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Abstract10

Generative pre-trained models have achieved remarkable success in various domains such as nat-11

ural language processing and computer vision. Specifically, the combination of large-scale diverse12

datasets and pre-trained transformers has emerged as a promising approach for developing founda-13

tion models. While texts are made up of words, cells can be characterized by genes. This analogy14

inspires us to explore the potential of foundation models for cell and gene biology. By leveraging the15

exponentially growing single-cell sequencing data, we present the first attempt to construct a single-16

cell foundation model through generative pre-training on over 10 million cells. We demonstrate that17

the generative pre-trained transformer, scGPT, effectively captures meaningful biological insights18

into genes and cells. Furthermore, the model can be readily finetuned to achieve state-of-the-art19

performance across a variety of downstream tasks, including multi-batch integration, multi-omic20

integration, cell-type annotation, genetic perturbation prediction, and gene network inference. The21

scGPT codebase is publicly available at https://github.com/bowang-lab/scGPT.22

1 Main23

Generative pre-trained models have recently achieved unprecedented success in many domains. The24

most well-known applications include computer vision and natural language generation (NLG) [44,25

43, 45]. These foundation models such as DALL-E2 and GPT-4 follow a similar paradigm of pre-26

training transformers on large-scale diverse datasets [43, 45]. These foundation models can be27

readily tailored to a variety of downstream tasks and scenarios. More interestingly, they demon-28

strate improved performance on multiple tasks compared to task-specific models trained from29

scratch [22, 58, 47]. This showcases strong evidence of a task-agnostic and “deep” understanding30
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of knowledge in these domains. Despite the success of foundation models in other domains, cur-31

rently machine-learning based discovery in single-cell research is rather distributed, with specific32

models dedicated to specific analysis tasks [32, 42, 27]. Often the breadth and scale of the datasets33

used in each study are also limited, due to sequencing capacity as well as the scope of the research34

question [2]. This calls for a foundation model pre-trained on large-scale data to achieve a general35

understanding of single-cell biology. We expect such a model to serve as a strong foundation and36

contribute to the discovery of new biological insights with the help of the learned knowledge from37

millions of sequenced cells.38

While the feasibility of generative pre-training in single-cell biology remains largely unexplored,39

we can draw inspirations about modelling and the data-centric perspectives from other domains.40

From a modelling perspective, the self-attention transformer has been verified as an efficient and41

effective architecture to model input tokens of words. While texts are made up of words, cells can42

be characterized by genes. We can learn and extract gene and cell representations simultaneously43

in a similar fashion as word and sentence embeddings in NLG. The flexible vocabulary structure44

also allows easy addition of new features and meta information. The attention mechanism of the45

transformers could be further explored to inform on gene-to-gene and cross-modality associations46

[60]. From a data perspective, the vast-scale atlases of single-cell RNA sequencing (scRNA-seq),47

such as the Human Cell Atlas, already encompass tens of millions of cells, and the scale of accessible48

omic data continues to grow exponentially [26, 51, 23, 2]. This opens ample opportunities to employ49

self-supervised learning techniques to learn from diverse cell types and tissues, and integrate across50

different organs and species.51

In this work, we present the first attempt to build a single-cell foundation model, scGPT, by52

generative pre-training on over 10 million cells. We introduce several new techniques to address53

the methodology and engineering challenges of pre-training on large-scale single-cell omic data.54

To handle the large-scale data, we use an in-memory data structure to store hundreds of datasets55

that allow fast access. We establish a unified generative pre-training workflow specifically for the56

non-sequential omic data, and adapt the transformer architecture to simultaneously learn cell and57

gene representations. We also provide reusable finetuning pipelines and objectives designed for a58

variety of downstream tasks to help users apply the pre-trained model with ease.59

We demonstrate that the pre-trained model captures meaningful biological insights on both gene60

and cell levels. The learned gene embedding maps decode known pathways by grouping together61

genes that are functionally relevant. With zero-shot learning, the pre-trained model is able to62

reveal meaningful cell clusters on unseen datasets. With finetuning in a few-shot learning setting,63

the model achieves state-of-the-art performance on a wide range of downstream tasks, including64

batch correction, multi-omic integration, cell type annotation, genetic perturbation prediction,65

pseudo-cell generation, and gene network inference. The release of the scGPT model and workflow66

aims to facilitate future research in all related areas. We envision that the adoption of pre-trained67

foundation models will further our understanding of cellular biology, and pave the foundation for68

future discoveries.69

2 Results70

2.1 Single-cell transformer foundation model overview71

Single-cell sequencing captures the genetic profiles at the individual cell level. For instance, scRNA-72

seq measures transcriptomic activities from RNA abundance, which informs on cell identity, stage,73

and functionality. Recent cellular reference maps such as the human cell atlas comprise of millions74
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Figure 1: Model Schematic. (a) The workflow of scGPT. The model is firstly generatively trained
on large-scale scRNA-seq data from cell atlas. For a downstream application, the pre-trained
model weights can be finetuned on the new data. The core component of scGPT contains stacked
transformer blocks with specialized attention masks for generative training. We applied scGPT
on a variety of tasks including clustering, batch correction, cell type annotation, multi-omics,
genetic perturbation prediction, and gene network inference. (b) The zoom-in view of the input
embeddings. The input contains three layers of information, the gene token, expression value, and
condition tokens (modality, batch, perturbation condition, et al.). (c) The zoom-in view of the
scGPT transformer layer. We introduced a specially designed attention mask to conduct generative
pre-training on single-cell sequencing data.
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of single cells from diverse organs and tissues, offering an unparalleled representation of cellular75

heterogeneity [26, 52]. We introduce scGPT as the generative pre-trained foundation model in the76

single-cell domain. The core model has stacked transformer layers with multi-head attention that77

learns cell and gene embeddings simultaneously (See Online Methods 4.2). Figure 1A illustrates a78

two-stage workflow involving pre-training and fine-tuning of scGPT. In the pre-training stage, we79

collected over 10.3 million scRNA-seq data of blood and bone marrow cells from the CellXGene80

portal [11] for training. We introduce a specially designed attention mask and generative training81

pipeline to train scGPT in a self-supervised manner to jointly optimize cell and gene representations82

(See Online Methods 4.3). During training, the model gradually learns to generate gene expression83

of cells based on simple cell or gene expression cues. In the fine-tuning stage, researchers can84

apply the pre-trained model to new datasets and specific tasks (See online Methods 4.5). We85

offer flexible finetuning pipelines suitable for a variety of downstream tasks essential in single-cell86

research, including scRNA-seq integration with batch correction, cell type annotation, multi-omic87

integration, perturbation prediction, and gene regulatory network inference.88

scGPT learns cell and gene representations from diverse single-cell data through gene expres-89

sion modelling. To facilitate gene representation learning, we employed Gene Expression Prediction90

(GEP) as the generative self-supervised objective to iteratively predict gene expression values of91

unknown tokens from known tokens in an auto-regressive manner (See Online Methods 4.4). To92

enhance cell representation learning, we designed Gene Expression Prediction for Cell Modelling93

(GEPC) objective, where the model predicts gene expression values from cell representations (See94

Online Methods 4.4). This creates a direct link between the gene expression profile and cellular95

heterogeneity, allowing for joint optimization within the scGPT framework. Furthermore, scGPT’s96

embedding architecture can easily extend to multiple sequencing modalities, batches, and pertur-97

bation states. This is achieved by adding new condition tokens for sequencing modalities, batches,98

and perturbation states. This unique model flexibility enables the pre-trained model to seam-99

lessly combine with any additional information required for specific downstream tasks. See model100

architecture illustration in Figure 1B and more details in Online Methods 4.101

scGPT serves as a powerful single-cell feature extractor on previously unseen datasets. In102

benchmark experiments, scGPT outperformed recent methods and achieved state-of-the-art results103

across all downstream tasks. This demonstrates the benefits of pre-training and the transferability104

of learned knowledge across diverse use cases. By providing a robust and unified framework, scGPT105

enables single-cell researchers to easily leverage the pre-trained foundation model in related studies.106

2.2 Integration of multiple scRNA-seq data with batch correction107

Clustering and visualization of single-cell sequencing data encounter a significant challenge in the108

presence of batch effects arising from the utilization of multiple datasets or sequencing batches as109

input. By employing a finetuning workflow, the scGPT framework effectively tackles this challenge110

by incorporating customized finetuning objectives (refer to Online Methods 4.4). This approach111

successfully corrects for batch effects while preserving the true biological signals inherent in the112

data.113

scGPT achieves the state-of-the-art performance in preserving the biological variance of the114

integrated datasets upon batch correction. We benchmarked scGPT with three popular integration115

methods, scVI [34], Seurat [55], and Harmony [29] on two integration datasets Immune Human116

(10 batches) [36] and PBMC 10K (2 batches) [21]. As shown in Figure 2A in the Immune Human117

dataset, scGPT successfully integrated all batches of CD4+ T cells, CD8+ T cells, and CD14+118

Monocytes into their individual clusters, whereas Seurat produced a few sub-clusters corresponding119

to sequencing batches within each of these cell types (See batch visualizations in Supplementary120
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Figure 2: (a) Benchmark of the few-shot scGPT model with scVI [34], Seurat Seurat [55], and
Harmony Harmony [29] on the Immune Human (10 batches) [36] and PBMC 10K (2 batches)
[21] datasets for cell type clustering performance upon batch integration. The UMAP plot of
learned cell embeddings was colored by cell types. (b) Comparison of gene embedding maps of the
few-shot and trained-from-scratch scGPT models. The highly variable genes from each cell type
were highlighted. The UMAP plot of learned cell embeddings from trained-from-scratch scGPT
model was visualized. (c) Comparison of the scGPT model with other benchmarked methods
on AvgBIO, the detailed biological conservation metrics (NMIcell, ARIcell, ASWcell), and the
Overall score.

