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Abstract 14 

Variations of cell-type proportions within tissues could be informative of biological 15 

aging and disease risk. Single-cell RNA-sequencing offers the opportunity to detect such 16 

differential abundance (DA) patterns, yet this task can be statistically challenging due to 17 

the noise in single-cell data, inter-sample variability and because DA patterns are often 18 

of small effect size. Here we present a DA-testing paradigm called ELVAR that uses cell 19 

attribute aware clustering when inferring differentially enriched communities within 20 

the single-cell manifold. Using simulated and real single-cell and single-nucleus RNA-21 

Seq datasets, we benchmark ELVAR against an analogous DA algorithm that uses 22 

Louvain for clustering, as well as local neighborhood-based DA-testing methods, 23 

demonstrating that ELVAR improves the sensitivity to detect DA-shifts in relation to 24 

aging, precancerous states and Covid-19 phenotypes. In effect, leveraging cell attribute 25 

information when inferring cell communities can denoise single-cell data, avoid the need 26 

for batch correction and help retrieve more robust cell states for subsequent DA-testing. 27 

ELVAR is available as an open-source R-package. 28 
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Introduction 35 

Detecting shifts of cell-type proportions in relation to aging, exposures or disease risk factors 36 

is an important task to improve our understanding of disease predisposition and disease onset 37 

[1]. Single-cell technologies, and single-cell RNA sequencing (scRNA-Seq) [2] in particular, 38 

offer the opportunity to detect such differential abundance (DA) patterns, but this task can be 39 

statistically challenging [3]. One key challenge is that, almost inevitably, any assessment of 40 

DA across biological conditions entails a comparison of cell-type numbers from assays 41 

performed in different subjects. Thus, biological inter-subject variability, as well as technical 42 

batch effects, can potentially confound naïve DA-analyses [4]. Technical batch effects can be 43 

addressed by performing scRNA-Seq assays in a number of different subjects representing 44 

the same biological condition, called sample replicates. Using such biological replicates also 45 

helps gauge the biological inter-sample variability, which can be substantial. For instance, it 46 

is now well recognized that different individuals may age at different rates [5], and that such 47 

variations in biological age may be associated with underlying shifts in T-cell proportions [6]. 48 

Thus, taking inter-sample variability into account is critically important when testing for DA. 49 

Another major challenge is that DA-patterns of interest are often sought across biological 50 

conditions (e.g. aging or exposure to other disease risk factors) that only induce relatively 51 

small shifts in the proportions of very similar cell subtypes. While scRNA-Seq technology 52 

and standard clustering approaches allow relatively easy discrimination of major cell-types 53 

(e.g. fibroblasts, epithelial cells, T-cells), the discrimination of cell subtypes such as naïve vs 54 

memory T-cells, or the discrimination of cells according to a biological condition such as age 55 

or disease risk, is more challenging due to the small effect sizes involved and the noisy nature 56 

of single-cell data. Thus, it is critically important to devise methods that can robustly identify 57 

relevant cell-states in the background of such noisy data, to ensure that the subsequent 58 

quantification of DA-patterns is reliable. 59 

In response to these challenges, various statistical DA-testing algorithms have been proposed  60 

[7-12], with some of the more recent methods (e.g. [10-12]) taking sample replication into 61 

account. DA-testing algorithms also differ in terms of whether they use the full single-cell 62 

state manifold [13, 14] when inferring DA or not. At one extreme we have DA-testing 63 

methods that only rely on the discrete cell clusters and cell-type annotation derived from the 64 

scRNA-Seq data [1, 3, 11, 12, 15],  whilst at the other extreme we have methods that make 65 

full use of the manifold structure [7, 10]. These latter studies have advocated the need to 66 

estimate DA from fuzzier representations of cell clusters, known as cellular neighborhoods, in 67 

recognition of the fact that cells generally only cluster by broad cell-types and not by 68 

underlying biological conditions or cell subtypes [7, 8, 10]. Indeed, although clustering-based 69 

approaches have been successful in identifying cell subtypes or rare cell-types [3], the 70 

defining characteristic of these subtypes is their low proportion and moderate effect sizes, 71 

whilst DA-testing is often needed in the context of more abundant cell subtypes defined by 72 
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much smaller effect sizes. We reasoned that if cell clustering algorithms could be generalized 73 

to take cell attribute information into account, for instance, a cell’s biological condition such 74 

as age or disease stage, that this would improve the signal-to-noise ratio, and, in so doing, 75 

allow retrieval of more biologically relevant clusters and robust cell-states. In support of our 76 

hypothesis, we note that clustering graph nodes by taking node-attributes into account has 77 

been a fruitful approach in network science generally [16]. Hence this node-attribute-aware 78 

clustering paradigm ought to be beneficial for tackling the uncertainties and noise associated 79 

with single-cell omic data. Moreover, cell attributes themselves often encode information that 80 

is part of the intrinsic process that generates cell communities, so not using such information 81 

in noisy data may lead to incomplete or imprecise clusters. A final reason to consider cell-82 

attribute aware clustering is that it can help discern cell communities that are shared across 83 

sample replicates, and which are therefore more likely to be biologically relevant.  84 

To test our hypothesis, we here adapt a node-attribute aware community detection algorithm 85 

called EVA [17], which is a generalization of the very popular Louvain clustering method 86 

[18]. Of note, despite Louvain’s great popularity in the single-cell analysis field [3], the 87 

Louvain algorithm only takes the topology of the cell-cell similarity graph into account when 88 

inferring cell communities. EVA can be viewed as a direct extension of the Louvain 89 

algorithm allowing multiple cell attributes to be incorporated when inferring communities. 90 

This novel concept allows clustering of cells, not only by similarity in the high-dimensional 91 

state-space, but also by how similar their attributes (e.g. age, disease stage) are. Here we 92 

develop a novel R-implementation of EVA and incorporate it into a complete algorithmic 93 

pipeline for DA-testing called ELVAR. We subsequently validate ELVAR very extensively on 94 

both simulated as well as real datasets, demonstrating improved sensitivity over competing 95 

methods.  96 

 97 

Results  98 

Rationale of ELVAR algorithm 99 

Detecting shifts in cell-subtype proportions across different biological conditions from 100 

scRNA-Seq data can be challenging when these factors drive only a small fraction of the 101 

overall data variance. Indeed, with scRNA-Seq data, cells generally cluster by the main cell-102 

types present in a tissue, for instance, epithelial, immune and fibroblast types. However, more 103 

refined clusterings that clearly discriminate cells according to subtypes (e.g. different CD4+ 104 

T-cell subtypes) or biological conditions that only cause a relatively small change in the 105 

transcriptome of cells (e.g. age of a cell) are less forthcoming. In effect, this challenge arises 106 

whenever relevant components of biological variation carry similar or less variance compared 107 

to technical factors, thus preventing the segregation of cells by biological condition or 108 

subtype. We hypothesized that DA-testing would benefit from a procedure that can more 109 
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reliably identify relevant cellular states and that this could be achieved if clustering analyses 110 

were to include cell-attributes into account when inferring cellular communities. Specifically, 111 

following standard dimensional reduction and inference of a cell-cell nearest neighbor graph 112 

(Fig.1a) [19], we posited that more relevant cell communities could be identified if the 113 

inference of clusters in this graph were to use cell-attribute information, since this would 114 

favor clustering solutions where cells within communities are predominantly of one 115 

biological condition or subtype. To test our hypothesis, we adapt an extension of the popular 116 

Louvain algorithm, called EVA [17], which unlike Louvain, aims to maximize an objective 117 

function that includes a purity index besides modularity. This purity index measures how 118 

homogeneous inferred communities are in relation to some particular cell-attribute (e.g. age 119 

or disease stage). Henceforth, we shall refer to the cell-attribute used in the purity calculation 120 

as the “clustering attribute”. The EVA algorithm also includes a purity parameter “a” that 121 

controls the relative importance of purity over modularity when inferring communities 122 

(Fig.1b). For a given cell-attribute value, communities enriched for cells taking on that value 123 

can subsequently be identified (Fig.1c). Of note, whilst these communities may contain cells 124 

from multiple sample replicates, we do not impose this, safeguarding flexibility and power. If 125 

cells have an additional attribute, called the attribute of interest (e.g. differentiation-state or 126 

cell-subtype), negative binomial regressions (NBRs) can then be used to assess if the 127 

proportions of this attribute of interest changes across the clustering attribute representing 128 

distinct biological conditions (i.e. age or disease stage) [10] (Fig.1d). We implement the 129 

whole DA-testing pipeline (including the cell-attribute-aware clustering and NBR steps) in 130 

the programming language R, calling the resulting algorithm ELVAR (Extended LouVain 131 

Algorithm for DA-testing in R). 132 

 133 

 134 

Validation of EVA and ELVAR on simulated data 135 

In order to test our R-implementation of EVA, we devised a simulation model based on 136 

scRNA-Seq data from the Tabula Muris Senis (TMS) [20], consisting of 200 scRNA-Seq 137 

profiles representing classical monocytes from one particular mouse, with 100 cells defining 138 

a perturbed state (P) and the remaining 100 representing an unperturbed normal (N) condition 139 

(Methods). We simulated differences in gene expression between the two conditions to be 140 

subtle, only involving 0.2% of all genes. Dimensional reduction and visualization with t-141 

stochastic neighborhood embedding (t-SNE) did not reveal any clustering structure except for 142 

the distinctively non-random distribution of perturbation-state within the main cluster (SI 143 

fig.S1a). Louvain clustering over the cell-cell nearest neighbor graph in the higher 144 

dimensional state manifold revealed a more complex clustering structure with nine clusters 145 

that globally correlated with perturbation state (SI fig.S1a). Applying EVA for a range of 146 

different purity parameter values (SI fig.S1b) revealed stronger correlations with perturbation 147 

state, as evaluated using the adjusted Rand Index (ARI) (SI fig.S1c) or with Chi-Square 148 
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statistic P-values (SI fig.S1a), albeit only for larger purity parameter values. Restricting to 149 

EVA solutions with the same number of inferred communities as Louvain (n=9), also 150 

displayed improved ARI and more significant chi-square statistic P-values compared to 151 

Louvain (SI fig.S1d). We verified that the improvement of EVA over Louvain was 152 

independent of the resolution parameter, which, in addition to the purity parameter, also 153 

controls the number and size of inferred communities (Methods, SI fig.S2). 154 

To validate ELVAR, we generalized the above simulation model to include cells from 155 

different age groups and multiple mouse replicates, and by increasing the frequency of the 156 

perturbation state between young and old groups in order to simulate age-related differential 157 

abundance (Fig.2a). Using a well-defined set of criteria that balances purity, modularity and 158 

cluster number (Methods), we identified a purity parameter value a=0.8 as the optimal 159 

choice for EVA in this dataset (Fig.2b). EVA inferred enriched age-related communities from 160 

the nearest neighbor cell-cell graph (Fig.2c), and using negative binomial regressions to 161 

account for inter-mouse replicate variation, we correctly inferred the expected increase of the 162 

perturbation state fraction with age (Fig.2d-e). Importantly, statistical significance attained by 163 

