a variety of attributes, 
including event timing, fundamental frequency, amplitude, and spectral shape. For example, 
some sources tend to produce many regular events in quick succession (e.g., rubbing glass), 
while others produce long events that continuously vary (e.g., waves crashing). And while the 
chirps of a bird vary smoothly in fundamental frequency, the buzzing of a bee varies rapidly and 
erratically. Both stay in a relatively narrow range of frequency space. 
 
These three observations are a starting point for a generative model of auditory scenes. In our 
model (Figure 2B), a scene description consists of sources which each emit a sequence of 
discrete events. A scene can contain any number of sources (Figure 2B, “sample number of 
sources"), each of which generates one type of sound: noise, harmonic, or whistle (Figure 2B, 
“sample type”). Sources of the same type can differ from each other in the attributes noted above, 
for example, in their spectral shape, in how loud they tend to be, or in how often they tend to emit 
events (characterized by the setting of the knobs in Figure 2B, which in the model are sampled 
from the source priors). These source parameters define the event priors, causing regularities 
across events produced by the same source (Figure 2B, “events”). Each source can emit any 
number of events. Each event is dynamic in time, e.g. changing in frequency or amplitude (Figure 
2B, "Events"). Given a scene description S, the renderer synthesizes the sound emitted by each 
source (Figure 2B, "Source sounds") and sums them to produce the scene sound waveform 
(Figure 2B, "Scene sound"). 
 
The sound types in our model are parametrized as excitation-filter combinations commonly 
proposed for natural sound generation (53, 60, 61) (Figure 2B, excitation/filter split in the events 
panel). Sound is produced by an “excitation” that supplies sound energy and a “filter” that 
determines the spectral shape; in our model the excitation comes in one of three varieties 
determined by the sound type. Sounds produced by very different physical mechanisms (e.g. the 
beating wings of a bee versus the friction of rubbing glass) may still be best described by the 
same excitation type, and therefore can have the same parametrization in the model. A noise 
source produces aperiodic excitation with a pink (1/f) spectrum and an amplitude that varies over 
time. A harmonic source produces periodic excitation: a sum of harmonically related sinusoids 
with a time-varying fundamental frequency and amplitude. A whistle sound similarly produces a 
periodic excitation, but only generates the first harmonic. In whistle sounds, the filter can be 
considered fixed, and so we omit it for simplicity.  
 
A source becomes “active” for a bounded time interval while emitting an event, and is otherwise 
silent while it “rests” in between events (Figure 2B, active/rest in the events panel). Events are 
defined by an onset when the source's excitation begins (discretely), an offset when the excitation 
ends, a filter, and a time-varying excitation (Figure 2B, events panel). Each of these are sampled 
from event priors defined by the source parameters (represented by the knobs in Figure 2B).  
 
Generative model: Prior distributions 
The qualitative properties of the generative model described in the preceding section are made 
precise with a sampling procedure for scene descriptions that defines the prior distribution 𝑝(𝑆). 
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To reflect the structure of the scene description (in which different sources emit events), 𝑝(𝑆) is 
hierarchical (Figure 2B). There are prior distributions over source parameters for each sound type 
(source priors), and each sampled source defines prior distributions over events (event priors). 
Sources are assumed to be independent, whereas events emitted by a single source are sampled 
sequentially so that each event depends on the events preceding it.  
 
This hierarchical prior can account for a variety of sound regularities. Figure 3A illustrates how 
the model can express sources with different temporal regularities. The short, consistent impacts 
of hammering nails is represented in the source parameters as a small value of µ (average 
duration) paired with a small value of σ2 (variance). By contrast, the song of a white-throated 
sparrow comprises mostly longer notes of more variable duration (large µ and large σ2). The 
source parameters µ and σ2 are sampled from the source prior; the durations of all events 
produced by the sampled source then follow an ‘event prior’ distribution governed by these source 
parameters (in particular, a log-normal distribution parametrized by µ and σ2). The same 
generative process (with different sampled source parameters) is used for the “rests” between 
events. Figure 3B shows the analogous hierarchical generative process for the time-varying 
fundamental frequency of the source excitation. Here the event priors are Gaussian processes, 
defined by source parameters µ (average F0), 𝜎 (range of F0 variation), and ℓ (pace of F0 
variation). Because the Gaussian process is a prior on functions, it is depicted with samples in 
Figure 3B (fourth row). The amplitude of the excitation follows the same generative process but 
with different values defining the source priors. The Gaussian process priors for the excitation 
trajectories additionally account for situations where the excitation properties change from event 
to event (the non-stationarity illustrated in Figure 3B; see also Supplementary Figure 1). The role 
of the Gaussian process priors is discussed further in the Model lesions section below.  
 
The spectrum of the source filter follows a generative process like that for the excitation, but is 
constant across all events. The Gaussian process priors for the spectrum of the source filter differ 
for noise and harmonic sources, embodying the tendency of harmonic sources to have smooth 
spectral envelopes (Figure 3C). 
 
To determine the shape of the source priors, we fit each one to a dataset of sound textures (for 
noise) and speech, musical instruments, and birdsong (for periodic sounds; we assumed that the 
priors over fundamental frequency would be similar for harmonic and whistle sounds). The 
distributions we chose (a normal-inverse-gamma prior over the temporal variables, and Gaussian 
processes over the multivariate spectrum and excitation trajectory; see Methods) enable the use 
of differentiable sampling procedures and efficient inference platforms that have been developed 
for common distributions (62), thereby facilitating inference. 
 
The overall model is depicted graphically in Figures 2 and 3, and is described in detail in the 
Methods. See Supplementary Algorithm 1 for pseudocode describing the full probabilistic program 
instantiating the generative model. Supplementary Figure 2 shows sounds sampled from 𝑝(𝑆). 
 
Generative model: Likelihood 
Given S, the symbolic description of the auditory scene, the renderer generates the sound 
waveform produced by each source. The sound waveforms corresponding to all sources are 
summed to produce the scene waveform, X!. 
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Figure 3. Prior and likelihood, illustrated with recorded natural sound examples. A) Hierarchical priors on event 
duration. Hammering nails results in short, consistent impacts, while the song of a white-throated sparrow comprises 
longer tones of variable duration. To capture such regularities, we use a hierarchical model. For each source, the 
source parameters μ (mean duration) and σ2 (variance) are sampled from the source priors (a normal-inverse-gamma 
distribution).  The source parameters define the event priors (log-normal distributions) from which the event durations 
are sampled. Different source parameters capture different regularities: the hammer impacts can be modeled with a 
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low mean and low variance, while the sparrow song requires a high mean and high variance. B) Hierarchical priors on 
fundamental frequency. The trombone’s fundamental frequency is in a low, wide frequency range, and changes slowly, 
while the spring peeper is in a high frequency range and changes quickly by a small amount. For each source, the 
source parameters μ (mean), σ (kernel variance) and ℓ (kernel lengthscale) are source parameters that are sampled 
from source priors. These source parameters define the Gaussian process event priors from which event fundamental 
frequency trajectories are sampled. Different source parameters capture different regularities: the trombone can be 
captured by low mean, high variance, and high lengthscale, while the spring peeper can be captured by high mean, 
low variance, and low lengthscale. We depict the Gaussian process priors by showing samples of potential trajectories. 
To account for the possibility that excitation trajectories might change in their properties from event to event (e.g., a 
dog panting creates different amplitudes on the in- and out-breath), we used a non-stationary Gaussian process kernel 
(see Supplementary Figure 1 for more detail). This required the Gaussian process event priors to be conditioned on 
the timing of events. C) Prior over filter shape. We used different priors for the filters of different sound types, so that 
the spectra of harmonic sources tended to be smoother than those of noise sources. This difference was implemented 
with a Ornstein-Uhlenbeck kernel for noises and a squared-exponential kernel for harmonics. We depict the Gaussian 
process priors by showing samples. D) To calculate the likelihood, the observed and generated cochleagrams are 
compared under a Gaussian noise model. 
 
 
The likelihood 𝑝(𝑋"#$|𝑆) tells us how likely it is that a particular scene 𝑆 will generate an observed 
sound, 𝑋"#$. To compute 𝑝(𝑋"#$|𝑆), the scene waveform 𝑋% rendered from 𝑆 must be compared 
to the observation 𝑋"#$. To do so, the two waveforms are first converted to a cochleagram, a time-
frequency representation of sound that approximates the filtering properties of the human ear, 
and are then compared under a Gaussian noise model (Figure 3D). That is, the likelihood is the 
probability that the observed cochleagram 𝐶"#$ is a noisy measurement of the rendered 
cochleagram 𝐶%: 
 

𝑝(𝑋"#$|𝑆) = 𝒩(𝐶"#$; µ = 𝐶%, σ&')	
= 𝒩(𝐶"#$ 	− 	𝐶%; µ = 𝟎, σ&') 

 
The motivation for basing the likelihood on the cochleagram rather than the sound waveform is 
that human discrimination is constrained by cochlear filtering (63). The cochleagram 
representation of sound has the additional benefit of tending to vary smoothly with respect to the 
continuous latent variables of our model, facilitating gradient-based inference. The assumed noise 
level σ( is a free parameter (fixed to be the same value across all inferences).  
 
Inference 
By Bayes’ rule, the prior 𝑝(𝑆) and likelihood 𝑝(𝑋|𝑆) induce a posterior distribution 𝑝(𝑆|𝑋) for an 
observed sound 𝑋, that is, 𝑝(𝑆|𝑋) ∝ 𝑝(𝑆)𝑝(𝑋|𝑆). The posterior describes which hypothesized 
scenes are more likely explanations of the observed data. From this viewpoint, the computational 
goal of perception is to uncover the most likely explanation (or set of explanations) of the sound 
𝑋 given the world model. 
 
Finding the hypotheses that are most likely under the posterior distribution involves two main 
challenges. First, posterior inference requires solving a difficult search problem. Because the 
generative model is expressive, the space of scene descriptions is vast, making it difficult to find 
good hypotheses to evaluate. Second, the posterior distribution is typically multimodal. Complex 
generative models (like ours) typically give rise to multiple plausible hypotheses (modes), such 
that even if we could find a region of scene space containing good hypotheses, multiple 
hypotheses must be compared since some may only be local optima. To successfully compare 
the modes, we must evaluate how much posterior probability mass corresponds to each mode 
(see Methods). However, because hypotheses are high-dimensional and contain complex 
dependencies between the various random variables, it is difficult to estimate the probability 
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landscape surrounding a mode closely enough to ensure that all of the probability mass covered 
by a mode will be accounted for (64). 
 
An inference algorithm must solve these challenges in order for us to evaluate our generative 
model on sound. We make no claim that the particular inference algorithm we developed provides 
an algorithmic-level account of perception (50). For our purposes, the most important function of 
our inference procedure is that it is one algorithmic approach that permits a solution to the 
computational challenges associated with generative models, allowing us to ask whether the 
generative model we proposed can explain human perception.  
 
Nevertheless, to design our inference procedure, we took inspiration from ideas about how 
perceptual systems could solve these challenges, in particular analysis-by-synthesis (4, 46). 
Intuitively, the observed sound contains clues about likely components of a good hypothesis, 
pointing us to promising parts of the scene space. For instance, if we detect (using bottom-up 
pattern recognition) that part of a sound contains multiple frequency components, we could guess 
that the scene description should include an event at that time. However, the scene description 
often remains ambiguous given local evidence. For instance, the frequency components in 
question could be generated by multiple simultaneous whistle events or by a single harmonic 
event, and a pattern recognition system might propose both explanations as possible. To decide 
between these explanations we might need to consider the preceding context. These 
considerations motivate the analysis-by-synthesis approach. Analysis-by-synthesis incorporates 
the strengths of bottom-up pattern recognition to rapidly propose events to explain the sound, 
while precisely comparing the probability of these explanations using Bayesian inference over the 
full scene.  
 
Specifically, we use a neural network to propose local event variables, which are then combined 
into global scene hypotheses (Figure 1D, left). These steps comprise the bottom-up aspect of 
analysis-by-synthesis. The “event proposal” network is trained on samples from the generative 
model (47). The scene hypotheses are then assessed top-down with stochastic variational 
inference in the differentiable generative model (Figure 1D, center) (48, 49), which provides a 
precise estimate of the posterior mass. Hypotheses are built up sequentially in time, with a set of 
the most promising intermediate hypotheses at each round expanded upon to explain successive 
intervals of sound (Figure 1D, right). The details of the full inference process are given in the 
Methods.  
 
This procedure results in a set of scene descriptions which best explain the full observed sound. 
The number of sources and events, the sound type of each source, the source parameters, and 
the events emitted by each source are all automatically inferred. Sequential inference is therefore 
general-purpose and can be applied to any audio signal, including both classic illusions and 
everyday sounds. 
 
Model results on classic auditory scene analysis illusions 
 
The model was first evaluated on a wide range of classic auditory scene analysis illusions 
(Supplementary Table 1). We used the model to simulate the experiment associated with each 
phenomenon. Some illusions simply involve a subjective judgment of perceptual organization; in 
such cases, we compared the commonly reported percept with the highest probability scene 
hypotheses under the model (found through sequential inference). For other illusions, we 
simulated published psychophysical experiments for comparison with human judgments. The 
experiments in question often queried participants about a limited set of specific scene 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.538626doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.27.538626
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

descriptions (e.g., in a two-alternative forced choice paradigm). When such experimental 
constraints were present, we replaced bottom-up search by enumeration over the experimentally-
defined hypotheses (“enumerative inference”). We evaluated the probabilities of each of these 
hypotheses with variational inference to yield an experimental response. We provide an online 
repository with example experimental stimuli and model inferences.1  
 
Overall, the model qualitatively and often quantitatively reproduced human-like perception in each 
of the illusions. To our knowledge this provides the first demonstration that a single theory can 
account for this diverse set of phenomena. In the following sections we present the results for 
each illusion. 
 
Masking and filling-in 
One class of illusions we tested involve “filling in”. If a less intense sound is played concurrently 
with a more intense sound, in some conditions the less intense sound will not be heard; this 
everyday occurrence is termed “masking” (65). In many such cases, the addition of the less 
intense sound does not alter the peripheral auditory representation to a detectable extent, 
rendering it undetectable. However, the perceptual interpretation can be modulated by context. 
For instance, a noise flanked by tones could equally well consist of two short tones adjacent to 
the noise, or a single longer tone overlapping the noise, that happens to be masked when the 
noise is present (Figure 4A). Human listeners hear this latter interpretation as long as the noise 
is intense enough to have masked the tone were it to continue through the noise (66). Listeners 
thus perceptually “fill-in” the sound that is plausibly masked, yielding a stable percept, despite 
physical interruption by the masker. We asked whether the model reproduces human-like filling-
in across a variety of contexts, inferring events that are not explicit in the sound when evidence 
is consistent with masking.  
 
Continuity illusion 
In one classic experiment (66), tones of various frequencies were either embedded in noise (to 
measure masking) or alternated with noise (to measure continuity, i.e., filling in) (Figure 4B). 
Listeners’ masking threshold corresponded to the level at which the embedded tones became 
audible, and their continuity threshold corresponded to the level at which the alternated tones 
sounded continuous. The noise was missing energy in a “notch” around 1000 Hz in order to test 
whether overlap in the frequency domain was necessary for listeners to perceive continuity. The 
results showed a close correspondence between the two types of thresholds across tones of 
different frequencies (Figure 4C, left). Moreover, the drop in masking and continuity thresholds 
for the 1000 Hz tones confirmed the importance of overlap in frequency between the tone and the 
masking noise. Both effects replicated in our model (Figure 4C, right).  
 
Homophonic continuity 
The model was also tested on a classic variant of the continuity illusion involving amplitude-
modulated noise (Figure 4D). When an initially soft noise undergoes a sudden rise in intensity, 
listeners perceive the initial source as continuing unchanged behind a distinct, louder noise burst 
(66). In contrast, if the amplitude modulation occurs gradually and reaches the same peak, 
listeners instead hear a single source changing in intensity. In accordance with human listeners, 
the model explained the noise as two sources when its amplitude changed abruptly (1 ms ramp), 
and one source when its amplitude changed gradually (250 ms ramp) (Figure 4E). 
 

 
1https://mcdermottlab.mit.edu/mcusi/bass/ 
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Figure 4. Model results for masking and filling-in illusions. A) A noise flanked by tones could be generated by 
summing the noise with two short tones adjacent to the noise, or a single longer tone overlapping the noise. B) 
Continuity illusion experimental stimuli and tasks. Thin lines: tones, grey rectangles with gradient: noise with notch at 
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1000 Hz. C) Left: average results for 15 human listeners from (66). Right: average model results. Like human listeners, 
the model’s thresholds drop at the notch. Decibel reference levels are different for humans and the model. For humans, 
the reference level is the level at which the tone is audible, whereas for the model it is an arbitrary value (model 
cochleagram is thresholded at 20 dB; for simplicity we did not include a middle ear transfer function and other factors 
necessary to replicate human audibility). D) Homophonic continuity. Amplitude envelope for each stimulus from (67). 
E) As in human perception, the model infers two sources when the amplitude envelope changes abruptly. F) A short 
noise target masked by a longer noise could be generated by a noise target with or without energy in the middle 
frequency band. Darker shade of grey indicates higher spectrum level. G) Spectral completion experiment. A 
comparison stimulus was adjusted until it sounded like the target in the standard stimulus, providing an indication of 
the target source energy inferred by human listeners. H) Left: human results from (68), averaged over 8 participants. 
Right: average model results. The model shows a similar pattern of results as human listeners, inferring energy in the 
target when it could plausibly be masked. I) Co-modulation masking release experiment. A tone is superimposed on a 
noise of varying bandwidth that is either co-modulated (multiplied by a time-varying envelope) or random. Participants 
judged whether a tone was present or not. J) Left: average results from 5 participants, as measured in (69). Right: 
average model results. Like human listeners, the model exhibited lower detection thresholds in co-modulated noise for 
sufficiently large bandwidths. Here and elsewhere, error bars depict ±1 standard error (over participants for human 
results, over inference replications for model results), and model results are averaged over 10 inference replications. 
Error bars are missing for some human plots because they were not plotted in the original publications, some of which 
were published many decades ago. Error bars are sometimes not visible for model results as they are smaller than the 
symbol size. 
 
Spectral completion 
An analogous illusion occurs over the frequency spectrum, dubbed “spectral completion” (Figure 
4F). In (68), listeners heard a long masker noise, which overlapped with a brief target noise 
halfway through its duration (Figure 4G, left). The spectrum of the target was ambiguous because 
the middle band of its spectrum could be masked. Listeners were asked to adjust the level of the 
middle band of a comparison noise (Figure 4G, right), until the comparison perceptually matched 
the target. Listeners chose the level of the middle band to be well above its audibility threshold, 
suggesting that they perceptually filled in the middle portion of the target. Several variations on 
this basic stimulus configuration revealed how this perceptual “filling-in” was affected by context 
and masker levels (Figure 4H, left).  The pattern of judgments across these stimuli was replicated 
in our model (Figure 4H, right).  
 
Co-modulation masking release 
Another masking-related grouping phenomenon occurs when masking noise is co-modulated  
(69). Coherently modulated noise produces lower tone detection thresholds than unmodulated 
noise, “releasing” the tone from masking (hence “co-modulation masking release”). The effect can 
be measured by comparing detection thresholds for co-modulated relative to unmodulated noise 
maskers as the masker bandwidth widens (Figure 4I). In contrast to unmodulated noise, for which 
thresholds grow and then level off (at the “critical band”) as bandwidth increases (70), co-
modulated noise produces thresholds that decrease for sufficiently wide bandwidths (71) – the 
high and low frequencies of the noise evidently group with the noise frequencies around the tone, 
helping listeners perceptually separate the tone and the noise. The model shows this same 
qualitative effect, although the bandwidth at which the effect becomes evident is higher than that 
for human listeners (Figure 4J; we used a lower modulation cutoff than in the human experiment 
due to the limited resolution of the model’s cochleagram representation). 
 
Simultaneous grouping  
Another set of classic illusions pertain to whether simultaneous sound components are perceived 
as part of the same source. We tested whether the model could account for simultaneous 
grouping illusions involving harmonic frequency relations and common onset (arguably the two 
most commonly cited grouping cues). 
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Frequency modulation 
Modulating the frequency of a subset of tonal components in parallel causes them to perceptually 
separate from an otherwise harmonic tone (72). To test whether the model showed a similar 
effect, we replicated a classic illusion in which the odd-numbered tonal components had a 
constant fundamental frequency and the even-numbered components were frequency-modulated 
in parallel (Figure 5A). The model explains this sound with two distinct harmonic sources, 
replicating human perception (Figure 5B) (72). 
 
Mistuned harmonic 
Listeners tend to hear tonal components with harmonically related frequencies as a single 
perceptual entity. When the frequency of one tonal component deviates from the harmonic series, 
the component is heard to stand out as a separate tone, demonstrating grouping via harmonicity 
(73–75). This effect can be quantified as the threshold at which this separation occurred, 
expressed as a percent of the harmonic frequency (76) (Figure 5C). Across multiple fundamental 
frequencies and harmonic numbers, the model also showed a measurable mistuned harmonic 
effect (the mistuned harmonic was reliably inferred as a separate “whistle” source; Figure 5D, 
right), albeit with higher thresholds than expert listeners in the experiment (plausibly due to the 
limited frequency information in the cochleagram representation used to compute the likelihood).  
 
Asynchronous onsets 
Another type of grouping illusion involves “cue conflicts”, for instance with harmonicity favoring 
grouping and onset asynchrony favoring segregation. To assess whether source models could 
provide the basis for integrating such cues, we asked whether the model resolves cue conflicts in 
the same way as human listeners.  
 
One classic experiment used judgments of vowel quality (in particular, whether a sound was 
perceived as /I/ or /e/) to assess whether a frequency component of a harmonic sound was 
perceptually grouped with the others (77). Vowels differ in the frequencies at which the spectral 
envelope exhibits peaks (“formants”): the harmonic tone perceived as the vowel /I/ has a lower 
first formant than /e/. A stimulus was constructed such that an added frequency component would 
shift the vowel’s formant if it were grouped with the rest of the vowel, thereby changing its 
category, enabling vowel categorization judgments to be used to assess grouping. 
 
A basic continuum of seven stimuli was constructed by progressively increasing the first formant 
of a 125 Hz harmonic tone from 375 Hz to 500 Hz. This continuum was perceived as morphing 
from /I/ to /e/ (Figure 5E, first row). A new shifted continuum was then constructed by adding a 
500 Hz pure tone to each harmonic tone of the basic continuum (Figure 5E, arrow in second row). 
The phoneme boundary occurred earlier in the shifted continuum (because the added tone 
effectively raised the first-formant valueof the aggregate sound) compared to the basic continuum. 
Last, two early-onset continua were constructed. These continua were constructed by adding a 
500 Hz pure tone to each stimulus of the basic continuum, but with the pure tone onset occurring 
32 ms or 240 ms before that of the harmonic tone (Figure 5E, third row). Even though the 
frequencies and amplitudes were physically identical to those of the shifted continuum, listeners 
perceived the early-onset continua to have a similar phoneme boundary as the basic continuum 
(Figure 5F, left). These results indicated that the pure tone was not integrated with the harmonic 
tone when their onsets differed. To test this effect in our model, we added a final vowel 
categorization step after inference, based on empirical vowel formant distributions (78) (see 
Methods). Our model replicated the variation of the phoneme boundaries across conditions 
(Figure 5F, right), indicating human-like interactions between common onset and harmonicity on 
grouping.  
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Figure 5. Model results for simultaneous grouping illusions. A) Frequency modulation. The stimulus is an 
otherwise harmonic complex tone whose even harmonics are coherently frequency modulated. Humans perceive the 
even and odd harmonics to belong to distinct sound sources. B) Like humans, the model infers the modulated and 
unmodulated components to belong to separate sources. C) Harmonic mistuning. Listeners heard an otherwise 
harmonic complex tone, one harmonic of which could be mistuned, and judged whether they heard one or two sounds. 
D) Left: mistuning detection threshold as a percent of the fundamental frequency. Each dot plots the threshold of one 
of the four participants in (76). Right: average model thresholds. In both human and model results plots, missing dots 
indicate that a threshold could not be measured below the maximum possible value of 50% (in humans, this happened 
in one participant for the 1st harmonic of 100 Hz; in the model, this happened for the upper harmonics of 100 Hz). The 
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model shows a mistuned harmonic effect, albeit with higher thresholds than human listeners. The higher thresholds 
plausibly reflect the limits of the frequency information available in the cochleagram used for inference. Here and 
elsewhere, error bars depict ±1 standard error, with model results averaged over 10 inference replications. E) Onset 
asynchrony. The schematic shows example stimuli from the experiment. The “basic” stimuli are created by shifting the 
first formant of the vowel from 375 to 500 Hz. The “shifted” and “early onset” stimuli are both created by adding a 500 
Hz tone (at arrow) to the basic stimuli, but with different onsets (synchronous and 32 or 240 ms earlier, respectively). 
Participants judged whether the vowel sounds like “ih” or “eh”. F) Left: vowel boundaries averaged over 6 human 
listeners from (77). Right: average model vowel boundaries. In both human listeners and the model, the boundaries 
are lower in the shifted conditions than in the basic condition, but are restored by the onset asynchrony, indicating that 
the added harmonic is grouped with the harmonic tone when synchronous, but segregated as a distinct source when 
asynchronous. G) Cancelled harmonics. Schematic shows an example stimulus with the 2nd harmonic gated. H) Left: 
the distribution of frequency match errors for stimuli with different gated harmonics, as measured across 3 participants 
in (79). To assess the match error for the model, we compare the frequency of the inferred whistle source (if present) 
to the frequency of the gated harmonic (see Methods). The model replicated human performance for low numbered 
harmonics, and showed a similar trend towards higher error at higher-numbered harmonics.  
 