Figure S3). scGPT also managed to separate the Monocyte-derived dendritic cells from the CD16+121

Monocytes, but scVI and Harmony both saw a significant overlap of the two clusters. Moreover,122

in the PBMC 10K dataset, scGPT is the only method that clearly separated out the cell type123

Other from the annotated clusters. In contrast, scVI, Seurat and Harmony all confused this124

Other cell type with CD14+ Monocytes and CD8 T cells. This inaccuracy is visualized as these125

blue dots from cell type Other scattering all over the orange and red clusters. scGPT’s superior126

clustering performance is also reflected in the biological conservation score, where scGPT achieves127

an AvgBIO score of 0.812, which is 5% higher than Seurat and Harmony, and 10% higher than128

another deep learning method, scVI. In Figure 2C, scGPT presents competitive scores across all129

cell type clustering metrics attributing to biological conservation. scGPT also ranked top in the130

Overall metric considering both biological conservation and batch correction performance (See131

detailed metrics in Supplementary Table S.1, and batch visualizations in Supplementary Figure132

S3).133
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Figure 3: (a) UMAP visualization of cells colored by ground-truth cell types in the hPancreas
query set. (b) UMAP visualization of cells colored by scGPT predicted cell types. (c) Normalized
confusion matrix by cell types. (b)− (g) Comparison of the finetuned scGPT model with trained-
from-scratch model and existing method on Accuracy, Precision, Recall and MacroF1 scores.

We further highlight the benefits of pre-training by showing a significant performance boost in134

the finetuned model in comparison to the trained-from-scratch model in the PBMC 10K dataset135

(See Figure 2B). The finetuned gene embeddings produced more compact networks for highly vari-136

able genes of the CD4 T cells and Megakaryocytes, compared to the trained-from-scratch model.137

We observe similar results in the cell embeddings, as the cell type clusters become more defined in138

the finetuned model with a 8% improvement in the AvgBIO score. As a sanity check, we validated139

that the pre-trained model in zero-shot is also able to produce meaningful cell type clusters with an140

AvgBIO score of 0.728, on par with the trained-from-scratch model (See Supplementary Figure141

S2). This presents the zero-shot model as a generalizable feature extractor that can be readily142

applied to unseen datasets. Furthermore, the 8% performance boost from pre-training demon-143

strates the benefits of leveraging these pre-trained feature extractors and the knowledge learned.144

The foundation model is proven to be not only easily transferable to new datasets but also more145

powerful than learning from limited data from scratch.146

2.3 Cell type annotation147

Cell type annotation is a crucial step in single-cell analysis after clustering, as it resolves het-148

erogeneity in sequenced tissues and lays the foundation for further investigation of cell and gene149

functions to gain biological and pathological insights. While several methods have been proposed150

for cell annotation, such as cellAssign [64], singleR [3], and Chetah [17], they typically require di-151

mension reduction prior to model input, which can lead to information loss. In contrast, scGPT’s152

transformer model can directly take in gene expressions in an unbiased manner, with full resolu-153

tion on the entire highly variable gene set as input. This approach provides greater reliability and154

improved accuracy in cell type classification, as demonstrated in our subsequent analyses.155
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For the cell type annotation task, we finetuned the pre-trained scGPT model using cross-156

entropy loss against ground-truth labels from a new reference dataset (See Online Methods 4).157

Using the hPancreas dataset of human pancreas cells as an example, we trained the scGPT model158

on the reference set and validated the classification performance on a different query set. Figure 3159

panels A and B present the cell embeddings colored by ground-truth versus predicted cell types,160

where the scGPT model demonstrates faithful prediction with high accuracy score of 96.7%. The161

model also achieved high precision in predicting majority of the cell types, except for the rare cell162

types with extremely low cell numbers in the reference set (See Figure 3C). For example, fewer163

than 50 cells belong to the mast and macrophage cell types out of the 10.6 thousand cells in the164

reference set. To benchmark the performance of scGPT, we compared it with TOSICA [12], a165

recent transformer-based annotation method. scGPT outperforms TOSICA on all classification166

metrics, including Accuracy, Precision, Recall, and MacroF1, as shown in Figure 3D-G. We167

also trained a separate scGPT model from scratch without the pre-trained model parameters. It168

achieves reasonable accuracy on the query set. The performance improvement of the finetuned169

model from the trained-from-scratch model demonstrates the benefits of transfer learning with170

pre-trained scGPT.171

2.4 Perturbation Prediction172

Sequencing and gene editing techniques have recently facilitated high-throughput experiments, en-173

abling the exploration of cellular responses to multiple genetic perturbations. The approach holds174

immense promise for uncovering novel gene interactions and advancing regenerative medicine. How-175

ever, the vast combinatorial space of potential gene perturbations quickly surpasses the practical176

limits of experimental feasibility. To overcome this limitation, scGPT can be employed to leverage177

the knowledge gained from cellular responses in known experiments and extrapolate to predict178

responses in unknown scenarios. The utilization of self-attention mechanisms over the gene dimen-179

sion enables the encoding of intricate interactions between perturbed genes and the responses of180

other genes. By leveraging this capability, scGPT can effectively learn from existing experimental181

data and accurately predict gene expressions following perturbation.182

For the perturbation prediction task, we evaluated our model using two perturbation datasets183

pre-processed by Roohani, Huang, and Leskovec [53]: (1) the Pertub-seq dataset of K562 leukemia184

cell line [1], which comprises 87 one-gene perturbations, with approximately 100 cells per pertur-185

bation and a minimum of 7,000 unperturbed cells, and (2) the other Norman Perturb-Seq dataset186

[41], consisting of 131 two-gene perturbations and 105 one-gene perturbations.187

We assessed the perturbation prediction by calculating the Pearson correlation (corr) between188

the predicted and the corresponding ground-truth expression values after perturbation. In addition,189

we introduced a variant of the Pearson metric, denoted as corr(∆), which measures the correlation190

based on the magnitude of expression change post-perturbation compared to the control. We have191

presented Pearson metrics for various gene sets, namely all genes (ALL) and the top 20 differentially192

expressed genes (DE ). For detailed information on how these metrics were calculated, refer to193

Supplementary Online Methods S.2.194

Table 1: Results of perturbation prediction
Norman et al. [41] Adamson et al. [1]

DE ALL DE ALL
Model corr corr(∆) corr corr(∆) corr corr(∆) corr corr(∆)

MLP 0.909 0.428 0.987 0.408 0.948 0.729 0.991 0.656
GEARS 0.917 0.508 0.986 0.387 0.961 0.726 0.991 0.652
scGPT 0.923 0.546 0.988 0.459 0.971 0.775 0.992 0.647
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We conducted a performance comparison between scGPT, the recent GEARS method [53], and195

the multi-layer perception (MLP) baseline. Our results demonstrate that scGPT achieves the high-196

est correlation across seven out of eight evaluation metrics. It is worth noting that approximately197

50% of the gene expression counts are zero in the raw scRNA-seq data. Therefore, we contend that198

evaluating differentially expressed genes, specifically the DE columns in Table 1, provides more199

compelling evidence. Notably, scGPT exhibits significant improvements in the correlation of the200

(∆) change of the top 20 differentially expressed genes, which is arguably the pivotal metric.201

2.5 scGPT facilitates multi-omic integration and multi-modal represen-202

tation learning203

Single-cell multi-omic (scMultiomic) data presents multiple views of genetic regulation all at once,204

including epigenetic, transcriptomic, and translation activities [57, 37]. It provides an ample oppor-205

tunity to enhance feature and cell representation learning beyond gene expressions. However, the206

challenge lies in how to reliably aggregate cell representations from multiple views while preserving207

biological signals.208

The scGPT framework can be readily extended to integrate multiple sequencing data modal-209

ities. Each omic type in scMulti-omic data (e.g., gene expression, chromatin accessibility, and210

protein abundance) is similar to a different language in NLG. Analogously, scGPT supports joint211

optimization of multi-omic tokens from diverse sequencing modalities. This framework also allows212

seamless addition of new sequencing modalities to existing pre-trained network by extending the213

“vocabulary”. In the benchmark experiments, scGPT demonstrates outstanding performance in214

cell representation learning and multiomic batch integration tasks compared to existing state-of-215

the-art methods (See Figure 4).216

scGPT effectively extracts integrated cell embeddings from paired scMultiomic data. In this217

paired data integration setting, each sequenced cell contains all the data modalities. We used the218