ELVAR was stronger compared to analogous algorithms that use either the sequential 164 

(deterministic) or non-sequential (stochastic) Louvain algorithm instead of EVA (Fig.2e, 165 

Methods). Of note, whilst this improvement comes at the expense of a higher computational 166 

complexity, EVA/ELVAR runtimes are feasible for reasonably sized cell-cell networks (SI 167 

fig.S3). For instance, for a network with approximately n=30,000 cells, EVA/ELVAR runtime 168 

(1 run) on a typical professional workstation takes around 15-20 minutes.  169 

 170 

 171 

ELVAR improves sensitivity to detect DA-shifts in real scRNA-Seq datasets 172 

Having demonstrated ELVAR’s improved sensitivity for DA-testing on simulated scRNA-Seq 173 

data, we next aimed to validate ELVAR on real data, and to test if similar improvements over 174 

the Louvain-benchmark are also seen in real data. We first considered the case of aging in 175 

Cd4+ T-cells. As described by several studies, the naïve subset of Cd4+ T-cells in blood 176 

decreases with age, contributing to the well-known phenomenon of immuno-senescence [6, 177 

21]. Hence, ELVAR should be able to predict an analogous age-related shift from naïve Cd4+ 178 

T-cells to the more mature subtype in tissues with significant amount of immune-cell 179 

infiltration, such as lung [22]. To this end, we considered the lung-tissue 10X scRNA-Seq 180 

dataset from the Tabula Muris Senis [20], due to ample profiling of Cd4+ T-cells in this tissue 181 

across at least 5 age groups, ranging from one-month (1m) to 30 month-old mice (30m). After 182 

QC, a total of 537 Cd4+ T-cells from 11 mice remained, their ages being distributed as 143 183 

(1m), 122 (3m), 67 (18m), 107 (21m) and 98 (30m). Cells from any given age-group were 184 

derived from at least two mice (SI table S1), allowing us to take sample variability into 185 

account. Of the 537 Cd4+ T-cells, 186 were identified as being in the naïve state due to 186 

expression of Lef1, a well-known marker for naïve Cd4+ T-cells [21]. We used Seurat to 187 
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perform feature selection, dimensional reduction and visualization (Methods), resulting in 188 

two broad clusters that correlated with age and Cd4+ T-cell subtype (Fig.3a). Thus, this 189 

represents an “easy” scenario where ELVAR should be able to predict the expected shift to a 190 

more mature Cd4+ T-cell phenotype. As before, we ran ELVAR 100 times for each of 9 191 

choices of the purity parameter value (range: a=0.1 to a=0.9), and using the same selection 192 

criteria as with our simulation model (Methods), we identified an optimal value of a=0.8. We 193 

note that at this value, the number of inferred communities increased appreciably relative to 194 

Louvain, that purity was relatively close to the maximum, and that modularity remained 195 

relatively high (Fig.3b). For each age group and for each of the 100 runs at this optimal 196 

a=0.8 value, ELVAR communities enriched for cells from that age-group were identified 197 

(Methods, Fig.3c-d). Ignoring sampling variability revealed a significant skew towards 198 

lower naïve cell-fractions in older mice (Fig.3e). Taking mouse replicates into account 199 

revealed the same skew independently of mouse-ID (Fig.3f). To confirm this, we ran negative 200 

binomial regressions, which revealed highly significant and robust negative and positive 201 

associations for naïve and mature Cd4t cells, respectively (Fig.3g). Hence, this confirms that 202 

the age-associated shift from naïve to mature Cd4t-cells is also present in lung tissue. 203 

Importantly, the associations of T-cell subfractions with age as obtained with ELVAR were 204 

significantly stronger than those obtained with the benchmark, i.e. with the analogous 205 

algorithm that uses the non-sequential Louvain algorithm in place of EVA (Fig.3g, Methods).  206 

Using the same lung-tissue data from the TMS [20], we also tested for age-associated 207 

differential abundance of alveolar macrophage M1/M2 polarization subtypes (Methods, SI 208 

table S2). A lower M1 to M2 ratio has been proposed to be a signature of lung cancer risk 209 

[23-25]. By applying ELVAR with age as the clustering attribute and macrophage 210 

polarization as the attribute of interest, we were able to detect a lower M1/M2 ratio with 211 

increased age (SI fig.S4), which was not evident when using the Louvain algorithm in place 212 

of EVA (SI fig.S4).  213 

To demonstrate that ELVAR can detect disease relevant DA-shifts in other cell-types and 214 

biological conditions, we next considered two Covid-19 scRNA-Seq datasets [26, 27]. Chua 215 

et al profiled single cells in nasopharyngeal swabs from moderate and critically ill COVID-19 216 

patients [26] (Methods). After QC, we retained approximately 13,500 immune cells 217 

encompassing 9 cell-types derived from 7 moderately and 11 critically ill patients (Methods, 218 

SI table S3). We applied ELVAR (100 runs) with disease severity as the clustering attribute 219 

to each of the 9 cell-types to determine if their abundance changes between moderate and 220 

severe Covid-19 cases. This confirmed an increased neutrophil and decreased monocyte-221 

derived dendritic cell (moDC) counts in severe cases (SI fig.S5). Using Louvain instead of 222 

EVA resulted in similar levels of statistical significance for neutrophils but less significant 223 

levels for moDCs (SI fig.S5). Finlay et al profiled single-cells in the olfactory epithelium (OE) 224 

of Covid-19 patients who experienced long-term smell-loss (hyposmic) and those who did 225 

not (normosmic) [27]. After QC, we retained 11,173 relevant cells encompassing 5 cell-types 226 
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(olfactory sensory neurons, sustentacular, Bowman glandular cells, microvillar and horizontal 227 

basal cells (HBCs)), derived from 5 hyposmic and 5 normosmic Covid-19 cases (Methods, 228 

SI table S4). We applied ELVAR (100 runs) to detect cell-types displaying DA in relation to 229 

the smell-loss phenotype, which was thus used as the clustering attribute. This revealed 230 

significantly decreased olfactory sensory neuron and increased microvillar counts in 231 

hyposmic cases (SI fig.S6a-c). However, in this dataset the degree of statistical significance 232 

attained by ELVAR was similar to the Louvain-benchmark (SI fig.S6c). 233 

In summary, the analyses performed on these 4 scRNA-Seq datasets demonstrate (i) the 234 

ability of ELVAR to detect differential abundance patterns in relation to age and Covid-19 235 

phenotypes, (ii) that in general ELVAR displays improved sensitivity over an analogous 236 

algorithm that uses Louvain in place of EVA, and thus (iii) that this improvement is solely 237 

due to the incorporation of cell-attribute information when inferring cellular communities.  238 

 239 

 240 

ELVAR predicts an increased stem-cell fraction in polyps from snRNA-seq data 241 

We next applied ELVAR to a single-nucleus RNA-Seq (snRNA-Seq) dataset of colon cancer 242 

progression, encompassing normal samples from healthy individuals (N), normal samples 243 

from unaffected familial adenomatous polyposis (FAP) cases (A), polyps from predominantly 244 

FAP cases (P) and colorectal cancer adenomas (A), encompassing over 200,000 cells [28]. 245 

We asked if ELVAR could detect cancer-associated DA-shifts in the stem-cell and T-246 

regulatory cell populations, because in the original study by Becker et al [28] an increase in 247 

the epithelial stem-cell and regulatory T-cell fractions was only observed when analyzing 248 

scATAC-Seq data, and not when analysing the snRNA-Seq data itself which displayed very 249 

high (97-99%) sparsity. We reasoned that ELVAR’s improved sensitivity would allow 250 

detecting these shifts from the snRNA-Seq data itself. To ensure robustness, we performed 251 

the analysis in two independent ways (Methods). In the first approach, we restricted to a 252 

subset of samples for which the QC processing and cell-type annotation was already provided 253 

in the original study [28] (SI table.S5-S6). Applying ELVAR (100 runs) to the cell-cell 254 

similarity graphs with disease stage as the clustering attribute, derived separately for 255 

enterocytes and lymphocytes, revealed statistically significant progressive increases in the 256 

stem-cell and regulatory T-cell fractions, despite the relatively small numbers of samples 257 

(Fig.4). Of note, the statistical significance levels of these DA-shifts were much stronger for 258 

ELVAR compared to the analogous method that uses Louvain instead of EVA (Fig.4f). In fact, 259 

when using Louvain instead of EVA we did not observe a clear increase of regulatory T-cells, 260 

further attesting to the improved sensitivity of a cell-attribute aware clustering method. 261 

In the second approach, and with the aim to increase sample size, we re-analyzed the full 262 

snRNA-Seq dataset, performing QC and reannotating cells into broad enterocyte, goblet, 263 

immune-cell, stromal and endothelial cell categories (Methods). Briefly, to annotate, we 264 

identified broad cell-types using only normal samples and well-known cell-type specific 265 
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markers, to subsequently build an mRNA expression reference matrix, which was then used 266 

in a robust partial correlation framework [29, 30] to annotate all cells from all disease stages 267 

(Methods). Only cells that were confidently annotated into one of the broad categories were 268 

taken forward for further analysis (Methods). Whilst the high sparsity of the snRNA-Seq 269 

data precluded reliable annotation of T-regulatory cells, in the case of stem-like cells, we 270 

applied a recently validated single-cell transcription-factor (TF) regulon-based method called 271 

CancerStemID [31], that first estimates differentiation activity of colon-specific transcription 272 

factors (TFs) [32] across all cells, subsequently identifying stem-like cells as those displaying 273 

the lowest average differentiation activity (Methods). We observed that the average 274 

differentiation activity of the colon-specific TFs decreased during cancer progression (SI 275 

fig.S7a). In total, we identified 38,667 stem-like and 65,432 non-stem cells, with the stem-276 

like cells displaying much lower levels of differentiation activity (SI fig.S7a).  Next, we 277 

applied ELVAR (100 runs) with disease stage as the clustering attribute (SI fig.S7b). Alluvial 278 

plots indicated that inferred communities enriched for disease stages were also predominantly 279 

associated with either stem or non-stem cells (SI fig.S7c). ELVAR confirmed an increase in 280 

the stem-cell fraction, which was particularly pronounced at the polyp-stage (SI fig.S7d), and 281 

which was further validated using NBRs to account for inter-subject variability (SI fig.S7e). 282 

In summary, these results demonstrate that ELVAR is able to detect shifts in relevant cell-283 

states from snRNA-Seq data, thus extending and confirming earlier findings derived from 284 

scATAC-Seq data [28]. 285 

 286 

 287 

ELVAR compares favorably to non-clustering based DA-testing methods 288 

Having demonstrated that ELVAR can successfully detect DA of various cell-types in 289 

different biological contexts and that the cell-attribute aware clustering step improves the 290 

sensitivity of the procedure, we next compared ELVAR to two competing non-clustering 291 

based methods called DA-seq [7] and Milo [10]. Of note, although DA-seq and Milo allow 292 