 
Cancelled harmonics 
The “cancelled harmonics” illusion (80) (Figure 5G) provides another example of cue conflict: for 
the duration of a harmonic tone, one of its components is gated off and on over time. Although 
this gated component remains harmonically related to the rest of the tone at all times, it 
perceptually segregates as a separate sound. To quantify this effect, listeners were asked to 
match the frequency of different gated harmonics within a complex tone (79). Human participants 
could closely match the frequency of the gated component up to the tenth harmonic (Figure 5H, 
left). The model qualitatively replicated this effect, as evidenced by inferring a whistle source that 
was well-matched in frequency to the gated harmonic for low harmonic numbers (Figure 5H, 
right). The quantitative discrepancy (whereby humans, but not the model, could accurately match 
the frequency of middle harmonics) again seems plausibly explained by limitations in the 
frequency information available in the cochleagram representation used for inference.  
 
Sequential grouping 
A final set of auditory scene analysis illusions concern how sound events are grouped or 
segregated into sequences over time.  
 
Frequency proximity 
One classic demonstration of the role of frequency proximity in sequential grouping can be found 
in interleaved rising and falling tone sequences, producing the “X” pattern apparent in Figure 6A 
(81). Humans typically do not hear rising or falling trajectories when presented with the mixture. 
Instead, we hear the higher frequency tones as segregated from the lower frequency tones, 
producing two sequences that “bounce” and return to their starting points. By contrast, when the 
pure tones in the rising trajectory are replaced by harmonic tones, humans hear the crossing 
explanation (Figure 6A). The model replicates these findings, explaining the pure tone sequence 
as bouncing, and the sequence with harmonic tones as crossing (Figure 6B).  
 
Bistability 
The best-known demonstration of bistability in auditory perceptual organization is arguably the 
classic “ABA sequence” (82) (Figure 6C). This sequence comprises a repeating set of three tones 
in which the first and last tone have the same frequency. Depending on the stimulus parameters, 
participants typically hear one of two dominant perceptual organizations: 1) all the tones are 
grouped together to produce a galloping rhythm (“one stream”), and 2) the A tones are grouped 
separately from the B tones, such that there are two sequences which each produce an 
isochronous rhythm (“two streams”). Increasing the frequency difference between A and B (Δ𝑓), 
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and decreasing the temporal rate of tones (Δt), both increase reports of the “two streams” 
organization (Figure 6D, left) (82). In the low Δ𝑓 region, the “one stream” percept is dominant, 
while for high Δ𝑓 and low Δt, the “two streams” percept prevails. For intermediate settings of these 
variables, the percept is bistable. The model accounts for these trends, as reflected in the log 
odds of the two explanations (the logarithm of the ratio of the probability of the two interpretations, 
displayed as red vs. blue in right panel of Figure 6D). The model log odds are close to zero in the 
intermediate region, reflecting bistability in the model posterior. 
 
Buildup of streaming 
Another factor affecting the preferred perceptual organization of the ABA sequence is the number 
of repetitions. When an ABA triplet is repeated multiple times over several seconds, listeners 
increasingly tend to hear two streams (83). We simulated an experiment in which listeners heard 
an ABA sequence and could indicate whether they heard one or two sources at any time during 
the sequence (Figure 6E) (84). Participant responses were averaged and binned to reveal an 
increase in two-stream responses as participants heard more repetitions of the triplet over time 
(Figure 6F, left). This trend is replicated by the model, where the posterior odds increase over 
time to favor “two streams” over “one stream” (Figure 6F, right).  
 
Effects of context 
Streaming can also be influenced by context. We simulated two complimentary experiments that 
show the influence of the surrounding context on whether the tones are grouped or not (Figure 
6G–J) (14, 85). 
 
In the first experiment, the frequency separation and timing between tones A and B were held 
constant, but they could be perceived as the same or different stream depending on the 
frequencies of context tones X and Y (14) (Figure 6G). There were two kinds of tone sequences: 
‘isolate’ sequences where X and Y were in a separate frequency range from A and B, and ‘absorb’ 
sequences where all tones were in the same frequency range. Listeners rated whether they heard 
tones A and B as a separate pair grouped in their own stream for four ‘isolate’ sequences and 
three ‘absorb’ sequences; grouping into a pair was more likely in the ‘isolate’ conditions (Figure 
6H, left). The model log odds compare the hypothesis when A and B are in their own source 
versus when they are in separate sources. The log odds differentiated the two types of sequences, 
qualitatively replicating listeners’ ratings (Figure 6H, right).  
 
In the second experiment, the frequency of ‘captor’ tones affected whether listeners heard 
‘distractor’ tones group with ‘target’ tones (85) (Figure 6I). Listeners judged whether the two target 
tones moved upward or downwards in pitch. They were more accurate when the frequency of the 
captor tones was close to the frequency of the distractor tones (at 1460 Hz), presumably because 
the distractor tones then group with the captor tones, making it easier to hear out the target tones 
(Figure 6J, left). We evaluated the tendency of the model to group the target and distractor tones, 
by measuring the model log odds comparing the hypothesis that the target tones are in their own 
source versus that the distractor and target tones are grouped together. The pattern of log odds 
across the captor conditions qualitatively mirrored the increase in accuracy for human listeners 
(higher for higher frequency captors; Figure 6J, right). 
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Figure 6. Model results for sequential grouping illusions. A) Frequency proximity. Schematic shows possible 
perceptual organizations for interleaved tones (81). B) The model prefers “bouncing” sources (row 1), unless there is a 
spectral difference between the tones in the upward and downward sweeps (row 2), matching human perception. C) 
The two perceptual organizations of the triplet tone sequence that were queried in (82) and (84). In the two-streams 
percept, listeners hear the low tones grouped together as separate from the high tones, creating two isochronous 
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sequences. In the ‘one-stream’ percept, listeners hear all tones grouped together, creating a sequence with a galloping 
rhythm. D) Bistability. Left: listeners’ two-streams boundary (threshold below which listeners no longer heard two 
streams) and one-stream boundary (threshold above which participants no longer heard one stream) from (82). Right: 
each dot is average model log odds at that stimulus setting (red=prefers two sources, blue=prefers one source). The 
region of bistability for human listeners overlaps with the region where the model log odds are close to zero (indicating 
bistability in the model posterior). The human data is superimposed for reference (no model boundaries are drawn). 
Here and elsewhere, model results are averaged over 10 inference replications. E) Build-up of streaming. Listeners 
heard a triplet tone sequence as depicted in C (with a frequency difference Df of four or eight semitones). Listeners 
could indicate at any time during the sequence if they heard one or two streams. F) Left: average responses from (84), 
showing that participants more often report hearing two sources with more repetitions of the stimuli. Right: average 
model log odds for the two-sources versus one-source explanation (positive: prefers two-sources, negative: prefers 
one-source), showing the same preference for two-sources with more repetitions. Here and elsewhere, error bars depict 
±1 standard error. G) Effects of context, part 1. For each stimulus condition, A and B tones have the same frequency 
and timing, with only the X and Y tones changing across conditions. In the ‘isolate’ conditions, X and Y occupy a 
different frequency range to A and B. In the ‘absorb’ conditions, they occupy an overlapping frequency range. H) Left: 
average participant ratings for each of 7 conditions from (14). 0 indicated a confident judgment that A and B could not 
be heard as a separate pair, and 14 indicated a confident judgment that A and B could be heard as a separate pair. 
Right: average model log odds (positive=prefers A and B in their own source, negative=prefers A and B in separate 
sources). The log odds are more positive for the isolate stimuli, mirroring their higher ratings by human listeners. I) 
Effects of context, part 2. Schematic tone sequence (C: captor tones, D: distractor tones at 1460 Hz). J) Left: average 
participant accuracy on an interval judgment task (85). Right: average model log odds (positive=prefers target in own 
source, negative=prefers target grouped with distractors). The model log odds increases as the captors get closer in 
frequency to the distractors, similar to the effect on human accuracy.  
 
Model comparisons 
Figures 4-6 show that our model comprehensively replicates many classic illusions in auditory 
perceptual organization. However, it remains unclear what aspects of its structure are important 
for these results. We address this question through a series of model comparisons. First, we test 
“lesioned” versions of our model in order to clarify their role in obtaining these results. Second, 
we demonstrate the difficulty of matching human perception by evaluating an alternative model 
class that lacks highly structured constraints – deep neural networks trained on recorded audio 
(the most widely used alternative model class that can be applied to actual audio).  
 
Model lesions 
To assess the contribution of the structure imposed by the generative model, we devised a set of 
model “lesions” that targeted different levels of the model’s structure. We ran each lesioned model 
on the full set of illusions shown in Figures 4-6. As an aggregate measure of how well each model 
reproduced human-like perception of the set of illusions, we calculated the dissimilarity between 
model and human judgments for each illusion, and then averaged this dissimilarity across illusions 
(see Methods). The first two lesions addressed the hierarchical priors over sources, while the 
second two addressed the event priors.  
 
Fixed source parameters 
To test whether the generative model’s hierarchical source priors were necessary, we removed 
the temporal source priors (Figure 3A) and the variance and lengthscale source priors over 
fundamental frequency, amplitude, and filter shape (Figure 3B). Instead of those distributions, 
each source was assumed to have the same parameters (fixed to each distribution’s mode). We 
found that restricting the variability in possible source parameters increased the model’s 
dissimilarity to human perception (Figure 7A, fixed vs. ours; p<0.01), affecting several illusions 
including grouping by frequency modulation and context effects in sequential grouping 
(Supplementary Table 2). This result suggests that an expressive distribution over sources is 
important to explain human perceptual organization.  
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Figure 7. Comparisons with lesion models and neural networks. A) Human-model dissimilarity for models with 
alternative source priors as compared to our model. A value closer to zero indicates greater similarity to human 
perception. The blue bar corresponds to our main model (evaluated with both enumerative and sequential inference, 
as described in “Model results on classic illusions”). Fixing all sources to the mode of the source priors (Fixed) 
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decreased dissimilarity more than changing the source priors to uniform distributions (Uniform; which increases the 
variability in the prior over sources). Here and in D, error bars plot ±1 standard error computed by bootstrap (see 
Methods). B) Example aberrant results from the model with swapped covariance kernels for harmonic and noise 
sources. For this alternative model, the spectral completion and onset asynchrony experiments did not qualitatively 
match the human results, plausibly because both involve spectral filling-in. C) Example aberrant result for a lesioned 
generative model with a stationary covariance kernel for frequency and amplitude trajectories. The original results of 
(82) are compared to those of our intact model as well as this lesioned model. Human boundaries are overlaid on each 
plot, with conventions following Figure 6D. Small black dots indicate stimulus parameters for which we obtained model 
judgments. For each model, the shaded area (‘bistable’ region) covers the stimulus parameters for which the log odds 
fell between -15 and 15. For all stimulus parameters, the lesioned model favours the “two-streams” explanation more 
than the original model. By contrast, the bistable region of the intact generative model overlaps with that for humans. 
D) Human-model dissimilarity for source separation neural networks as compared to our model. The hatched grey bars 
correspond to neural networks trained on source separation tasks using corpora of natural sounds (labelled as 
network/dataset). The solid gray bar, ‘TCDN++/Generated Samples’, shows the dissimilarity for a source separation 
network trained on samples from our generative model. We also assessed our model using purely sequential inference 
to obtain judgments in the same way as for the networks (pink solid bar). Our model remained more similar to human 
perception in this case. 
 
 
Uniformly distributed source parameters 
The generative model’s variance and lengthscale source priors were originally fit to a small set of 
everyday sounds. As a result, sources with excitation trajectories and spectral shapes whose 
variances and lengthscales match those sounds are more probable under the model. The second 
model lesion changed these source priors to be uniform, making a wider range of source 
parameters equally likely and therefore making a wider range of excitation trajectories and 
spectral shapes equally likely. In contrast to the Fixed lesion, this Uniform alteration did not 
increase the model’s overall dissimilarity from human perception (Figure 7A, uniform vs. ours; 
p=0.30 by empirical bootstrap). This result indicates that the model’s similarity with human 
perception is driven more by the model’s overall structure (e.g., events with discrete 
onsets/offsets, smooth amplitude trajectories) than by the fine-tuning of the source priors to 
everyday sounds.  
 
Spectral swap and stationary covariance 
Two other model lesions tested the role of the event priors for fundamental frequency, amplitude, 
and spectrum (Figure 2B, events). We altered the covariance kernels of the Gaussian processes, 
which encode tendencies in how spectral shape (the filter) changes over frequency and how 
fundamental frequency and amplitude (the excitation) change over time. 
 
In the original model, we used different priors for the filters of different sound types (Figure 3C). 
These were chosen to cause spectra of harmonic sources to be smoother than those of noise 
sources, based on the observation that some noise sources have filters that change abruptly with 
frequency (see Methods: Equation 19). We swapped the kernels underlying these priors to 
examine their impact. We found this swap reduced the model's match to human perception for 
two illusions: spectral completion and onset asynchrony (Figure 7B). These illusions both involve 
the inference that one sound masks part of another sound’s spectrum, with spectral “filling-in” 
occurring as a result. However, one involves a noise source while the other involves a harmonic 
source. The effect of the kernel swap suggests that filling-in may depend on relatively specific 
assumptions about the spectra of different types of sounds. 
 
The final lesion involved the covariance kernels for the excitation trajectories. In the original model 
this kernel included a non-stationary term (see Methods: Equation 15), intended to enable the 
model to express a single source that modifies its sound-generating process between events, 
even if these events occur in immediate succession (e.g., a dog panting in and out; 
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Supplementary Figure 1). When this non-stationary term was removed, we found a reduced 
match to human perception for sequential grouping illusions: this lesioned model consistently 
favored two streams even when human listeners do not (Figure 7C). This result highlights one 
possible function of the event level priors in explaining perceptual organization, namely, 
representing discontinuities in sound-generating processes. 
 
In summary, these lesions demonstrate the necessity of the different components of the 
generative model. Comprehensively explaining many perceptual illusions in a single model 
required a hierarchical, expressive model of sources and events. The model also provides a 
refined understanding of key assumptions about sound generation, as highlighted by the kernel 
lesions. 
 
Neural network source separation comparisons 
We next evaluated an assortment of contemporary source-separation networks on the set of 
classic auditory scene analysis illusions in the previous section. This type of model is arguably 
the most widely used alternative model class. In addition, since previous work has demonstrated 
that deep neural networks can reproduce key aspects of human behaviour and brain 
representations in tasks such as sound localization, pitch perception, and word recognition (86–
89), such models might reasonably serve as a baseline for matching human judgments. We used 
seven published models trained on mixtures of natural sounds, chosen to span a diversity of 
architectures, tasks, supervised and unsupervised training regimes, and natural sound datasets 
(90–95). 
 
Rather than inferring latent symbolic scene structure as in the generative model, source 
separation networks take in a mixture waveform and output ‘premixture’ waveforms. For each 
network, we obtained its premixture estimates for each experimental stimulus. To run a network 
on a psychophysical task requiring a choice between alternative scene descriptions, we took its 
judgment to be the scene description whose rendering produced the minimum mean squared 
error from the networks’ output, as measured on a cochleagram (see Methods).  
 
To evaluate our model in the same way that we evaluated the source separation networks, we 
inferred sources for all the experimental stimuli (rather than estimating the probability of the 
experimenter-specified hypotheses, which is not possible using a conventional source separation 
model). For each experimental stimulus, we rendered source sounds from the inferred scene and 
analyzed them in the same way as for the neural networks. 
 
As shown in Figure 7D, none of the source separation networks could replicate the generative 
model’s match to human perception across the broad range of illusions tested here (neural 
networks: grey bars, model: blue bar; p<0.01 for each network). This advantage was evident even 
when our model was evaluated in the same way as the source separation networks (without the 
benefit of enumerative inference; Figure 7D, pink bar; p<0.01 for each network). The generative 
model’s advantage was present for all three classes of illusions (filling in, simultaneous grouping, 
and sequential grouping; Supplementary Figure 3). These results illustrate the difficulty of 
explaining human perception of classic illusions – human-like results do not fall out of 
contemporary source separation systems trained on natural sounds. 
 
We also assessed whether a source separation network would produce better results when 
trained on samples produced by the generative model (Figure 7D; gray bar without hashing). The 
resulting network also had a worse match to human perception than the generative model 
(p<0.01). This result demonstrates the difficulty of fully “amortized” inference – even if a 
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generative model is used for training, it is difficult to replicate perception exclusively using a 
contemporary neural network, highlighting the utility of our analysis-by-synthesis approach. It also 
suggests that the dissimilarity of the source separation networks to human perception is not wholly 
explained by the data these networks were trained on. 
 
 
Model results on everyday sounds 
Unlike many previous models of auditory illusions, our generative model can be applied to any 
sound waveform, allowing us to test it on everyday sounds. This allowed us to ask: can the same 
generative principles that explain auditory scene analysis illusions also explain the perceptual 
organization of naturalistic sounds? This question is critically important for linking classical 
perception research to real-world competencies – a theory of audition must be able to account for 
both. Because the various alternative models considered in the previous section were unable to 
account for the human perception of illusions, and thus ruled out as accounts of perception, we 
focused our investigations of everyday sounds on our main generative model. 
 
We evaluated the generative model on naturalistic sound mixtures from the Free Universal Sound 
Separation dataset (FUSS) (91). As the basis for quantifying the generative model's match to 
human perception, we identified four ways that the model's inferred sources could deviate from 
human perceptual organization: 

1. Unrecognizability: the model infers a source which people do not hear in the mixture 
2. Absence: the model omits a source that people do hear in the mixture 
3. Over-segmentation: the model segregates sounds into distinct sources when people 

hear these sounds as coming from a single source 
4. Over-combination: the model combines sounds into a single source when people hear 

these sounds as coming from distinct sources 
We aimed to understand how often and in what circumstances the generative model's inferences 
deviated from listeners' perceptual organization in each of these ways. We note that our goal was 
to investigate whether the model captured perceptual organization rather than whether it 
reproduced fully naturalistic sounds. Samples from the model were typically not fully naturalistic 
in appearance, but might nonetheless in principle capture the structure inferred by human 
listeners.  
 
Experiment 1 addressed the first deviation type, identifying which model-inferred sources were 
unrecognizable to human listeners in the mixtures. Experiment 2 addressed the other three 
deviations: absence, over-segmentation, and over-combination. We encourage the reader to 
listen to the online repository of rendered model inferences.2  
 
Experiment 1: unrecognizability deviations  
On each trial, participants heard three sounds (Figure 8A). They first heard a two-second sound 
mixture. They then listened to two potential sources and chose which was part of the mixture. In 
the “recorded” condition, both potential sources were recorded premixture sounds, one of which 
was part of the mixture presented in the trial, with the other being an unrelated premixture sound. 
In the “model” condition, both potential sources were inferred sources rendered via the generative 
model: one was a source inferred from the trial mixture, while the other was inferred from a 
different mixture. 
 

 
2https://mcdermottlab.mit.edu/mcusi/bass/ 
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We found that most of the model's inferred sources were recognizable in the mixture, with 
performance in the model condition far better than chance, and only slightly worse than the 
recorded condition (Figure 8B; recorded 95%CI=[0.82, 0.87], model 95%CI=[0.77, 0.82]). For 
each inferred source, we computed the proportion of participants that correctly recognized the 
source as present in the mixture. A histogram of this proportion is skewed left (Figure 8C), 
indicating that unrecognizability errors were limited to a modest number of inferred sources. 
Examples of unrecognizable and highly recognizable source inferences are shown in Figure 8D, 
with additional recognizable examples in Supplementary Figure 4 (also see “Qualitative 
investigation” section below). These results indicate that the model often successfully infers 
sources from everyday sound mixtures that are recognizable to humans.  
 
Experiment 2: absence, over-segmentation, and over-combination deviations 
The purpose of Experiment 2 was to identify when inferences in the model deviated from human 
perceptual organization via absence, over-segmentation and over-combination of sound sources. 
We used a matching task between the inferred sources and the recorded premixture sounds, 
depicted in Figure 8E. Although premixture sounds are not guaranteed to predict human 
perceptual organization of the sound mixture, they typically formed a coherent perceptual entity 
in the mixture, and provided a convenient proxy for human perceptual organization.  
 
On each trial, participants listened to inferred sources and premixture sounds from the same 
sound mixture, which formed the axes of a response grid. Participants were instructed to place a 
checkmark whenever part of a “row sound” (inferred source) matched part of a “column sound” 
(premixture sound). We excluded both the premixture sounds and model inferences which 
listeners could not reliably recognize as part of the mixture in Experiment 1, and therefore required 
that participants place at least one checkmark for each inferred source. The response grid 
otherwise contained all the premixture sounds and all the inferred sources for a given mixture. 
 
This setup allowed us to tally the different ways in which inferred sources could deviate in 
perceptual organization from the premixture sounds (Figure 8F). If a column did not have any 
checkmarks, this was tallied as an absence deviation for the corresponding premixture sound. If 
a column had more than one checkmark, this was tallied as an over-segmentation deviation for 
the corresponding premixture sound. If a row had more than one checkmark, this was tallied as 
an over-combination deviation for each checked premixture sound. Finally, if a column had only 
one checkmark and the row that was checked was not checked for any other sounds, no 
deviations were tallied for that premixture sound. 
 
Listeners' judgments were reliable despite the binary judgments, with inter-rater reliability of 0.63 
(inter-class correlation, ICC(2,1) = 0.63, 95% CI=[0.60, 0.67]). The average results across 
participants are shown in Figure 8G. To obtain chance performance levels for each type of 
response, we randomly permuted each participant's responses subject to the task constraint that 
there be one checkmark in each row, then averaged over participants. This constrained 
permutation preserves the number of extra checkmarks in rows, such that the level of over-
combination deviations is preserved (we thus do not have an estimate of the chance level of these 
deviations). 
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Figure 8. Model inferences for everyday sounds. A) Experiment 1 tested whether the model’s inferred sources were 
recognizable to humans as having occurred in the mixture. B) Mean results by condition for Experiment 1 (n=64). 
Accuracy in the model condition is well above chance. C) Histogram of proportion correct responses for each inferred 
source in the ‘model’ condition. Histogram is skewed left, indicating that unrecognizability errors occurred for a minority 
of inferred sources. D) Examples of inferred sources with high and low recognizability in Experiment 1. E) Experiment 
2 paradigm to measure absence, over-segmentation, and over-combination deviations. F) Examples of possible 
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responses. Response 1 has no deviations tallied for any columns (each column corresponds to a premixture sound). 
Response 2 has an absence deviation for column 1, an over-segmentation deviation for column 2, and no deviation for 
column 3. Response 3 has an over-combination deviation each for columns 1 and 3, and an over-segmentation 
deviation for column 2. G) Mean proportion of pre-mixture recordings with each deviation type, averaged across 
participants (n=25). Black circles: estimates of deviations that would be expected by chance, obtained from random 
permutations of participant responses, constrained to have at least one checkmark per row. H) Example of scene for 
which most participants reported no deviations from the premixture sounds. I) Example of scene with an absence 
deviation from the premixture sounds.  
 
 
If the model never explained everyday sound mixtures in a way that corresponded to the 
premixture sounds, the proportion of premixture sounds with no deviations would be close to zero 
(below chance). By contrast, if the model inferences tended to replicate the perceptual 
organization implied by the premixture recordings, the proportion of premixture sounds with no 
deviations would be well above chance while the proportion of premixture sounds with deviations 
would be below chance. This latter prediction is what we observed. First, the mean proportion of 
premixture sounds that had a one-to-one correspondence with an inferred source was greater 
than would be expected by chance (Figure 8G: ‘no deviations’, p<0.001 by permutation test). 
Second, the mean proportions of premixture sounds with an absence or an over-segmentation 
were significantly less than chance (Figure 8G, p<0.001 in each case, by permutation test).  And 
third, the mean proportion of premixture recordings with an over-combination was small (Figure 
8G, 95%CI=[0.11, 0.19] by bootstrap). Figure 8H-I depict scene inferences with premixture 
sounds in these various response categories. 
 