10X Multiome PBMC [14] dataset with joint gene expression and chromatin accessibility mea-219

surements as an example. We benchmarked scGPT with two state-of-the-art methods scGLUE[9]220

and Seurat v4[24] on cell type clustering performance. As shown in Figure 4, scGPT is the only221

method that produced a clear separate cluster for CD8 Naive cells, whereas the other two methods222

failed. scGPT also differentiated Memory B cells from Naive B and Intermediate B cell clusters,223

yet scGLUE produced a merged cluster of all three types of B cells. scGPT separated the CD4 and224

CD8 cell groups into two distinct groups of clusters, surpassing the results of Seurat v4. scGPT225

demonstrates superior cell type clustering performance overall (AvgBIO=0.767) and robustness226

across the diverse biological conservation metrics benchmarked (See Figure 4 and Supplementary227

Table S.1).228

scGPT simultaneously integrates multi-modal batches from mosaic scMultiomic data via joint229

representation learning. In the mosaic data integration setting, sequenced samples share a few230

but not all data modalities. We used the ASAP human PBMC dataset [38] with four sequencing231

batches and three data modalities as an example. The first two sequencing batches contain gene232

expression and protein abundance data from CITE-seq, and the second two batches have chromatin233

accessibility and protein abundance measurements from ASAP-seq. In the benchmark experiment234

with scMoMat[65], scGPT demonstrates superior batch correction performance as shown in Figure235

4, especially in the rarer cell group NK cell. In comparison, scMoMat produced two distinct236

clusters for each cell type corresponding to the first two and second two batches, indicating failure237

to mitigate modality differences. scGPT achieves a overall batch correction score AvgBATCH238

of 0.948, with a close-to-perfect GraphConn score of 0.992 and a significantly higher ASWbatch239

score of 0.904 compared to scMoMat (ASWbatch = 0.849). scGPT’s biological conservation metrics240
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Figure 4: (a) Benchmark of the few-shot scGPT model with scGLUE[9] and Seurat v4[24] on
the 10x Multiome PBMC [14] dataset (paired data setting) for cell type clustering task. The
UMAP plot of learned cell embeddings was colored by cell types. (b) Benchmark of scGPT with
scMoMat[65] on the ASAP PBMC [38] dataset (mosaic data setting) for batch correction and cell
type clustering tasks. The UMAP plots of learned gene embeddings were colored by sequencing
batches (left) and cell types (right). (c) Comparison of the scGPT model with other benchmarked
methods on AvgBIO and AvgBATCH scores. (d) Comparison of training progress curves of the
few-shot and trained-from-scratch models with AvgBIO scores evaluated every five epochs.

also compare favorably to scMoMat’s, which further indicates the robustness of multi-modal batch241

correction without interfering with the biological signals (See Figure 4 and Supplementary Table242

S.1).243

scGPT readily supports the addition of new data modalities to exisiting pre-trained models.244

We compared scGPT’s training progress curves in two settings, finetuned on the pre-trained model245

and trained from-scratch, to demonstrate the benefits of pre-training in the multi-omic integration246

task. As shown in Figure 4, for the 10X Multiome PBMC dataset, the finetuned model reached247

the best AvgBIO scores in the 70% range 5 epochs earlier than the trained-from-scratch model.248

This demonstrates the benefits of the pre-trained model in leading training progress and faster249

convergence. In the more challenging mosaic integration setting with the ASAP PBMC dataset,250

the finetuned model’s AvgBIO scores increased steadily as training proceeded, whereas the trained-251

from-scratch model did not see much progress with training. At epoch 45, the pre-trained model252

finished at an AvgBIO score of 0.562, which is more than 10% higher than the trained-from-scratch253

model with a score of 0.444. This suggests that the model leverages the learned gene embeddings254

from large atlases to guide the learning of peak and protein embeddings in the pre-trained setting.255
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2.6 Gene embeddings for Gene Regulatory Network inference256

A

C

DBHLA Antigen Network 
(Zero-shot scGPT)

(Zero-shot scGPT) (Finetuned scGPT)
CD Antigen Network

Comparison with Reactome Pathway Differential Expressions in Gene Programs 
(Finetuned scGPT)(Zero-shot scGPT) (Finetuned scGPT)

Figure 5: (a) HLA antigen network from zero-shot scGPT. (b) CD8A gene neighbors from
zero-shot and finetuned scGPT models, ranked by embedding similarity colored by ground-truth
signalling pathway from Reactome. (c) CD antigen network from zero-shot and finetuned scGPT on
the Immune Human dataset. (d) Differential expressions among scGPT-extracted gene programs
by cell types in the Immune Human dataset.

The interactivity between transcription factors, cofactors and target genes underlying a Gene257

Regulatory Network (GRN) mediates important biological processes. Existing GRN inference258

methods often rely on correlation in static gene expressions or pseudo-time estimates as a proxy259

for causal graphs [46]. scGPT, optimized by the generative training of gene tokens, implicitly260

encodes such relationships in its gene embeddings. The gene embeddings can therefore be applied261

to construct similarity networks that entail gene-gene interactions. We hereby validate the scGPT’s262

gene embedding network against known biology, and then explore its applicability to gene program263

discovery.264

scGPT demonstrates its ability to group the functionally related genes and differentiate func-265

tionally different genes from its gene embedding network. In Figure 5A, we visualized the similarity266

network of the human leukocyte antigens (HLA) antigens from the pre-trained gene embeddings.267

In the zero-shot setting, the scGPT model highlights two clusters corresponding to the two well-268

characterized HLA classes that trigger different immune responses, namely HLA class I and HLA269

class II. The HLA class I antigens HLA-A, -C, and -E are recognized by CD8+ T cells to mediate270

cell killing, whereas HLA class II antigens HLA-DR, -DP, and –DQ are recognized by CD4+T271

cells to trigger broader helper functions [13]. For the finetuned scGPT model on the Immune272

Human dataset, we explored the CD antigen network specific to the immune cell types present in273

this dataset (See Figure 5C). The pre-trained scGPT is able to identify CD3E, D, and G genes274

as a group that encodes the T3 complex for T-cell activation, CD79A and B for B-cell signalling,275

and CD8A and B as co-receptors for HLA class 1 molecules [40]. The finetuned scGPT further276
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highlights the connection between CD36 and CD14 as markers for monocytes and macrophages.277

This demonstrates scGPT’s ability to generalize from the knowledge learned in pre-training and278

extract specific information related to the dataset at hand.279

scGPT reconstructs meaningful gene programs in a purely unsupervised workflow. In Figure 5D,280

we visualized the gene programs extracted by the finetuned scGPT model on the Immune Human281

dataset, and their differential expressions by cell types. These gene programs are selected in an282

unsupervised manner by first clustering the gene embeddings and then thresholding on clusters283

that consist of 5 or more genes, following Ceglia et al. [10]’s proposed pipelines (See Online Methods284

4). We observed that the same HLA antigen cluster was identified as group 1. Similarly, the CD3285

genes involved in T3 complex were identified as group 4, with highest expressions in T cells. This286

confirms that scGPT’s inferred gene programs correspond to function groups that are biologically287

meaningful. We further validated the gene similarity relationships encoded by the scGPT model288

against the known Reactome database [50]. Using the CD8A gene as an example, we demonstrate289

that its closest neighbors are more likely to be part of the Immune System R-HSA-168256 pathway290

than genes that are further away, from both zero-shot and finetuned scGPT models (See Figure291

5B). The top three genes closest to CD8A remain consistent before and after finetuning. The292

finetuned model highlighted one additional gene GZMM that is commonly enriched in NK, NKT293

and T cell subclusters [4] which are major cell types found in the Immune Human dataset. We294

further validated this correlation on the entire gene set across the Reactome database. Among295

pairs of genes, there exists a positive correlation between the cosine similarity score of the gene296

embeddings and the number of common pathways shared by these genes, with a Pearson correlation297

score of 0.316.298

While a more comprehensive evaluation pipeline is to be established, these findings showcase299

that scGPT has learned meaningful biological patterns from generative pre-training in the zero-300

shot setting. More specifically, we demonstrate its ability to perform unsupervised gene program301

discovery on new datasets along with other cell-level analysis tasks by leveraging the pre-trained302

model. We envision this attempt as one of the first steps towards knowledge discovery in the303

single-cell domain assisted by foundation models.304

3 Discussion305

We hereby present scGPT, the first foundation model that leverages pre-trained transformers306

learned from over 10 million single-cell data. The self-supervised pre-training paradigm with307

increasingly large amount of training data has created powerful language models such as chatGPT308

and GPT4 [44, 43]. These successes inspired us to apply the same pre-training paradigm to309

the single-cell domain, with the aim of decoding complex biological interactions with the pre-310

trained transformers. The transformer models naturally support the joint learning of gene and311

cell embeddings, analogous to word and sentence embeddings in NLG. These technical advantages312

create a solid foundation for modelling these different aspects of cellular processes together at once.313