DA to be assessed in relation to one main cell-attribute, they do not explicitly allow 293 

assessment of DA of additional cell-attributes (e.g. cell-types) relative to the main one. Thus, 294 

in order to compare ELVAR to DA-seq and Milo in their ability to detect DA of cell-types in 295 

relation to a biological condition such as age or disease stage, we adapted the DA-seq and 296 

Milo algorithms to this particular DA-task (Methods). We applied these two methods in the 297 

context of all previously analyzed datasets including the lung-tissue Cd4t-cell and alveolar 298 

macrophage TMS scRNA-Seq data, the two Covid-19 related scRNA-Seq sets and the colon 299 

enterocyte snRNA-Seq dataset. ELVAR attained stronger levels of statistical significance 300 

compared to DA-seq or Milo (Fig.5a,c,e,g,i). For instance, whilst all 3 methods correctly 301 

predicted an age-related decrease of naive Cd4t cells, DA-seq and Milo only attained 302 

marginal levels of significance, in contrast to the much stronger levels of statistical 303 
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significance obtained with ELVAR (Fig.5a). More strikingly, the increased stem-cell and T-304 

regulatory fractions with colon cancer progression was not evident at all when using Milo and 305 

only marginally so when using DA-seq (Fig.5e). Likewise, in the Covid-19 datasets, the 306 

associations were much stronger for ELVAR, marginally significant for Milo, whilst DA-seq 307 

did not achieve significance (Fig.5g-i). 308 

We reasoned that the improved sensitivity of ELVAR may be related to its ability to capture 309 

larger communities specifically enriched for cells representing the various biological 310 

conditions. To test this, we computed the fraction of captured cells for each biological 311 

condition, defined as cells of a given condition that belong to communities (ELVAR) or 312 

cellular neighborhoods/regions (Milo/DA-seq) significantly enriched for that condition 313 

(Methods). Supporting our hypothesis, we observed that ELVAR captured significantly more 314 

cells from each biological condition compared to Milo or DA-seq (Fig.5b,d,f,h,j). It is 315 

noteworthy for instance, that in the case of Cd4t-cells, ELVAR’s improvement over Milo and 316 

DA-seq was specially pronounced for the oldest age-groups (30m), whilst there was no 317 

improvement for the intermediate group (18m). This supports the view that Milo and DA-seq 318 

struggle to capture larger communities of old cells, probably due to these cells displaying 319 

higher heterogeneity and therefore less prone to cluster together in local neighborhoods. In 320 

contrast, by incorporating age as a cell-attribute when inferring communities, ELVAR is able 321 

to extend its’ influence beyond the local neighborhoods to capture larger clusters of old cells, 322 

thus improving power and facilitating the detection of age-related shifts in underlying cell-323 

states. We note once again that although this improvement in power over DAseq and Milo 324 

comes at the expense of increased runtimes when compared to Milo, that ELVAR runtimes 325 

remain very feasible (SI fig.S3). 326 

 327 

 328 

ELVAR is robust to batch effects and false positives in cell-type annotation  329 

Finally, we assessed ELVAR’s performance in relation to batch effects and false positives in 330 

cell-type annotation. We reasoned that in the context of DA-testing, sample batch correction 331 

may not always improve the signal-to-noise ratio (SNR) because sample is correlated with 332 

the biological condition of interest. We further reasoned that ELVAR, by virtue of using the 333 

biological condition as the clustering attribute, can help circumvent batch effects by drawing-334 

in together cells from different samples/batches but same biological condition. Using the 335 

previously analyzed datasets, we thus compared ELVAR’s DA-test z-statistics for three 336 

different scenarios: (i) no batch correction, (ii) prior batch-correction with Harmony [33] and 337 

(iii) prior batch correction with Seurat [19]. In general, we observed that ELVAR’s 338 

performance was relatively robust to whether prior batch correction is performed (Fig.6a-d). 339 

Importantly, the degree of statistical significance was generally speaking higher without prior 340 

batch correction, although this was study-specific (Fig.6a-d). In fact, for those datasets and 341 

cell-types (e.g. sensory neurons in Fig.6c) where prior batch correction improved significance 342 
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levels, the improvement itself did in general not alter the sensitivity to detect significant 343 

changes (Fig.6a-d). This is because in these scenarios the DA-shifts were substantial in terms 344 

of effect size. Hence, these results confirm the view that in cases where DA-shifts are of 345 

smaller effect size, batch correction may further reduce the SNR, and hence that using 346 

ELVAR without prior batch correction may improve power. 347 

Since cell-type annotation is an error-prone procedure, we also assessed ELVAR’s robustness 348 

to an increased false positive rate (FPR) when annotating cells to specific cell-types. We thus 349 

simulated an increased FPR in each of the previous four datasets (Methods), recording the 350 

sensitivity to detect a significant DA-shift for the relevant cell-types across a total of 100 351 

distinct Monte-Carlo runs. We note that errors in cell-type annotation only affect the NBR-352 

step of ELVAR since cell-type annotation itself is not used when inferring cellular 353 

communities. Consequently, the sensitivity to detect the DA-shifts remained consistently high 354 

in each study until the FPR reached a study-specific threshold, at which point sensitivity 355 

dropped markedly (Fig.6e). In general, these thresholds on the FPR in cell-type annotation 356 

were quite high indicating that under reasonable FPRs ELVAR’s performance is robust.  357 

In principle, false positives can also arise due to errors in diagnosis or staging of a disease, 358 

which would introduce errors in the clustering attribute and thus affect ELVAR’s performance. 359 

Although unlikely, such errors in diagnosis could be present in the Covid-19 and colon-polyp 360 

datasets analyzed here. By definition, such errors in diagnosis or staging affects all cells of a 361 

sample. Hence to simulate such errors we randomly flipped a small percentage (~20%) of 362 

sample phenotype labels, subsequently rerunning ELVAR to test its robustness to detect the 363 

same cell-type shifts as in the unperturbed scenario (Methods). We observed that ELVAR’s 364 

sensitivity to detect DA-shifts typically dropped by about 20%, although for some cell-types 365 

the drop was significantly less, for instance, sensitivity dropped by only 5% when detecting 366 

an increase of the enterocyte stem-cell fraction with colon-cancer progression. On the other 367 

hand, the sensitivity to detect a decrease of sensory neurons in the OE of Covid-19 patients 368 

experiencing long-term smell-loss, dropped by as much as 30%, to remain at just over 60% 369 

(SI fig.S8). Thus, even at a relatively high FPR of ~20%, sensitivities to detect DA-shifts for 370 

all cell-types remained at over 60%. This indicates that ELVAR is relatively robust to such 371 

errors, although achieving high sensitivity clearly hinges on the FPR in the clustering 372 

attribute being reasonably low. 373 

  374 

Discussion 375 

Recent studies have advocated DA-testing methods (e.g. Milo, DA-seq) that infer cellular 376 

states and associated DA-patterns from enriched cellular neighborhoods or regions within the 377 

high-dimensional single-cell state manifold [7, 10]. These studies have argued that since DA-378 

patterns are often sought for cell-states that do not cluster well in the manifold, that hard 379 
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clustering algorithms such as Louvain are inappropriate tools for inferring the cellular states 380 

and their underlying DA-patterns. Instead, fuzzier representations of communities, known as 381 

local neighborhoods/regions, are better suited for the DA-task. Here we have shown that an 382 

alternative solution is to use cell-attribute information when clustering cells. By using cell-383 

attribute information in the community inference procedure, one can more readily discern 384 

cellular communities defined by the biological condition (i.e. the clustering attribute) itself, 385 

thus helping to circumvent the noise and orthogonal sources of variation which would 386 

otherwise preclude identification of such states. Furthermore, in the applications to aging, 387 

Covid-19 and colon cancer progression considered here, ELVAR displayed higher sensitivity 388 

than Milo and DA-seq to detect biologically important and plausible DA-shifts, such as the 389 

age-related shift from naïve to mature Cd4+ T-cells in lung tissue, thus mirroring the 390 

corresponding known shift in blood [21, 23], or the increased epithelial stem-cell and T-391 

regulatory fraction in polyps. We also contributed a theoretical understanding underpinning 392 

this improved sensitivity, as demonstrated by ELVAR’s ability to detect cellular communities 393 

enriched with larger numbers of cells belonging to specific biological conditions. For 394 

instance, ELVAR enabled the identification of communities representing immune-cell states 395 

in old cells, which competing methods like Milo or DA-seq could not resolve due to 396 

increased intercellular heterogeneity of the older cells. Indeed, we stress that due to the cell-397 

attribute-aware clustering, ELVAR was able to capture more cells of a given biological 398 

condition within a community of cells enriched for that biological condition, compared to 399 

neighborhood approaches like Milo/DA-seq, thus increasing power to detect subtle DA-shifts. 400 

In this regard, it would be interesting to explore if the improved sensitivity would also be 401 

seen relative to miloDE [34], a recently proposed extension of Milo, which uses a 2nd order k-402 

nearest neighbor graph approach to generate a state manifold that displays more homogenous 403 

neighborhoods. Indeed, miloDE has been shown to significantly increase power in 404 

downstream differential expression tasks.  405 

The improved sensitivity to detect DA-shifts, as displayed by ELVAR, was also seen when 406 

benchmarked against an analogous clustering-based DA-method that uses Louvain in place of 407 

EVA. This benchmarking is important as it disentangles the effect of using a cell-attribute 408 

when clustering from one that does not, thus highlighting the specific importance of using 409 

cell-attribute aware clustering. Of note, the improvement of ELVAR over its Louvain-410 

analogue was more pronounced in studies displaying weaker clustering structure (e.g. the 411 

immune-cell subsets changing with age in lung tissue, or the stem-cell state increasing in 412 

polyps), whilst the improvement was much less noticeable in those studies with stronger 413 

clustering (e.g. neutrophils changing with Covid-19 disease severity). This supports the view 414 

that cell-attribute aware clustering can improve the identification of relevant cellular states, 415 

which otherwise can’t be discerned due to the noise in scRNA-Seq data.  416 

Related to this, we have also seen how ELVAR can circumvent the need for batch correction, 417 

as performing batch-correction prior to ELVAR rarely led to an improvement in sensitivity. 418 
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Of note, whilst ELVAR also displayed significant robustness to FPs in cell-type annotation, it 419 

was more sensitive to putative FPs in the clustering attribute that represents the 420 

sample/phenotype label. This is not unexpected, since although the rate of FPs in cell-type 421 

annotation could be relatively high, the cell-type annotation itself is not used in the clustering 422 

inference step. On the other hand, FPs in the clustering attribute can affect the quality of the 423 

inferred communities, although it is worth pointing out that in practice FPRs in sample 424 

annotation are generally much lower than the highly conservative 20% error-rate considered 425 

here. 426 

The improved inference of DA with cell-attribute aware community detection inevitably 427 

comes at the expense of increased computational complexity and runtimes compared to Milo 428 

or the Louvain-analogue. However, runtimes remain very feasible and hence the increased 429 

computational complexity does not present a practical limitation. Indeed, a typical scRNA-430 