To ensure that the results were not due to participants tending to randomly choose a single 
inferred source for each premixture sound, we checked whether participants responded 
consistently. We first analyzed the premixture sounds with no deviations. We determined the most 
commonly chosen inferred source for each premixture sound (among participants who answered 
one-to-one for that premixture sound). We then computed the mean proportion of premixture 
sounds for which a participant chose only the most commonly chosen inferred source. We found 
that this proportion was much greater than would be expected by chance (Figure 8G: ‘no 
deviations+most common’, p<0.001 by permutation test), indicating that most of the premixture 
sounds with no deviations were consistently matched to a specific inferred source. The incidence 
of deviations for particular premixture sounds was reliable across splits of participants for each of 
the three types of deviations as well, providing further evidence that the responses were non-
random (Supplementary Figure 5; p<0.01 by permutation test for all deviation types).  
 
Overall, these results indicate that the model often (but not always) inferred perceptual 
organization that mimicked the premixture sounds. Supplementary Figure 6 shows the average 
number of each deviation for each premixture sound. 
 
 
Qualitative investigation 
To better understand the model's successes and failures, we also qualitatively examined 
participants' judgments for individual sound mixtures, linking them to acoustic structure and sound 
category labels. Many failures point to generative principles underlying everyday sounds that are 
missing from our model. A priori it was not obvious that these principles would need to be included 
in order to account for perception; each could form a productive direction for future research. We 
note that the ability to observe these failures in the interpretation of recorded audio represents an 
advance over previous Bayesian models of perception, which typically have not been applicable 
to actual sensory signals, and so could not be evaluated on arbitrary real-world stimuli (34–38). 
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The combination of stimulus-computability with the interpretability of the model makes the model 
“richly falsifiable”, with failure modes that provide insight.  
 
Hierarchical sources 
Sources in our model are constrained to emit events with similar properties, but this assumption 
is violated in some everyday sounds. We observed over-segmentation deviations when a 
common source in the world had more than one way to produce sounds (Supplementary Figure 
7), such as those produced when writing on a chalkboard (the impacts of the chalk on the board 
produce brief impulsive sounds, whereas the scraping of the chalk along the board produces more 
extended and noise-like sounds). Related over-segmentation deviations occur when a real-world 
sound source concurrently mixed different sound types (Supplementary Figure 8), such as breath 
noise concurrent with the pitched sound of a flute note. These deviations suggest that human 
perceptual organization has a type of hierarchical structure missing from our model, whereby 
humans can hear distinct sound-generating processes as a composite source. 
 
Diversity of everyday sound spectra 
Other failures result from limitations in the generative model of spectrum and amplitude 
(Supplementary Figures 9–12). For instance, we found that the model over-segmented frequency 
components of impact sounds that decay at different rates (Supplementary Figure 9), because it 
cannot explain frequency-dependent decay as being due to a single source, despite the frequent 
occurrence of this type of sound in the environment (96, 97). The model also sometimes over-
combined perceptually distinct sounds. For instance, in the example in Supplementary Figure 10, 
clarinet and violin sounds are combined into one source, because the model cannot represent 
the spectral differences that distinguish the two types of sounds. These results point to the 
richness of the human perception of source spectra and their variation over time. 
 
Cochleagram input 
One frequent feature of unrecognizable inferred sources was a mismatch in the periodicity of the 
inferred source and the corresponding everyday sound. For instance, the model explained the 
sound of rain with a harmonic source (Supplementary Figure 13). This failure is plausibly due to 
the cochleagram used for the likelihood representation – this representation was chosen for 
computational efficiency, but its low spectral and temporal resolution limits the resolution with 
which periodicity can be measured. This low-resolution input representation likely also contributes 
to absence deviations, for example with quiet tones in noise (Supplementary Figure 14). 
 

Discussion 
 
Inspired by everyday sounds, we built a probabilistic generative model that describes sources 
which emit events to produce auditory scenes. We sought to test whether such a generative model 
could account for illusions that illustrate principles of auditory grouping, and whether the same 
model could explain human perception of real-world sound mixtures. To address the challenges 
inherent to Bayesian inference of causes from sensory signals, we combined deep learning with 
a differentiable generative model: a neural network made event proposals, which were 
sequentially combined into sources and evaluated with stochastic variational inference in the 
generative model. The model qualitatively replicated human perception across a variety of classic 
auditory scene analysis illusions. By contrast, contemporary source separation neural networks 
could not account for human perceptual organization, whether trained on datasets of recorded 
audio or samples from the generative model, revealing the difficulty of matching perception 
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comprehensively in the absence of a generative model. Selective model “lesions” revealed the 
importance of a distribution over sources that allows for variation in source properties. Despite 
the model’s simplicity, experiments with human listeners showed that the model could also explain 
the perceptual organization of many natural sound mixtures. The model failures were instructive, 
revealing the need for specific additional generative principles (and the likelihood that such 
principles are implicit in human perception). Some deviations pointed to perceptual phenomena 
that have not been extensively studied (e.g. the perception of hierarchical structure in sound 
sources) and thus identify directions for future work. Our model represents an advance in the 
scope of Bayesian models of perception, being able to bridge between the perceptual 
organization of experimental and everyday signals. Although the results do not prove the 
necessity of generative models in accounting for perception, they illustrate the many benefits of 
generative models and show one way it is now possible to instantiate and test the overall 
approach.  
 
Relation to prior models 
The idea that perception can be explained with Bayesian inference has a long history. But the 
difficulties of specifying a rich world model and performing inference from actual sensory signals 
has limited application of Bayesian inference to stimulus-computable models of human perception 
(40, 98). To meet these challenges, we applied modern tools to integrate and extend key elements 
of previous work into a unified and functional computational system. 
 
Structured models 
Enabled by modern computational tools, we were able to automatically infer scenes from raw 
audio while using a world model is that substantially more expressive than in prior work. The basic 
generative structure of our model posits that parametrized sources produce sound via discrete 
events. Among previous models that explicitly considered discrete events, most treated them as 
pre-determined symbolic input to be grouped (37, 38, 42). These models typically were intended 
to explain the sequential grouping of tones, and cannot be applied to raw audio (where the events 
are not explicit), and thus cannot be evaluated on natural sounds. One previous model used 
Gaussian processes to model raw audio for scene analysis but relied on inferring a point estimate 
of the posterior distribution (32). This approximation prevented automatic inference of the 
underlying sources (which relies on integrating densities of varying dimensionalities) as well as 
the inference of bistability. Earlier work on computational auditory scene analysis also attempted 
to compute detailed scene descriptions from raw audio (4, 22).  We built on this work by specifying 
a richer generative model (e.g., source priors, source-specific kernels, non-stationarity between 
events) and applying modern techniques to enable inference. 
 
Clustering 
Some computational approaches to auditory scene analysis instead frame perceptual 
organization as clustering “bottom-up” features of audio (99, 100). This approach has often been 
combined with bottom-up features inspired by neurophysiology (11, 13, 101–103), but it remains 
difficult to identify features whose clustering is comprehensively predictive of perceptual 
organization. Our approach shares some abstract similarities in combining a bottom-up 
processing component with a top-down inference stage, but a key difference is that the bottom-
up component of our analysis-by-synthesis algorithm preserves uncertainty, outputting proposals 
for event latent variables that can be refined or rejected during inference. Maintaining uncertainty 
over the event proposals was critical to robust inference, particularly with everyday sounds, 
because the event proposal network frequently detected candidate events that were ultimately 
discarded from the most probable scene description.  
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Machine hearing 
We compared our model to source separation neural networks from machine hearing. These 
particular networks were not developed with the intention of replicating human perception, but 
other types of neural networks have had success in explaining human auditory perception in 
various other domains (86–89) (though see (104)), and analogous models trained on source 
separation (i.e., trained to reconstruct a set of premixture sounds from a mixture sound) might be 
envisioned to account for aspects of human auditory perceptual organization.  We found that a 
suite of such models with varied training datasets, supervision, and architectures did not 
comprehensively match human perception as well as our model did, even when trained on 
samples from our generative model. It is possible that source separation provides the wrong task 
constraints, or that currently available neural networks are not good enough at source separation 
to sufficiently constrain their representations. But the results underscore the challenge of 
accounting for human perceptual organization purely with feedforward neural networks, and 
suggest the benefits of coupling a generative model with neural networks. 
 
In addition to better accounting for perception in the domain examined here, generative models 
confer several desirable traits as compared to pure neural network systems. First, our model 
explains human perception with a set of interpretable principles. As shown in the everyday sounds 
experiments, this interpretability helps to identify what is missing in the model and how to address 
its shortcomings. Since the model is composed of meaningful parts, we can augment it by adding 
more meaningful parts. For example, to create a composite source that emits both noises and 
harmonics, we could combine the noise and harmonic renderer and define how their latent 
variables co-vary. It would also be possible to add entirely new generative modules if needed, 
such as reverberation (with an additional stage of filtering applied to the source sounds). Second, 
generative models provide a language for specifying structured scene descriptions. Without an 
explicit generative model to create input data labelled with latent variables, human annotators are 
required to create data needed for supervised training, which can be inefficient. Moreover, the 
labels that are convenient for humans to annotate may be limited, e.g. to verbal class labels. In 
contrast, our generative model uses multiple source-level variables along with a sequence of 
events that the sources generate, which each include their own generative parameters (e.g. 
temporal trajectories). The source-level latent variables alone (e.g., variance on fundamental 
frequency; Figure 3) would likely be difficult for a human annotator to label. In addition, as 
demonstrated with model lesions (Figure 7), we can manipulate the probability distribution over 
scenes to help understand the assumptions that underlie the model's inferences. Such 
manipulations of training data can be paired with neural network models of perception, but are 
facilitated by a model to generate the data (88).  
 
Limitations 
 
Model structure 
The generative model is richer than previous models, and sufficed to account for many classic 
auditory illusions, but is nonetheless limited by a relatively simplistic model of spectrum and 
amplitude. The model lacks event-linked structure in amplitude (e.g., with amplitude decay after 
an impact (97)), time-varying spectra (e.g. frequency-dependent decay (96)), and the tendency 
for sounds to contain repeated motifs. These limitations were apparent in the everyday sound 
experiments, and also prevented us from modeling some classical results, notably the asymmetry 
between onset and offset asynchrony (12, 77) and the perceptual segregation caused by 
repetition (105). Although these are limitations of the model, the fact that the model can be tested 
on arbitrary sound stimuli exposes the importance of the missing generative structure for 
perception.  
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Inference 
Inference is the central challenge to making generative approaches to perception work. Many of 
the model limitations reflect choices made to facilitate inference. Moreover, we cycled through 
multiple iterations of models and inference procedures in attempt to resolve various inference 
difficulties encountered at different stages of this project. Yet despite these efforts, inference was 
still not completely robust. The everyday sound experiments revealed three classes of inference 
failures. First, variational inference sometimes could not recover when the event proposals from 
the neural network were far from correct, for example proposing the wrong sound type or missing 
a proposal for a whistle in noise (Supplementary Figure 13–14). Second, gradient descent could 
get caught in local minima, for example, making it difficult to adjust the fundamental frequency of 
a harmonic tone or continue a quiet sound behind a masker. Third, the set of hypotheses 
maintained during sequential inference can become very similar to one another over time, a 
problem known as ‘degeneracy’. Discarding alternative explanations too early in the timecourse 
of a sound may set up inference to fail later, when subsequent evidence would favor those 
explanations.  
 
In addition to not working perfectly, our inference procedure required substantial amounts of 
computation, and it remains unclear whether this amount of computation is realistic for a biological 
system (see Methods). We thus do not consider our inference algorithm to provide a mechanistic 
or algorithmic-level explanation of perceptual organization. Rather, it is a means to implement the 
computational-level explanation provided by our model (50). Inference is nonetheless a bottleneck 
for this type of modeling, and an important open scientific issue in perception and neuroscience. 
The combined efficiency and efficacy of perception demands explanation from both an algorithmic 
and neuroscientific perspective (see Future Directions). 
 
Likelihood 
A major limitation of our model is the cochleagram likelihood representation. We found that the 
model quantitatively deviated from human results for illusions that plausibly depend on either a 
high-resolution representation of frequency (e.g. harmonic mistuning) or time (co-modulation 
masking release), which likely reflects the limited resolution of the cochleagram. This deficiency 
was especially apparent for periodic sounds, which also limited the model’s performance with 
many everyday sounds. Some previous work supplemented a cochleagram with an explicit 
periodicity representation for this reason (e.g., (13, 22, 101)). We deviated from this previous work 
for reasons of efficiency (speed and memory for iterative computation). Some alternative 
representations that might better capture periodicity include the correlogram (106), sparse 
periodicity acoustic features (107), wavelet scattering transforms (108), wefts (109) or multi-scale 
cochleagrams (110). Another possibility would be to use representations learned by a neural 
network to extract periodicity from a high-fidelity simulated cochlear representation (87). But the 
challenge of defining appropriate mid-level representations for the likelihood extends beyond 
periodicity. For example, the cochleagram also seems poorly suited for generative inference on 
sound textures (52), the details of which are often inaccessible to human listeners (111) but which 
affect cochleagram-based likelihood. We view this as an important open theoretical issue in 
perceptual science. 
 
Future directions 
One of the contributions of this work lies in providing a model that both has interpretable structure 
and can be applied to actual audio, and thus richly falsified. The failures are as instructive as the 
successes, and identify a number of opportunities for modeling advances as well as empirical 
characterization of perception. 
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Hierarchical organization 
Our model results on everyday sounds expose the importance of additional levels of hierarchical 
structure in human perceptual organization. Consider a rhythm played by the bass, snare and 
cymbal of a drumkit, or a breathy flute note with simultaneous periodic and aperiodic components. 
The components within such sounds can be simultaneously perceived as distinct and linked. 
These scenarios are akin to visual hierarchical grouping (34, 112, 113).  Sound ontologies and 
synthesis methods have advocated for multi-layered scene descriptions to describe such 
scenarios (110, 114–116) and one perceptual model has posited hierarchical structure in tone 
sequences (37), but we still know relatively little about the perception of such hierarchical 
structure, especially in naturalistic sounds.  
 
Our model also exposes the question of whether perceptual organization in these cases is based 
on physical/acoustic causal interpretations. For example, our model produces an over-
segmentation for the sounds of a ball that bounces on the floor and then strikes a metallic surface 
(Supplementary Figure 8E). The acoustic structure of the two impact events is dissimilar, but 
humans hear an integrated causal sequence. One way to account for such examples is with 
“schema-based” auditory scene analysis in which the auditory system learns to group patterns of 
sound which recur in the environment (117, 118), as is thought to aid the streaming of music and 
speech (119, 120). But it is also possible that the auditory system constructs more specific causal 
models, for instance representing sounds from physical events using internal models of physics 
(115, 121, 122), as is thought to occur in vision (30, 123, 124). Physics-based sound synthesis 
should enable additional work in this direction (97, 125, 126). 
 
Sound textures 
Another notable model shortcoming occurred for sound textures (52) (Supplementary Figure 11–
12). In one example, the model explained a mixture of temporally overlapping textures (running 
water and brushing teeth) as a single noise source, whereas humans tend to hear two separate 
streams (Supplementary Figure 11A). The model is limited both by a noise model that does not 
capture all of the statistical regularities that differentiate natural textures (52), and by a likelihood 
function that is applied to the cochleagram rather than to a statistical representation akin to that 
thought to determine human texture perception (111). But this limitation also exposes the need to 
better understand the role of texture in auditory scene analysis. The auditory system is known to 
‘fill-in’ textures when they are masked (127), indicating that multiple textures can be heard at the 
same time, and to selectively average sound elements attributed to a texture (128). But we know 
little about the conditions in which humans segregate texture mixtures, pointing to another 
direction for future work.  
 
Alternative scene descriptions 
The limitations imposed by the model’s scene descriptions raise the question of what an ideal 
model’s descriptions should contain, which in turn raises open questions about the content of 
human perceptual experience. Our model’s scene descriptions were relatively abstract and 
signal-based, with a division into sound types that has historically been common in sound 
synthesis (22, 51, 129, 130). These could be enriched and extended in many ways. One question 
is whether the source models of human perception are closer to a flat hierarchy of many source 
models that each describe a fairly specific set of sounds (impacts, speech, woodwind instruments, 
textures, modern electronic sounds, etc.), as opposed to a deep, unified hierarchy in which a 
modest number of primitives are composed to create more complex sounds. In addition to more 
descriptive source models, an ideal model of scenes should include other aspects of sound 
generation, such as reverberation and spatial effects (96, 131–134). 
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Learning 
An alternative to designing source models is to learn them from sound data. One possibility is to 
combine learned statistical components into a structured generative model. For example, one 
could swap out our classic Bayesian priors (Gaussian processes) over excitation and spectra for 
autoregressive neural networks (135) trained to synthesize natural sounds through the model’s 
renderer. The discrete sound types could also be swapped out for a more flexible learned 
representation. Integrating learned components into a structured model would allow the model to 
capture a richer class of sounds accurately while still maintaining interpretability (136). 
 
Inference 
If Bayesian models are to be taken as mechanistic explanations of human perceptual systems, 
then its key algorithmic formalism – search through a hypothesis space – must be shown to be 
plausible. We found that everyday sound mixtures and experimental stimuli provided 
complementary tests of our search procedure, in part because they tended to have distinct 
inferential demands. Typically, psychophysical experiments are designed to be ambiguous with 
respect to just a few reasonable perceptual hypotheses, in order to isolate the effect of a single 
variable. In experiments, and in most classic illusions, listeners are instructed to report one of 
these hypotheses, and are given practice to help them get accustomed to doing so. Because the 
hypotheses are delimited to a small set, the inferential difficulty lies in accurately estimating the 
posterior distribution: it may be difficult to estimate the relative probability mass between the two 
hypotheses because they can differ in subtle ways (e.g., the presence of a quiet tone, or the 
placement of a formant). In contrast, when inferring explanations for everyday sound mixtures, 
there are many more plausible hypotheses in a model rich enough to explain them. It appears as 
if the local information is less diagnostic in such settings, but the overall global scene interpretation 
is less ambiguous (as noted for visual inference (46)). This means that adjudicating between 
hypotheses is easier for everyday sound mixtures than for typical experimental stimuli, but that 
search is much harder. We thus think that testing models on everyday sounds is critical for future 
progress, as it exposes challenges that are less apparent in classical experimental settings.  
 
We believe that solving the challenge of narrowing search while maintaining multiple hypotheses 
is central for a mechanistic account of perceptual organization. For our model, using an amortized 
inference network to propose events was necessary for tractability – the network narrows the 
search space to a small subset of all possible events. But because these event proposals were 
combined into scene hypotheses, assessing all of their combinations was intractable when there 
were many event proposals (as was typically the case for everyday sound mixtures). Search relied 
on simple heuristics to prioritize smaller scene descriptions, as well as substantial parallel 
computing resources. If perception is solving a similar search problem in real-time, it seems likely 
to utilize more efficient procedures to search this combinatorially large space. We suggest that 
more plausible algorithmic accounts could be discovered by learning procedural knowledge. For 
instance, over many inference trials, we could observe which combinations of events proposals 
are successful versus unsuccessful. These could then be used to learn how to prioritize the 
assessment of certain combinations (137, 138), in place of the simple hand-designed heuristics 
used here. Other aspects of the search algorithm could also be replaced by learnable components 
(e.g. the stochastic gradient descent used for hypothesis optimization (139)). An ambitious future 
direction would be to replace the entire search algorithm with a fully learned procedure, as has 
been done for simple compositional graphics programs (140). 
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Time 
Our model was designed to perform joint inference over the sources and events that produced an 
entire observed sound (2 seconds in our everyday sound experiments). However, human 
perceptual judgements are sensitive to context within a local window, and do not integrate 
evidence from an arbitrarily long time-horizon (128, 141). Such integration windows could be 
incorporated by explicitly including memory representations. One possibility is to modify 
sequential inference such that variables eventually stop being actively inferred and become fixed 
as a memory trace, no longer affected by further observations but potentially informing future 
variables. Such an approach could enable investigation of the timescales for which inference 
improves in complex scenes, which could clarify whether the temporal extent of memory is 
adapted to the scale of temporal dependencies in natural scenes, or whether it mainly reflect 
resource constraints. 
 
Attention 
Another aspect of auditory experience that is missing from our current model is the ability to attend 
to a particular sound source. Attention can be construed as a mechanism that selectively refines 
parts of a perceptual hypothesis in order to deal with the intractability of inference in generative 
models (142), but the difficulty of inference in such models has prevented such ideas from being 
tested. Our model offers an opportunity to explore such computational accounts of attention. One 
possibility could be to vary the dimensionality of the approximate variational posterior over parts 
of a scene hypothesis as a function of attention. For example, increasing the time-resolution in 
the variational posterior over the excitation trajectories would enable inference of finer-grained 
detail in those trajectories. Along these lines, attention could be instantiated in a model like ours 
by increasing/decreasing the complexity of the approximate variational posterior distribution for 
attended/unattended sources, respectively. Implementing attention in this way could help explain 
psychophysical benefits of attention (143, 144) in a normative framework, and provide a formal 
hypothesis for the targets of object-based attention (145, 146).  
 
Illusion generation 
A generative model of perception enables both analysis and synthesis of sound. One intriguing 
application is to use the model to generate illusions by inferring the stimulus properties that would 
produce a desired percept (147). One could formalize common illusion paradigms, such as 
multistability or conflicting global and local percepts, into objectives for optimization, providing a 
powerful additional model test. 
 
Other sensory modalities 
Many of the principles implemented in this paper can be traced to classical ideas in vision, where 
inference in generative models has long been proposed to underlie perception, but where 
computational systems that embody this approach have historically been challenging to make 
work. Our results demonstrate the utility of auditory perception as a case study in perceptual 
inference. Audition has the advantage that relatively simple generative models can account for 
many everyday signals, making the approach tractable. However, the general principles and 
questions explored here are not modality-specific, and the time seems ripe to reapply this 
framework to other perceptual domains, and to multi-sensory perception.  
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Methods 
 
Generative model: Overview 
We begin by specifying the overall probabilistic structure of the model (Figure 2B). A full scene 
description 𝑆 is composed of a number of sources 𝑛. Each source description 𝑠) has a sound type 
𝑇), a set of source parameters 𝛩), and a number of events	𝑚𝑖. A source generates a set of 𝑚 
event descriptions, 𝐸), from its event priors defined by 𝛩).  

𝑆 = (𝑛, {𝑠"}"#$…&), where 𝑠" = ((𝑚" , 𝑇" , 𝛩"), 𝐸") and 𝐸" = {𝑒"'}'#$…(! 

The sound type determines the structure of the source (e.g., whether it has a fundamental 
frequency) as well as how its sound is synthesized. For each source, the event descriptions are 
input to a renderer that synthesizes a source sound (to be described more in the Likelihood 
section below). The source sounds are summed to create a mixture.  

The sources are independent, meaning 𝑝({𝑠)})*+…-) = ∏ 𝑝-
)*+ (𝑠)). 𝑝(𝑠)) further factorizes, yielding 

the following hierarchical model for the scene 𝑆: 

𝑝(𝑆) = 𝑝(𝑛)1𝑝
&

"

(𝐸"|𝑚" , 𝑇" , 𝛩")𝑝(𝑚" , 𝑇" , 𝛩")

= 𝑝(𝑛)1𝑝
&

"

(𝐸"|𝛩" , 𝑚")𝑝(𝛩"|𝑇")𝑝(𝑇")𝑝(𝑚")

 

 
(1) 

(2) 

The hierarchical factorization into event priors 𝑝(𝐸)|𝛩) , 𝑚)) and source priors 𝑝(𝛩)|𝑇)) allows 
different sources to have different tendencies when emitting events (Figure 3A-B). The next 
section will cover sources and events, followed by a section covering source priors. 

For the sampling procedure that defines the entire generative model, see Algorithm 1 in the 
Supplementary Information. This algorithm reflects the actual probabilistic program we use, which 
uses for statements to express hypotheses that vary in dimensionality (e.g. a variable number of 
sources, n) and if..else statements to express how categorical random variables can change the 
structure of the hypothesis (e.g., sound type determines whether events have a fundamental 
frequency). 

Generative model: Sources and events 
A source emits events, which are input into a synthesizer to produce a sound waveform (Figure 
2B). From the perspective of sound synthesis, the events define the excitation that provides sound 
energy, which in the case of harmonic or noise sources, is additionally passed through the 
source's filter to generate sound. The filter is fixed across events emitted by a given source, on 
the grounds that this is common in sound generation (for instance, where a filter corresponds to 
the instrument body). The excitation can change in time, turning on or off abruptly as well as 
changing continuously (e.g., in amplitude). From a probabilistic perspective, the source 
parameters 𝛩) parametrize a prior distribution over events, 𝑝(𝐸)|𝛩) , 𝑚)) (Figure 3A-B). First, we 
will define the random variables that make up the event, specifically the excitation. We will return 
to the filter (which is shared across events) at the end of this section. 
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As depicted in Figure 2B, each event 𝑒). consists of its onset and offset 𝛕)., as well as time-varying 
excitation trajectories (amplitude 𝐚).(𝑡) and, if periodic, fundamental frequency 𝐟).(𝑡)) which 
depend on the onset and offset of each event (𝛕)). 