We demonstrate the benefits of pre-training with comprehensive experiments in both zero-shot314

and finetuning settings. The pre-trained model itself is a universal feature extractor. It showcases315

strong capabilities of extrapolating to unseen datasets, presenting meaningful cell clustering in316

zero-shot experiments. The learned gene networks also reflect known gene programs and their317

functional roles. These abilities give us confidence in the pre-trained model that it has not only318

memorized but also synthesized the patterns from the large-scale single-cell data. We also observed319

a consistent contribution of the pre-trained model in multiple downstream tasks via transfer learn-320

ing. For example, in both multi-batch and multi-omic integration tasks, the finetuned model321
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has demonstrated superior performance in cell-type clustering, with an 8 to 12% increase in the322

biological conservation score compared to the trained-from-scratch models.323

To implement generative pre-training for the non-sequential single-cell data, we introduced324

specialized attention masking to support generation and joint gene and cell representation learning.325

In the finetuning pipeline, we offer setups for a diverse range of downstream tasks such as batch326

correction, cell type assignment, multi-omic integration, perturbation prediction, and gene network327

inference. We hereby release the scGPT codebase and the pre-trained model. We hope that this328

provides a unified framework to help researchers easily adapt the pre-trained models to their own329

tasks at hand.330

For future directions, we plan to pre-train on a larger-scale dataset with more diversity, includ-331

ing multi-omic data, spatial omics, and diseased conditions. It is also interesting to incorporate332

perturbation and temporal data in the pre-training stage for causal discovery. More importantly,333

we would like to validate the pre-trained model on a wider range of biologically meaningful tasks334

to understand and interpret what the pre-trained model has learned. We also aim to explore335

in-context instruction learning for single-cell data. The goal is to have a pre-trained model that336

understands different tasks and contexts in the zero-shot setting without having to finetune. scGPT337

thus serves as the first step to use large-scale pre-trained foundation model to understand the con-338

text and nuances in cell biology. We envision that the pre-training paradigm be readily integrated339

into single-cell research, and serve as a foundation to leverage the existing knowledge from the340

exponentially growing cell atlases for new discoveries.341

4 Methods342

4.1 Input embeddings343

The single-cell sequencing data is processed into a cell-gene matrix, X ∈ RN×G, where each element344

Xi,j ∈ R+ represents the read count of a RNA for scRNA-seq or a peak region if scATAC-seq. For345

example in scRNA-seq, the element denotes the RNA abundance for gene j ∈ 0, 1, . . . , G in cell346

i ∈ 0, 1, . . . , N . In subsequent sections, we will refer to this matrix as the raw matrix. The input to347

scGPT consists of three main components: (1) gene (or peak) tokens, (2) expression values, and (3)348

condition tokens. For each modeling task, the gene tokens and expression values are pre-processed349

from the raw count matrix X accordingly:350

Gene Tokens In the scGPT framework, each gene is considered the smallest unit of information,351

equivalent to a word in natural language generation (NLG). We therefore use gene names as tokens,352

and assign each gene gj a unique integer identifier id(gj) within the complete vocabulary of tokens.353

This approach offers great flexibility to harmonize multiple studies with different gene sets (i.e.,354

generated by distinct sequencing technologies or pre-processing pipelines). Specifically, different355

sets of gene tokens can be integrated into a common vocabulary by taking the union set of all genes356

across studies. Additionally, we incorporate special tokens in the vocabulary, such as < cls > for357

aggregating all genes into a cell representation, and < pad > for padding the input to a fixed358

length. Conceptually, we draw parallels between gene tokens and word tokens in NLG. The input359

gene tokens of each cell i are hence represented by a vector t
(i)
g ∈ NM :360

t(i)g =
[
id(g

(i)
1 ), id(g

(i)
2 ), . . . , id(g

(i)
M )

]
, (1)
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where M is a pre-defined input length, and usually equals to the number of selected highly variable361

genes.362

Expression Values The gene expression matrix X requires additional processing before being363

used as input for modeling. A fundamental challenge in gene expression modeling is the variability364

in absolute magnitudes across different sequencing protocols [54]. Due to variations in sequencing365

depths and the presence of sparsely expressed genes, the data scales differ significantly among366

different batches of sequencing samples. These differences are not easily mitigated with common367

preprocessing techniques such as transcripts per million (TPM) normalization and log1p trans-368

formation [25]. To make it more clear, the same absolute value can convey different ”semantic”369

meanings across sequencing batches. To address this scale difference, we propose the value bin-370

ning technique to convert all expression counts into relative values. For each non-zero expression371

count in each cell, we calculate the raw absolute values and divide them into B consecutive inter-372

vals [bk, bk+1], where k ∈ {1, 2, . . . , B}. Each interval represents an equal portion of all expressed373

genes (1/B). It is important to note that a new set of bin edges is computed for each cell, so the374

interval edges bk may vary among cells. The binned expression value x
(i)
j for cell i is defined as:375

x
(i)
j =

{
k, if Xi,j > 0 and Xi,j ∈ [bk, bk+1],

0, if Xi,j = 0.
(2)

Through this binning technique, the semantic meaning of x
(i)
j is consistent across sequencing376

batches. For instance, a value of x
(i)
j = B consistently indicates the highest expression among377

genes. Before applying the value binning step, we performed log1p transformation, and highly378

variable gene selection [35]. To simplify the notation, we use Xi,j to represent both the raw and379

preprocessed data matrices prior to binning. Therefore, the final input vector of binned expression380

values for cell i is denoted as381

x(i) =
[
x
(i)
1 , x

(i)
2 , . . . , x

(i)
M

]
. (3)

Condition Tokens The condition tokens encompass diverse meta information associated with382

individual genes, such as functional pathways (represented by pathway tokens) or perturbation383

experiment alterations (indicated by perturbation tokens). To represent position-wise condition384

tokens, we utilize an input vector that shares the same dimension as the input genes. This vector385

is denoted as:386

t(i)c =
[
t
(i)
c,1, t

(i)
c,2, . . . , t

(i)
c,M

]
, (4)

where t
(i)
c,j represents an integer index corresponding to a condition.387

Embedding layers We utilize the conventional embedding layers1 embg and embc for the gene388

tokens and condition tokens, respectively, to facilitate the mapping of each token to a fixed-389

length embedding vector of dimension D. We employ fully connected layers, denoted as embx,390

for the binned expression values to enhance expressivity. This choice enables the modeling of the391

continuum of gene expression values. Consequently, the final embedding h(i) ∈ RM×D for cell i is392

defined as,393

1pytorch embedding layer
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h(i) = embg(t
(i)
g ) + embx(x

(i)) + embc(t
(i)
c ). (5)

4.2 Cell and gene expression modeling by transformers394

4.2.1 scGPT Transformer395

We employ the self-attention transformer [60, 18] to encode the complete input embedding h(i)396

in equation 5. The self-attention mechanism operates on the sequence of M embedding vectors,397

making it particularly suitable for capturing interactions between genes. The output of the stacked398

transformer blocks can be defined as follows:399

h
(i)
0 = h(i)

h
(i)
l = transformer block(h

(i)
l−1) ∀l ∈ [1, n]

(6)

We utilize the resulting representation h
(i)
n ∈ RM,D for both gene-level and cell-level tasks.400

Gene-level finetuning objectives (See Online Methods 4.4) are directly applied. Examples in-401

clude the gene expression prediction (GEP) objective and the perturbed expression prediction402

task (perturb-GEP). For cell-level tasks, we first integrate h
(i)
n into a cell embedding vector. (See403

Online Methods 4.2.2). An example would be the cell type assignment task, where the cell embed-404

dings are used to predict cell type labels by an added classifier in the CLS training objective.405

The input dimension M can reach tens of thousands of genes, significantly exceeding the in-406

put length of conventional transformers commonly used in NLG. To address this challenge and407

ensure efficient self-attention mechanisms, we leverage more advanced approaches such as Flash-408

Attention [16]. This implementation effectively enhances the model capacity and enables effective409

processing of large-scale input dimensions. Other efficient transformers can also be utilized, such410

as Transformers with linear complexity (Linformer) [61] and Kernelized Self-Attention (KSA) [28].411

4.2.2 Cell representation412

Each cell is considered a ”sentence” composed of genes, and its representation h
(i)
c ∈ RD is obtained413

by aggregating the learned gene-level representations h
(i)
n . Various pooling operations, such as414

element-wise mean-pooling or weighted-pooling, can be readily employed in this context. In this415

study, we opt to employ a special token < cls > for the cell representation, enabling the model416

to learn the pooling operation within transformer blocks. The < cls > token is appended to the417

beginning of the input tokens, and the final embedding at this position is extracted as the cell418

representation. Consequently, we have the cell embedding h
(i)
c equals to a row in the stacked419

final-layer embeddings h
(i)
n [< cls >], where the [< cls >] operation retrieves the row at the index420

corresponding to the < cls > token in the input.421

4.2.3 Condition tokens for batch and modality422

We use additional sets of tokens to represent different batches and sequencing modalities, specif-423

ically for the scRNA-seq and scMultiomic integration tasks. This is similar to conditon tokens424
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introduced in Online Methods 4.1, and implemented similarly using the standard embedding lay-425

ers. The modality tokens t
(i)
m are associated with individual input features gj (e.g., to indicate426

whether it is a gene, region or protein). The batch tokens are on the cell level originally but can427

be propagated to all features of a single cell as well. In other words, the same batch token t
(i)
b can428

be repeated up to the length M of input features of single cell i:429

t
(i)
b =

[
t
(i)
b,1, t

(i)
b,2, . . . , t

(i)
b,M

]
=

[
t
(i)
b , t

(i)
b , . . . , t

(i)
b

]
. (7)