Seq study may profile on the order of 200k cells, encompassing on the order of 10 cell-types, 431 

hence on the order of 20k cells per cell-type. Since ELVAR is aimed at detecting subtle shifts 432 

of underlying cell-states within one of these cell-types (e.g. mature vs naïve Cd4+ T-cell 433 

states), the typical cell-cell graphs on which we would apply ELVAR would have on the order 434 

of 20k cells. On such a network, one ELVAR run is completed in approximately 10-15 435 

minutes. On cell-cell networks encompassing ~100k cells, one ELVAR run would complete 436 

in the order of 80-120 minutes. Multiple runs can be easily parallelized, for instance, to 437 

identify an optimal a parameter value may require a total of 100 runs for each of nine a 438 

parameter values, so a total of 900 runs, which on a 100-node server would require 9 439 

instances. Thus, for a typical 20k cells per cell-type, the total runtime to complete the whole 440 

ELVAR-task on a 100-node server would be approximately 90-135 minutes. 441 

A nice feature of the ELVAR algorithm is that the resolution (i.e. average cluster size) of the 442 

inferred communities is dependent on the same parameter that controls the purity of the 443 

communities. As shown here, the optimal purity parameter value is generally in the range 0.7-444 

0.9. Whilst this appears to be close to the value 1, i.e. the value at which modularity ceases to 445 

enter the objective function, it is worth noting that purity and modularity are relatively stable 446 

for all a parameter values less than 0.7 and that deviations from the Louvain-benchmark are 447 

only seen when a is at least 0.7 . Thus, from a practical perspective, purity does not dominate 448 

the clustering until it is very close to 1. This can be understood by the fact that purity plays no 449 

role in the construction of the cell-cell nearest neighbor graph, the latter being solely 450 

determined by the scRNA-Seq profiles. In other words, the topological structure of the cell-451 

cell graph, which is determined purely by the scRNA-Seq profiles, limits the way purity can 452 

influence clustering solutions, even when purity values are close to 1. 453 

It is also important to re-emphasize the need to infer cellular states within the context of the 454 

high-dimensional single-cell state manifold. Given two cellular attributes that are defined to a 455 

large extent independently of this high-dimensional manifold, one can in principle always 456 

perform DA-testing between these two attributes using NBRs or another statistical 457 
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framework, without the need to apply an algorithm to the state-manifold [11]. For instance, in 458 

the case of age and a cell-state defined by the binary expression of a single marker gene, DA-459 

testing with multiple replicates could be done using NBRs on cell-counts within this two-460 

dimensional attribute space (age, cell-state). However, in the context of scRNA-Seq data, 461 

such an approach has been shown to be suboptimal [10], because it assumes, unreasonably so, 462 

that all cells sharing common attributes define the same cellular states. Thus, a cell-attribute 463 

aware clustering and DA-testing pipeline such as ELVAR strikes an optimal balance, 464 

allowing more biologically relevant and robust cell-states to be inferred, whilst 465 

simultaneously also removing the many noisy and rogue cells that are not part of these states. 466 

Finally, we stress the importance of developing sensitive methods for DA-testing. As shown 467 

here, by applying ELVAR to snRNA-Seq data we were able to predict increased stem-cell and 468 

T-regulatory fractions in polyps preceding colorectal adenoma, when such DA-patterns were 469 

previously only observed using scATAC-Seq data [28]. Thus, this finding has important 470 

repercussions for the biomedical field in demonstrating that snRNA-Seq data is perfectly 471 

adequate to detect DA-changes that are likely to be informative of disease risk. 472 

 473 

In summary, ELVAR, and the cell-attribute aware clustering algorithm on which it is based, is 474 

a useful addition to the arsenal of statistical methods for DA-testing in scRNA-Seq and 475 

snRNA-Seq data. Given the richness and complexity of single-cell omic data, including 476 

multi-omic data, general network science approaches will continue to find successful 477 

applications in this area. 478 

 479 

 480 

 481 

Methods  482 

Single-cell RNA-Seq datasets 483 

We here analyzed the following scRNA-Seq datasets: 484 

Tabula Muris Senis (TMS): This mouse scRNA-Seq dataset [20] encompasses many different 485 

tissue-types with samples collected at 6 different ages: 1, 3, 18, 21, 24 and 30 months. Data 486 

object files were downloaded from figshare https://doi.org/10.6084/m9.figshare.8273102.v2 487 

We used the normalized data as provided in the h5ad files. We focused on the lung-tissue 10X 488 

dataset, because it contained one of the largest numbers of immune-cell subtypes with good 489 

representation across age-groups including multiple mouse replicates. 490 

Colon cancer development: This is a human snRNA-Seq dataset [28] encompassing colon 491 

samples collected from healthy individuals, normal samples from unaffected individuals with 492 

FAP, polyps from FAP and non-FAP cases, and colorectal adenomas. We analysed both the 493 
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processed snRNA-seq data available from GitHub 494 

(https://github.com/winstonbecker/scCRC_continuum), as well as the full unprocessed data 495 

available from GEO (GSE201348). Processed data were stored as Seurat objects that 496 

included donor, disease stage and cell-type annotation information. 497 

 498 

The EVA algorithm 499 

Here we describe the recently published algorithm (EVA: Extended LouVain Algorithm) to 500 

identify homogeneous communities in a network with node attributes [35]. Let � � ��, �, �� 501 

denote a graph where � , �  and � are the set of vertices, edges and node (cell) attributes, 502 

respectively. Node/cell attributes can be categorical or numerical such that ��	�, with 	 
 �, 503 

identifies the set of cell attribute values associated with cell 	. In our applications, we will 504 

mostly consider one cell attribute (typically the cell’s age or perturbation state) but below we 505 

formulate the model for any number of node attributes. With EVA, the goal is to identify a 506 

network partition, i.e. a mutually exclusive set of communities/clusters, that maximizes a 507 

topological clustering criterion as well as node label homogeneity within each community. 508 

Thus, the measure we wish to maximize consists of two components: the modularity Q that 509 

measures the extent to which the partitioning captures clusters of high-edge density, and a 510 

purity index P that measures the homogeneity of the communities in relation to node 511 

attributes. 512 

In more detail, the modularity Q of a partition quantifies the edge density within communities 513 

relative to that expected under an appropriate null distribution [36], and is defined by 514 

                                             � � �

��
∑ ���� � � ����

��
� ����,�����                                              �1�  515 

where m is the number of edges, ��� represents the edge weight between nodes 	 and �, 516 

�� � ∑ ����   and �� � ∑ ����  are the sum of weights of the edges linked to nodes 	 and �, 517 

respectively. The Kronecker ����,��� function is 1 when nodes 	  and �  are in the same 518 

community (�) and 0 otherwise. The resolution parameter � , which typically takes values in 519 

the range 0 � � � 1 , controls the number and size of inferred communities with higher 520 

resolution values leading to a greater number of smaller communities. For � � 1, Q can take 521 

values between 0 and 0.5 [17]. 522 

The purity index is defined by the average node label homogeneity (i.e. purity) over all 523 

inferred communities [35]: 524 

                                                                 � � �

|
|
∑ �

��                                                                     �2� 525 

where �
  represents the purity of community � . The purity of a given community (�) is 526 

defined as the product of frequencies of the most frequent node attribute values within the �  527 

                                                       �
 � ∏ ��� �∑ ���
��� �

|
|�                                                                �3�   528 

where � is the set of node attributes, and  �	� is an indicator function for node 	 taking value 529 
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1 if  � ��	�, 0 otherwise. �
 attains maximum purity 1 when all nodes in the community (�) 530 

have same attribute value sequence. In the case of just one cell attribute, this corresponds to 531 

the case where all cells in the community have the same attribute value. Of note, P takes 532 

values in the range 0 to 1.  533 

Finally, the EVA algorithm is defined by the optimization of a generalized modularity 534 

function Z 535 

                                                          ! � "� # �1 � "��                                                                   �4� 536 

where " is the purity index parameter taking values also in the range 0 to 1. Of note, for 537 

" � 0, Z=Q and we recover the Louvain algorithm if � � 1  [18] (or a modified Louvain 538 

algorithm if � � 1�. At the other extreme (" � 1�, Z=P, and the clustering algorithm only 539 

cares about maximizing purity subject to network connectivity constraints. For a given " and 540 

� , we optimize Z following the algorithmic implementation of Citraro and Rossetti [17]. 541 

 542 

The ELVAR algorithm 543 

Building on EVA, we developed an algorithm and R-package called ELVAR for differential 544 

abundance (DA) testing in scRNA-Seq data. Specifically, the biological question being 545 

addressed by ELVAR is whether the proportion of a given cell-state or cell subtype (the 546 

attribute of interest) changes in relation to some other factor or cell attribute such as age or 547 

disease stage (the clustering attribute). Given the potentially high technical and biological 548 

variability, such DA-testing should ideally be carried out in scenarios where multiple 549 

replicates are available [10]. ELVAR is designed for complex scenarios where (i) the source 550 

of variation associated with the biological conditions, cellular states or subtypes is relatively 551 

small and (ii) where sample replicates are available. The ELVAR algorithm consists of 4 main 552 

steps that we now describe: 553 

(i) Construction of the k nearest-neighbor (knn) cell-cell graph: As input, the EVA 554 

algorithm requires a connected nearest neighbor cell-cell graph, as generated for 555 

instance using Seurat’s FindNeighbors function. The number of nearest neighbors k 556 

should be chosen sensibly in relation to the total number of cells ntot. For instance, we 557 

aim for a ratio ntot/k ~ 50, so that for a 1000 cell graph, the number of neighbors is 20. 558 

To run EVA, the input graph must also have at least one vertex/node (i.e. cell) 559 

attribute, which will be used when inferring communities in the graph. In our 560 

applications this clustering attribute will be age or disease status. In general, cells also 561 

have other attributes besides the one being used in the community-inference process. 562 

For instance, these additional attributes could be the sample replicate 563 

(individual/mouse) from which the cell derives, or a particular cell-state or subtype. 564 

To reiterate and avoid confusion we call the attribute used in the clustering or 565 

community inference as the “clustering attribute”, whilst the attribute being 566 

interrogated in DA-testing as the “attribute of interest”. 567 

(ii) Selection of purity index parameter a: Another important input to the EVA algorithm 568 
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is the value of the purity index parameter a (called " in previous section), which 569 

controls the relative importance of purity P over modularity Q when optimizing Z. 570 