𝑒). = G𝛕). , 𝐚).(𝑡), 𝐟).(𝑡)H  for periodic sources,  𝑒). = G𝛕). , 𝐚).(𝑡)H  for noise sources 

Events within a source are not independent from each other. Rather, events are sampled 
sequentially, such that each event depends on the events before it. For example, the full event 
prior for a periodic source 𝑠" is: 

𝑝(𝐸"|𝛩" , 𝑚") = 𝑝(𝐚"(𝑡)|𝛩" , 𝛕")𝑝(𝐟"(𝑡)|𝛩" , 𝛕")𝑝(𝛕"|𝛩" , 𝑚")
= 𝑝({𝐚"'(𝑡)}'#$:(!|𝛩" , 𝛕")𝑝({𝐟"'(𝑡)}'#$:(!|𝛩" , 𝛕")𝑝({𝛕"'}'#$:(!|𝛩" , 𝑚")

 
(3) 
(4) 

with individual events conditioned on the preceding events (the first event has an onset sampled 
uniformly from the duration of the scene, and trajectories sampled from an initial Gaussian 
process described below): 

𝑝({𝛕"'}'#$:(!|𝛩" , 𝑚") =1𝑝
(!

'#$

(𝛕"'|𝛩" , 𝑚" , 𝛕" '+$)

𝑝({𝐚"'(𝑡)}'#$:(!|𝛩" , 𝛕") =1𝑝
(!

'#$

(𝐚"'(𝑡)|𝛩" , {𝐚",(𝑡)},#$:'+$, {𝛕",},#$:')

𝑝({𝐟"'(𝑡)}'#$:(!|𝛩" , 𝛕") =1𝑝
(!

'#$

(𝐟"'(𝑡)|𝛩" , {𝐟",(𝑡)},#$:'+$, {𝛕",},#$:')

 

 

(5) 

(6) 

(7) 

Note that the onset and offset of an event (𝛕).) are only dependent on when the previous event 
occurred (𝛕)./+), but the trajectories of event j (𝐚"' , 𝐟"') are dependent on its onset/offset (𝛕).) 
because the onset and offset specify where the trajectories are sampled (i.e., between the onsets 
and offsets of events).  

We now describe the event onset and offset and how they are sampled from sources. To constrain 
the events to be non-overlapping in time, we reparametrize an event’s onset 𝜏).on and offset 𝜏).off as 
the silent “rest” interval 𝜏).0  preceding 𝑒). and its active interval 𝜏).1 . If the durations 𝜏).0  and 𝜏).1  are 
non-negative then the events will not overlap. The event priors on these variables are Log Normal, 
and we sample the event rest and duration as: 
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𝛕"' = 7𝜏"'on, 𝜏"'off9

𝜏"'- ∼ LogNormal ;𝜇"- , 𝜆"-
+$>

𝜏"'. ∼ LogNormal ;𝜇". , 𝜆".
+$>

𝜏"'on = 𝜏" '+$off + 𝜏'-

𝜏"'off = 𝜏"'on + 𝜏"'.

 

(8) 

(9) 

(10) 

(11) 

(12) 

The only exception is the first onset which is sampled uniformly from the duration of the scene. 

The sampled event timings will reflect source regularities as captured by the parameters of the 
log-normal event priors. These parameters are source parameters: (𝜇)0 , 𝜆)0 , 𝜇)1 , 𝜆)1) ∈ 𝛩) (Figure 
2B). The source prior of each (𝜇) , 𝜆))	pair is a normal-gamma conjugate prior which is shared 
across all sound types (see source priors below; Methods Table 1). These source priors allow the 
model to account for a wide range of temporal regularities, as occur in natural sounds (Figure 3A; 
note λ=σ-2): for example, a source could tend to have long events (𝜇)1 is high), events occurring 
in rapid succession (𝜇)0 is low), or a wide variety of event durations (𝜆)1 is low). 

In addition to the onset and offset (𝛕"'), events have excitation trajectories. The event excitation 
amplitude 𝐚(𝐭) and frequency 𝐟(𝐭) trajectories are vector variables that represent a time-varying 
function, and thus require an event prior over functions. Therefore, we sample the time-varying 
excitation trajectories from one-dimensional Gaussian Process (GP) priors (148). GPs are 
distributions over functions 𝑔(𝑥), for which any finite set of function values {𝑔(𝑥+), … , 𝑔(𝑥-)} yield 
a multivariate normal distribution. GPs are thus characterized by their mean function 𝜇(𝑥) and a 
kernel function 𝜅(𝑥, 𝑥′) that specifies the prior covariance between 𝑔(𝑥) and 𝑔(𝑥′). Given these 
functions and a vector of timepoints 𝐭 which lie within an event (i.e., 𝜏).on < 𝑡 < 𝜏).off), we can sample 
the trajectory of the time-varying excitation variables 𝐚(𝐭) and 𝐟(𝐭). To instantiate source 
regularities for the excitation trajectories, we induce temporal correlations both within and 
between events in the kernel function (see below). 

We used mean functions that were constant, reflecting the tendency of sources to be high or low 
in amplitude or fundamental frequency. The entire time-varying excitation trajectory is sampled 
from a GP with a constant mean function (e.g., for amplitude 𝜇)2(𝑡) = 𝜇)2) and non-stationary 
kernel function 𝜅)(𝜏)); we call this 𝒢𝒫+:4. Taking the excitation amplitude 𝐚)(𝐭) across all events 
of source 𝑖 as an example: 

𝐚" ∼ 𝒢𝒫$:((𝛍"/ , 𝜅"/(𝛕")) (13) 

Since inference can proceed sequentially, we write the following to indicate the same overall 
distribution for convenience in notation (as used in Algorithm 1):  

𝐚"' ∼ 𝒢𝒫'|$:'+$(𝛍"/ , 𝜅"/(𝛕")	|	{𝐚",},#$:'+$) (14) 
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Given that the Gaussian Processes are event priors, their parameters (specifying the mean and 
kernel functions) are source parameters that define the regularities in the source’s events (Figure 
3C). The mean constant 𝜇) determines the central tendency of the trajectory (e.g. quiet vs. loud). 
The kernel 𝜅) determines the shape of the trajectories which are likely under the GP prior.  

The first term of 𝜅 is a standard squared exponential kernel (SE) that instantiates a prior favoring 
smoothly-varying excitation trajectory both within and across events, which is characteristic of 
many natural sounds (149). The second term is a non-stationary kernel (NS) which specifies 
higher covariance for trajectory values that occur within the same event, compared to across 
events. This non-stationary kernel can express a single source that slightly modifies its sound-
generating process between events. In natural sounds, this occurs in a variety of ways: for 
instance, a dog panting is quieter on the in-breath than the out-breath, and a flute can discretely 
switch pitches between notes (Supplementary Figure 1). Therefore, we implement a non-
stationary kernel for all excitation trajectories, as follows: 

𝜅/(𝑡$, 𝑡1; 𝛕") = SE(𝑡$, 𝑡1; 𝜎/ , ℓ/) +HNS
(

'#$

(𝑡$, 𝑡1; 𝛽/ , 𝛕"')

SE(𝑡$, 𝑡1; 𝜎/ , ℓ/) = 𝜎/1exp(−
(𝑡$ − 𝑡1)1

ℓ/1
)

NS(𝑡$, 𝑡1; 𝛽/ , 𝛕"') = K𝛽/
1, if	𝜏"'on < 𝑡$, 𝑡1 < 𝜏"'off

0, otherwise

 

(15) 

(16) 

(17) 

We turn now to the filter, which is defined analogously to the excitation trajectories. The filter 
shape, which is a function of frequency (Figure 2B), has a one-dimensional stationary GP prior. 
Like the excitation trajectories, the prior over the spectra of harmonic sources uses an SE kernel, 
exhibiting a tendency to vary smoothly. Because of the prevalence of bandpass noise with sharp 
cutoffs, we used an Ornstein-Uhlenbeck (OU) kernel for noise source spectra. Like the squared 
exponential kernel, the Ornstein-Uhlenbeck kernel exhibits a tendency to revert to the mean, but 
differs in that it does not tend to be smooth. For all sound types, the sampled filter 𝐇 is shared 
across all events emitted by a source. 

𝐇 ∼ 𝒢𝒫(𝜇2 , 𝜅2)

𝜅2(𝜔$, 𝜔1) = PSE(𝜎2 , ℓ2), if harmonic
OU(𝜎2 , ℓ2), if noise

OU(𝜔$, 𝜔1; 𝜎2 , ℓ2) = 𝜎21exp(−
|𝜔$ − 𝜔1|

ℓ2
)

 

(18) 

(19) 

(20) 

The sampled excitation trajectories and filters reflect source regularities that are defined by the 
parameters of the GPs. The mean 𝜇 as well as the kernel variables 𝜎 and ℓ of each GP are source 
parameters (see source priors below and Methods Table 2). The means are sampled from an 
appropriately scaled uniform distribution. The inverse softplus of 𝜎 and ℓ are distributed normally 
(to maintain positivity and numerical stability; a Log Normal distribution would provide a similar 
functionality but was numerically unstable during gradient descent for variational inference). 
These source priors allow the model to account for a wide range of regularities in the excitation 
trajectories and the filters, as observed in natural sounds. For example, a source could have a 
flat spectrum (low 𝜎5) or a spectrum with widely spaced peaks (high 𝜎5 and high ℓ5). 
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Generative model: Source priors 
In the preceding section, we described how event distributions are parametrized by source 
parameters, and how different values of the source parameters allow the model to account for 
different regularities in sounds (Figure 3). These source parameters are themselves sampled 
from distributions called source priors. For clarity, we use the term “meta-source parameters” for 
the parameters that define the source priors. The meta-source parameters that define the 
source priors are listed in Methods Tables 1 and 2. 

Temporal source priors. The duration and rest source parameters, (𝜇)1 , 𝜆)1) and (𝜇)0 , 𝜆)0) 
respectively, are sampled from normal-gamma source priors. The meta-source parameters of 
these source priors were chosen to be only weakly informative, covering a large range (see 
Methods Table 1). We restricted the rest and duration source priors to be the same as each other, 
and the same across all sound types. In practice, we found the specific settings of these 
parameters had little effect on the results. 

Methods Table 1. Temporal normal-gamma meta-source parameters and discrete prior 
parameters. The same temporal source prior is used for the rest and duration parameters. 

Variable Class Distribution 
(𝜇, 𝜆) Temporal Normal-Gamma(𝜇6 = −1.0, 𝜆6 = 0.5, 𝛼6 = 2.5, 𝛽6 = 1.0) 
𝑛 Discrete Poisson(rate = 1 sources/sec) 
𝑚 Discrete Geometric(𝑝 = 0.5) 
T Discrete Uniform Categorical over noise, harmonic, and whistle 

Gaussian process source priors. Each Gaussian process has source parameters defining its 
mean and kernel. Since the Gaussian process kernel source parameters encode relatively 
complex constraints, we fit their source priors to natural sounds. We first describe the natural 
sound datasets used to fit the source priors. Then, we describe the specific form of the source 
priors and the procedure for fitting the source priors to the natural sound datasets.  

We chose publicly available datasets of recorded sounds for which the dominant sound type was 
obvious and for which annotations of the secondary, event-level variables were available (onset, 
offset and fundamental frequency where applicable). We used these annotations to facilitate 
stable inference of the meta-source parameters (described more below). For noises, we used a 
subset of the sound texture dataset used by (52) which were obviously aperiodic. For harmonic 
and whistle sources, we used three different datasets that covered a variety of sounds: speech, 
music, and bioacoustics. For speech, we used the Pitch Tracking Database from Graz University 
of Technology (PTDB-TUG), which provided recorded audio of speakers saying English 
sentences and pitch trajectories extracted from corresponding laryngograph signals (150). For 
music, we used the University of Rochester Multi-Modal Music Performance (URMP) dataset, 
which contained recorded audio of various instruments playing classical music along with 
corresponding MIDI and pitch tracks (151). For bioacoustics, we used the Synth Birds Database 
(SynthBirdsDB) which contained recorded audio from a variety of bird species, with either 
harmonic or pure tone vocalizations (152). This dataset was compiled to develop pitch-tracking 
for bird vocalizations, so we used a subset of the data for which accurate pitch tracks were 
provided. 

Each source prior was fit to one or more of the datasets, with the goal of maximizing the variability 
in the set of sounds for each source prior, while ensuring that the model was appropriate for the 
included sounds. The amplitude and spectrum source priors for the noise sound type were 
simultaneously fit to the sound textures dataset. The amplitude and spectrum source priors for 
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the harmonic sound type were simultaneously fit to the music and bird datasets (URMP and 
SynthBirdsDB). We omitted the speech dataset (PTDB-TUG) here because the time-varying 
formants of speech could not be well-modeled with the model’s constant spectrum constraint. The 
amplitude source prior for the whistle sound type was fit to sound clips from SynthBirdsDB hand-
selected to contain bird vocalizations with a single dominant frequency component, omitting 
harmonic speech and music. Last, the fundamental frequency source prior was fit on the speech, 
music, and bird datasets, and was shared between the whistle and harmonic sources. To use all 
three datasets, we directly fit a GP to the pitch track metadata rather than to the recorded audio.  

To fit a given source prior, we simultaneously inferred scene descriptions for the set of natural 
sounds described above. Each scene description was constrained to use a single source of the 
specified sound type. We conditioned the model on the annotated secondary event variables to 
facilitate stable inference of the meta-source parameters (even though the datasets were chosen 
to feature a dominant source type, a single source was not always sufficient to explain the audio; 
e.g., due to the presence of background noise). The meta-source parameters (which in the normal 
use of the model were fixed) were allowed to vary, instantiating a learnable distribution over the 
corresponding source parameters. The meta-source parameters describing this distribution were 
inferred by variational inference, along with the source parameters and unconditioned event 
variables, to maximize the marginal likelihood of the full set of sounds. The inferred meta-source 
parameters were then fixed as constants for the experiments described in this paper (both those 
with classic illusions and those with natural sounds). 

Specifically, we fit an inverse softplus normal source prior for each of the variance 𝜎 and 
lengthscale ℓ kernel parameters of a GP prior. For time-varying excitation trajectories with an 
additional non-stationary component in the kernel (Methods: Equation 15), we also fit a single 
value of the non-stationary parameter 𝛽, shared across all sounds. Due to the computation 
required for fitting many scenes simultaneously, we randomly selected a subset of two-second 
clips from the appropriate dataset(s) to fit each set of source priors (approximately one minute of 
audio in total). This small amount of data was sufficient given that we fit only 2-3 meta-source 
parameters per source prior. 

The source priors over the GP means were uniform distributions. We manually set the bounds of 
these uniform distributions to cover a natural range of values (fundamental frequency could span 
the range of frequencies audible to humans and below the Nyquist limit; amplitude was bounded 
below by the quietest audible amplitude) and to capture the range of means inferred during source 
prior fitting. The spectrum means were fixed at zero (because the spectrum and amplitude 
trajectory were summed, the means were redundant, and we removed this redundancy by fixing 
the spectrum mean to zero and allowing the amplitude mean to vary). 

In our model lesion experiments, we found that using uniform source priors, instead of source 
priors fit to natural sounds, resulted in a negligible difference in the model’s similarity to human 
perception (see Results: Model lesions and Figure 7A). Although it seems likely that using a model 
based on real-world sounds is important for capturing human perception, this result suggests that 
the structural constraints in the model (that were inspired by observations of natural sounds) may 
be more important than the specific shape of the priors as defined by the underlying meta-source 
parameters. 

Methods Table 2. Gaussian process meta-source parameters. The mean 𝜇 is uniformly 
distributed (with units listed under GP type). The inverse softplus of the standard deviation 𝜎 and 
lengthscale ℓ are each normally distributed. Samples of 𝜎 and ℓ are bounded to reasonable values 
to avoid overflow or underflow errors (i.e., they were sampled from a truncated distribution). 𝜎 is 
in the GP-units, while ℓ is in seconds for excitation variables and in ERB for spectrum. 𝛽 is a 
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positive constant that implements the non-stationary kernel. As is typical for GPs, 𝜖2 is added to 
the diagonal of the covariance matrix for numerical stability. The last three columns indicate the 
first, second, and third quartile of sampled 𝜎 and ℓ distributions based on 5000 samples. *Note: 
We manually set the value of 𝛽 to 1.0 because the scenes in the textures dataset only had one 
event. 

Sound 
type 

GP  
type Kernel Datasets  Dist. 

params. Bounds Q1 Q2 Q3 

W, H F0 
(ERB) 

SE + 
NS 

PTDB-TUG, 
URMP, 
SynthBirdsDB 

𝜇 0, 33     
σ 5.6, 4.7 0.1–33 3.0 5.9 9.0 
ℓ 2.2, 6.0 0.1–10 0.31 2.5 5.5 
β 0.44     
ϵ 0.1     

W Amp. 
(dB) 

SE + 
NS 

SynthBirdsDB 
(pure tones 
only) 

𝜇 0, 120     
σ 1.0, -0.96 0.1–50 1.2 1.3 1.5 
ℓ 6.9, 0.23 0.1–10 6.4 6.9 7.5 
β 0.0     
ϵ 0.1     

H Amp. 
(dB) 

SE + 
NS 

URMP, 
SynthBirdsDB 
(harmonic 
only) 

𝜇 0, 120     
σ 7.8, 2.2 0.1–50  6.3 7.8 9.4 
ℓ -1.7, 0.99 0.01–10 0.078 0.18 0.39 
β 3.12     
ϵ 0.5     

H Spec. 
(dB) SE 

URMP, 
SynthBirdsDB 
(harmonic 
only) 

σ 12, 4.6 0.1–50 8.8 11.8 14.9 
ℓ -0.13, 9.2 0.1–33 1.3 4.7 9.4 
ϵ 0.5     

N Amp. 
(dB) 

SE + 
NS Textures 

𝜇 0, 80     
σ 1.0, 0.81 0.1–50 0.80 1.3 2.0 
ℓ -5.1, 2.4 0.01–10 0.022 0.05 0.16 
β 1.0*     
ϵ 0.5     

N Spec. 
(dB/Hz) OU Textures 

σ 8,4, 1.3 0.1–50 7.4 8.4 9.5 
ℓ 16, 6e-3 0.1–33 16.0 16.5 17.0 
ϵ 0.5     

 
Generative model: Discrete priors 
There are three discrete priors: the prior over the number of sources 𝑝(𝑛), the prior over the 
number of events in a source 𝑝(𝑚)), and the prior over the sound type of a source 𝑝(𝑇)). Methods 
Table 1 shows the parameters that define these priors.  

To generate scenes with any number of sources and events, 𝑝(𝑛) is a Poisson distribution and 
𝑝(𝑚)) is a Geometric distribution. Because sources are independent, we use a Poisson 
distribution 𝑝(𝑛) to specify the probability of some number of sources occurring during a known 
time interval. Because events in a source are not independent of each other, we use a Geometric 
distribution 𝑝(𝑚)) to describe the probability that 𝑚) events are emitted in total before source 𝑠) 
ceases. It was critical for the generative model to have the flexibility to allow the number of sources 
and events to vary but we found the specific parameters of these distributions had little effect on 
the results.  
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The sound types are equally likely, with 𝑝(𝑇)) as a uniform categorical distribution over the whistle, 
noise, and harmonic classes. Without the inclusion of a separate whistle class, we would have 
required a bimodal prior on the filter for periodic sounds (sharply peaked at one frequency versus 
smooth), essentially amounting to a categorical difference. For simplicity and clarity we opted to 
instantiate this difference at the level of the sound types. 

Generative model: Likelihood 
To compute the likelihood, the sampled scene description 𝑆 must be rendered into the resulting 
sound 𝑋 (Figure 3D). The scene description was sampled as described in the Priors section above 
(also see Algorithm 1 in Supplemental Information). The amplitude and frequency trajectories (𝐚 
in dB, 𝐟 in ERB) were sampled at 10 ms intervals for illusion stimuli and at 20 ms for the everyday 
sounds (to increase memory efficiency; the everyday sounds generally required more memory 
because they often contained events that extended over seconds). The filter shape was sampled 
at 0.3 ERB intervals (𝐇 in dB/Hz for noise sources and dB for harmonic sources). To render the 
sounds specified by these sampled latent variables, we first synthesized the sound corresponding 
to each sampled event in each source. We then concatenated the events and silent intervals to 
construct each source sound. Finally, we summed the source sounds to produce the final auditory 
scene (Figure 2B, bottom). 

To enable variational inference, events of different sound types were differentiably rendered. Each 
event type was generated by combining an initial excitation with spectral and/or temporal 
amplitude modulation (filter). For whistle events, we generated a pure tone that was frequency-
modulated according to 𝐟. To amplitude-modulate the tone, it was windowed with half-overlapping 
cosine windows. Each window was scaled by the corresponding amplitude in 𝐚, followed by 
overlap-add to synthesize the tone. For noise events, we generated a pink noise sample as 
excitation. Given the degeneracy of the excitation and filter, the pink spectrum is an arbitrary 
choice. This noise sample was frozen with a fixed random seed to enable differentiability. The 
noise was then amplitude-modulated following the same procedure used for tones. Finally, a log-
spaced, cosine-shaped, half-overlapping filterbank scaled by 𝐇 was multiplicatively applied in the 
frequency domain. For harmonic events, we generated a set of 200 pure tones at the harmonic 
frequencies specified by 𝐟. Any samples of the pure tones that exceeded the Nyquist limit were 
set to zero to prevent aliasing. We scaled the amplitudes of each tone so that they were pink with 
respect to the fundamental, and then summed them to produce a complex tone that served as 
the excitation. The sampled spectrum 𝐇 was shifted in frequency at each timepoint so that its first 
channel aligned with the fundamental frequency 𝐟. Then, spectral and amplitude modulations 
were applied as for noise sources. For all sound types, sigmoid on-ramps and off-ramps were 
applied to each event (duration=18 ms), with the sampled onsets and offsets corresponding to 
the maximum of the ramps. Sigmoid ramps were chosen for their differentiability. We rendered all 
sounds at 20 kHz.  

We used a differentiable implementation of gammatone-based spectrograms for our likelihood 
representation (Figure 3D) (153). This particular version of a cochlear-inspired representation was 
chosen because of the speed of computation during stochastic variational inference, which 
requires thousands of iterations.  A conventional spectrogram was calculated using FFT, after 
which the frequencies bins were pooled into channels that approximated the tuning of a 
gammatone filter bank (Glasberg & Moore, 1990) . We used a window size of 25 ms, hop size of 
10 ms, 64 filters with a half-ERB width, and a lower threshold of 20 dB relative to a fixed internal 
reference level. The sampled scene gammatonegram was compared to the observed 
gammatonegram under an isotropic Gaussian noise model. The standard deviation on the noise 
model was fixed to 𝜎 = 10 across all inferences. The noise standard deviation was manually 
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chosen instead of being directly fit to human data (which would have been computationally 
prohibitive).  

Inference: overview 
We maintain a separation between our model and the inference procedure that infers 
explanations of audio waveforms under the model: the former encapsulates our scientific 
hypotheses about perception while the latter is an engineering component necessary to assess 
whether the model can explain aspects of perception. We believe there is more than one way to 
engineer a working inference algorithm for this model (e.g., instead of variational inference, it 
might be possible to utilize fully Monte Carlo based inference, or fully amortize inference). The 
particular method presented here is not intended as a hypothesis of how perception works, though 
the challenges of inference that are exposed by our algorithm remain central challenges for 
complete theories of perception.  
 
We used two modes of inference – sequential and enumerative inference – depending on how an 
illusion was evaluated in human listeners. Both involve optimizing and comparing hypotheses, 
but they differ in how they determine the hypotheses to evaluate in the first place. Here we give 
an overview of these two modes of inference. 
 
Inspired by analysis-by-synthesis, we combined bottom-up and top-down inference processes. In 
sequential inference, the first two bottom-up steps go from the observed sound to a set of 
hypotheses. The last two top-down steps use the generative model to refine and evaluate these 
hypotheses. Given an observed sound, the steps of sequential inference are as follows (Figure 
1D):   
 

1. Events proposal: A neural network operating on the cochleagram proposes candidate 
events, which initialize event variables in the hypotheses (described in the Methods 
section above, Generative model: Sources and events). This “amortized” inference (47, 
154) allows us to benefit from existing state-of-the-art machine learning architectures 
(155) to find good hypotheses. Although the neural network is trained on data produced 
by the generative model, it may misdetect events or detect multiple alternative event 
explanations for the same sound, often requiring the generative model to assess the 
candidate events (in the steps that follow).   