The difference between the tokens described in Online Methods 4.1 and the batch and modal-430

ity tokens is that these embeddings are not used as input to the transformer blocks. Instead,431

they are concatenated with the transformer output on either feature or cell level prior to entering432

specific fine-tuning objectives. This is to prevent the transformer from amplifying the attention433

within features of same modalities while underestimating those of different modalities. Further-434

more, knowing the modality and/or batch identities facilitates gene expression modelling in the435

downstream fine-tuning objectives. As the model learns to predict expression values conditioned436

on modality and/or batch identities, such biases are implicitly removed from the gene and cell437

representations themselves. This serves as a technique to facilitate batch correction.438

As an example, in the scMultiomic integration task, we concatenate the transformer output with439

the sum of batch and modality embeddings. This serves as input to the downstream fine-tuning440

objectives for expression modelling:441

h′(i)
n = concat(h(i)

n , embb(t
(i)
b ) + embm(t

(i)
m )), (8)

where embb and embm denote the batch and modality embedding layers respectively.442

Alternatively, in the scRNA-seq integration task, concatenation of batch embedding with the443

cell representation yields the following representation:444

h′(i)
c = concat(h(i)

c , embb(t
(i)
b )), (9)

where t
(i)
b denotes the batch identity of cell i.445

4.3 Generative pre-training446

4.3.1 Foundation model pre-training447

The foundation model is designed to be a generalizable feature extractor that can benefit a diverse448

range of downstream tasks. It contains the entire set of genes in the human genome. The expression449

values were normalized, log-transformed, and binned prior to model training (See Online Methods450

4.1). To speed up the training, we restrict the input to only genes with non-zero expressions for451

each input cell. This strategy provides useful pre-trained results contributing to the subsequent452

finetuning stage, where we include all genes with zero expressions as well by default. To efficiently453

train the model to capture gene-gene relation and gene-cell relation, we introduce a new generative454

training strategy with specialized attention masks as detailed in the following section.455
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4.3.2 Attention mask for generative pre-training456

Self-attention has been widely used to capture the co-occurrence patterns among tokens. In natural457

language processing, this has been achieved mainly in two ways: (1) masked token prediction used458

in transformer encoder models such as BERT [18] and Roberta [33], where randomly masked459

tokens in the input sequence are predicted in the model’s output; (2) auto-regressive generation460

with sequential prediction in causal transformer decoder models such as the OpenAI GPT series [48,461

49, 6, 43]. The generative pre-training used in OpenAI GPT3 [6] and GPT4 [43] employs a unified462

framework in which the model predicts the most likely next token from a “prompt” consisting463

of known input tokens. This framework offers great flexibility to be utilized in various natural464

language generation (NLG) applications and demonstrates new capabilities such as contextual465

awareness in zero-shot and few-shot settings [7]. We believe that the generative training can be466

beneficial to single-cell models in a similar manner. Specifically, we are interested in two tasks: (1)467

generating unknown gene expression values based on known gene expressions, i.e., generation by468

“gene prompts”, and (2) generating whole genome expressions given an input cell type condition,469

i.e., generation by “cell prompts”.470

Despite similar usage of tokens and prompts, modelling genetic reads is inherently different471

from natural language due to the non-sequential nature of the data. Unlike words in a sentence,472

the order of genes within a cell is interchangeable, and there is no equivalent concept of “next gene”473

to predict. This makes it challenging to apply the causal masking formulation from GPT models474

directly in single-cell domain. To address this challenge, we developed a specialized attention475

masking mechanism for scGPT that defines the order of prediction based on attention scores.476

The scGPT’s attention mask supports both gene-prompt and cell-prompt generations in a477

unified way. The binary attention mask is applied on the self-attention map in the transformer478

blocks. For an input h
(i)
l ∈ RM×D of M tokens (See Online Methods 4.2.1), the transformer block479

will generate M query and key vectors to compute the attention map, A ∈ RM×M . The attention480

mask is of the same size M ×M . We visualize the attention mask in Supplementary Figure S1A,481

where queries are organized in rows and keys in columns. The token identity associated with each482

column of the mask is annotated at the bottom of the figure, namely < cls >, known genes, and483

unknown genes. Each token in the input embedding h
(i)
l can be one of these three groups: (1)484

the reserved < cls > token for cell embedding (introduced in Online Methods 4.2.2), (2) known485

genes with token embeddings and expression value embeddings, and (3) unknown genes whose486

expression values are to be predicted. The rule of thumb for scGPT’s attention-masking is to only487

allow attention computation between embeddings of the “known genes” and the query gene itself.488

In each generation iteration, scGPT predicts the gene expression values of a new set of genes, and489

these genes in turn become the “known genes” in the next iteration for attention computation.490

This approach reflects the casual masking design with next token prediction in the conventional491

transformer decoders by making sequential predictions in the non-sequential single-cell data.492

As illustrated in Supplementary Figure S1A, during training, we randomly pick a ratio of the493

genes as unknown so their expression values are omitted in the input. The queries on the positions494

of these unknown genes are only allowed with attention computation on the known genes and the495

query gene itself. For example, the last gene to predict at position M has attention scores with the496

cell embedding, known genes and itself only, but not the other unknown genes, as illustrated in the497

last row of the attention mask. The scGPT model predicts the expressions for these unknown genes498

via the stacked transformer blocks with the masked attention map described above. The inference499

steps are illustrated in Supplementary Figure S1B. During the inference for cell-prompt generation,500

scGPT generates all genome-wide gene expressions conditioned on the specific cell types. A trained501

cell embedding is inputted at the first position representing the cell type condition. The whole502

generation process of thousands of gene expressions is conducted in K iterative steps (i.e., K = 3503
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steps in Supplementary Figure S1B). For example, in one iteration i ∈ {1, 2, . . .K}, the attention504

masking mechanism allows attention with all predicted genes from previous 0 to i−1 iterations. In505

each iteration, scGPT selects the top 1/K genes from the unknown set with the highest prediction506

confidence to be included as known genes in the next iteration i + 1. Intuitively, this workflow507

streamlines the generation of large groups of gene expressions in an auto-regressive manner, where508

gene expressions with highest prediction confidence are first generated and used to help subsequent509

rounds of generation. The gene-prompt generation works similarly in an iterative manner. The510

difference is that it starts with a set of known genes with observed expression values, instead of a511

cell embedding.512

The scGPT attention masking unifies the encoding process of known genes and the generation513

on unknown genes. It also stands as one of the first transformer schemes to conduct auto-regressive514

generation for non-sequential data.515

4.4 Fintuning objectives516

scGPT leverages various fine-tuning objectives to facilitate the learning of biologically valid repre-517

sentations of cells and genes, as well as for regularization purposes such as batch correction.518

Gene Expression Prediction (GEP) To encourage the learning of gene-gene interactions,519

scGPT incorporates gene expression prediction. Within each cell, a subset of genes and their520

corresponding expression values x(i) are randomly masked. scGPT is optimized to accurately521

predict the expression values at the masked positions. This fine-tuning objective benefits the522

model in effectively encoding co-expressions among the genes in the dataset. Specificcaly, we523

employ a fully connected MLP to estimate the expression value for M genes, on the transformer524

output. The optimization of this objective involves utilizing the cross entropy loss at the masked525

positions, denoted as Mmask. The GEP works as follows,526

x̃(i) = MLP(h(i)
n ),

LGEP =
1

|Mmask|
∑

j∈Mmask

ce(x̃
(i)
j , x

(i)
j ).