Typically, we recommend running the EVA algorithm 100 times for different a 571 

parameter values ranging from 0.1 to 0.9 (the extremes a=0 and a=1 are not 572 

interesting), in order to assess how P, Q and Z vary as a function of a. It is also 573 

important to record the number of inferred communities, as this also depends on the 574 

value of a. Following the recommendation of Citraro et al [17], we choose a such that 575 

when compared to Louvain (a=0) there is a clear increase in the number of inferred 576 

communities. However, we also modify their criterion by taking the purity P and 577 

modularity Q into consideration. Specifically, we seek an a-value which not only 578 

leads to a significant increase in the number of inferred clusters, but which also 579 

achieves a relatively high purity without much degradation in the modularity Q, all 580 

measured relative to the Louvain solution. More quantitatively, as far as the relative 581 

number of inferred clusters is concerned, we choose all a-values for which the 95% 582 

quantile of cluster number ratios (ratio taken relative to Louvain and quantile is taken 583 

over the 100 runs) is greater or equal than 1.5 . As far as the purity is concerned, we 584 

select all a-values for which the mean purity taken over the 100 runs is at least 75% of 585 

the maximum purity value measured at a=0.9. Finally, as far as the modularity is 586 

concerned, we choose all a-values for which the mean modularity taken over the 100 587 

runs is at least 75% of the maximum modularity measured at a=0.1. To arrive at a 588 

final optimal a-value we then take the intersection of the three sets of permissive a-589 

values, which generally leads to a unique a parameter value satisfying all three criteria 590 

above. The reason why these criteria generally lead to a unique a-value is that the 591 

purity and cluster number criteria generally select the larger a-values down to a 592 

minimum, whereas the modularity criterion generally selects the smaller a-values up 593 

to a maximum. In there is no overlap, the three thresholds (95% quantile, ratio 1.5, 75% 594 

of maximum purity and modularity) can be altered to ensure a common a-value. Of 595 

note, although for a fixed a EVA works by optimizing Z, we do not choose the a value 596 

which maximizes Z, because for most real-world networks, Z will increase with a and 597 

will be maximal when a=1. For typical knn cell-cell networks, the optimal a value is 598 

generally in the range 0.7 to 0.9. As far as the other resolution parameter is concerned, 599 

we generally consider � � 1 , as this allows direct benchmarking to the original 600 

Louvain algorithm which is also defined for � � 1. 601 

(iii) Inference of enriched communities with EVA: Having inferred the optimal parameter a 602 

value, we now rerun EVA with this input parameter a value, to infer communities. The 603 

next step is to then identify those communities that are enriched for specific clustering 604 

attribute values. This is done for each clustering attribute value in turn, using a 605 

Binomial test with a stringent Bonferroni-adjusted P-value < 0.05/(number of 606 

communities * number of clustering attribute values) threshold. Only communities 607 
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enriched for specific clustering attribute values are taken forward for further analysis. 608 

Thus, the purpose of this important step is to remove cells that don’t clearly define 609 

cell-states associated with the clustering attribute value. Having found all enriched 610 

communities for a given clustering attribute value, we then group together all cells 611 

from these enriched communities to define a cell-group per clustering attribute value. 612 

The cells within a cell-group may derive from distinct sample replicates.  613 

(iv) DA testing for an attribute of interest: For each cell group associated with a clustering 614 

attribute value v, we next count the number of cells with any given attribute-of-615 

interest value contributed by each replicate r, whilst also recording the total number of 616 

cells contributed by that sample replicate. For each attribute-of-interest value, we then 617 

run a negative binomial regression (NBR) of the cell count against the clustering 618 

attribute value (here assumed ordinal e.g. age-group or disease stage) with the sample 619 

replicate’s total cell count being the normalization factor. Mathematically, we model 620 

the cell count %��  of an attribute-of-interest value t and sample s , as a negative 621 

binomial (NB) 622 

%��~'(�)�� , *�� 

where )�� is the mean number and *� is the dispersion parameter. We further assume 623 

that )�� � )��� � +��%�� , where +�� is the fraction of cells of type t when they have 624 

clustering attribute value v, and where %�� is the total number of cells derived from 625 

sample s (which has clustering attribute value v and r is the replication index). We 626 

next assume that the log of +�� is a linear function of v, so that the final regression is 627 

of the form 628 

log )��� � "� # /�log %�� # ��	��  

log )�� � "� # /� log %� # ��	�  

Thus, given the cell counts %��  we simply run a negative binomial regression (NBR) 629 

against the two covariates 	�  and log %�  , to find out if the cell counts vary 630 

significantly with the clustering attribute value v. The covariate log %� plays the role 631 

of a normalization factor, accounting for the total number of cells contributed by 632 

sample s. Wald z-statistics and P-values of association are obtained from this NBR.  633 

 634 

Benchmarking against Louvain is done by direct comparison of these statistics. Because the 635 

original Louvain algorithm is deterministic, whilst ELVAR is not (in ELVAR optimization is 636 

performed in a non-sequential random manner), for benchmarking we perform 100 distinct 637 

ELVAR runs, comparing the distribution of Wald-test statistics to the Louvain-derived one 638 

with a one-sided Wilcoxon rank sum test. Of note, further below we also describe how we 639 

benchmark ELVAR to a non-sequential randomized version of Louvain, where the Louvain 640 

output may also differ between runs. 641 

 642 

 643 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2023. ; https://doi.org/10.1101/2023.04.28.538653doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.28.538653
http://creativecommons.org/licenses/by-nd/4.0/


18 

 

ELVAR pseudocode 644 

Below is an outline of pseudocode for running ELVAR. We assume the scRNA-Seq data is 645 

encoded in a Seurat object seu.o with all the required meta-information, including a 646 

clustering cell attribute to be used in the clustering (clustering attribute “CA”), and a cell 647 

attribute of interest for DA-testing that we call “SA” (secondary attribute). The first step is to 648 

normalize the data and to build the k-nearest neighbor cell-cell graph: 649 

Step-1 (Normalization and construction of cell-cell graph): 650 

� seu.o <- FindVariableFeatures(seu.o,selection.method=”vst”); 651 

� seu.o <- ScaleData(seu.o,features=rownames(seu.o)); 652 

� seu.o <- RunPCA(seu.o); 653 

� Elbowplot(seu.o); ### to determine number of significant PCs: topPC 654 

The choice of k in specifying the number of nearest neighbors should be chosen sensibly. 655 

Typically the ratio of number of cells/k should be around 50, so assuming 1000 cells, k 656 

should be around 20: 657 

� seu.o <- FindNeighbors(seu.o,dims=1:topPC,k.param=20); 658 

� adj.m <- as.matrix(seu.o@graphs$RNA_nn); diag(adj.m) <- 0; 659 

� gr.o <- graph.adjacency(adj.m,mode=”undirected”); 660 

� vertexN.v <- names(V(gr.o));  661 

� vertex_attr(gr.o,name=”CA”) <- seu.o@meta.data$CA; 662 

� is.connected(gr.o); ### check graph is connected (if not, incrementally increase k). 663 

Step-2 (Estimate optimal purity parameter a): 664 

� aOPT <- SelOptAlpha(gr.o, nRuns=100); 665 

Step-3 (Inference of enriched communities with EVA): 666 

� eva.o <- Eva_partitions(gr.o,alpha=aOPT,Vattr.name=”CA”); 667 

� comm.o <- ProcessEVA(eva.o,seu.o); 668 

Step-4 (Do DA-testing of attribute-of-interest with negative binomial regressions): 669 

� nbr.o <- DoDA(eva.o,seu.o,comm.o,DAattr=”SA”); 670 

The object nbr.o is typically the output of the glm.nb function from the MASS R-package, and 671 

statistics of association between the SA (e.g. Cd4t activation status) and CA (e.g. age) 672 

attributes can be extracted using summary(nbr.o)$coeff . 673 

 674 

Benchmarking ELVAR against Louvain  675 

Because EVA is a natural extension of Louvain, it is natural to benchmark ELVAR against an 676 

analogous algorithm that uses the Louvain algorithm in place of EVA. The ordinary Louvain 677 

algorithm, as originally implemented by Blondel et al [18] gives a deterministic network 678 

partition output, i.e. every run of the Louvain algorithm results in the same partition. This 679 

arises because during an optimization run, nodes are visited and assessed for local moving 680 

sequentially. This deterministic “sequential” version of Louvain (“LVdet”) was implemented 681 

in the versions of the igraph R package older than 1.3.3. On the other hand, EVA builds upon 682 
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algorithmic details implemented in the Leiden algorithm [37], which results in potentially 683 

different partitions every time EVA is run. Specifically, similar to the Leiden algorithm, 684 

during an optimization run in EVA, we consider random (non-sequential) selection of nodes, 685 

which can therefore result in a different partition every time EVA is run. Thus, when 686 

benchmarking ELVAR against the Louvain-analogue, it is important to account for these 687 

implementation differences. We do this by benchmarking against a non-sequential version of 688 

Louvain (as implemented in the current 1.3.3 version of igraph), where during an 689 

optimization run, nodes are visited randomly, which may also result in different partitions for 690 

different runs. In this work, we denote the algorithm analogous to ELVAR that uses the non-691 

sequential Louvain in place of EVA, “LVnonseq”. 692 

 693 

 694 

Simulation model benchmarking EVA against Louvain 695 

First, we benchmarked EVA against Louvain with a simulation model in order to validate our 696 

novel R-implementation of EVA. We selected 200 classical monocyte cells from the TMS 697 

lung tissue scRNA-Seq 10X dataset, ensuring all cells derive from the same mouse 698 

(mouseID=19) and thus from the same age. For 100 of these cells, we then modified their 699 

scRNA-Seq profiles, simulating a “perturbed” cell-state, as follows. We randomly selected 50 700 

genes among all genes not expressed in any of the 200 cells. For each perturbed cell, we then 701 

randomly subselected 20 genes from these 50, whose values were then altered in the cell, by 702 

randomly drawing 20 non-zero expression values from the distribution of non-zero 703 

expression values of the whole data matrix. Thus, this procedure generates a weak but 704 

significant co-expression structure among the 100 perturbed cells. Seurat was then applied to 705 

the 20138 gene x 200 cell scRNA-Seq data matrix, with VST feature selection followed by 706 

PCA. Top-8 PCs were selected to build the k-nearest neighbor cell-cell graph using k=6. 707 

Louvain clustering algorithm as implemented in igraph was used to infer communities. EVA 708 

was run on the same cell-cell graph using a cell’s perturbation state as the clustering attribute. 709 

Since the EVA result depends on initialization, we performed a total of 100 runs for each of 710 

nine choices of purity index parameter a (a=0.1, 0.2, … , 0.8, 0.9). The final value of a was 711 

chosen heuristically as the value at which purity increased compared to the Louvain solution 712 

(a=0) without compromising modularity too much. The quality of the EVA and Louvain 713 

clustering was assessed using the Adjusted Rand Index against the cell’s perturbation state, as 714 

well as using Chi-Square statistics. 715 

 716 

Simulation model benchmarking ELVAR against Louvain-analogue 717 

In order to benchmark ELVAR against an analogous algorithm that uses Louvain in place of 718 