 
Then, to build up the hypotheses sequentially in time beginning with the earliest candidate event, 
steps 2-4 are iterated until all candidate events have been assessed.  
 

2. Source construction: Inspired by sequential Monte Carlo approaches (41) and similar to 
some previous models of auditory scene analysis (22, 42), candidate events 
corresponding to the current timestep are combined into scene descriptions through three 
update actions (add candidate event to existing source, create new source with candidate 
event, leave out candidate event). This results in a set of hypotheses for the sound up to 
a particular moment in time. By building up hypotheses sequentially, we avoid searching 
a combinatorially large number of combinations of events into sources. Nevertheless, 
there may still be more hypotheses than are efficient to search, so they are prioritized for 
hypothesis optimization with a set of heuristics.  

3. Hypothesis optimization: The hypotheses are refined using gradient-based optimization. 
Specifically, for each hypothesis, a guide distribution is optimized to best approximate a 
mode of the posterior distribution using variational inference. Variational inference allows 
us to benefit from a fully differentiable generative model, jointly optimizing all of the 
continuous latent variables in a hypothesis in order to fit each mode as closely as possible.  
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4. Scene selection: The posterior probabilities (approximated with importance sampling 
based on the optimized guide distributions) are used to compare the alternative 
hypotheses. A set of hypotheses with the highest posterior probability are selected for the 
next round of source construction. The last two steps comprise the top-down component 
of sequential inference. 

 
This process results in a set of scene descriptions, each with an associated probability. Sequential 
inference is appropriate for modeling unconstrained listening with illusions and everyday sounds, 
because it automatically infers the number of sources and events, each source's sound type and 
source parameters, as well as the events emitted by each source.  
 
In enumerative inference, which is more appropriate for the constrained setup of psychophysical 
experiments, we directly assess the probability of competing experimenter-defined hypotheses 
(using only steps 3 and 4 above). Sequential inference can also be used in psychophysical 
experiments, and we relied on it in this way for one of the alternative models in Figure 7. This 
alternative model demonstrated that sequential inference generally resulted in similar overall 
human-model similarity as enumerative inference (see Results: Model comparisons).  
 
We first explain hypothesis optimization and scene selection, because it is common to both modes 
of inference (steps 3-4). Then we explain sequential and enumerative inference in turn, in 
particular, how they determine the hypotheses to evaluate.  
 
Inference: hypothesis optimization and scene selection 
Instantiating perception as inference requires determining the posterior probability of different 
hypotheses. We use variational inference to obtain an approximation of the posterior distribution. 
We were able to utilize variational inference because we designed the generative model to be 
fully differentiable. In this section we first clarify what hypotheses correspond to in our model, and 
then explain how we compare the posterior probabilities of hypotheses.  

We assume that a hypothesis 𝐻 corresponds to a region containing a “mode” of the full posterior. 
There are two motivations for this assumption. The first reflects the potential uncertainty over the 
latent variables defining a hypothesis. For instance, a particular hypothesis could specify a single 
source with one high and one low whistle, but there may be some variance around the exact 
frequencies of the whistle. A hypothesis is thus characterized by a specific setting of the structural 
variables (e.g. the number of sources and events), as well as an approximate setting of continuous 
variables (e.g. source parameters, onset timings). This corresponds to the organization of specific 
events into sources, while only approximately specifying the low-level features of the events. To 
compute the posterior probability of this hypothesis requires marginalizing over the continuous 
variables. 

The second reason to associate hypotheses with regions rather than points is to allow comparison 
of hypotheses that differ in dimensionality. Scenes with potentially different dimensionalities 
cannot be compared by their posterior densities (which have different units), making point-
estimates of the posterior mode insufficient. Instead, we need to integrate each hypothesis into a 
posterior probability mass so that we can compare across dimensionalities. 

Formally, each hypothesis 𝐻) corresponds to a region of scene space (𝐻): 𝑆 ∈ 𝒮)), and the 
hypotheses are compared based upon their posterior odds ratio (i.e., relative posterior mass 
contained within the regions). For two hypotheses and an observed sound 𝑋, the posterior odds 
is: 
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𝑝(𝐻)|𝑋)
𝑝(𝐻.|𝑋)

=
𝑝(𝐻) , 𝑋)
𝑝(𝐻. , 𝑋)

 
(21) 

Since 𝐻) contains many specific scenes 𝑆 ∈ 𝒮), computing the marginal probability 𝑝(𝐻) , 𝑋) 
requires integrating over 𝒮). 

𝑝(𝐻) , 𝐷) = h 𝑝
%∈𝒮!

(𝑆)𝑝(𝑋|𝑆)d𝑆 
(22) 

To approximate this integral, we use importance sampling. In importance sampling, we use a 
guide distribution 𝑞) corresponding to hypothesis 𝐻) to take samples. 

𝑝(𝐻) , 𝑋) = E9!
𝑝(𝑆)
𝑞)(𝑆)

𝑝(𝑋|𝑆) where 𝒮) is the	support of 𝑞)

≈
1
𝐾
q

𝑝(𝑆:)
𝑞)(𝑆:)

;

:*+

𝑝(𝑋|𝑆:) where 𝑆: ∼
iid 𝑞)

 

(23) 

(24) 

The success of this method is determined by how closely the guide distribution 𝑞) approximates 
a mode of the posterior. In order to derive a “good” guide distribution, we start with an initial guide 
distribution which is either 1) based on the amortized neural network output in sequential 
inference (specifically, the means of the guide distribution were set to the neural network’s output 
values; see Source Construction section below) or 2) based on experimenter-defined hypotheses 
in enumerative inference (see Enumerative Inference section below). In both cases, this initial 
guide distribution is then refined using stochastic variational inference. The form of the guide 
distribution is mean-field, except for the vector variables (e.g. time-varying amplitude) which have 
a Gaussian Process prior. For these vector variables, we use a variational inducing point 
framework (156). 

To refine the guide distribution, during each iteration of gradient descent we optimize 𝑞) with 
respect to the standard variational objective, 

ℒ;(𝐻) , 𝑋) = E9! log(
𝑝(𝑆)
𝑞)(𝑆)

𝑝(𝑋|𝑆)) (25) 

This constitutes a lower bound on the log marginal probability, ℒ;(𝐻) , 𝑋) ≤ log	𝑝(𝐻) , 𝑋). We used 
Adam to implement stochastic gradient descent. Each iteration of gradient descent used a batch 
of 10 samples from 𝑞. The learning rates for the different latent variables were scaled so that the 
gradient steps taken in any direction were approximately the same size. We also used a scheduler 
to automatically decrease the learning rate if the variational lower bound plateaued. 

Sequential inference 
We now describe the unique aspects of sequential inference, starting with event proposal (step 
1) and then source construction (step 2). We provide examples of sequential inference for two 
different sound mixtures in Supplementary Figures 15 and 16. 
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Event proposals via amortized inference – segmentation neural network 
A segmentation neural network proposed candidate events from the observed sound for use in 
later stages of sequential inference. This network was adapted from a previously published image 
segmentation network to work with sounds (155). It takes in a sound represented as a 
cochleagram image and outputs a set of (soft) image masks over the cochleagram. However, 
events in our model are not equivalent to cochleagram regions, rather, they comprise a set of 
latent variables as described above (Methods, Generative model: Sources and events). 
Therefore, along with each mask, the network outputs a set of event variables (e.g., onset, offset, 
amplitude trajectory). We call each set of event variables a "candidate event". These are only 
proposals, and may or may not be utilized in later stages of inference (i.e., the inclusion of a 
candidate event may lower the posterior probability of a hypothesis and thus would be discarded). 
 
Candidate events are depicted in Supplementary Figures 15A and 16A, where they are illustrated 
as a red mask overlaid on the sound mixture cochleagram. Although not directly depicted in the 
figures, a candidate event also included its estimated sound type and event variables (onset, 
offset, amplitude, f0, spectrum). During the subsequent sequential inference rounds, these event 
variables were combined into full scene hypotheses (shown in Supplementary Figures 15B and 
16B/C). We aimed to generate a moderate number of candidate events with the neural network: 
too many proposals cause sequential inference to become computationally intractable, while too 
few proposals could increase the possibility that search misses important parts of hypothesis 
space.  
 
In the sections that follow, we explain how we adapted the image segmentation network to work 
with sound and to output latent variables in addition to masks. 

Architecture. The segmentation neural network was based on a publicly available image 
segmentation network, Detectron2 (155). We use the standard Detectron2 Generalized R-
CNN/FPN architecture, but modified the training and test procedures to adapt Detectron2 for use 
with sounds and in the context of sequential inference, as explained below. 

Training dataset. We sampled a dataset of input/output training pairs from the generative model. 
The base representation for the input is a scene cochleagram, 𝐶%. The outputs are event variables 
{𝑒).} and a set of binary masks of the cochleagram for each event {𝑀<}. Because data generation 
for training the segmentation network does not need to occur iteratively, we used a more 
computationally expensive and detailed cochlear model to compute 𝐶% and {𝑀<} (104). 

The input to the network was composed of three channels: 1) 𝐶% scaled to image values 0-255 
(scaling from 20-180 dB relative to the internal model reference), 2) a binary channel indicating 
where 𝐶% had energy above the 20 dB threshold, and 3) a binary channel with a value of one for 
all pixels in the cochleagram. This third channel functioned to encode the edges of the 
cochleagram. The top and bottom edges corresponded to the ends of the frequency range. 
Without this third channel, we found that the network would assign events at these edges of the 
cochleagram, presumably due to spurious features created by zero-padding. 

The dataset was composed of 100000 sounds, with durations uniformly sampled from between 
0.5 and 4 seconds long. Rather than sampling from the model with source priors as defined by 
the natural sound datasets, we use uniform priors over all source prior parameters to increase 
data diversity and thereby improve transfer (domain randomization (157–159)). 

Training objective. Using these three channels, the network was trained to recover the set of 
binary event masks {𝑀<} and the sound type and event latent variables {𝑒).} for each event. The 
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loss function used to train the network was the sum of the standard composite segmentation loss 
and a custom loss based on prediction error for the event latent variables {𝑒).}. This additional 
component of the loss function was based on the following set of latent variable predictions. For 
fundamental frequency, we predicted the cochleagram frequency bin with the closest center 
frequency to the fundamental. For tone amplitude, we predicted the continuous value from the 
generative model for each time point. For noise and harmonic events, we predicted a continuous 
value for each time-frequency bin corresponding to the sum of the spectrum and amplitude values 
from the generative model. For binary-valued outputs ({𝑀<}, frequency) we used a binary cross-
entropy loss, as is standard for image segmentation. For continuous-valued outputs (tone 
amplitude, spectrum+amplitude) we used a mean-squared error loss. We defined the left and 
right edges of the target bounding box to equal the onset and offset of the event. The lower and 
upper edges of the bounding box equaled the frequencies at the 1st and 99th percentile of the 
pixels selected by the binary mask. 

Detectron2 also gives a confidence score for each output event proposal. This network confidence 
score (or associated rank) is listed above each event mask in Supplementary Figure 15A. We 
trained the network with Detectron2’s default optimizer (stochastic gradient descent with learning 
rate = 0.001, momentum factor = 0.9) for 100000 iterations with a batch size of 20. 

Test procedure. At test time, we input a scene cochleagram into the segmentation network to 
determine a list of candidate events for the entire sound. To address resource limitations in 
downstream sequential inference, we reduced the number of proposed events by excluding some 
of the events detected by the segmentation network. Given Detectron2’s initial outputs, we first 
applied a custom threshold on the confidence scores that depended on sound type (whistle=0.1, 
noise=0.1, harmonic=0.7). This reflected our observation that the network more often outputted 
erroneous proposals of harmonic sounds, impairing inference. Even with these custom 
thresholds, the network still sometimes detected more events than seemed optimal, in particular 
with multiple candidates that were near-duplicates (as is common in machine vision segmentation 
algorithms). Machine vision segmentation algorithms typically use a heuristic technique termed 
“non-maximum suppression” (NMS) to exclude duplicate objects: if the intersection-over-union 
(IoU) of a pair of bounding-boxes exceeds some threshold, the lower-confidence candidate is 
rejected (for a discussion, see (160)). Accordingly, given the initial outputs of the network, we first 
applied Detectron2’s built-in bounding-box non-maximum suppression threshold. Then, for the 
remaining proposals, we applied a custom non-maximum suppression-inspired “mask threshold”, 
which instead used the sigmoid outputs for the binary masks of events 𝑒" and 𝑒' in the following 
IoU formula: 

IoU"'
soft =

∑ min3,5 (𝑀" , 𝑀')
∑ max3,5 (𝑀" , 𝑀')

 
(26) 

We ran this procedure with both bounding-box and mask thresholds equal to 0.5. This resulted in 
a list of candidate events with corresponding latent variables for an entire sound, ordered by 
network confidence. 

For some sounds, the procedure described so far resulted in fewer than ten candidate events. In 
these cases, it was computationally feasible and desirable for inference to include additional 
candidates to be considered during sequential inference. Therefore, we supplemented the first 
set of candidate events with an additional set. The additional candidates were computed from the 
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same network, but (1) a more lenient bounding-box non-maximum-suppression threshold (0.9) 
was used for all sound types, (2) when considering a pair of harmonic candidate events, the mask 
threshold was replaced with an equivalent IoU computed for the estimated fundamental 
frequencies (allowing harmonic proposals that differed in fundamental frequency despite 
overlapping in the cochleagram), and (3) new candidate events were rejected if they duplicated 
candidate events from the first set. This additional step could never decrease the total number of 
candidates or alter existing candidates. 

In summary, our custom adaptations of Detectron2 are: 

• Self-supervised training on generative model samples, using domain randomization 
• Custom input channels to indicate the edges of the cochleagram 
• Losses to include the estimation of sound type and event latent variables 
• Custom non-maximum suppression inspired mask thresholds 
• Flexible procedure to accommodate additional candidate events to be considered in 

sequential inference 

 
Source construction 
Source construction is the second step of bottom-up inference in analysis-by-synthesis (Step 2 in 
Inference overview section). In source construction, candidate events are combined to create 
scene descriptions that each completely specify a set of sources and the sequence of events they 
emit. These scene descriptions are used to initialize variational inference as described in the 
above section Hypothesis optimization and comparison. Alternations of source construction and 
variational inference proceed until the entire duration of the sound is observed. 
 
Inspired by sequential Monte Carlo (41, 161), each round 𝑗 of the inference procedure considers 
a progressively longer duration of the observed sound. On each round, inference provides a set 
of likely scene descriptions that explain the sound up to time 𝑡'. The result of the first round of 
source construction is depicted in Supplementary Figure 16B (“Initial hypotheses”). Each initial 
hypothesis is a full scene, with one or more sources composed of candidate events, along with 
initial source parameters. 
 
One round of source construction involves 1) any candidate events that have estimated onsets 
𝑡'+$ < 𝜏6& ≤ 𝑡' (Supplementary Figures 15A and 16A) and 2) the existing scene descriptions 
selected on the previous round. To create a new scene description, one or more of these 
candidate events may be added to an existing scene or used to start a new scene. An event can 
be added to a new source, or it can be added to a pre-existing source as long as the sound type 
matches and it only minimally overlaps with the other events in the source (IoU ≤ 0.05). The new 
scene description is constructed and then passed onto the hypothesis optimization step. 
Specifically, the scene description 𝑆" is used to initialize the means of the guide distribution 𝑞" 
described above in the above section Hypothesis optimization and comparison, corresponding to 
hypothesis 𝐻". Supplementary Figure 15B depicts this process over several rounds. Similarly, 
Supplementary Figure 16C depicts how the existing scene descriptions selected on Round 1 are 
combined with the last remaining event proposal on Round 2 (see +𝑒7 in Supplementary Figure 
16C) to create a new set of initial hypotheses. 
 
These simple update actions can result in a large number of scene hypotheses if there are many 
candidate events within the interval [𝑡'+$, 𝑡']. On some rounds of sequential inference, heuristics 
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were necessary to limit which scene hypotheses were optimized for further consideration. These 
heuristics essentially favored smaller scene descriptions or ranked hypotheses based on the 
outputs of the segmentation network (IoU and confidence). They were as follows: 

1. Only consider a maximum number of candidate events on each round (max=5), ranked 
by network confidence. 

2. Only consider a maximum number of scenes per round (max=100 for illusions, max=15 
for everyday sounds). Prefer scene hypotheses for which events have high network 
confidence and low IoU between the old and new event(s). 

3. After the first round, only consider hypotheses which utilize the events inferred in previous 
rounds. 

4. Do not consider scene hypotheses with more than a maximum number of sources 
(max=4). 

5. After the first round, do not consider scene hypotheses which add more than a maximum 
number of new sources (max=2). 

6. Do not consider scene hypotheses which add more than a maximum number of new 
events (max=3) on a single round. 

 
We found these heuristics to be essential to making inference tractable when applied to everyday 
sounds. 
 
Hypothesis optimization and scene selection (sequential inference details) 
After each iteration of the source construction procedure described above, the “initial hypotheses” 
qi were optimized with variational inference resulting in “optimized hypotheses” which had 
optimized event variables and source parameters. Supplementary Figure 16A depicts this 
process of hypothesis optimization (the change to the event variables is evident in the change in 
the rendered cochleagrams before and after optimization). Because there could be many 
hypotheses to optimize, we first performed a partial optimization to find the most promising 
hypotheses and abandon the rest. We first used 250 iterations of variational inference as an initial 
assessment of the hypotheses. We then ranked the hypotheses by their variational lower bound 
(Methods: Equation 25) and kept only the top five (not shown in figures). Then, for these five 
hypotheses, we ran additional steps of variational inference. As discussed in the Discussion, 
illusions typically required additional steps of inference in order to distinguish the competing 
hypotheses, which often differed in subtle ways. Therefore, variational inference was run for 2000 
total iterations for everyday sounds and 4000 total iterations for illusions. Finally, the next round 
of source construction required the best hypotheses of this round to build upon; the top two 
hypotheses were selected to be used in the next round of source construction (Supplementary 
Figures 15B and 16B). This number of hypotheses was constrained by computational limitations. 
Supplementary Figure 15B shows optimized and selected hypotheses over several rounds of 
sequential inference (comprising both source construction and hypothesis optimization), 
demonstrating how the final top hypothesis for the observation was successively built up over 
several rounds. 
 
Cleanup proposals 
After completing inference on everyday sounds, we generated a few extra sets of hypotheses 
(automatically, from the hypotheses produced by the inference procedure). These hypotheses 
were meant to alleviate posterior degeneracy and test alternative minima that were difficult to 
reach through local gradient-based search. They were generated by (1) removing a source, (2) 
removing an event, (3) changing a source’s sound type, (4) merging sources, and (5) merging 
events. In practice, we found that these cleanup proposals had only a modest effect. This is 
possibly because the discovered hypotheses had already undergone multiple rounds of 
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optimization during sequential inference, making it unlikely that new hypotheses could be 
optimized as effectively.  
 
Computational resources 
Sequential inference required considerable computational resources. Over the course of a single 
sound, hundreds of hypotheses could be tested. All hypotheses were optimized on a single GPU 
over a duration ranging from 2 minutes to an hour. Therefore, sequential inference for a single 
sound could potentially take on the order of tens or hundreds of GPU hours. This computationally 
intensive inference was enabled by parallel computing.  
 
Enumerative inference 
In enumerative inference, rather than proposing hypotheses sequentially based on the data, we 
directly defined hypotheses corresponding to the choices provided to a human participant in a 
psychophysical experiment. In some cases an experiment required a participant to choose 
between multiple explanations of sound, corresponding to structurally distinct hypotheses in our 
model: 

• Continuity illusion: a single long whistle vs. several short whistles  
• Tone sequences (bistability, build-up of streaming, and the two context experiments): the 

arrangement of events into one or more sources (streams) 
• Co-modulation masking release, Mistuned harmonic: the presence or absence of a whistle 

event  
Two other experiments involved judgments of sound properties that our model treats as 
continuous latent variables: 

• Spectral completion: the spectrum level of part of the target sound  
• Onset asynchrony: peaks in the spectrum (used to make a vowel judgment) 

 
Whether the final judgment was based on the structure of the hypotheses or on continuous latent 
variables, we performed enumerative inference in the same way. We first created hypotheses 
corresponding to each distinct “structure” to be considered in the experiment (such as the 
arrangement of elements into sources). For each of these structural hypotheses, we then 
optimized the continuous latent variables corresponding to the sources and events defined by the 
hypothesis (such as the spectrum of each source in the hypothesis). Specifically, as described 
above in the Methods section on Hypothesis optimization and scene selection, we use gradient 
descent to optimize a “guide distribution” to approximate the posterior distribution over continuous 
latent variables. As this optimization can land in local optima, we repeated it from multiple 
initializations (corresponding to different settings of the continuous latent variables). Finally, we 
use these optimized guide distributions to make the relevant psychophysical judgment. To choose 
between different structural hypotheses, we compared them based on their marginal probability, 
which we estimated via importance sampling through the optimized guide distributions (we took 
the marginal probability to be the maximum over all initializations, to avoid being biased by local 
minima). To extract continuous latent variables from a hypothesis, we simply took the expectation 
of the optimized guide distribution (weighting initializations by their importance-sampled marginal 
probability, which in practice was often similar between initializations). 
 
Experimenter-defined hypotheses 
For each hypothesis, we initialized the continuous event latent variables so that the initial 
rendered scene sound would be a relatively close match to the observed sound. This was done 
on a case-by-case basis based on our knowledge of the stimulus parameters and the generative 
model. For instance, the onsets of the source events were set equal to the onsets of the stimulus 
components, and the frequencies of the events were set equal to the frequencies of the stimulus 
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components. However, the rendered stimulus was typically not exactly faithful to the original 
stimulus, because it was often not obvious how to set the generative model parameters by hand 
to exactly replicate aspects of the stimulus. A simple example of this is the fact that the model 
used fixed duration onset and offset ramps for events, whereas these varied somewhat in shape 
and duration in the experimental stimuli. The best fitting onset and offset times thus varied 
somewhat depending on these ramps and the initialization was not always optimal. It was thus 
critical to optimize these hypotheses to give the model the best chance of explaining the 
experimental stimulus. In addition, in order to estimate the probability associated with each 
hypothesis, we had to optimize the continuous source parameters and estimate posterior 
variances on all latent variables. For brevity, we omit the long list of generative parameters used 
for the hypothesis initializations in each experiment, but they are available in the Github repository 
for the experiments, which will be made public upon publication. 
 
Hypothesis optimization (enumerative inference details) 
In enumerative inference, we used additional steps of variational inference (compared to what 
was used in sequential inference) to help ensure precise estimates of the posterior distribution for 
pairs of hypotheses that sometimes differed in subtle ways (see Discussion). Specifically, we 
used 8000 iterations of variational inference for a single hypothesis (in comparison to the 4000 
iterations used during sequential inference).  
 
Computational resources 
Similar to sequential inference, enumerative inference required considerable computational 
resources. Depending on the experiment, there were 1-10 hypotheses for each sound. All 
hypotheses were optimized on a single GPU over a duration ranging from 30 minutes to two 
hours. Therefore, enumerative inference to test all the hypotheses for a single sound could take 
on the order of tens of GPU hours. Again, this computationally intensive inference was enabled 
by parallel computing.  
 
Classic auditory scene analysis illusions 
Overview 
We simulated a set of classic psychophysical experiments and illusions in our generative model. 
For the results reported in the main text figures, we used a mix of enumerative or sequential 
inference. For illusions that were evaluated subjectively, we used sequential inference to simulate 
unconstrained listening. For all psychophysical experiments except one, we used enumerative 
inference, on the grounds that the experiments explicitly asked participants to choose between 
different perceptual interpretations. The one exception was the cancelled harmonics experiment, 
where it seemed more appropriate to use sequential inference (see below).  
 
To simulate an experimental setting in which multiple participants complete the same experiment, 
we repeated enumerative inference multiple times for the same experiment. Specifically, we ran 
the enumerative inference procedure on all hypotheses for a stimulus 10 times with different 
random seeds. Each run of the procedure yielded a distribution over the continuous variables for 
each hypothesis. This distribution could be used to estimate the “perceived” value of one of the 
continuous variables (e.g. the spectrum level of part of a source). The distribution could also be 
integrated out to estimate the marginal probability of that hypothesis (e.g., to choose between 
alternative hypotheses). For each run of the inference procedure, we computed the quantity to be 
plotted (this varied from experiment to experiment, see below). We then calculated the mean 
response across inference runs and calculated standard error bars. With sequential inference 
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(intended to simulate unconstrained listening conditions), we ran the inference procedure with a 
single random seed. 
 