(10)

Here, x̃(i) ∈ NM represents the row of expression estimates for cell i, and ce denotes the cross527

entropy function. It is worth noting that in integration tasks, we use h
′(i)
n in Equation 8 instead528

of h
(i)
n .529

GEP presents a general self-supervised finetuning objective, which aims to forecast gene ex-530

pression values. In certain downstream tasks, such as the perturbation prediction, the model is531

required to predict perturbed gene expression values instead of the original values. We refer to this532

variation as perturb-GEP. We maintain the MLP estimator in equation 10, but utilize the gene533

expressions post-perturbation as the target x
(i)
j . In perturb-GEP, the predicted expression values534

are simply altered to apply to all valid target positions instead of solely the masked positions in535

GEP.536

Gene Expression Prediction for Cell Modelling (GEPC) This finetuning objective oper-537

ates similarly to GEP, but predicts gene expression values based on the cell representation h(i)c to538
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explicitly foster cell representation learning. For each gene j in an input cell i, we create a query539

vector qj and utilize the parameterized inner product of qj and the cell representation h(i)c as the540

predicted expression value.541

qj = MLP(embg(t
(i)
g )),

x̃
(i)
j = qj ·Wh(i)

c ,

LGEPC =
1

|Mmask|
∑

j∈Mmask

ce(x̃
(i)
j , x

(i)
j )

(11)

GEPC inherits the gene token embedding, embg(t
(i)g), from Equation equation 5. In integration542

tasks, we utilize hc′(i) from Equation 9 instead of h
(i)
c , and we also concatenate the modality and/or543

batch embeddings to embg. In our experiments, we observed that combining GEP and GEPC leads544

to significantly improved performance compared to using either method individually.545

Elastic Cell Similarity (ECS) This finetuning objective enhances cell representations through546

the utilization of a similarity learning loss [31]:547

LECS = −(sim(h(i)
c ,h(i′)

c )− β)2, (12)

where sim represents the cosine similarity function, while i and i′ refer to two cells within the mini-548

batch. Additionally, β denotes a predefined threshold. The underlying idea behind this approach is549

to enhance the similarity between pairs exhibiting cosine similarity values above β, thereby making550

them even more similar. Conversely, dissimilar pairs are encouraged to be further apart.551

Domain Adaptation via Reverse Back-propagation (DAR) Cell representation learning552

is hindered by the presence of batch effects, which result from non-biological batch differences553

introduced by sequencing technologies [19, 59]. To mitigate this problem, we employ a distinct554

multi-layer perceptron (MLP) classifier to predict the sequencing batch associated with each input555

cell, and modify the back-propagation process by reversing the gradients within the model. This556

approach leverages insights from the robust domain adaptation method proposed by Ganin and557

Lempitsky [20].558

Cell Type Classification (CLS) This finetuning objective is designed to leverage the learned559

cell representations to annotate single cells. We use a separate MLP classifier to predict the cell560

types from their cell representations h
(i)
c . This finetuning objective is optimized with cross entropy561

loss ce between the predicted cell type probabilities and ground-truth labels.562

4.5 Finetuning on downstream tasks563

Batch correction on integrating multiple scRNA-seq datasets Batch effects can be a564

major confounder in cell type clustering when the input contains multiple datasets from different565

sequencing batches or technologies. Therefore, we aim to correct batch effects while preserving bio-566

logical variances when integrating multiple scRNA-seq datasets. For finetuning on this integration567

task, the common set of gene tokens between the pre-trained foundation model and the current568
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dataset were retained. We further selected a subset of highly variable genes from the common569

set as input. The gene expression values were normalized, log-transformed and binned prior to570

model training. All pre-trained model weights were used to initialize the finetuned model. All gene571

tokens with both zero and non-zero expression values were used in training. In addition to GEP572

and GEPC, the ECS, DAR and DSBN finetuning objectives were optimized simultaneously for573

enhanced cell contrastive learning and explicit batch correction through reverse back-propagation574

and domain-specific normalization.575

Cell type annotation For the cell type annotation task, we finetuned the model on a reference576

set with ground-truth labels, and validated the annotation performance on an external query set.577

The common set of gene tokens between the pre-trained foundation model and the reference set was578

retained. We pre-processed the expression values prior to model training similar to the integration579

task. All pre-trained model weights were used to initialize the finetuned model. All gene tokens580

with both zero and non-zero expression values were used in training. The CLS finetuning objective581

was used to minimize the classification loss.582

Perturbation prediction Gene editing techniques applied to scRNA-seq experiments have re-583

vealed cellular responses to various genetic perturbations. However, the vast combinatorial space584

of potential gene perturbations quickly surpasses the limits of feasible experimentation. Conse-585

quently, machine learning approaches have been employed to leverage known perturbations and586

predict unknown ones. To fine-tune the perturbation prediction task, we initially selected highly587

variable genes and pre-processed the expression values prior to model training. All pre-trained588

model weights were utilized for initializing the fine-tuned model. During training, all gene tokens589

with both zero and non-zero expression values were included. To achieve this, we adopted the590

perturb-GEP finetuning objective with two modifications to the training setup. Firstly, instead591

of utilizing the masked and unmasked versions of the same cell as input and learning target, we592

employed a control cell as the input and the perturbed cell as the target. This was achieved by ran-593

domly pairing a non-perturbed control cell with each perturbed cell to construct the input-target594

pairs. Secondly, rather than randomly masking gene positions as in the original GEP setting, we595

employed the target perturbed genes as positions for prediction. The input values consisted of the596

non-perturbed gene expression values rather than mask values. Consequently, the model learned597

to predict the post-perturbation responses based on the control gene expressions.598

Integrative representation learning for scMultiomic data scMultiomic data may contain599

different sequencing modalities in each batch, which presents a more challenging scenario for inte-600

grative analysis. We examined two data integration settings, paired and mosaic, for scMultiomic601

data. In the paired setting, all samples (cells) share all the data modalities sequenced. In the602

mosaic setting, some batches share a few common data modalities but not all. Due to the presence603

of additional ATAC and/or protein tokens, we inherited the trained gene embeddings for RNA604

data only, and trained the additional token embeddings and rest of the model from scratch. All605

tokens with both zero and non-zero expression values were used in training. We used an additional606

set of modality tokens to indicate the data type of each token (i.e., gene, region, or protein) and607

to facilitate the masked gene and value prediction in GEP and GEPC finetuning objectives (See608

Online Methods 4.2.3). In the paired setting, the model was optimized with GEP and GEPC609

finetuning objectives. In the mosaic setting, DAR was included to facilitate multi-modal batch610

correction.611
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Gene Regulatory Network Inference In the zero-shot setting, we extracted the gene similar-612

ity network from scGPT models’s gene embeddings based on cosine similarities. In the finetuned613

setting, we constructed the gene networks in a similar manner from the scGPT model finetuned614

on the Immune Human dataset. Following Ceglia et al. [10]’s pipelines, we further extracted gene615

programs from the gene embedding clusters that consist of five or more genes. See Online Methods616

4.7 for more details on gene network analysis and validation.617

4.6 Datasets618

CELLxGENE scRNA-seq human PBMC Collection We retrieved over 10.3 million human619

PBMC scRNA-seq samples from the CELLxGENE portal [11] for foundation model pre-training.620

A total of 65 datasets were collected from CELLxGENE by filtering on Organism (i.e., Homo621

sapiens), Tissue (i.e., blood, bone marrow), and Disease (i.e., normal, COVID-19, influenza).622

PBMC 10K The PBMC 10K dataset comprises two scRNA-seq batches of human peripheral623

blood mononuclear cells (PBMCs) obtained from a healthy donor. The dataset was re-processed624

by Gayoso et al. [21], resulting in the identification of 3,346 differentially expressed genes. The625

first batch encompasses 7,982 cells, while the second batch encompasses 4,008 cells. The cell626

groups annotated using Seurat [55] consist of 9 categories, namely B cells, CD4 T cells, CD8 T627

cells, CD14+ Monocytes, Dendritic Cells, NK cells, FCGR3A+ Monocytes, Megakaryocytes, and628

Other.629

Immune Human The Immune Human dataset encompasses five scRNA-seq datasets: one de-630

rived from human bone marrow and four from human peripheral blood. Various sequencing tech-631

nologies were employed, including 10X Genomics, 10X Genomics v2, 10X Genomics v3, and Smart-632

seq2. The dataset comprises a total of 33,506 cells and includes 12,303 genes. The ten distinct633

batches were defined based on the origin of the donors. The harmonized data encompass 16 cell634

groups. We used the data re-processed and the annotations provided by Luecken et al. [36].635

hPancreas The hPancreas dataset contains five scRNA-seq datasets of human pancreas cells,636

re-processed by Chen et al. [12] for the cell type assignment task. The five datasets were split into637

reference and query sets by data sources. The reference set consists of Braon[5] and Muraro[39]638

datasets, and the inference set consists of Xin[63], Segerstolpe[56], and Lawlor[30] datasets. The639

reference and query sets both have 3,000 genes, and ground-truth annotations retained from their640

original publications. The reference set contains 10,600 cells of 13 cell groups (alpha, beta, ductal,641

acinar, delta, PSC, PP, endothelial, macrophage, mast, epsilon, schwann, and t cell). The query642

set contains 4,218 cells of 11 cell groups (alpha, beta, ductal, PP, acinar, delta, PSC, endothelial,643

epsilon, mast, MHC class II). Note that MHC class II is a new cell type in the query set not644

previously seen in the reference set.645

Adamson The Adamson perturbation dataset contains gene expression data from the K562646

leukemia cell line perturbed by Pertub-seq [1]. This dataset includes 87 unique one-gene pertur-647

bations, each replicated in around 100 cells.648

Norman The Norman perturbation dataset contains gene expression data from the K562 leukemia649

cell line perturbed by Pertub-seq [41]. This dataset has 131 two-gene perturbations and 105 one-650
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gene perturbations. Each perturbation is replicated in around 300-700 cells.651