EVA, we generalized the previous simulation model. We selected all classical monocytes 719 

from mice with mouse-IDs 0 and 1 representing 1 month old mice (201 & 284 cells), mouse 720 

IDs 2 and 3 representing 3 month old mice (51 & 60 cells), mouse IDs 13 and 14 representing 721 
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21 month old mice (104 & 138 cells) and mouse IDs 21 and 22 representing 30 month old 722 

mice (94 & 61 cells). For young mice (1 and 3 month old mice), 25% of cells were perturbed 723 

using the same procedure described previously. For old mice (21 and 30 months), the 724 

frequency of perturbed cells was increased to 50%. Thus, this model simulates an age-related 725 

increased in a perturbed state. The cell-cell graph was derived as before, this time using the 726 

top 10 PCs and k=20, i.e k was increased in line with the larger number of cells (n=993). 727 

ELVAR and the analogous Louvain-based algorithms were run on this cell-cell graph, in this 728 

case using age as the clustering attribute information. As before, EVA was initially run a 100 729 

times for each of nine choices of a parameter, in order to select an optimal a based on overall 730 

purity and modularity values. Using the optimal a value, ELVAR was then compared to the 731 

Louvain-analogue (using both deterministic and non-sequential versions of Louvain) in its 732 

ability to predict the increased frequency of the perturbed cell-state (here, the attribute of 733 

interest) in the older mice. 734 

 735 

 736 

Application of ELVAR to detecting shifts in lung tissue Cd4+ T-cell subtypes 737 

As part of the 10X lung-tissue TMS set, a total of 551 Cd4+ T-cells were profiled to allow 738 

testing of a shift in naïve to mature subtypes with age. We removed cells from 4 mice each 739 

contributing less than 10 cells, leaving a total of 537 cells from 11 mice representing five age-740 

groups: 143 (1m), 122 (3m), 67 (18m), 107 (21m) and 98 (30m). Cells expressing Lef1, a 741 

well-known marker of naïve Cd4+ T-cells [21], were defined as naïve (n=186), the rest as 742 

mature (n=351). ELVAR was then applied to determine if the naïve/mature proportions 743 

change with age. Cell-cell graph was constructed using Seurat with VST and 8 top PCs and 744 

k=10. EVA was run a total of 100 times with a=0.8 (the optimal value in this dataset). 745 

 746 

 747 

Application of ELVAR to M1/M2 polarization analysis in lung alveolar macrophages 748 

As part of the 10X lung-tissue TMS set, lung alveolar macrophages were abundantly profiled 749 

(n=1261) to allow testing of a shift in M1/M2 macrophage polarization with age. We 750 

removed cells from mice displaying batch effects, leaving a total of 1124 cells from 15 mice 751 

representing five age-groups: 517 (1m), 184 (3m), 193 (18m), 91 (21m) and 139 (30m). In 752 

order to annotate these 1124 lung alveolar macrophages into M1/M2 subtypes, we first 753 

identified 5 robust murine M1 (Cd80, Cd86, Fpr2, Tlr2, Cd40) and 5 robust M2 markers 754 

(Egr2, Myc, Arg1, Mrc1, Cd163) from the literature [38]. In an initial annotation, we declared 755 

cells as M1 if they co-expressed at least 2 of the 5 M1 markers, and similarly for M2. Cells 756 

annotated to both M1 and M2 subtypes were re-assigned an undetermined (UD) category 757 

alongside all other cells not annotated to either M1 and M2, resulting in 308 M1, 195 M2 and 758 

621 UD-cells. We reasoned that UD-cells clustering predominantly with either M1 or M2 759 

cells could be re-assigned to M1/M2 subtypes. To this end, we developed an iterative 760 
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algorithm that reassigns the status of UD-cells to either M1 and M2, depending on their 761 

relative proportions among the neighbors of a given UD-cell. In more detail, we used the cell-762 

cell graph as inferred using Seurat, and a multinomial test with P<0.05 threshold to identify 763 

the UD-cells whose polarization status could be reassigned to either M1 or M2 status. We 764 

also required the absolute difference between the proportion of M1 and M2 neighbors of a 765 

given UD-cell to be larger than 0.2. This procedure was iterated 20 times, but numbers 766 

already converged after 7 iterations, resulting in 464 M1, 214 M2 and 446 UD-cells. ELVAR 767 

was then applied to determine if the M1/M2 proportions change with age. Cell-cell graph was 768 

constructed using Seurat with VST and 9 top PCs and k=20. EVA was run a total of 100 times 769 

with a=0.7 (the optimal value in this dataset). 770 

 771 

Application of ELVAR to detect DA-shifts in the nasopharynx of COVID-19 patients 772 

We analyzed the scRNA-Seq dataset of Chua et al [26], which profiled nasopharyngeal swabs 773 

from moderate and critically ill COVID-19 patients. We applied ELVAR to investigate if 774 

fractions of immune cells change from moderate to critical COVID-19 cases. We downloaded 775 

the Seurat data object from FigShare (https://doi.org/10.6084/m9.figshare.12436517) which 776 

contains QC-processed data in addition to the count matrix and metadata tables associated 777 

with cell type, patient identification and disease severity. The data matrix encompassed 778 

80,109 immune cells derived from 8 moderate and 11 critical COVID-19 patients. In our 779 

analysis, we discarded one moderate sample (BIH-Cov-18) having only 23 immune cells and 780 

the immune cell-states MC, MoD-Ma, NK, and pDC each containing only fewer than 1000 781 

cells. We randomly picked 1500 cells per cell-type for each of the remaining 9 cell-types (B 782 

cell, CTL - Cytotoxic T cell, moDC – monocyte-derived dendritic cell, Neu – Neutrophil, 783 

NKT - NKT cell, NKT-p - Proliferating NKT cell, nrMa - Non-resident macrophage, rMa - 784 

Resident macrophage, Treg - Regulatory T cell), resulting in a total of 13,500 cells, of which 785 

9005 cells derived from the 7 moderate patients and 4495 cells from the 11 critical patients. 786 

ELVAR was applied to each of the 9 cell-types to see if their abundance changes between 787 

moderate and severe Covid-19 cases. The cell-cell graph used as input to ELVAR was 788 

constructed using Seurat with variance stabilization for feature selection, and selecting the 789 

top 30 PCs with k=50. ELVAR was run a total of 100 times with a=0.8 and COVID-19 790 

severity (moderate and critical) in the patients as the clustering cell attribute for community 791 

detection. 792 

 793 

 794 

 795 

Application of ELVAR to detect DA associated with smell loss post COVID-19  infection 796 

We applied ELVAR to investigate changes in cellular composition within the olfactory 797 

epithelium that are associated with post-acute sequelae of COVID-19 infection (PASC), 798 

specifically by comparison of normosmic controls to hyposmic patients (long-term smell 799 
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loss). The scRNA-Seq count matrices were downloaded from GEO under accession numbers 800 

GSE201620, GSE184117 and GSE139522 [27, 39, 40]. In our analysis, we included 5 control 801 

samples with smell identification values (SIT) > 26, characterizing them as normosmic, and 5 802 

hyposmic PASC patients. Seurat was used to normalize and batch-correct the data with the 803 

following variables (percentage of mitochondrial gens, patient condition and patient ID), 804 

following the procedure of Finlay et al [27], and to perform cluster analysis, defining 35 cell 805 

clusters. To identify cluster specific marker genes, we applied the Seurat function 806 

FindAllMarkers(only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.5) and annotated the 807 

clusters associate with the olfactory epithelium (sustentacular cells, olfactory sensory neurons 808 

cells, olfactory horizontal basal cells (HBCs), Bowman’s gland cells, microvillar cells) using 809 

the cell-state specific marker genes from Durante et al [40]. From the Seurat clusters, we 810 

extracted only olfactory epithelium cells (11,173 cells), encompassing 8918 normal control 811 

cells and 2255 PASC cells for downstream ELVAR analysis. The distribution of cell-states 812 

was 1863 sustentacular-cells, 1428 sensory neurons-cells, 1901 HBCs-cells, 4561 Bowman’s 813 

gland-cells and 1420 microvillar-cells. A cell-cell graph was constructed using Seurat with 814 

variance stabilization for feature selection, and selecting the top 40 PCs with k=40. ELVAR 815 

was run a total of 100 times with a=0.7 and using the smell loss phenotype (normal control 816 

and PASC) as the clustering cell-attribute for community detection. 817 

 818 

 819 

Application of ELVAR to colon cancer progression 820 

We applied ELVAR to explore if the fractions of epithelial stem-cells and T-regulatory cells 821 

changes with disease progression. The analysis was performed in two ways. In the first 822 

approach, we downloaded Seurat objects from 823 

https://github.com/winstonbecker/scCRC_continuum which contain QC-processed data and 824 

cell-type annotations for a subset of samples. In the case of epithelial cells,  the analysis was 825 

performed on a subset of the data consisting of stem-cells, TA2 & TA1 transit amplifying 826 

progenitors, enterocyte progenitors, immature enterocytes and differentiated enterocytes cell 827 

states. We randomly picked 1000 cells from each cell state (thus a total of 6000 cells) in order 828 

to reduce the computational runtime because two cell states contained ≥ 30k cells. Next, we 829 

removed cells from 2 donors each contributing less than 10 cells and cells from 1 donor 830 

displaying a batch effect, leaving a total of 5810 cells from 11 donors representing four 831 

disease stages: 1153 (Normal), 1672 (Unaffected), 2911 (Polyp) and 74 (Adenocarcinoma). 832 

The distribution of cell-states was 843 stem-cells, 971 TA2, 1000 TA1, 999 enterocyte 833 

progenitors, 998 immature enterocytes and 999 enterocytes number of cells. A cell-cell graph 834 

was constructed using Seurat with variance stabilization for feature selection, and selecting 835 

the 15 top PCs with k=20. ELVAR was run a total of 100 times with a=0.8 and disease stage 836 

as the main cell-attribute for community detection. For the analysis of T-regulatory (Tregs) 837 
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cells we focused on the subset of data consisting of Tregs, NK, Naïve T, CD4+ and CD8+ 838 

cells. We removed cells from 3 donors each contributing less than 10 cells and cells from 1 839 

donor displaying a batch effect, resulting in a total of 6171 cells from 8 donors representing 840 

four disease stage groups: 381 (Normal), 3721 (Unaffected), 1900 (Polyp) and 169 841 

(Adenocarcinoma). The distribution of cells across cell-types was: 472 Tregs, 245 NK, 1042 842 

Naïve T, 3063 CD4+ and 1349 CD8+ number of cells. The cell-cell similarity graph was 843 

constructed using Seurat with variance stabilization for feature selection, selecting the 15 top 844 

PCs and number of nearest neighbors k=20. ELVAR was run a total of 100 times with a=0.8 845 

with disease stage as the clustering attribute. 846 

In the second approach, we downloaded the raw count snRNA-Seq matrices from GEO 847 