Some experiments (continuity illusion, co-modulation masking release, onset asynchrony, and 
mistuned harmonic) required estimating the threshold of a stimulus-generation parameter at 
which the model preferred one explanation to the other. While it would be natural to define this 
threshold as the point at which the posterior probability crosses 50%, this estimator is not robust 
to the noisy probability estimates produced by our stochastic inference procedure (and does not 
necessarily produce a unique value). Instead, we defined the threshold more robustly based on 
the integral of the posterior with respect to the stimulus-generation parameter. Specifically, if H0 
is to be preferred for low parameter values and H1 for high parameter values, we define the 
threshold τ (uniquely) with respect to stimulus-generation parameter values ν= such that: 
 

q 𝑝(𝐻+|𝑋)
>"?@

= q 𝑝(𝐻6|𝑋)
>"A@

 (27) 

 
All sounds were generated at 20kHz. Stimulus levels for the model experiments are specified in 
dB relative to an arbitrary model reference value. 
 
Continuity illusion 
Stimuli. We adapted the experimental stimuli from Experiment 3 of ref. (66). In the original 
experiment, participants adjusted the level of a tone until it was just audible in noise (to measure 
masking thresholds) or until it just sounded discontinuous, if alternating with noise bursts (to 
measure continuity thresholds). In both conditions, noise was played throughout the adjustment 
process. The experiment included 15 participants who had not participated in previous 
experiments in the paper.  
 
Because our model was not set up to actively adjust the parameters of the experimental stimuli 
like participants could, we instead generated stimuli spanning a range of tone levels (44-80dB in 
4dB increments) and then simulated model responses at each level. We tested model responses 
for pure tones at 250, 500, 1000, 2000 and 4000 Hz, replicating all the frequencies in the 
experiment except 8000 Hz (due to its presence on the very edge of the cochleagram 
representation we used). For both conditions, we generated pink noise with an order-206 FIR filter 
with a one-octave notch. The filter’s 3dB down points were at 722 and 1367 Hz, and it reached 
its maximum attenuation of 40dB between 900-1200 Hz. After filtering, the level of the noise was 
set to 80 dB. 
 
To generate the stimuli for the masking condition, three pure tones were embedded in a noise 
masker. The masker was a single noise burst of duration 1.8-s with 10-ms raised cosine onset 
and offset ramps. Each tone was 300-ms long with 10-ms raised cosine ramps. The tones were 
separated by 300-ms interstimulus intervals. The first tone began 150-ms after the onset of the 
noise burst, such that the last tone ended 150-ms before the offset of the masker. To generate 
the stimuli for the continuity condition, the tones were alternated with short noise bursts. Five 300-
ms noise bursts were generated with an interstimulus interval of 300-ms. The first 150-ms tone 
began 150-ms after the offset of the first noise burst. The next two noise bursts were alternated 
with 300-ms tones. The last tone started immediately after the fourth noise burst and ended 150-
ms before the onset of the last noise burst. The noise and the tones each had 10-ms onset and 
offset ramps, and overlapped in the region where they were ramped (i.e., were cross-faded). All 
stimuli were padded with 50ms of silence. In total, there were 50 stimuli resulting from this process 
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(5 frequencies ✕ 10 levels). The above process was replicated 10 times with different exemplars 
of noise for each replication of inference, increasing the stimulus set size to 500 (10 exemplars of 
50 stimuli). 
 
Analysis (enumerative inference). We used a one-interval, 2AFC task to measure thresholds. 
For each stimulus in the masking condition (corresponding to a tone level/frequency pair), the 
model compared the hypotheses that tones were present versus absent. The tone-absent 
hypothesis was initialized with a noise with a similar spectrum to the stimulus masking noise (as 
described above, we attempted to set the parameters of the generative model to match the noise, 
but this did not produce an exact match, and was optimized during the model inference to match 
the stimulus as best possible). The tone-present hypothesis initialized this noise along with the 
tones at the appropriate level, frequency and timing for the stimulus. For each stimulus in the 
continuity condition, the model compared the hypothesis that there was a continuous single tone 
versus four discontinuous tones. Each hypothesis was initialized with noise bursts of appropriate 
duration and spectrum, and tones of constant level. For each condition, this resulted in a log odds 
curve as a function of tone level for each tone frequency, which we used to calculate thresholds. 
 
Homophonic continuity 
Stimuli. We extracted two 1.5-s clips from Track 32 of (67), titled “Homophonic continuity and 
rise time”. Both clips were composed of continuous bandpass white noise (0-8 kHz), but had 
different amplitude envelopes. The initial amplitude of both sounds was a quarter of the peak 
amplitude, and both sounds rose and fell in amplitude twice. The first clip was gradually 
modulated, rising linearly to a peak over 252 ms and then falling to the initial amplitude over 252 
ms. The second clip was abruptly modulated, rising to peak amplitude in 1 ms, maintaining peak 
amplitude for 32 ms, and then falling to the initial amplitude in 1 ms. We downsampled the original 
clips to a sampling rate of 20kHz. Each sound was padded with 50-ms of silence.  
 
Analysis (sequential inference). The test of whether the model succeeds in this illusion is 
whether the abruptly modulated noise is interpreted as two separate sources despite the gradually 
modulated noise being interpreted as a single source. Therefore, we only used sequential 
inference for these sounds and visually assessed the results.  
 
Spectral completion 
Stimuli. We reproduced the experimental stimuli from Experiments 1 and 2 of ref. (68). In the 
original experiment, participants adjusted the spectrum level of the middle frequency band of a 
short comparison noise until it sounded as similar as possible to the target noise. The starting 
level of the middle band of the comparison noise was set randomly between -10 and 30 dB 
spectrum level. The final spectrum level of the middle band was reported as an average across 
participants. The experiments included 8 participants between the ages of 18 and 30 years old. 
 
Stimulus generation was identical to that in the original experiments. Each stimulus was 
generated by combining bandpass white noise bursts of various spectrum levels and pass bands. 
The standard stimulus consisted of a “masker” and a “target”. The masker was 750 ms in duration 
and had a pass band of 500-2500 Hz. The target contained a lower tab (100-500 Hz) and an 
upper tab (2500-7500 Hz). The target was 150 ms in duration, and started 300 ms after the onset 
of the masker. To generate each noise burst, we first set all spectral domain magnitude 
coefficients outside the pass band to zero, and then performed an inverse fast Fourier transform. 
Each noise burst had 10-ms raised cosine ramps. We additionally padded each stimulus with 
100ms of silence. 
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For Experiment 1, we generated five stimuli. The tabs in Experiment 1 were set to a spectrum 
level of 20 dB/Hz. Stimuli i and ii only contained the short target sound. In stimulus i, the middle 
band was silent. In stimulus ii, the middle band had a spectrum level of 30 dB/Hz. Stimulus iii was 
the standard stimulus described above. Stimulus iv had a masker with a spectral gap that 
extended from 600-2080 Hz and its spectrum level was increased so that its overall level was 
equal to that of the masker in the standard stimulus. Stimulus v had a masker which stopped at 
the tab onset and began again at the tab offset. 
 
For Experiment 2, we generated six variations on the standard stimulus in which the spectrum 
level of the tabs and maskers were varied in opposite directions. The tab and masker levels for 
these six stimuli were (5,35), (10, 30), (15, 25), (20, 20), (25, 15), and (30, 10) dB/Hz.  
 
There were a total of 11 stimuli across both experiments. We replicated the stimulus generation 
process 10 times with different exemplars of noise for each replication of inference, increasing 
the stimulus set size to 110 (10 exemplars of 11 stimuli). 
 
We also generated each comparison stimulus with a range of spectrum levels for the middle band. 
For Experiment 1, we generated the comparison stimulus with middle band spectrum levels 
spanning -15-40 dB/Hz in steps of 2.5 dB/Hz, and tab spectrum levels at 20 dB/Hz. This resulted 
in a total of 22 comparison stimuli. For Experiment 2, we generated each comparison stimulus 
with spectrum levels spanning -5-12.5 dB/Hz in steps of 1.25 dB/Hz. For each comparison 
stimulus, the tab level matched that of the corresponding target stimulus. This resulted in 15 
comparison stimuli for each of 6 target stimuli, for a total of 90 comparison stimuli. We replicated 
this process 10 times with different exemplars of noise for each replication of inference, increasing 
the comparison stimulus set size to 900 (10 exemplars of 90 comparison stimuli across both 
experiments). 
 
Analysis (enumerative inference). For each stimulus, we optimized a single structural 
hypothesis based on the stimulus generation parameters. For the first two stimuli in Experiment 
1, the structural hypothesis contained a single noise source corresponding to the target. For the 
rest of the stimuli in Experiment 1 and all stimuli in Experiment 2, the structural hypothesis 
contained two noise sources that corresponded to masker and target. For stimulus v in 
Experiment 1, the source corresponding to the masker contained two events; otherwise, each 
source contained one event. We note that these structural hypotheses accord with the number of 
sources and events found by sequential inference except in the case of stimulus iv in Experiment 
1, where the masker is accounted for by two simultaneous sources. Nevertheless, for stimulus iv 
in Experiment 1, the inferred middle band spectrum level is comparable for both enumerative and 
sequential inference.  
 
The structural hypothesis was initialized to match the masker and tab level in the stimulus, but 
with multiple settings of the middle band spectrum level of the target. This emulated the variable 
starting level of the middle band in the experiment. For Experiment 1, the initial spectrum levels 
of this middle band were -20, 0, 10, 20, and 30 dB/Hz. For Experiment 2, the initial spectrum 
levels were -5, -2.5, 0, 5, 10, 12.5, 20 dB/Hz. After variational inference, for each initialization, we 
selected the batch of sampled scenes with the best score (see Methods: Hypothesis optimization 
and comparison). We averaged the target spectrum over the batch. Then, we took a weighted 
average of the target spectra (arising from the different initializations) using their importance-
sampled marginal probability. Then, we computed the mean squared error between this average 
spectrum and the inferred latent spectra for each comparison stimulus. The model's judgment 
was selected to be the spectrum level of the comparison stimulus which minimized the error. 
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Averaging over runs of inference with different random seeds provided the plotted value and 
standard error bars. 
 
Co-modulation masking release 
Stimuli. We adapted the experimental stimuli from Experiment 1 of ref. (69). In the original 
experiment, participants were asked to detect a tone in bandpass noise that varied in bandwidth. 
The different spectral regions of the noise were either co-modulated or had random amplitude 
envelopes. Participants' thresholds were measured using a two-interval, 2AFC procedure. The 
experiment included five highly experienced participants with two hours of training in all 
experimental conditions.  
 
For each bandwidth, we generated a co-modulated noise burst and a random noise burst. The 
random noise burst was generated from white noise (with power from 0-10 kHz, i.e. up to the 
Nyquist frequency). To generate co-modulated noise, we multiplied the white noise by a low-pass 
noise with power between 0-10 Hz. Then, we bandpass filtered both noises to the appropriate 
bandwidth, centered on 1000 Hz, using a fourth-order Butterworth filter and forward-backward 
filtering. After filtering, we confirmed that the absolute spectrum level of the co-modulated and 
random noises were within 1 dB/Hz of 40 dB/Hz within the passband. We trimmed each noise to 
400-ms and applied 50-ms raised cosine ramps. We then generated a set of 1 kHz tones with a 
range of levels (40-85 dB in steps of 5 dB). The tones were 400-ms with 50-ms raised cosine 
ramps. We added the tones to each noise, for a total of 20 stimuli for each noise bandwidth (2 
noise conditions ✕ 10 tone levels). We repeated this process for 100, 200, 400, and 1000 Hz 
bandwidths, resulting in 80 stimuli. Finally, we repeated this process ten times with different 
exemplars of noise for each replication of inference, increasing the stimulus set to 800 sounds. 
 
The major difference between the original experiment stimuli and our model simulation is that the 
frequency cutoff of the low-pass noise for the model experiment was 10 Hz, instead of the original 
50 Hz. We used slower amplitude modulations in the stimuli for the model experiment because 
the relatively coarse temporal resolution of the cochleagram representation limited the rate of 
modulations that could be resolved. We found subjectively that the masking release was still 
obvious at this setting, consistent with previous work (71). We also omitted the 25 and 50 Hz 
bandwidth conditions due to the frequency resolution of our cochleagram. 
 
Analysis (enumerative inference). For each stimulus, we compared the hypotheses that a tone 
was present versus absent (one-interval, 2AFC task). For all hypothesis initializations, we 
initialized the noise with the appropriate amplitude envelope. The tone absent hypothesis only 
contained the noise burst. For the tone present hypothesis, we made two initializations in order 
to aid in finding the best setting of the continuous latent variables for this hypothesis. One 
initialization had the tone matching the tone level in the stimulus. The other had a “quiet” tone 
initialized at 0 dB. For each bandwidth and noise condition, we computed the log odds as a 
function of tone level then computed the detection threshold.  
 
Frequency modulation 
Stimuli. We based our stimulus design on the classic demonstration first described in ref. (72). 
We generated a 1-s complex tone in which the odd harmonics had a steady f0 and the even 
harmonics were coherently frequency modulated. The even harmonics began in a harmonic 
relationship with the odd harmonics, but were immediately frequency modulated at a rate of 2 Hz, 
with a maximum frequency change of 70 Hz. The fundamental frequency of the odd harmonics 
was 300 Hz. The stimulus contained harmonics 1-12, with levels of 75, 63, 56, 52, 48, 48, 42, 46, 
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38, 45, 35, 39 dB respectively. The entire stimulus had 20-ms raised cosine ramps, and was 
padded with 50-ms of silence. 
 
Analysis (sequential inference). The test of whether the model succeeds in this illusion is 
whether the modulated components are discovered as a separate source. Therefore, we only 
used sequential inference for these sounds and visually assessed the results. 
 
 
Mistuned harmonic 
Stimuli. We reproduced a subset of the experimental stimuli from ref. (76). In the original 
experiment, participants were presented with a complex tone and asked to indicate whether they 
heard a single sound (with one pitch) or two sounds (a complex tone and a pure tone). On half of 
trials, the tone was harmonic and on the other half one frequency component was mistuned. The 
authors then calculated the degree of mistuning which was necessary to detect two sounds. The 
experiment included four participants, the authors and one volunteer, who were all highly 
experienced with psychoacoustics and with the task of detecting mistuning in harmonic 
complexes.  
 
We generated 400-ms complex tones with a fundamental frequency of 100, 200 or 400 Hz. The 
complex tones had equal amplitude harmonics, each with a level of 60 dB. Tones at 100 and 200 
Hz included harmonics 1-12 and tones at 400 Hz included harmonics 1-10. Each tone was given 
10-ms raised cosine onset and offset ramps. Based on these harmonic complex tones, we created 
complex tones where one component was mistuned. We mistuned harmonics 1-3 by 5, 10, 20, 
30, 40, or 50% of the fundamental frequency. Including the in-tune harmonic complexes (0% 
mistuning), this resulted in 63 stimuli (3 fundamental frequencies ✕ 3 harmonic numbers ✕ 7 
mistuning levels). Every stimulus was padded with 50-ms of silence.  
 
Analysis (enumerative inference). For each stimulus, we compared the hypothesis that there 
was one harmonic source versus the hypothesis that there was one harmonic source and one 
whistle source (one-interval, 2AFC task). For the single source hypothesis, we initialized a single 
harmonic source with the stimulus parameters of the in-tune harmonic complex. For the two 
source hypothesis, we made two initializations in order to aid in finding the best setting of the 
continuous latent variables for this hypothesis. Both initializations had a whistle source at the 
mistuned frequency and a harmonic source with the fundamental frequency of the stimulus, but 
they varied in the relative energy of the whistle and the component within the harmonic source 
that corresponded to the mistuned harmonic number. In the first initialization, the component 
corresponding to the mistuned harmonic was attenuated by 30 dB in the harmonic source, and 
the whistle source was set to 60 dB. In the second initialization, the component corresponding to 
the mistuned harmonic was only attenuated by 6 dB, and the whistle source was set to 50 dB. 
For each fundamental frequency and harmonic number, we computed the log odds as a function 
of mistuning percent then computed the detection threshold. 
 
Asynchronous onsets 
Stimuli. We reproduced a subset of the stimuli from Experiment 1 in ref. (77). In the original 
experiment, participants heard short speech-like sounds and categorized them as either /I/ or /e/. 
The experiment included six participants, who had practice with the control conditions.  
 
We generated four of the continuua from the original experiment. The first was the ‘basic’ 
continuum, which was composed of seven vowels for which the first formant was varied from 375 
to 500 Hz in equal steps. The other three continuua were created by adding 500-Hz tones to the 
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basic continuum. The first ‘shifted’ continuum was created by adding a tone with the same onset 
and offset as the vowel. The onset of the tone in the other two continuua was asynchronous with 
the vowel, either 32-ms before or 240-ms before the vowel. To generate the vowel sounds, we 
used a publicly available Python interface of the Klatt speech synthesizer, which was used in the 
original experiment (162, 163). To create the basic continuum, we generated seven 60-ms long 
vowels with a fundamental frequency of 125 Hz and overall level of 56 dB. In each vowel, formants 
2-5 were centered at 2300, 2900, 3800, and 4600 Hz respectively. The bandwidths of these 
formants were unspecified in the original paper and were set to the Klatt synthesizer defaults (70, 
150, 200 and 200 Hz for formants 2-5, respectively). The bandwidth of the first formant was 70-
Hz and kept constant in each vowel. The first formant frequency varied across vowels, with values 
of 375, 296, 417, 438, 459, 480 and 500 Hz. These values are referred to as the “nominal first 
formant frequencies” for the other continuua. Each vowel had 16-ms linear onset and offset 
ramps. To generate the tones to add to each vowel in the basic continuum, we first measured the 
level of the 500 Hz component in each vowel. For each vowel, we generated a pure tone that was 
6-dB higher in level than the 500-Hz component. This pure tone constructively interfered with the 
500 Hz component of the vowel to produce a 9.5 dB increment from the original level at 500 Hz. 
After adding 16-ms linear onset and offset ramps to the tone, we added the tone to the vowel so 
as to produce the desired onset difference. This process resulted in 28 stimuli (4 continuua ✕ 7 
vowels). All stimuli had the same overall duration, and were zero-padded so that the vowel had 
the same absolute onset time in each stimulus. The stimulus with the largest onset asynchrony 
was zero-padded with 50-ms of silence.  
 
Analysis (enumerative inference). For each stimulus, we found the frequencies where the first 
two ‘formant’ peaks occurred in the inferred spectrum of the harmonic source. We then computed 
classification probabilities according to empirical first and second formant distributions measured 
by (78). This enabled us to compute the vowel boundary (classification threshold) in terms of the 
nominal first formant frequency.  
 
For each stimulus, we considered the case where the 500-Hz component is explained by the 
harmonic vowel source and the case where it is (at least partially) explained by a whistle 
source.  For each stimulus in the basic and shifted continua, we optimized two structural 
hypotheses: (1) a harmonic source only and (2) a harmonic source and a simultaneous 500-Hz 
whistle source, initialized with the stimulus parameters. For the asynchronous onset continuua, 
we optimized a single structural hypothesis (a whistle source and a harmonic source) from two 
initializations. The first initialization included a harmonic source with the shifted spectrum and a 
whistle that ended at the beginning of the harmonic source. This corresponded to the possibility 
that the overlapping 500-Hz component is grouped with the harmonic source. The second 
initialization included a harmonic source with the basic spectrum and a whistle that ended 
synchronously with the harmonic source. This corresponded to the possibility that the 500-Hz 
component of the harmonic event is ‘captured’ by the asynchronous whistle.  
 
After variational inference, for each initialization, we selected the batch of sampled scenes with 
the best score. To estimate the formants of the inferred vowel, we averaged the harmonic source's 
latent spectrum over the batch, and then found the frequencies at which this inferred spectrum 
had peak amplitude in the ranges 325-500 Hz and 2000-2500 Hz, corresponding to the first and 
second formants. For each formant, we additionally took a weighted average of the formants 
arising from the different initializations using their importance-sampled marginal probability.  
 
We then selected a subset of the data in (78) corresponding to the vowels /I/ and /e/. To 
compensate for potential differences between the speakers in the original vowel set and those 
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which the synthetic vowel stimuli were modeled on, we normalized both the empirical formant 
distribution and inferred formant distribution (164) by z-scoring. We z-scored the inferred formants 
using the mean and standard deviation computed across all conditions and seeds. We z-scored 
the empirical formants using the mean and standard deviation of the whole selected subset of 
formants. We then separately computed the mean and covariance of the z-scored /I/ and /e/ 
formant distributions.  
 
To derive classification probabilities for the model inferences, we computed the probability of each 
z-scored, inferred formant pair under two normal distributions with the empirical means and 
covariances. For each continuua, this provided a classification probability as a function of nominal 
first formant frequency. Finally, we computed the vowel boundary threshold. We took a mean of 
the vowel boundary over the different runs of the inference procedure and computed the standard 
error.  
 
Cancelled harmonics 
Stimuli. We adapted the stimuli from Experiment 1 of ref. (79). In the original experiment, listeners 
matched the frequency of a comparison tone to their percept of a gated harmonic within a 
harmonic complex tone. The experiment included four male listeners between the ages of 21-65; 
two were the authors. 
 
We created harmonic complex tones with fundamental frequencies spanning 190 to 210 Hz in 
five equal steps (in Hz). The duration of each tone was 750-ms, with 10-ms raised cosine onset 
and offset ramps. Each tone contained harmonics 1-30. The harmonics were each 45 dB and 
added in sine phase. For each fundamental frequency, we created a set of stimuli each with a 
different gated harmonic component (harmonics 1-3,10-12,18-20). We gated the component with 
10-ms raised cosine ramps to create five tones of 100-ms each. The onset of the first tone and 
the offset of the last tone were aligned to those of the harmonic complex. Therefore, the 
interstimulus interval between the tones was 62.5-ms.  The entire stimulus was padded with 50-
ms of silence. This process led to a total of 45 stimuli (5 fundamental frequencies ✕ 9 harmonic 
numbers).  
 
The stimuli for the model experiment were shorter than those for the original experiment. The 
original experiment used 9.1-s long harmonic complexes with four tones of 1.3-s. Inference with 
this stimulus duration would have been prohibitively computationally expensive, so we instead 
used 750-ms long harmonic complexes with five tones of 100-ms. 
 
Analysis (sequential inference). The test of whether the model succeeds in this illusion is 
whether it discovers any whistle sources that correspond to the gated components. Therefore, we 
used sequential inference, after which we selected the top-scoring hypothesis which contained 
any whistle sources. For any whistle source in that scene, we recorded its source-level mean 
fundamental frequency (µB). We took the average 𝜇B across all whistle sources if there were more 
than one (because this typically corresponded to some of the gated tones being assigned to a 
different whistle source than others, but with similar frequencies). If no hypothesis contained a 
whistle source, we recorded this as a ‘no-match’ trial, as in the original experiment. For each trial 
(corresponding to a harmonic number and fundamental frequency), we calculated the percent 
matching error as a proportion of the gated component frequency. We also recorded the number 
of ‘no-match’ trials for each harmonic number summed across fundamental frequencies. We 
plotted the distribution of errors in Figure 5D. 
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Frequency proximity 
Stimuli. We adapted two tone sequences from Experiment 2 of (81), which are similar to the 
demonstrations in Track 17 of (67) titled “Failure of crossing trajectories to cross perceptually”. In 
the original sequences, tones in an ascending sequence are alternated with tones in a descending 
sequence. In the first clip, all the tones in both sequences are pure tones. In the second clip, the 
ascending sequence is composed of harmonic tones. Listeners judge whether they can hear the 
ascending and descending sequences, or whether they hear two ‘bouncing' sequences.    
 
We interleaved an ascending and descending sequence, each composed of 6 tones with 
frequencies evenly spaced on a log-frequency scale (504, 635, 800, 1008, 1270, 1600 Hz). Each 
tone was 100-ms in duration with 8-ms onset and offset ramps, with adjacent tones played back-
to-back. In the first version (where all tones were pure tones), all tones were 70 dB. In the second 
version (where the ascending sequence contained harmonic complex tones), the harmonic 
complex tones contained the first four harmonics of the fundamental frequency (which were the 
pure tone frequencies from the first version). The pure tones were 73 dB while each component 
of the harmonic tone was 67 dB. 
 
Analysis (sequential inference). Since the stimuli from this experiment are often used as 
standalone demonstrations, we tested whether “bouncing” sequences are discovered in the first 
clip and “crossing” sequences are discovered in the second clip. Therefore, we only used 
sequential inference for these sounds and visually assessed the results.  
 
Bistability 
Stimuli. We adapted the classic ABA sequences used in Track 3 of (67), titled “Loss of rhythmic 
information as a result of stream segregation”, in order to estimate the stimulus parameters Δ𝑓 
and Δ𝑡 that lead to one- or two-stream perceptual organizations. These effects were first 
measured by Experiment 2.3.2 in ref. (82), but this experiment used 80-s sequences that are 
computationally infeasible for our model, and so we generated shorter sequences.  
 