10X Multiome PBMC The 10X Multiome PBMC dataset [14] contains paired single-cell RNA652

and ATAC data on human PBMC cells sequenced by the 10X Single Cell Multiome protocol. In this653

dataset, all samples came from the same healthy donor. Each cell contains both gene expression654

and chromatin accessibility measurements. The processed data by Cao and Gao [9] contains 9,631655

cells with counts from 29,095 genes and 107,194 regions. The annotations include 19 cell groups656

(CD14 Mono, CD16 Mono, CD4 Naive, CD4 TCM, CD4 TEM, CD8 Naive, CD8 TEM 1, CD8657

TEM 2, HSPC, Intermediate B, MAIT, Memory B, NK, Naive B, Plasma, Treg, cDC, gdT, and658

pDC).659

ASAP PBMC The ASAP PBMC dataset contains four sequencing batches with three data660

modalities (gene expression, chromatin accessibility, and protein abundance) [38]. The four batches661

each contain 5,023, 3,666, 3,517, and 4,849 cells respectively. In batches 1 and 2, all samples have662

4,768 genes and 216 protein measurements from CITE-seq. In batches 3 and 4, all samples have663

17,742 regions and the same 216 protein measurements from ASAP-seq. The annotations by [38]664

contain 4 cell groups (Bcell, Myeloid, NK, and Tcell).665

4.7 Experiment Setup666

scRNA-seq batch integration In this work, we compared the performance of scGPT with667

three other methods, namely Seurat [55], Harmony [29], and scVI [34]. The evaluation covers668

batch correction and cell type clustering on two integration datasets: PBMC 10K [21] and Immune669

Human [36]. Harmony and scVI are highlighted as the top-performing methods in the recent670

integration benchmark conducted by Luecken et al. [36]. To ensure a fair comparison, all methods671

were provided with the same number of 1,200 highly variable genes as input. Gene expression672

values were normalized per cell by considering the total counts across all genes and subsequently673

log-transformed. The integrated cell embeddings were obtained after the completion of training674

and were used for evaluation.675

The evaluation of the integrated cell embeddings was performed using biological conservation676

metrics proposed by Luecken et al. [36]. These metrics include the normalized mutual informa-677

tion (NMIcell), adjusted Rand index (ARIcell), and average silhouette width (ASWcell). These678

scores measure the consistency between the derived cell type clusters and the ground truth labels.679

For easier comparison, we also computed the average of these metrics, referred to as AvgBIO.680

Additionally, we reported the batch correction metrics proposed by Luecken et al. [36] to assess681

batch mixing. The batch correction performance was quantified using the inverse of the average682

silhouette width for batch clustering, denoted as ASWbatch, and the graph connectivity measure,683

denoted as GraphConn. We computed AvgBATCH as the average of ASWbatch and GraphConn684

to summarize the batch mixing performance. Furthermore, we introduced an Overall score, which685

is a weighted sum of AvgBIO and AvgBATCH, consistent with the approach taken by [36]. See686

Supplementary Online Methods S.2 for details of metric calculations.687

scRNA-seq cell type annotation We benchmarked scGPT against the recent transformer-688

based cell type annotation method TOSICA [12] on the hPancreas dataset. We used the same689

pre-processed reference and query sets by Chen et al. [12] for model training and validation. The690

predicted cell type labels on the query set were retrieved for evaluation.691
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We evaluated cell type assignment performance based on four standard classification metrics,692

Accuracy, Precision, Recall, and MacroF1. Accuracy, Precision, and Recall are calculated693

globally for overall performance, whereas MacroF1 is averaged per class to increase the weighing694

of rare cell types. We also reported a normalized confusion matrix with Precision by cell type for695

additional details. See Supplementary Online Methods S.2 for details on metric calculations.696

scRNA-seq perturbation We compare scGPT against the recent perturbation prediction method697

GEARS [53]. To ensure consistency, we followed the pre-processing steps outlined by Roohani,698

Huang, and Leskovec [53] in their benchmark. Initially, gene expression values were normalized699

per cell using the total counts across all genes, and a logarithmic transformation was applied. Sub-700

sequently, we selected 5,000 highly variable genes and incorporated any perturbed genes that were701

not initially considered into the gene set. In the experiments, for one-gene perturbations in both702

datasets Adamson et al. [1] and Norman et al. [41], the perturbations are split to ensure that test703

perturbations are not seen in training, i.e., no cells in training set has undergone any of the test704

perturbations. For two-gene perturbations in the Norman et al. [41] dataset, the train-test split705

consists of three scenarios with increasing difficulty: (1) 0/2 unseen genes, (2) 1/2 unseen genes,706

and (3) 2/2 unseen genes in the training set.707

To evaluate the accuracy of perturbation prediction, we employed the Pearson correlation co-708

efficient (corr) between the predicted gene expressions and the ground-truth expression values.709

Additionally, we calculated a variant of the Pearson metric based on the amount of change in ex-710

pression post-perturbation compared to the control, denoted as corr(∆). Furthermore, we reported711

these Pearson metrics for different gene sets, including all genes (ALL), and the top 20 differen-712

tially expressed genes (DE ). Thus, we presented four evaluation metrics in total, namely corr and713

corr(∆) for the ALL and DE conditions, respectively. See Supplementary Online Methods S.2 for714

details of metric calculation.715

scMultiomic integration We benchmarked scGPT in two integration settings, paired and mo-716

saic, against the recent scMultiomic integration methods Seurat v4 [24], scGLUE [9] and scMoMat717

[65] respectively. In the paired data integration experiment, we benchmarked scGPT with scGLUE718

[9] and Seurat v4 [24] on the 10X Multiome PBMC [14] dataset. The same 1,200 highly variable719

genes and 4,000 highly variable peaks were used as input to all methods. In the mosaic data inte-720

gration experiment, we benchmarked scGPT with scMoMat [65] on the ASAP PBMC [38] dataset.721

The same 1,200 highly variable genes, 4,000 highly variable peaks, and all 216 protein features722

were used as input to both methods. While keeping the input feature set consistent, we used each723

method’s custom pre-processing pipeline to normalize the expression values. The integrated cell724

embeddings were retrieved for evaluation after training.725

In both paired and mosaic data integration settings, we evaluated cell embedding quality on726

the four biological conservation metrics NMI cell, ARI cell, AWS cell, and AvgBIO. In the727

mosaic data integration setting, we further evaluated mixing of different omic batches with the728

three batch correction metrics AWS batch, GraphConn, and Avg BATCH. An overall score was729

also reported on the mosaic integration experiment. See Supplementary Online Methods S.2 for730

details on metric calculation.731

Gene Regulatory Network Inference We validated scGPT’s gene similarity network against732

the known HLA and CD antigen networks. For each network, we first defined the related gene set by733

filtering on gene names with set prefixes (i.e., HLA- and CD-). We then filtered on genes involved734

in the Immune System R-HSA-168256 pathway from the Reactome 2022 database [50]. For the CD735
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antigens, we used the common genes with the selected HVG set from the Immune Human dataset736

for the ease of comparison between pre-trained and finetuned models. We then extracted gene737

embeddings of these selected genes from the scGPT model and constructed a similarity network738

based on cosine similarity. We highlighted sub-networks of strong connections by selecting edges739

with cosine similarities greater than a certain threshold (i.e., 0.5 for HLA and 0.4 for CD antigen740

network). We then compared the sub-networks against known functional groups in immunology.741

Furthermore, we evaluated the gene similarity relationships encoded by the scGPT model with742

Reactome. Following Ceglia et al. [10]’s pipelines, we first evaluated whether the neighbors of a743

gene involved in a known pathway belong to that pathway. Using CD8A gene as an example,744

we ranked its 10 nearest neighbors (including itself) by cosine similarity in the selected HVG set745

from the Immune Human dataset, and examined their membership in the Immune System R-HSA-746

168256 pathway. Subsequently, on a system level, we examined the relationship between cosine747

similarity of pairs of genes and the number of common pathways that a gene pair is involved in.748

We reported the Pearson correlation score between cosine similarity score and pathway coverage749

on the entire gene set across all pathways in Reactome.750

4.8 Implementation Details751

The pretrianed foundation model has an embedding size of 512. It consists of 12 stacked transformer752

blocks with 8 attention heads each. The fully connected layer has hidden size of 512. In pre-training,753

we randomly split the data and used 97% (10 million) of the data for training and 3% (0.3 million)754

for validation. We set the ratio of genes to generate to be uniformly sampled from three options of755

0.25, 0.50 and 0.75. The model was optimized by the Adam optimizer, using a mini-batch size of756

32, at a starting learning rate of 0.0001 and a 0.9 weight decay after each epoch. The model was757

trained for a total of 6 epochs.758

For the tasks of scRNA-seq batch integration, cell type annotation, and perturbation prediction,759

we utilized the same model configuration inherited from the pre-trained model. During the fine-760

tuning process, we initiated with a learning rate of 0.0001, which decayed to 90% after each epoch.761

The mask ratio for GEP and GEPC was set to 0.4, while the parameter β in ECS was set to 0.6.762