(GSE201348). Data was normalized using Seurat with variance stabilization for feature 848 

selection, leaving a total of 380,527 cells. Because the cell-type annotation for the full dataset 849 

was not provided, we applied dimensional reduction, clustering, UMAP visualization and 850 

well-known marker genes from Becker et al [28] to the cells from the normal samples only, to 851 

annotate well separated cell clusters into enterocyte, goblet, immune-cell, stromal and 852 

endothelial cell categories. We then used Wilcoxon tests and marker-specificity scores [29, 30] 853 

to build an mRNA expression reference matrix for these 5 broad cell categories. With this 854 

mRNA expression reference matrix in place, we then used our robust partial correlation 855 

framework [30] to estimate cell-type probabilities for all cells from all disease stages. Using a 856 

probability threshold of >0.7, we were thus able to confidently annotate 1866 endothelial 857 

cells, 104009 enterocyte cells, 78421 goblet cells, 24973 immune-cells and 7941 stromal 858 

cells. Because of the very high sparsity of the snRNA-Seq data, in order to confidently 859 

identify stem-like cells among the 104,009 enterocytes, we applied our validated 860 

CancerStemID algorithm [31, 32] which approximates stemness of single-cells from the 861 

estimated differentiation activities of tissue-specific transcription factors. In this instance, we 862 

used a set of 56 colon-specific TFs and their associated regulons, already validated by us 863 

previously [32]. The regulons were applied to the snRNA-Seq data, to estimate transcription 864 

factor differentiation activity (TFA) for each of the 56 TFs in each of the 104,009 enterocyte 865 

cells. We then declared stem-cell like cells as those displaying average TFA levels over the 56 866 

TFs less than a threshold given by the 5% quantile of the average TFA distribution defined 867 

over the normal cells only. For ELVAR analysis, we only retained samples contributing at 868 

least 50 cells. For all other samples, all cells up to a maximum of 500 randomly selected cells 869 

were chosen, resulting in a total of 31,385 cells, drawn from 69 samples (8 normal, 16 870 

unaffected FAPs, 41 polyps and 4 CRCs), encompassing 3761 normal, 7443 unaffected, 871 

18558 polyp and 1623 CRC cells. The cell-cell k=50 nearest neighbor graph was constructed 872 

using Seurat, and ELVAR run a 100 times with a=0.8, using disease stage as the clustering 873 

attribute.  874 

 875 

Comparison of ELVAR to DA-seq and Milo 876 
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We wish to compare the three algorithms in their ability to detect differential abundance of an 877 

attribute of interest relative to the clustering attribute. In our context the clustering attribute is 878 

the biological condition such as age or disease-status. The attribute of interest will refer to e.g. 879 

Cd4t activation status, cell-type or differentiation stage. We note that Milo [10] and DA-seq 880 

[7] are primarily designed to detect differential enrichment of one particular cell attribute in 881 

regions of the single-cell manifold, and hence need to be extended to allow for DA-testing of 882 

one cell attribute relative to another. What the three algorithms have in common is the 883 

inference of groups of cells that display differential enrichment relative to one particular cell 884 

attribute (the clustering attribute or biological condition). The methods differ in how these 885 

groups of cells are inferred. In ELVAR, we use the clustering attribute information when 886 

inferring cellular communities from the nearest neighbor cell-cell graph, subsequently 887 

identifying those that display enrichment for any specific clustering attribute value (e.g. age-888 

group). In contrast, DA-seq and Milo infer local regions, or potentially overlapping cellular 889 

neighborhoods, displaying significant enrichment of the biological condition (e.g. age-group). 890 

Thus, one way to compare all three algorithms for downstream DA-testing of an attribute of 891 

interest relative to the biological condition, is by first selecting the cells that appear in these 892 

significant communities/regions/neighborhoods, and subsequently running negative binomial 893 

regressions of cell counts vs biological condition, taking biological replicates into account 894 

and normalizing for the total number of cells that each replicate sample contributes, as 895 

described earlier for ELVAR. In effect, once you have selected the cells within an enriched 896 

cluster (ELVAR) or an enriched local neighborhood (DA-seq, Milo), the subsequent strategy 897 

of running NBRs is unchanged and exactly the same for all three methods. 898 

To understand the difference in performance between methods, we developed the following 899 

metric. Methods may display different sensitivity to detect DA of an attribute of interest 900 

relative to the clustering attribute because the significantly associated cell groups derived 901 

from each method (i.e. age-group enriched communities in the case of ELVAR, age-902 

associated neighborhoods/regions in the case of Milo/DA-seq) may capture different numbers 903 

of cells. To make this clear, consider a scenario where one of the methods (call it “X”) can’t 904 

detect a cell group with sufficient numbers of old cells, say it detects a cell-group with at 905 

most 10 old cells, with 6 of these belonging to one cell-state “A”, with the remaining 4 906 

belonging to another cell-state “B”.  In contrast, another method “Y” does infer a large 907 

enough cell-group consisting of old-cells, say 30 cells with 15 belong to state “A” and 15 908 

belonging to state “B”. As far as young cells are concerned, all methods are able to infer a 909 

cell-group with a considerable number of cells, say 50 young cells, with 40 belonging to state 910 

“A” and 10 belonging to state “B”. Because method "X” was not able to identify a cell-group 911 

with sufficient numbers of old-cells, it lacks power to detect the relative decrease of state “A” 912 

with age (two-tailed Fisher-test P=0.22), whilst method “Y” has the power to detect it (two-913 

tailed Fisher-test, P=0.006). Whilst this hypothetical example ignores the variation due to 914 

sample replicates or variations due to replicate cell numbers, it clearly illustrates that the 915 
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fraction of captured cells (fCaptCells) per clustering attribute value will strongly influence a 916 

method’s power to detect DA of an underlying cell-state (the attribute of interest) with respect 917 

to this clustering cell attribute. Mathematically, we define the fraction of captured cells per 918 

clustering attribute value a and from method m by: 919 

 920 

����������
��

	
|�#����� ���� ��������� ����� 	 �� � �#����� �� ������ ���� ������ ��|

�#����� ���� ��������� ����� 	 ��
 

 921 

Specifically, a method that attains higher fCaptCellsma across the whole range of clustering 922 

attribute values a, including the extremes if the attribute is ordinal, will display higher power. 923 

 924 

 925 

Evaluation of ELVAR’s robustness to batch effects and false positives 926 

Robustness to batch effects and false positives in cell-type annotation was assessed in the 927 

four main datasets and in relation to the following cell-types that displayed significant DA: (i) 928 

in the TMS lung-tissue dataset we considered the robustness of the decreased naïve and and 929 

increased mature Cd4t cell fractions with age, (ii) in the Chua et al Covid-19 nasopharynx 930 

dataset we considered the robustness of the increased neutrophil and decreased moDC cell 931 

fractions with Covid-19 disease severity (mild vs severe), (iii) in the Finlay et al olfactory 932 

epithelium Covid-19 dataset we considered the robustness of the increased microvillar and 933 

decreased sensory-neuron cell-fractions with long-term smell loss, (iv) in the colon polyp and 934 

cancer snRNA-Seq dataset, we considered the increased enterocyte stem-cell and decreased 935 

different enterocyte fractions with disease progression. In the case of batch effects, we 936 

compared ELVAR’s performance in each of the four datasets in three different scenarios: (a) 937 

no batch/sample correction, (b) batch/sample correction with Harmony [33] and (c) 938 

batch/sample correction with Seurat [19]. We note that in all cases batch refers to the sample 939 

(i.e. mouse or individual). In the case of Harmony and Seurat, we thus used the sample-ID to 940 

perform the batch correction over, inferring in each case a new and different cell-cell graph. 941 

In each scenario we ran ELVAR a total of 100 times recording for each run the Wald z-942 

statistics from the NBRs and corresponding cell-types. We also recorded in each case the 943 

likelihood ratio test P-values and sign of the regression coefficient, from which an alternative 944 

z-statistic was then derived using normal quantiles. For cell-types and studies where the Wald 945 

z-statistic breaks down (e.g. when for a given cell-type there are zero counts for all samples 946 

of a given biological condition) we used the likelihood ratio test P-values and derived z-947 

statistics. 948 

To assess robustness under an increased false positive rate (FPR) in cell-type annotation, we 949 

simulated false positives in each study by randomly re-annotating cells of the given cell type 950 

of interest with the label of another cell-type. Since the clustering step in ELVAR does not 951 
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depend on the cell-type annotation, robustness was assessed at the NBR-step, by performing 952 

100 Monte-Carlo re-annotations and subsequently computing the sensitivity to detect the DA-953 

shift of the cell-type of interest over these 100 runs. This sensitivity was computed for 954 

increased values of the FPR (0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). 955 

To assess robustness under false positives in the clustering attribute (i.e. in the sample 956 

phenotype annotation), we simulated a small realistic ~20% fraction of misdiagnosed cases. 957 

We restricted this analysis to the two Covid-19 and colon-polyp datasets because errors in 958 

disease diagnosis are possible, and because the number of samples in each phenotype was 959 

sufficiently large to adequately model an approximately 20% misdiagnosis rate. Specifically, 960 

in the Covid-19 disease severity dataset, we randomly flipped 2 severe with 2 moderate cases, 961 

i.e. a total of 4 FPs among the 18 samples. In the Covid-19 smell-loss dataset, we randomly 962 

flipped 1 case and control, amounting to a total of 2 FPs among the 10 samples. In the former 963 

case, we performed 50 distinct randomizations, whilst in the latter there were at most only 25 964 

(5 cases and 5 controls) distinct combinations of FPs. For the colon-polyp set, we randomly 965 

permuted 3 sample labels, performing 50 distinct permutation. For each label  966 

randomization/permutation, we ran ELVAR a total of 100 times, recording in each run the 967 

negative binomial regression Wald z-statistics of association between cell-type fractions and 968 

the phenotype. We estimated sensitivity as the fraction of runs where a significant change 969 

(P<0.05) in the cell-type fraction was detected (preserving the same directionality of change 970 

as in the unperturbed scenario). 971 

 972 

Data Availability: The snRNA-Seq dataset of colon cancer progression is publicly available 973 

from GEO (www.ncbi.nlm.nih.gov/geo/) under accession number GSE201348. The TMS 974 

scRNA-Seq data is available from https://doi.org/10.6084/m9.figshare.8273102.v2 . The 975 

scRNA-Seq dataset from Chua et al was downloaded from figshare  976 

(https://doi.org/10.6084/m9.figshare.12436517). The scRNA-Seq data from Finlay et al is 977 

available from GEO under accession numbers GSE201620, GSE184117 and GSE139522. 978 

 979 

Code Availability: ELVAR is freely available as an R-package from 980 

https://github.com/aet21/ELVAR 981 
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 1089 

Figure Legends 1090 

Figure-1: Flowchart of ELVAR algorithm. a) Given a scRNA-Seq data matrix with cells 1091 

derived from various conditions (e.g. age-groups), one first derives a cell-cell similarity graph 1092 

using standard pipelines like Seurat. Cells may also differ in terms of an attribute of interest 1093 