In the typical ABA tone sequence, three tones are followed by a silence of the same duration as 
the tone onset-to-onset interval. The first and third tone in the triplet (A) have the same frequency, 
which can be different from the frequency of the second tone (B). We generated versions of such 
sequences in which the onset-to-onset interval was 67, 83, 100, 117, or 150 ms. The A tone was 
always 1000 Hz, and the B tone was 3, 6, 9, or 12 semitones higher in frequency. The tones were 
all 70-dB and 50-ms long with 10-ms raised cosine onset and offset ramps. The ABA triplet was 
repeated four times. The stimuli were padded with silence so their total duration was equal (3.1 
s). This resulted in 25 stimuli (5 frequency intervals ✕ 5 time intervals). 
 
Analysis (enumerative inference). For each tone sequence, we compared two hypotheses: one 
stream (all tones in one source) versus two streams (high tones in one source, low tones in a 
separate source). We initialized each hypothesis with a set of whistle events with the stimulus 
frequencies and timings that were organized into the appropriate sources. After variational 
inference, we computed the log odds of the hypotheses for each sequence. We took the average 
log odds across all runs of the inference procedure and computed the standard error.  
 
Buildup of streaming 
Stimuli. We adapted the tone sequences used in ref. (84). In the original experiment, listeners 
heard a 12.5-s ABA sequences. At any point during each sequence, they could freely indicate 
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whether they were hearing one or two sources. The experiment included eight listeners between 
23-57 years old. 
 
Listeners in (84) could respond at any point during a sequence. To obtain an analogous measure 
of the effect of time on the model’s inferred perceptual organization, we instead evaluated the 
model for multiple sequences, each with a different number of repetitions. We generated two sets 
of ABA sequences (with the tone arrangement described in the previous section, Bistability) one 
with a frequency difference Δ𝑓 of eight semitone and one with a frequency difference of four 
semitones. The A tone was 500 Hz. The tones were 50-ms in duration with 10-ms raised cosine 
onset and offset ramps, and with 125-ms onset-to-onset intervals. Each ABA triplet was thus 500-
ms in duration. We generated sequences with 1-6 repetitions of the ABA triplet. This resulted in 
12 tone sequences total (2 Δ𝑓 ✕ 6 sequence durations). 
 
Analysis (enumerative inference). The initialization of inference, and the analysis, was identical 
to the previous section, Bistability. 
 
Effects of context (1) 
Stimuli. We adapted the stimuli used in Task 1 of Experiment 2 in ref. (14). In the original 
experiment, listeners first heard the standard AB tone pair in isolation and then 12 repetitions of 
the ABXY sequence. They rated whether the standard was audible as a separate pair in the 
sequence. The experiment included 16 young adult participants. 
 
We generated the seven ABXY sequences in the original experiment, but only repeated them four 
times (because it was computationally prohibitive to run inference on longer stimuli). For the four 
“isolate” stimuli, the ABXY frequencies were (2800, 1556, 600, 333), (600, 333, 2800, 
1556),(2800, 2642, 1556, 1468), and (333, 314, 600, 566) Hz, respectively. For the three “absorb” 
stimuli, the ABXY frequencies were (2800, 1556, 2642, 1468), (600, 333, 566, 314), and (2800, 
600, 1468, 314) Hz, respectively. Each tone was 100-ms with 10-ms sine-squared onset and 
offset ramps, and 10-ms silences between tones. In the original experiment, all tones were 70-dB 
except for 333 and 314 Hz, which were 77-dB (to equate the loudness of the tones, based on 
equal loudness contours at 70 phon). This adjustment was unnecessary for the model, so we 
presented all tones at 70-dB. In the original human experiment, the sequence was faded in and 
out to prevent participants from adopting strategies based on the beginning or end of the 
sequence. This was not an issue with the model, and so all cycles of the sequence were presented 
at the same level. 
 
Analysis (enumerative inference). For each tone sequence, we compared two sets of 
hypotheses. In both sets, all hypotheses contained one source with a pair of tones, and one or 
two other sources. The first set contained the two hypotheses in which A and B were paired in 
their own source (one with X and Y in a second source, and one with X and Y in different sources). 
The other set contained the eight hypotheses in which A and B were in separate sources (each 
with a different assignment of X and Y to the sources containing A and B, or to separate 
sources).  We initialized each hypothesis with a set of whistle events with the stimulus frequencies 
and timings that were organized into the appropriate sources. After variational inference, we 
summed the marginal probabilities within each set and then calculated the log odds for each 
sequence. We averaged the log odds across all runs of the inference procedure and computed 
the standard error. 
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Effects of context (2) 
Stimuli. We adapted the stimuli used in Task 1 of Experiment 2 in ref. (85). In the original 
experiment, listeners first heard a standard tone pair and then a longer sequence that contained 
a “target” tone pair, comprising tones of the same frequency. The target tones could be in the 
same order as the standard, or in reverse order. The longer sequence also contained two 
“distractor” tones, one immediately preceding the target pair and one following the target pair. 
Participants judged whether the standard and the target had the same order. The experiment 
included 13 participants from ages 16 to 26 years. 
 
There were 4 stimuli in this experiment, each corresponding to a different “captor” condition that 
varied in the presence of captor tones that might cause distractor tones to segregate from the 
target tones. In the “none” captor condition, there were only distractor tones and target tones in 
the long sequence. In the other captor conditions, the distractor and target tones were in the same 
configuration, preceded by 3 captor tones and followed by 2 captor tones. The first target tone 
had frequency 2200-Hz and level 60-dB. The second target tone had frequency 2400-Hz and 
level 60-dB. The frequency of the distractor tones was 1460-Hz and their level was 65-dB. The 
frequencies and levels of the captor tones in the three conditions with captors were (590-Hz, 63-
dB), (1030-Hz, 60-dB) and (1460-Hz, 65-dB) respectively. The duration of each tone was 70-ms 
(compared to 45-ms in the original experiment), with 7-ms on-ramps and 5-ms off-ramps. Each 
target tone and the first distractor was preceded by 9-ms of silence and followed by 0-ms of 
silence. The captor tones and second distractor tone were preceded by 9-ms of silence and 
followed by 64-ms of silence. 
 
Analysis (enumerative inference). For each tone sequence, we compared the pair of 
hypotheses where the target tones were in their own source to the hypothesis where they were 
grouped with the distractors. The pair of hypotheses with the target tones in their own source 
included the hypothesis where the captors and distractors were grouped and the hypothesis 
where the captors and distractors were segregated. Within this pair, we summed the marginal 
probabilities. Then we took the log odds of the targets-alone hypotheses and the targets-plus-
distractors hypothesis. We averaged the log odds across all runs of the inference procedure and 
computed the standard error.  
 
Human-model dissimilarity 
To compare how well our model, the lesioned models, and the source-separation neural networks 
matched human perception (Figure 7A and D), we quantified the dissimilarity with human 
perception of classic illusions. The dissimilarity was based on correlations between model and 
human data, and the method for obtaining a correlation coefficient was dependent on the illusion 
(e.g., subjectively evaluated vs. threshold measurements) and the form of the model output 
(because the source-separation networks output a set of soundwaves – estimates of the 
premixture sounds – rather than the symbolic scene description provided by our model). We first 
give the overall form of the human-model dissimilarity metric, and then describe the method for 
obtaining each correlation from either a set of output soundwaves or from symbolic scene 
descriptions. 
  
For each experiment, we computed a baseline correlation using the original stimulus as the 
“model output”, that is, as though a model inferred a single source identical to the stimulus itself. 
We then computed the human-model dissimilarity for that experiment normalized by the baseline 
dissimilarity: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.538626doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.27.538626
http://creativecommons.org/licenses/by-nc-nd/4.0/


 63 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ]
1	 − 	𝑟

1	 −	𝑟8/9:;"&:
, 𝑟 < 𝑟8/9:;"&:
1, 𝑟 ≥ 𝑟8/9:;"&:

 (28) 

where 𝑟 is the appropriate correlation coefficient as described below. Using this measure, a 
dissimilarity of zero corresponds to a perfect human-model correlation, while a dissimilarity of one 
corresponds to the baseline correlation or worse. We then averaged this dissimilarity across all 
experiments to obtain the aggregate dissimilarity measure plotted in Figure 7A and 7D. 
 
We use one of three types of correlation coefficient 𝑟 depending on the illusion. They are: 

1. Pearson correlation between cochleagrams (across pixels). This correlation was used for 
illusions that are subjectively assessed (homophonic continuity, frequency modulation, 
frequency proximity). 

2. Pearson correlation between continuous-valued experiment results (across stimulus 
conditions). This correlation was used for illusions assessed with continuous-valued 
average judgments: either the preference for one explanation over another (bistability, 
buildup of streaming, effect of context) or an estimate of a continuous variable (spectral 
completion, cancelled harmonics).  

3. Spearman correlation between thresholds (across stimulus conditions). This correlation 
was used for experiments that measure thresholds (continuity illusion, co-modulation 
masking release, mistuned harmonic, and onset asynchrony) because thresholds were 
sometimes unmeasurable, and were set to a maximum value, violating the assumptions 
of the Pearson correlation.  

Each of these will be explained in more detail below, along with the method for obtaining the 
correlation depending on the form of the model output. We first describe the forms of model output 
in more detail. 
 
If the model output was a symbolic scene description (generative models represented in Figure 
7A-C), we simulated psychophysical experiments as described above in Methods section Classic 
auditory scene analysis illusions (a combination of enumerative and sequential inference, 
depending on the illusion). For each lesioned model, we obtained analogous results to Figures 4-
6. 
 
If the model output was a soundwave (as for the baseline, the neural networks shown by grey 
bars in Figure 7D, and the generative model evaluated in the same way as neural networks, 
shown by the pink bar in Figure 7D), we require a method to simulate psychophysical experiments 
by obtaining psychophysical judgments from the output soundwaves. For this, we used "standard 
sets" of source sounds. For each sound mixture, we defined standard sets that each consists of 
a set of sounds rendered from a scene hypothesis for that sound mixture. These sounds could be 
compared to the output soundwaves of a model to obtain psychophysical judgments. They were 
typically a set of sounds that reflect what human listeners hear (e.g., for frequency modulation: 
one sound with the frequency-modulated harmonics and one sound with the steady harmonics) 
or sounds rendered from the experimentally-defined hypotheses of enumerative inference, and 
are described below for each ASA illusion. For example, in the bistability experiment, there were 
two standard sets with two sounds each. The first represented the two-stream hypothesis: one 
sound had all the high frequency tones and the other sound had all the low frequency tones. The 
second represented the one-stream hypothesis: one sound was the mixture with both high and 
low tones, and the other sound was silence (because the networks always output at least two 
sources).  
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If there were multiple standard sets representing multiple hypotheses, as just described for the 
bistability experiment, we computed a model's preference for one hypothesis over another by 
using the output soundwaves. To determine model preference, we computed the L2 distance 
between each of the model outputs 𝑁 = {𝑁)}, and each standard set 𝑆: = {𝑆:.}, in cochleagram 
space. We found the correspondence of model outputs 𝑖 to standards 𝑗 which minimized this L2 
distance for each standard set. If the size of the model outputs was less than the size of the 
standard set we added a silent model source to allow this distance to be calculated. For 
experiments which compared two hypotheses, we then compared these minimal distances to 
each standard set, to provide a measure of the model's preference for hypothesis H1 over 
hypothesis H2, specifically: 

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝐻+ > 𝐻') =
𝑑(𝑁, 𝑆') − 𝑑(𝑁, 𝑆+)

𝑑(𝑆+, 𝑆')
 (29) 

𝑑(𝑁, 𝑆:) = min
),.,)D.

��𝑁) − 𝑆:.��
'
	 (30) 

where the denominator is the minimal distance between each set of standards, used to normalize 
the distance metric. This model preference (based on estimated sound waveforms) was 
interpreted analogously to the log odds between symbolic scene descriptions in the generative 
models. This preference was used with correlation types 2 and 3. 
 
We turn now to the three types of correlation coefficient introduced above. The subsequent 
section will cover each illusion in more detail. 
 
Correlation type 1, Comparing model outputs to standard cochleagrams 
For subjectively evaluated illusions, we computed the maximum Pearson correlation between the 
cochleagram values of model outputs and the single set of standard sources that human listeners 
were considered to hear. For generative models with symbolic output, we used the cochleagrams 
rendered from the inferred sources.  
 
Correlation type 2, Comparing model and human continuous-valued experiment results 
For each stimulus, the model output was used to determine a continuous-valued experiment 
result. We computed the Pearson correlation between the set of model judgments and the human 
judgments for all stimuli. In the case of the tone sequences (bistability, buildup of streaming, and 
effect of context), the model result was the model log odds (if symbolic output) or model 
preference (if soundwave output) for one explanation over another, and the human result was 
typically the average result across listeners (but see section on bistability below). In the case of 
spectral completion and cancelled harmonics, the result was an estimate of continuous variable 
(spectrum level and frequency). Note that for cancelled harmonics, defining a standard set was 
not required (see below).  
 
Correlation type 3, Comparing model and human thresholds 
For continuity illusion, co-modulation masking release, and mistuned harmonic illusions, we 
compared model and human thresholds. For generative models with symbolic output, we used 
the thresholds as determined by the simulated psychophysical experiments described above. For 
models with soundwave output, we used the change in model preference as a function of an 
experimental parameter to estimate a threshold (Methods: Equation 27). The one exception was 
the onset asynchrony experiment, in which we used the change in an acoustic property (formant 
frequencies) of the preferred model output to estimate a threshold. The neural networks 
sometimes did not change the sign of their preference across all stimulus values. In these cases, 
we assigned the network judgment just above or below the range of stimulus parameters, 
analogous to setting a threshold to a ceiling or floor value when it cannot be measured in a human 
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participant (we used Spearman rather than Pearson correlation because of the resulting truncated 
distribution of judgments). 
 
We next define the standard sets for each experiment that were compared to the soundwave 
outputs to yield simulated experimental results (including for the baseline result), as well as the 
procedure used to obtain the experimental result. These next sections therefore exclusively apply 
to models with soundwave output (baseline, neural networks, generative model evaluated in same 
way as neural networks). The methods for evaluating the symbolic output from generative models 
have already been described in detail above (in Methods: Classic auditory scene analysis 
illusions). 
 
Continuity illusion 
For each continuity stimulus, we generated two pairs of standard sources. The first pair contained 
a sound with the noise bursts on their own and a sound with the (discontinuous) tones on their 
own. The second pair contained a sound with the noise bursts and a sound with a continuous 
constant-amplitude tone. For each masking stimulus, we also generated two pairs of standards. 
The first pair included the input mixture itself (no segregation of tones) and silence. The second 
pair included a sound with the tones only and a sound with the noise only.  
 
For each condition and tone frequency, the preference measure (Methods: Equation 29) 
quantified whether continuity was preferred over discontinuity as a function of tone level and 
whether the tone was detected or not, as a function of tone level. Using correlation type 3, we 
obtained the Spearman correlation between the model and human thresholds. 
 
Homophonic continuity 
For the clip with the abrupt amplitude change, we generated a pair of standard sources: a sound 
comprising just the two short, louder noise bursts, and a sound comprising the long, quiet noise. 
For the clip with the gradual amplitude change, the standard was simply the stimulus itself. Using 
correlation type 1, we computed the Pearson correlation between the time-frequency bins of the 
cochleagrams of the model outputs and the standards, and selected the best match.  
 
Spectral completion 
The standards were the comparison stimuli described previously (Methods: Classic auditory 
scene analysis phenomena, Spectral Completion), with tab levels that matched the target and 
varying middle band spectrum levels. We found the standard which minimized the distance with 
the best-matching model output. The model's judgment for a stimulus was chosen to be the middle 
band spectrum level of the selected standard. Using correlation type 2, we correlated the model 
and human judgments of the spectrum level. 
 
Co-modulation masking release 
The two pairs of standard sources were (1) the input mixture itself and silence and (2) one sound 
with the noise only and one sound with the tone only. For each noise type and noise bandwidth, 
the preference measure quantified whether the tone was detected or not as a function of tone 
level (i.e., whether a model inferred a tone source as separate from the noise). Using correlation 
type 3, we obtained the Spearman correlation between the model and human thresholds. 
 
Frequency modulation 
We generated a pair of standards: a sound with only the frequency-modulated components and 
a sound with only the constant-frequency components. Using correlation type 1, we computed 
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the Pearson correlation between the time-frequency bins of the cochleagrams of the model 
outputs and the standards, and selected the best match.  
 
Mistuned harmonic 
The two pairs of standard sources were (1) the input mixture itself and silence and (2) one sound 
with the harmonic components only and one sound with the mistuned tone only. For each 
fundamental frequency and harmonic index, the preference measure quantified whether the tone 
was detected or not as a function of mistuning. Using correlation type 3, we obtained the 
Spearman correlation between the model and median human thresholds. 
 
Asynchronous onsets 
The two standards were the ‘basic’ vowel and the ‘shifted’ vowel with the same nominal first 
formant frequency as the input stimulus. We selected the model output which minimized the 
distance to either standard (finding the model output that best captured the vowel). Then, we 
estimated the first and second formant frequencies from the selected output using linear predictive 
coding (165, 166). The rest of the analysis followed the same steps as for the model with 
enumerative inference in order to derive vowel thresholds. Using correlation type 3, we computed 
the Spearman correlation between the model and human vowel thresholds. 
 
Cancelled harmonics 
The logic for the analysis of this experiment is based on the idea that if the model successfully 
separated out a whistle source, then the hypothetical whistle source should have a higher 
amplitude at one frequency than the rest. We computed the spectrum of each model output and 
found the peaks in the spectrum that were spaced at least 95% of the fundamental frequency 
apart. We then computed the amplitude ratio of the highest peak to the second highest peak. We 
selected the model output with the highest peak-to-peak amplitude ratio. The model's judgment 
was selected to be the frequency of the highest peak in this output. We then calculated the 
proportion of trials for which the percent error was less than or equal to two percent, as a function 
of harmonic number. Using correlation type 2, we correlated this proportion with the human 
results. This method is conceptually similar to using standards with pure tones of varying 
frequencies, but it allowed us to obtain a more precise pitch judgment. 
 
Frequency proximity 
For the pure-tone stimulus, the pair of standard sources was the low-frequency bouncing melody 
and the high-frequency bouncing melody. For the alternating pure-complex tone stimulus, the pair 
of standard sources was the ascending melody and the descending melody. Using correlation 
type 1, we computed the Pearson correlation between the time-frequency bins of the 
cochleagrams of the model outputs and the standards, and selected the best match.  
 
Bistability 
For each tone sequence stimulus, we generated two pairs of standards, for the two-source and 
one-source explanation. The standard set for the two-source explanation contained one sound 
with all the high-frequency tones and another sound with all the low frequency tones. The standard 
set for the one-source explanation contained the mixture itself and silence. The preference 
measure quantified whether two sources were preferred over one source for each setting of Δ𝑓 
and Δ𝑡. To compare with human data, we labeled each (Δ𝑓, Δ𝑡) point as above the human one-
source threshold (1), in the bistable region (0.5), or below the human two-source threshold 
(0).  Using correlation type 2, we computed the Pearson correlation between the model 
preferences and the human judgments as reflected in these labels. 
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Buildup of streaming 
We computed the model preferences as for bistability but correlated them with the human 
proportion of two-stream responses. 
 
Effects of context (1 and 2) 
Both of these experiments included comparing hypotheses, for which multiple sequences 
corresponded to a hypothesis. Therefore, for each hypothesis, we generated sets of standards 
corresponding to the sets of structural hypotheses described previously (Methods: Classic 
auditory scene analysis phenomena, Effects of context). Since multiple sets of standards 
corresponded to a single hypothesis, we took the minimum distance across all sets of standards 
to calculate the distance of the model outputs to a hypothesis. The preference measure quantified 
which hypothesis was preferred (Expt. 1: A and B paired in their own source versus a non-AB 
pairing; Expt. 2: target tones in their own source versus grouped with distractors). Using 
correlation type 2, we computed the Pearson correlation between the model preferences and the 
human judgments. 
 
Statistics (Figure 7A and D) 
To generate error bars and assess statistical significance for the human-model dissimilarity 
analysis, we used bootstrap. For each experiment, we bootstrap-resampled the datapoints to 
obtain uncertainty over the dissimilarity between human and model results (yielding one 
dissimilarity measure for each experiment and each model, for each bootstrap sample). For each 
bootstrap sample (n=1000), we averaged the human-model dissimilarity for a model across all 
experiments. We use the standard deviation of the bootstrap distribution of this average 
dissimilarity to approximate the standard error (plotted as error bars in Figure 7A and D).  
 
To assess whether the human-model dissimilarity for our model was statistically significantly 
different from each of the source separation neural networks, we computed the bootstrap 
distribution of the difference in dissimilarity between the models being compared. We then 
calculated 99% two-sided confidence intervals for this difference using the "empirical" bootstrap 
method (also called the "basic" bootstrap method in (167)). We used the same procedure to 
assess whether the model lesions produced statistically significant worse human-model 
dissimilarity. 
 
Model lesions 
We computed the human-model dissimilarity for our full generative model by simulating 
psychophysical experiments as described above in Methods section Classic auditory scene 
analysis illusions (blue bar in Figure 7A and D). We assessed the four model lesions in the same 
way. We created the lesioned models as follows: (1) For the Fixed sources lesion, we set each 
set of source parameters to the modes of the temporal source priors and each of the variance 
and lengthscale source priors, specific to that source's sound type. (2) For the Uniform lesion, we 
set the distributions over variance and lengthscale to a uniform distribution for each Gaussian 
Process (frequency trajectory, amplitude trajectory, and spectral shape). (3) For the spectral swap 
lesion, we used an Ornstein-Uhlenbeck kernel for the harmonic source model and a squared-
exponential kernel for the noise source model, and then remeasured the source priors as 
described previously (Methods: Source priors). We only tested ASA results which had a noise or 
harmonic source in them because the tone sequences are not affected by this lesion. (4) For the 
stationary covariance lesion, we only altered the whistle source in order to investigate the effect 
of the non-stationary kernel on tone sequence grouping. We fixed the non-stationary kernel 
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parameter β to zero and re-measured the source priors as described previously (Methods: Source 
priors). 
 
Source-separation neural networks 
We selected a set of source-separation neural networks to compare to our model. Selection was 
based on 1) public availability of pre-trained weights, 2) good performance in machine hearing 
competitions and 3) the goal of spanning a variety of training methods, tasks, network 
architectures and natural sound datasets. These criteria yielded a set of seven networks:  

• ConvTasNet for two-speaker separation, trained on LibriMix (90, 92) 
• the same ConvTasNet trained with background noise 
• TDCN++ for open domain sound separation, trained on FUSS (91) 
• Open-Unmix RNN for music separation, trained on MUSDB18 (93) 
• Open-Unmix RNN for music separation, trained on a much larger, private dataset (168) 
• Open-Unmix RNN for speech enhancement, trained on the Voicebank+DEMAND corpus 

(94)  
• MIXIT network, trained on YFCC100m (95) (MIXIT is the only network optimized with an 

unsupervised training objective) 
The dissimilarity results for these networks are shown as the striped grey bars in Figure 7D.  
 
The enumerative inference method of obtaining results is arguably most similar to what human 
participants do when they complete experiments, but was only possible with our model, as it 
leverages the generative model to constrain inference (blue bar in Figure 7A and D). Therefore, 
as an additional comparison, for every illusion, we used sequential inference to obtain the most 
likely scene description (sequential inference only, pink bar in Figure 7D). We analyzed the 
sounds rendered from this description exactly as for the sounds output by the source separation 
networks. This is arguably the fairest comparison to the source separation networks, but would 
be expected to produce a worse match to human results. We ran only 1 seed of sequential 
inference for each phenomenon. 

 
We also trained an additional source separation network on samples from the generative model. 
We chose to use the TCDN++ network because it was designed for open domain sound 
separation with more than two premixture sounds, which is most similar to our model. We used 
the same network architecture as the TCDN++ reported in (91), training sixteen networks with 
different hyperparameters (batch size, learning rate) and datasets (higher density of events than 
the prior or the same density, and the use of domain randomization in which samples were 
obtained from uniform distributions instead of the model’s prior). From these several TCDN++ 
networks, we selected the one with the highest similarity to human results. This network was 
trained on a dataset consisting of approximately 440-h of sound mixtures (n=677170) from the 
model prior with a higher density of events, limited to contain 1-4 sources. The networks were 
trained until the validation error converged (for the selected network: 264136 iterations, batch 
size=20, learning rate=1e-5). This result is shown as the solid grey bar in Figure 7D. 
 
Everyday sound experiments 
Experiments were run online using Amazon Mechanical Turk. Prior to each experiment, potential 
participants gave consent and indicated that they were wearing earphones or headphones. They 
used a calibration sound to set their volume to a comfortable level. Participants were initially 
screened with a short experiment to check that they were wearing earphones or headphones 
(169). If participants failed the headphone check, they were compensated and did not continue to 
the main experiment. All experiments were approved by the Committee on the use of Humans as 
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Experimental Subjects at the Massachusetts Institute of Technology, and were conducted with 
the informed consent of the participants. 
 