(e.g. cell state or cell subtype) and the sample replicate it is derived from. b) To infer 1094 

communities from this cell-cell graph, we use an extended Louvain algorithm (EVA) which, 1095 

unlike the standard Louvain algorithm, takes cell attribute information into account when 1096 

deriving the communities. In this case, the cell-attribute used in the clustering (the clustering 1097 

attribute) could be the biological condition it is derived from, in which case the inferred 1098 

communities will be more enriched for cells of the same condition, as shown. Compared to 1099 

the standard Louvain algorithm, which aims to maximize the overall modularity Q of the 1100 

communities, EVA aims to maximize a weighted sum of Q and the overall purity P (a 1101 

measure of how pure the communities are in relation to the conditions). The a parameter 1102 

controls the relative importance of Q and P when maximizing the objective function Z. c) 1103 

EVA communities that are significantly enriched for cells from a particular condition are 1104 

selected for further downstream analysis, thus removing noisy cellular neighborhoods. d) For 1105 

a given condition, cells from all communities enriched for that condition are merged and the 1106 

distribution of underlying cell-states from each sample replicate are computed. Finally, 1107 

negative binomial regressions are used to infer if given cell-state fractions (the attribute of 1108 

interest) vary significantly with condition, whilst taking sampling variability into account. 1109 

 1110 

Figure-2: Benchmarking EVA against Louvain. a) tSNE visualization of a simulated 1111 

scRNA-Seq dataset consisting of 993 mouse cells drawn from 8 mice encompassing 4 age-1112 

groups (1 month, 3 months, 21 months and 30 months) with two mouse replicates per age-1113 

group. In the right panel, cells are annotated by perturbation state, where the frequency of 1114 
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cells being in the perturbed (P) state increases from 0.25 in young mice (1 & 3m) to 0.5 in old 1115 

mice (21 & 30m). b) Left: Boxplots displaying the ratio of the number of clusters inferred 1116 

with EVA to the corresponding number inferred with Louvain (nC[EVA]/nC[LV], y-axis) for 1117 

a range of different purity parameter values (x-axis). A total of 100 EVA runs were made at 1118 

each purity parameter value. Right: Boxplots displaying the modularity (Q), purity (P) and 1119 

generalized modularity (Z) as a function of purity index parameter a for EVA. Each boxplot 1120 

contains the values of 100 distinct EVA runs. Boxplot elements indicate median, interquartile 1121 

range (IQR) and whiskers extend to 1.5 times the IQR. c) Nearest neighbor cell-cell graph on 1122 

which the EVA algorithm is run.  Left panel: cells annotated by clusters inferred in one 1123 

particular EVA run. Middle panel: cells annotated by age-group. Right panel: confusion 1124 

matrix between the communities inferred with EVA (same run) and age-groups, with the 1125 

number of cells and Binomial test P-value of enrichment shown. Significance is assessed 1126 

using Bonferroni adjustment at 0.05 level. d) Barplot (top panel) displays the number of 1127 

normal (N) and perturbed (P) cells from each mouse and age-group, using only cells from 1128 

EVA communities enriched for specific age-groups (same run as in c)). Barplot in lower 1129 

panel displays the ratio N/P for each mouse replicate and age-group. e) Violin plot compares 1130 

the statistical significance (y-axis, -log10P) of P-values from a negative binomial regression of 1131 

perturbed cell number against age-group as derived from ELVAR (100 runs) against the 1132 

corresponding statistical significance value derived from an analogous method that uses 1133 

either the deterministic Louvain algorithm (LVdet) or a non-sequential (non-deterministic, 1134 

100 runs) version of Louvain (LVnonseq) in place of EVA. P-values shown are from a one-1135 

sided Wilcoxon rank sum test comparing the 100 ELVAR values to the LVdet one, or to the 1136 

100 values from LVnonseq. 1137 

 1138 

 1139 

Figure-3: Validation and benchmarking of ELVAR in Cd4t cells from lung tissue. a) 1140 

tSNE visualization of 537 Cd4+ T-cells with cells annotated by inferred Seurat cluster (left), 1141 

by age-group (middle) and by Cd4+ T-cell subset (naïve vs mature) (right). b) Top panel: 1142 

boxplots display the number of communities inferred using EVA against the purity parameter 1143 

a , normalized relative to the number of communities inferred with the Louvain algorithm 1144 

(a=0). Each boxplot represents the distribution over 100 different runs. Middle panel: As top-1145 

panel but now with y-axis displaying the purity of the clusterings. Lower panel: As top-panel 1146 

but now with y-axis displaying the modularity of the clusterings. Boxplot elements indicate 1147 

median, interquartile range (IQR) and whiskers extend to 1.5 times the IQR. c) Left panel: 1148 

Cell-cell nearest neighbor graph inferred using Seurat, with cell colors indicating the inferred 1149 

EVA communities from one typical run. Right panel: as left-panel, but with cells now colored 1150 

by age-group. d) Matrix entries give the number of cells per EVA-cluster and age-group, with 1151 

color indicating the P-value of enrichment, for one particular run. For a given age-group, only 1152 

cells from enriched clusters are taken forward using a Bonferroni-adjusted threshold 1153 
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(typically around 0.001). e) Barplot displaying the number of mature and naïve Cd4t cells per 1154 

age-group only using enriched clusters from d). P-value is from a two-tailed Fisher-test. f) 1155 

Barplots display for each mouse-replicate the ratio of naïve to mature Cd4t cells. g) Violin 1156 

plots displaying the z-statistics (100 runs) derived from the negative binomial regression for 1157 

the case of naïve and mature cell-type fractions. The grey dashed lines indicate the level of 1158 

statistical significance (P=0.05). The violin plots and displayed P-values compare the z-1159 

statistics of ELVAR to the corresponding z-statistics derived from using the non-sequential 1160 

Louvain algorithm (LVnonseq) in place of EVA. P-values derive from a one-tailed Wilcoxon 1161 

rank sum test. 1162 

 1163 

 1164 

Figure-4: ELVAR predicts increased stem-cell and T-regulatory cell fractions in polyps. 1165 

a) Top panel: The cell-cell similarity graph inferred using Seurat on scRNA-Seq data with 1166 

epithelial enterocyte lineage cells annotated by community membership, as inferred using 1167 

ELVAR. Middle and lower panels depict the same graph but with cells annotated by disease 1168 

stage (N=normal, U=unaffected, P=polyp, A=adenoma) and cell-state. Data is shown for one 1169 

representative ELVAR run. b) Alluvial plot displaying composition of ELVAR communities 1170 

according to disease stage and cell-state. c) As a), but for lymphocyte-cells in colon tissue. d) 1171 

As b), but for the lymphocyte cells in colon-tissue. e) Boxplots displaying the stem-cell (left 1172 

panel) and T-regulatory cell (right panel) fraction as a function of disease stage, considering 1173 

only cells that are part of significantly enriched ELVAR-clusters. P-value derives from a 1174 

linear regression. Boxplot elements indicate median, interquartile range (IQR) and whiskers 1175 

extend to 1.5 times the IQR. f) Violin plots comparing ELVAR to the analogous DA-testing 1176 

algorithm that uses non-sequential Louvain in place of EVA (“LVnonseq”). The y-axis labels 1177 

the corresponding z-statistics from negative binomial regressions (100 runs each) of stem-cell 1178 

or T-regulatory cell counts against disease stage. Grey dashed line indicates the P=0.05 1179 

significance level. P-values shown derive from a one-tailed Wilcoxon rank sum test 1180 

comparing the ELVAR z-statistic distribution to the one derived using “LVnonseq”. 1181 

 1182 

 1183 

Figure-5: ELVAR compares favorably to DA-seq and Milo. a) Violin plots displaying the 1184 

z-statistics of associations between cell-counts (y-axis, mature Cd4t-cells and naïve Cd4t-1185 

cells) and age derived from negative binomial regressions for ELVAR, Milo and DAseq, as 1186 

shown. Grey dashed line indicates the threshold of statistical significance P=0.05. P-values 1187 

derive from a one-tailed Wilcoxon rank sum test comparing ELVAR derived z-statistics to 1188 

those from DA-seq and Milo, respectively. b) Violin plots displaying the fraction of captured 1189 

mature and naïve Cd4t cells (fCC[Naïve+Mat], y-axis) for each biological condition (x-axis) 1190 

and method.  c-d) As a-b) but for alveolar macrophage M1 and M2 subtypes. e-f) As a-b), but 1191 

for stem-cell and T-regulatory cell fractions in colon tissue in relation to colon cancer 1192 
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progression (N=normal, U=unaffected FAP cases, P=polyp, A=adenoma). g-h) As a-b), but 1193 

for neutrophil (Neu) and monocyte-derived dendritic cells (moDC) fractions in relation to 1194 

Covid-19 disease severity. i-j) As a-b), but for sensory neurons (SensNeu) and microvillar 1195 

cells (MicVillar) in relation to Covid-19 smell-loss phenotype. 1196 

 1197 

 1198 

Figure-6: ELVAR is robust to batch correction and false positives in cell-annotation.  1199 

a) Violin plots of negative binomial regression z-statistics of association of cell-type counts 1200 

with age for mature and naïve lung-tissue Cd4t cells and for 3 different scenarios: 1201 

None=ELVAR was run with no batch (sample) correction, Harmony=ELVAR was run data 1202 

batch-corrected with Harmony, Seurat: ELVAR was run on data batch-corrected with Seurat. 1203 

Each violin plot contains the values for 100 distinct ELVAR runs. The P-values are derived 1204 

from two-tailed Wilcoxon rank sum tests comparing “None” to either “Harmony” or “Seurat”. 1205 

Horizontal dashed lines indicate the P=0.05 significance level.  b) As a) but for 1206 

nasopharyngeal neutrophils and monocyte-derived dendritic cells (moDC) cell counts 1207 

changing with Covid-19 disease severity (mild vs critical). c) As a) but for microvillar and 1208 

sensory olfactory neurons in the olfactory epithelium (OE) in relation to their counts 1209 

changing with long-term smell loss in Covid-19 patients. d) As a) but for colon enterocyte 1210 

stem-cell and differentiated cell counts changing with cancer stage progression. e) Left panel: 1211 

Sensitivity to detect a significant (NBR P-value < 0.05) change in the abundance of naïve and 1212 

mature Cd4T-cells with age in the lung tissue of mice under different rates of false positives 1213 

(FPR, x-axis). Sensitivity was estimated over 100 distinct runs. Middle left panel: As left 1214 

panel, but for detecting a significant change in the abundance of neutrophils and monocyte-1215 

derived dendritic cells (moDC) with Covid-19 disease severity. Middle right panel: As other 1216 

panels, but for detecting a significant change in the abundance of olfactory sensory neurons 1217 

and microvillar cells with Covid-19 smell-loss phenotype. Right panel: as other panels, but 1218 

for detecting a significant change in the abundance of enterocyte stem and differentiated cells 1219 

with colorectal adenoma progression. 1220 
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