Stimuli 
To assess the ability of the model to infer perceptually valid scenes from naturalistic sounds, we 
sourced a small subset of sounds from the Free Universal Sound Separation dataset (FUSS) (91). 
The FUSS dataset contains mixtures generated by adding together audio clips of everyday 
sounds and then simulating reverberation. FUSS was designed for open domain source 
separation, with each premixture clip derived from one of over 300 sound categories.  
 
The mixture clips in FUSS are 10-s long, composed of 1-4 sounds from the FSD50K dataset with 
simulated reverberation. There is always one background sound in each mixture clip, defined to 
be a sound which extends the entire duration of the clip. We randomly selected 50 2-s clips from 
the training set of FUSS, subject to a few constraints. The main constraint was that each mixture 
clip should contain three pre-mixture recordings of at least 200-ms in duration. Second, although 
sounds in FUSS are not explicitly labeled, we recovered labels from FSD50K for each pre-mixture 
sound. This allowed us to exclude four categories out of the 357 categories included in FUSS: 
“Speech”, “Scratching (performance technique)”, “Mechanisms” and “Human group actions”. We 
excluded speech and scratching because we knew that our model would be poorly suited to the 
variable spectra that occurs in these sounds. We excluded Mechanisms and Human group 
actions because their names suggested that they contained more than one perceptual stream. 
We used sequential inference to obtain full scene descriptions for each sound mixture, and then 
rendered each inferred source sound into audio using the maximum a posteriori scene 
description. We used these rendered audio signals in the experiments. In addition, the original 
mixture clips were used in Experiment 1, and their corresponding pre-mixture clips were used in 
Experiments 1 and 2. 
 
For both experiments, the maximum level across experimental stimuli was set to +5 dB and -4 dB 
relative to the calibration level for Experiments 1 and 2 respectively. We maintained the relative 
levels of the recorded audio and the inferred sources. We excluded 7 model sounds out of 144 
because they did not reach a threshold sound level and would have been inaudible over typical 
headphones. Pilot participants reported that a few sounds remained which were difficult to hear 
(presumably low-frequency sounds).  
 
Experiment 1 procedure 
For the main experiment, we randomly split the 50 mixture sounds into two halves. For each 
participant, one of these splits was randomly assigned to the model condition, and the other was 
assigned to the recorded audio condition. On each trial, participants heard a mixture sound 
followed by two additional sounds that they had to choose between. Participants were instructed 
to select which of the two sounds was part of the initial mixture. On recorded sound trials, the 
correct sound was a pre-mixture sound from the mixture, and the incorrect sound was a pre-
mixture sound from a different mixture randomly chosen from FUSS. We selected the incorrect 
option to not share a class label with any of the premixture sounds in the mixture for that trial. On 
model sound trials, the correct sound was a source inferred by the model from the mixture. The 
incorrect sound was a randomly selected source inferred by the model from a mixture in the other 
split of mixture sounds. The incorrect sounds were randomly chosen for each participant. 
Participants were told that the correct answer could either be the exact sound from the mixture or 
a computer imitation of a sound present in the mixture. Participants could listen to the sounds 
multiple times and did not receive feedback.  
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Experiment 1 participants 
115 participants were recruited through Amazon Mechanical Turk. The main experiment included 
10 catch trials, which were not included in the main analysis. The catch trials comprised an 
independent set of recorded sound trials and were the same across all participants. 35 
participants failed the headphone check and 16 participants answered less than 7 out of 10 catch 
trials correctly. The data from these 51 participants was removed. We analyzed the data of the 
remaining participants (N=64, 34 male, 29 female, 1 non-binary or other based on self-report, 
mean age = 43.7 years, S.D. = 11.6 years). 
 
Experiment 1 sample size 
We determined sample sizes a priori based on a pilot study with 40 participants. We computed 
the split-half reliability of the participant’s accuracy on individual trials, varying the size of the splits 
and extrapolating to estimate the sample size needed to obtain a split-half reliability of 0.9, yielding 
a target sample size of 60 participants. 
 
Experiment 1 analysis/statistics 
For Figure 8B, we computed the percent correct for each participant in each condition (recorded, 
model) by taking the proportion over trials. The figure reports the average and standard error over 
all participants (regardless of the half of the data they were assigned to). We also report the two-
tailed 95% confidence interval over all participants for each condition, using the function 
DescrStatsW.tconfint_mean from the Python statsmodels module version 0.13.2. For 
Figure 8C, we computed the percent correct for each model inference by taking the proportion of 
correct answers across participants who completed a trial with that sound.  
 
Experiment 2 procedure 
Upon successful completion of the headphone check, participants proceeded to the experiment 
instructions and a set of six practice trials. Participants received feedback on the first four practice 
trials. The last two practice trials did not have feedback. If participants did not correctly answer 
the last two practice trials, they were compensated and did not proceed to the main experiment.  
 
Each trial presented two sets of sounds: source sounds inferred by the model (“row sounds”) and 
pre-mixture sounds (“column sounds”), which were arranged in the headers of a grid. All sounds 
on a trial corresponded to a single mixture. The number of row sounds and column sounds varied 
from mixture to mixture depending on the number of premixture sounds and inferred sources that 
were recognizable to human listeners (the number of inferred sources also varied from mixture to 
mixture). Participants were instructed to mark the corresponding checkbox within the grid if any 
part of a row sound matched part of a column sound. Participants were told that the purpose of 
the task was to evaluate a computer sound-synthesis algorithm. They were warned that the 
computer-generated sounds were meant to imitate the column sounds but that they might not 
always be perfect resemblances. They were explicitly told that multiple row sounds might match 
to the same column sound or vice versa, or that a column sound might not have any matches (the 
practice trials also demonstrated these possibilities).  
 
For each mixture, we excluded model sounds and premixture sounds for which the average 
performance of participants in Experiment 1 did not exceed 60%. The premixture sounds that 
were unrecognizable tended to be those that were completely masked in the mixture. The model 
sounds that were unrecognizable had already been measured in Experiment 1, and we excluded 
them to instead measure other types of deviations in perceptual organization. These criteria 
resulted in the exclusion of 20 model sounds (out of 124) and 8 premixture sounds (out of 140).  
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Because the experiment only presented inferred sources that were recognizable in the original 
mixture, it was reasonable to assume that each inferred source should correspond to at least one 
pre-mixture sound. Participants were thus not allowed to proceed to the next trial until they placed 
at least one checkmark for each row sound.  
 
Participants performed 50 trials (plus ten catch trials – see below), one for each of the included 
mixtures. Participants were allowed to listen to the sounds as many times as they wanted and in 
any order.  
 
Experiment 2 sample size 
Based on a pilot experiment with 7 participants, we found that the over-combination deviations 
were the most rare and so this proportion required the largest sample size to estimate with 
sufficient precision (relative to the small effect size). For a range of sample sizes, we calculated 
the 95% confidence interval on the mean by bootstrap with the pilot data. We determined the 
sample size required to obtain a 95% confidence interval with width = 0.05, which yielded a target 
sample size of 21. 
 
Experiment 2 participants  
An initial group of 49 participants were recruited through Amazon Mechanical Turk. The main 
experiment included 10 catch trials which were not included in the main analysis. The catch trials 
had the same three audio recordings for the row and column sounds, and the correct answer was 
to match a sound with only itself. 22 participants failed the headphone check and 2 participants 
answered less than 7 of the 10 catch trials correctly. We analyzed the data of the remaining 
participants (N=25, 14 male, 9 female, 2 non-binary or other based on self-report, mean age = 
41.8 years, S.D. = 11.6 years). 
 
Experiment 2 analysis/statistics 
We estimated the overall reliability of participant responses using the intra-class correlation, 
considering each target to be an inferred source/premixture sound pair. We used the function 
intraclass_corr from the Python pingouin module version 0.5.1. 
 
Of the four deviations analyzed in the everyday sounds experiments, Experiment 2 was meant to 
measure absence, oversegmentation, and overcombination deviations. We tallied the total 
number of these three deviations per premixture sound for each participant. This allowed us to 
compute the five quantities displayed in Figure 8G. Bars 1-3, labeled ‘Absent’, ‘Oversegment’, 
and ‘Overcombine’, were computed as the proportion of premixture sounds with each of the 
corresponding deviation type, averaged across participants. Bar 4, labeled ‘No deviations’, was 
computed by finding the proportion of premixture sounds for which a participant checked only one 
model inference and then averaging that proportion across participants. Bar 5, labeled ‘No 
deviations + Most common’, is based on a subset of the proportion indicated by Bar 4. We 
determined which response (i.e. pattern of checkmarks across model inferences) was most 
common for each premixture sound. This allowed us to compute the average proportion of 
premixture sounds for which a participant checked only one model inference and for which that 
concurred with the most common response. We plotted the standard error across participants. 
 
To derive the chance level for each of these average proportions (except overcombine deviations 
- see below), we randomly permuted our data 5000 times within each worker’s responses, subject 
to the constraint that each row contains at least one checkmark. We then computed the same 
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statistics on the permuted datasets. We plotted the average proportion of premixture sounds 
across permutations and workers as well as the standard error across workers.  We use a 
permutation test to determine statistical significance: we report the quantile of the empirical 
average proportions (across workers) with respect to the distribution of 5000 permuted average 
proportions (across workers). The proportion of overcombine deviations was an exception 
because by design they occur at the same rate in the permuted and original data. Instead, we 
computed the two-tailed 95% confidence interval of the proportion of overcombine deviations by 
bootstrap with 5000 samples. 
 
We estimated the reliability of each proportion via the split-half reliability, using 10 random splits 
of the participants. For each premixture sound, we computed the proportion of participants 
responding with each deviation type. Then, for each deviation type and each split, we computed 
the Pearson correlation (across premixture sounds) of that proportion between each half of 
participants. We averaged this correlation across the 10 splits. The average split-half correlation 
for each deviation type is plotted as a bar in Supplementary Figure 5. To obtain the expected 
chance level of this reliability for each deviation type, we computed the split-half correlation for 
100 of the permutations described in the previous paragraph (averaged across 10 random splits 
for each permutation). We computed the p-value for the actual split-half reliability as the proportion 
of 100 permutations for which the average permuted split-half correlation exceeded the average 
split-half correlation on the real data. 
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Supplementary Information 
 
Supplementary Algorithm 1. Probabilistic program that defines the generative model. Blue: 
high-level sampling functions. Orange: rendering functions. Methods Tables 1 and 2 specify meta-
source parameters. 
procedure SampleScene()  
    n ~ Poisson(λ) ▷ Sample # of sources 
    for i = 1 … n do  
        xi ~ SampleSource() ▷ Sample and generate source sound 
    end for  
    CS = Cochleagram(Σxi) ▷ Generate cochleagram of mixture 
    CX ~ Normal(μ = CS, σ) ▷ Observation noise 
    return CX  
  
procedure SampleSource()  
    T ~ Categorical(noise, harmonic, whistle) ▷ Sample source type 
    m ~ Geometric(p) ▷ Sample number of events 
    Θ ~ SampleSourceParameters(T) ▷ Sample source parameters 
    if T is noise or harmonic then  
        H ~ 𝒢𝒫(0, κH) ▷ Sample filter (common to all events), κH in Θ 
    end if  
    for j = 1 ... m do  
        ej ~ SampleEvent(j, {ek}k=1...j-1, Θ, T) ▷ Sample events 
    end for  
    x = Synthesize({ej}j=1...m, H) ▷ Synthesize source sound 
    return x  
  
procedure SampleSourceParameters(T)  
# Here we replace the meta-parameters of the source priors with ellipses 
# See Methods Table 1 for duration and rest meta-source parameters, Table 2 for others 
    μD, λD ~ Normal-Gamma(...) ▷ Sample duration source parameters 
    μR, λR ~ Normal-Gamma(...) ▷ Sample rest source parameters 
    μa ~ Uniform(...) ▷ Sample amplitude mean source parameter 
    σa ~ invSoftplusNormal(...) ▷ Sample amp. variance source parameter 
					ℓa ~ invSoftplusNormal(...) ▷ Sample amp. lengthscale source parameter 
    κa(t1,t2; {τj}j=1...m) = SE(σa, ℓa) + Σj NS(βT,a; τj) ▷ Define amplitude kernel 
    if T is whistle or harmonic then  
        μf ~ Uniform(...) ▷ Sample F0 mean source parameter 
        σf ~ invSoftplusNormal(...)   ▷ Sample F0 variance source parameter 
										ℓf ~ invSoftplusNormal(...) ▷ Sample F0 lengthscale source parameter 
        κf(t1,t2; {τj}j=1...m) = SE(σf, ℓf) + Σj NS(βT,f; τj) ▷ Define F0 kernel 
    end if  
    if T is noise or harmonic then  
        μH ~ Uniform(...) ▷ Sample filter mean source parameter 
        σH ~ invSoftplusNormal(...) ▷ Sample filter variance source parameter 
        ℓH ~ invSoftplusNormal(...) ▷ Sample filter lengthscale source parameter 
        κH(ω1,ω2) = SE(σH, ℓH) if T is harmonic, OU(σH, ℓH) if T is noise ▷ Define filter kernel 
    end if    
    Θ = (μD, λD, μR, λR, μa, σa, ... )  ▷ List of all sampled source parameters 
    return Θ  
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procedure SampleEvent(j, {ek}k=1...j-1, Θ, T)  
    if j is 1 then  
        τjon ~ Uniform([0, D]) ▷ Sample first event onset 
    else  
        τjon ~ LogNormal(μD, 1/λD) + τj-1on ▷ Sample event onset 
    end if  
    τjoff ~ LogNormal(μD, 1/λD) + τon ▷ Sample event offset 
    aj ~	𝒢𝒫j|1:j-1(μa, κa(τ) | a1:j-1) ▷ Sample amp. conditioned on previous events (see Eqn. 14) 
    if T is whistle or harmonic then  
        fj ~	𝒢𝒫j|1:j-1(μf, κf(τ) | f1:j-1) ▷ Sample F0  conditioned on previous events  (see Eqn. 14) 
    end if  
    ej = (τon, τoff, aj, fj) ▷ List of excitation variables 
    return ej  
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Supplementary Figure 1. Event structure as implemented by the non-stationary kernel. The 
generative model can account for a situation where a single source slightly changes its sound-
generation process between events. Top two panels: sound and cochleagram of a dog panting, 
alternating between the in- and out-breath. Middle: Schematic latent variable description of the 
sound. The red lines indicate the amplitude trajectory, y-axis is amplitude level and x-axis is time. 
The black rectangles at the bottom depict each event duration. Bottom: Non-stationary prior 
covariance kernel. Black rectangles at the bottom depict event durations. Timepoints are more 
correlated within an event than between events. 
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Supplementary Figure 2. Scenes sampled from prior p(S), rendered as cochleagrams. Scenes 
sampled from prior show variation in the number of sources and events, event timing, frequency 
and amplitude modulation, and spectral shape. These sounds demonstrate the model's 
expressivity, while also revealing its simplifying assumptions (e.g. time-symmetry, raised cosine 
ramps for all events, etc.). 
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Supplementary Table 1. Classic auditory scene analysis illusions. 
 

 Citation Result Experiment 
Masking and 
perceptual 
filling in 

Continuity illusion 
(66) 

Perceived temporal continuity of 
sounds through masker depends on 
masker level 

Masking and 
continuity 
thresholds 

Homophonic 
continuity (67) 

Abrupt but not gradual amplitude 
changes cause segregation 

Subjective 
report 

Spectral completion 
(68) 

Analogous perceptual completion in 
frequency domain 

Subjective 
matching of 
spectra 

Co-modulation 
masking release 
(69) 

Detection thresholds of tones 
decreases as bandwidth of co-
modulated noise increases 

Tone detection 
(2AFC) 

Simultaneous 
grouping 

Frequency 
modulation (72) 

Frequency-modulated harmonics 
segregate 

Subjective 
report 

Mistuned harmonic  
(76) 

Mistuned harmonic component 
segregates from complex tone 

Subjective 
report (1AFC) 

Asynchronous 
onsets (77) 

Harmonic component with 
asynchronous onset segregates 

Vowel 
categorization 

Cancelled 
harmonics  (79) 

Amplitude gated harmonic 
component segregates from complex 
tone 

Pitch matching 

Sequential 
grouping 

Frequency proximity  
(81)  

Crossing tone sequence segregates 
into non-overlapping bouncing 
streams 

Subjective 
report 

Bistability  (82) Increasing frequency difference and 
decreasing interstimulus interval 
increases segregation, with a region 
of bistability 

Subjective 
report 

Buildup of streaming  
(84)  

Segregation increases with repetition Subjective 
report 

Effects of context 
(14, 85) 

Context can promote segregation of 
grouping of two tones 

Subjective 
report 
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Supplementary Table 2. Human-model correlations for individual illusions. Used to compute 
dissimilarity across models and illusions. Bootstrapped standard errors in parentheses. 
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Supplementary Figure 3. Comparison of model-human dissimilarity for different classes of 
illusions. 
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Supplementary Figure 4. Examples of recognizable source inferences in Experiment 
1.  Title numbers refer to FUSS filename. A) Harmonic sources, with static fundamental 
frequencies. B) Harmonic sources with dynamic fundamental frequencies. C) Background noises 
with relatively static amplitude. D) Broadband amplitude-modulated noises. E) Sound sequences. 
Listen to the audio examples at https://mcdermottlab.mit.edu/mcusi/bass/supfig4.html. 
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Supplementary Figure 5. Split-half reliability of the incidence of perceptual organization 
deviations for pre-mixture sounds. For each deviation type, we computed the Pearson’s 
correlation across premixture sounds, of the proportion of workers reporting a deviation for the 
premixture sound, between split-halves of participants. These correlations show that the same 
mixtures tend to produce the same types of deviations across participants. The error bars plot 
±1 standard deviation over permutations of participant responses. 
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Supplementary Figure 6. Experiment 2 data per pre-mixture sound (n=21). Zoom on digital 
copy to see labels. A) Results by premixture clip in Experiment 2. Each bar displays the average 
number of deviations across participants, tallied for a particular premixture clip. The bars are 
ordered by total number of deviations, increasing from top to bottom. B) Same data, but organized 
alphabetically by FUSS category label. 
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Supplementary Figure 7. Over-segmentation deviations that occur when various sound-
generating processes within a single premixture clip have some common causal factor, 
involving sequences. A) An over-segmentation deviation for a premixture clip of writing on a 
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chalk board, in which dragging the chalk across the board is punctuated by shorter strokes. The 
sustained contact sounds and punctuated contact sounds are explained as separate sources. B) 
A similar over-segmentation deviation occurs in a premixture clip of a drumkit, for which the model 
infers a noise source for the bass drum and a different noise source for the snare. C) Another 
drum machine in which the hi-hat and bass are inferred separately, is also linked to an over-
segmentation deviation. We suggest that percepts for these sound examples are akin to 
hierarchical grouping in vision. Such hierarchy cannot be captured by our generative model, and 
represent a direction for future research. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.538626doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.27.538626
http://creativecommons.org/licenses/by-nc-nd/4.0/


 96 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.27.538626doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.27.538626
http://creativecommons.org/licenses/by-nc-nd/4.0/


 97 

Supplementary Figure 8. Over-segmentation deviations that occur when distinct excitation 
processes occur within a single premixture clip. A) Pre-mixture clip: a harmonica played with 
fluttertongue, in which the player rolls their tongue while playing a pitched note. The model 
separates this into the noisy sound of the tongue-roll and the pitched sound of the harmonica 
tone. B) Pre-mixture clip: a telephone ringing. The model separates the resonances of the bell 
and the noisy sound of the striker. C) Pre-mixture clip: a flute note. The model separates the 
breath noise from the pitched tone. D) Pre-mixture clip: a sound produced by friction. The model 
separates the pitched squeak and noisy sliding sound. E) Pre-mixture clip: a series of bounces. 
On the second to fifth bounce, the object hits a resonant metal surface (you can see the modal 
resonances in the sound). The modal separates the sequence into ringing sounds and the impact 
'thuds'. The event at the end of the ringing source (starting at 1.5-sec) corresponds to a sound in 
the mixture that is not in the pre-mixture clip (see next Supplementary Figure).  We again suggest 
that hierarchy in the source models may be necessary to explain human perception in these 
examples.  
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Supplementary Figure 9. Impact sounds illustrate the need for more nuanced modelling of 
spectrum and amplitude.  In this premixture impact sound of a struck bell, the model over-
segments higher and lower frequency sound components which decay at different rates. Other 
issues for the model include the bell sound's inharmonicity and its transient. 
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Supplementary Figure 10. Instrument sounds illustrate the need for more nuanced 
modelling of spectrum and amplitude. An over-combination deviation occurs when the model 
sequentially groups a plucked violin note with the subsequent clarinet notes. Since both sources 
have similar fundamental frequencies, spectral envelopes, and amplitudes, the model cannot 
separate these perceptually distinct sources. 
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Supplementary Figure 11. Sound textures illustrate limitations of our generative model (1). 
In these two examples, two premixture sound textures are explained with a single noisy source. 
These examples are associated two kinds of deviations, over-combination and absence. 
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Supplementary Figure 12. Sound textures illustrate limitations of our generative model (2). 
Multiple inferred sources are used to explain this complex sound texture. This premixture sound 
is associated with an over-segmentation deviation. 
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Supplementary Figure 13. Examples of source inferences with poor recognizability in 
Experiment 1, due to periodicity mismatch in the mixture and inferred source. Title numbers 
refer to FUSS filename. A) Noisy sounds are explained as harmonics. 2163 contains rain pattering 
during the duration of the inferred harmonic source. 3290 contains water gurgling during the 
duration of the inferred harmonic source.  B) A note on a low-frequency instrument is explained 
as noises rather than as a periodic sound. 13537 contains a single note on the cello being bowed 
and 8352 contains a trumpet note. C) Low-frequency instrument sounds with overlapping notes 
are explained as noises rather than periodic sounds. 8131 contains overlapping piano tones.  D) 
High-frequency harmonic squeak is explained as a noise in mixture 19361. 
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Supplementary Figure 14. Examples of inferences in scenes containing a quiet tone in 
noise. Red arrows indicate where the short, quiet tones occur in the sound mixtures. We suggest 
that the lack of a periodicity representation hinders its ability to detect these tones. 
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Supplementary Figure 15. Example of sequential inference algorithm with a tone sequence. 
A) The observed sound mixture is 1.3 seconds long. Given the sound mixture as input, the 
amortized inference network returns a set of event proposals. Each event proposal is depicted as 
a red mask overlaid on the sound mixture cochleagram, subtitled with its network confidence, and 
grouped based on onset interval. For example, the first three event proposals (by onset) are 
grouped together and used for source construction in Round 1 (which considers the observed 
sound up to 0.3 sec). B) A subset of optimized hypotheses for each round, with boxes that encircle 
the two hypotheses with the highest posterior probability each round. The high-saturation path 
demonstrates how the top hypothesis for the whole observation (“Top hypothesis” with pink box, 
Round 5) is gradually built up over multiple rounds. Each hypothesis (indicated by Hi) is composed 
of combining candidate events into sources. The candidate events used for each source are 
indicated to the right of the source cochleagram, with the numbers referring to the title (“ei”) of the 
event proposal in A. Both top hypotheses on a round are used for source construction in the next 
round, indicated by the matching color of the hypothesis box and the thick bar on the next round. 
Only a subset of the hypotheses are depicted for Rounds 1-4 (“...” on right). Round 5 shows all of 
the hypotheses optimized (“all” on right). 
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Supplementary Figure 16. Example of sequential inference algorithm with frequency 
modulation. A) Event proposal network. The observed sound mixture is 1.1 seconds long. Given 
the sound mixture as input, the amortized inference network returns a set of five event proposals. 
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Each event proposal ei is depicted as a red mask overlaid on the sound mixture cochleagram, 
and is associated with a set of event latent variables (not shown). Event proposals with nearby 
onsets are considered in the same round of sequential inference. B) Round 1 of sequential 
inference. On Round 1 of inference, the first 0.75 seconds of the observation are considered and 
the first four event proposals are utilized. Initial hypotheses are constructed by combining different 
sets of event proposals subject to the heuristic constraints described in Methods (Source 
Construction) resulting in eleven initial hypotheses {Hi}; note that all of the actual hypotheses used 
during inference are depicted here, in contrast to Supplementary Figure 15. The initial hypotheses 
are optimized with variational inference, resulting in optimized event-level variables (as reflected 
by the change in the rendered cochleagrams) and source-level variables (not shown). The two 
hypotheses with the highest posterior probability are used in source construction for Round 2. C) 
The second round of sequential inference. The full observation is considered and therefore this 
is the last round. Initial hypotheses are constructed by using H1 and H2 of round one (bright and 
dim yellow, respectively), potentially combining them with event proposal e4. The initial 
hypotheses are optimized with variational inference. After variational inference, the hypothesis 
with the highest posterior probability is selected. 
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