When combined with other losses, ECS was assigned a weighting of 10. To divide the datasets763

into training and evaluation sets, we employed a ratio of 9:1. The model was trained for a fixed764

duration of 30 epochs, and after each epoch, the GEP loss value was evaluated on the validation765

set. The reported results correspond to the model with the best validation score. Notably, for the766

perturbation task (refer to Section section 2.4), we observed that the model typically converged767

within 3 epochs, and we report the best-validated model accordingly.768

For the multi-omic integration task, we loaded the gene embeddings from the pre-trained model769

and used the same embedding size of 512 for all tokens (i.e., including gene, ATAC-peak, and/or770

protein). The main model is set to have 4 stacked transformer blocks with 8 attention heads each,771

and a hidden layer size of 512. Each dataset is split into train and evaluation sets at 9:1 ratio.772

We used DAR weighing of 1.0 for batch integration. We used a starting learning rate of 0.001 and773

a weight decay of 0.95 after each epoch. We trained the model for fixed 60 epochs and similarly774

reported the best-validated model.775

We used the SCANPY python library [62] for gene expression pre-processing, including nor-776

malization, log-transformation and highly variable gene selection. We used the EpiScanpy python777

library [15] on chromatin accessibility data for highly variable peak selection. In the scRNA-seq778

batch integration and scMultiomic integration tasks, the evaluation metrics are calculated using the779

implementation in scib.metrics by Luecken et al. [36]. In the cell-annotation task, the evaluation780

metrics are implemented using the scikit-learn package.781
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S Supplementary923

S.1 Benchmarking results on downstream tasks924
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Biological Conservation Batch Correction
Dataset Model AvgBIO NMIcell ARIcell ASWcell AvgBATCH ASWbatch GraphConn Overall

Immune Human [36] scGPT 0.746 0.824 0.784 0.630 0.894 0.817 0.970 0.804
scVI [34] 0.726 0.803 0.787 0.587 0.923 0.871 0.975 0.805
Seurat [55] 0.564 0.697 0.441 0.555 0.883 0.858 0.908 0.692
Harmony [29] 0.743 0.810 0.832 0.588 0.914 0.859 0.968 0.811

PBMC 10K [21] scGPT 0.812 0.834 0.869 0.732 0.940 0.949 0.931 0.863
scVI 0.695 0.786 0.704 0.593 0.950 0.971 0.930 0.797
Seurat 0.753 0.810 0.854 0.595 0.934 0.937 0.931 0.826
Harmony 0.751 0.810 0.855 0.589 0.945 0.967 0.923 0.829

Table 2: scRNA-seq Integration Benchmark Results. scGPT was benchmarked with scVI [34],
Seurat [55], and Harmony [29] on the Immune Human (10 batches) [36] and PBMC 10K (2 batches)
[21] datasets for cell type clustering and batch correction performance. We present three aggregate
scores AvgBIO, AvgBATCH, and Overall. These aggregate scores were calculated from three
detailed biological conservation metrics (NMIcell, ARIcell, ASWcell) and two batch correction
metrics (ASWbatch, GraphConn). See metric details in Supplementary Online Methods S.2
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Classification Metrics
Dataset Model Accuracy Precision Recall MacroF1

hPancreas [12] scGPT 0.967 0.785 0.694 0.705
TOSICA [12] 0.961 0.641 0.667 0.641

Table 3: Cell Type Annotation Benchmark Results. scGPT was benchmarked with TOSICA [12]
on the hPancreas [12] dataset for cell type annotation performance. We present four classification
evaluation metrics Accuracy, Precision, Recall, and MacroF1. See metric details in Supplemen-
tary Online Methods S.2.
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Biological Conservation Batch Correction
Dataset Model AvgBIO NMIcell ARIcell ASWcell AvgBATCH ASWbatch GraphConn Overall

10X Multiome PBMC [14] (Paired) scGPT 0.767 0.818 0.822 0.661 - - - -
scGLUE [9] 0.747 0.815 0.806 0.619 - - - -
Seurat v4 [24] 0.722 0.784 0.691 0.691 - - - -

ASAP PBMC [38] (Mosaic) scGPT 0.562 0.601 0.472 0.614 0.948 0.904 0.992 0.716
scMoMat [65] 0.546 0.448 0.557 0.633 0.916 0.849 0.983 0.667

Table 4: scMultiomic Integration Benchmark Results. For the paired 10X Multiome PBMC [14]
dataset, scGPT was benchmarked with scGLUE [9] and Seurat v4 [24] for cell type clustering
performance evaluated on four biological conservation metrics. Batch correction metrics are not
applicable to this setting. For the mosaic ASAP PBMC [38] dataset, scGPT was benchmarked
with scMoMat [65] for cell type clustering and multiomic integration performance, evaluated on
eight biological conservation and batch correction metrics.
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S.2 Evaluation Metric Calculations925

S.2.1 Single-cell integration926

We adopted the evaluation metric calculations outlined by Luecken et al. [36] in their benchmark927

study. Each metric is described below.928

Normalized Mutual Information929

To quantify the concurrence between the cell type labels based on ground truth and the Lou-930

vain cluster labels obtained from integrated cell embeddings, we computed the normalized mutual931

information (NMI) score. The Louvain clustering was conducted across resolutions ranging from932

0.1 to 2, with increments of 0.1. The best score will be selected. The NMI score for cell types,933

referred to as NMIcell, ranges between 0 and 1, where a higher score indicates a better match of934

cell types.935

Adjusted Rand Index936

The adjusted rand index (ARI) was employed to assess both the agreement between the anno-937

tated labels and the MNI-optimized Louvain clusters. Furthermore, the rand index was adjusted938

to account for randomly correct labels. The ARI score for cell types, denoted as ARIcell, ranges939

from 0 to 1, where 0 corresponds to random labeling and 1 represents a perfect match.940

Average Silhouette Width941

The silhouette width assesses the relationship between a cell’s within-cluster distances and its942

distances to the closest cluster boundaries. By averaging the silhouette widths of all cells, we943

calculate the average silhouette width (ASW) score. This score ranges from -1 to 1, where a score944

of 1 indicates well-separated clusters, while scores from -1 to 0 suggest overlapping clusters and945

misclassification.946

For evaluating cell type clustering, we compute the ASW score based on cell type labels,947

represented as ASWcell. To obtain this score, we utilize the following formula:948

ASWcell = (ASWC + 1)/2

Here, C represents the cell types.949

Regarding batch mixing evaluation, we calculate the ASW score considering batch labels and950

adjust it by subtracting 1. This score is denoted as ASWbatch. The calculation is as follows:951

ASWbatch = 1− |ASWB |

Both ASWcell and ASWbatch have values between 0 and 1. Higher scores indicate better952

cell-type clustering or batch-mixing performance.953

Graph Connectivity954

The graph connectivity metric quantifies the average proportion of cells within each cell type955

that are connected through a kNN (k-nearest neighbors) graph. For every cell identity c in the956

set C, we compute the size of the largest connected component using kNN among cells exclusively957
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belonging to identity c. This value is divided by the total number of cells with identity c to obtain958

a normalized measure. The GraphConn score is then reported as the average across all cell959

types:960

GraphConn =
1

|C|
∑
c∈C

|LCC(GkNN
c )|

Nc

Here, LCC represents the largest connected component, and N denotes the number of cells of961

each celltype.962

Aggregated Metrics963

The aggregated metric AvgBIO calculates the average of biological conservation metrics:964

AvgBIO = (ARIcell +NMIcell +ASWcell)/3

Similarly, the aggregated metric AvgBATCH computes the average of batch mixing metrics:965

AvgBATCH = (ASWbatch +GraphConn)/2

In accordance with the convention established in [36], an Overall metric is derived as the966

weighted average of AvgBIO and AvgBATCH:967

AvgBATCH = 0.6 ∗AvgBIO + 0.4 ∗AvgBATCH

S.2.2 Cell Type Assignment968

We used the standard classification metrics Accuracy, Precision, Recall, andMacroF1 to evaluate969

cell type assignment performance. The Accuracy, Precision, Recall, and MacroF1 scores are970

calculated from true positives (tp), false positives (fp), true negatives (tn), and false negatives971

(fn) globally or averaged per class.972

The Accuracy, Precision and Recall scores are calculated globally:973

Accuracy =
tp

tp+ fp+ tn+ fn
, Precision =

tp

tp+ fp
, Recall =

tp

tp+ fn
.

The MacroF1 score is calculated per cell type c first and averaged across cell types:974

MacroF1 =
∑
c∈C

F1c
Nc

, where F1c =
2× Precisionc ×Recallc
Precisionc +Recallc

.

The above metrics are calculated using scikit-learn’s implementations [8].975
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Supplementary Figures976

Generative training Generation steps during inferenceA

genes & 
expression

genes
to predict

cell emb
<cls>
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prediction
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genes
to predict
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prediction
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to predict

genes
to predict
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B

Teacher forcing training

Figure S1: The scGPT Attention Mask. The masked positions are colored in blue, and the allowed
positions in white. These masked and unmaksed positions correspond to the M × M attention
map for M input tokens. The row indices correspond to queries and columns correspond to keys.
In the self-attention computation of transformers, the attention scores on the marked positions
will be removed. The token identity associated with each column is annotated below, namely cell
emb < cls > for cell embedding, genes & expressions for known genes, and genes to predict for
unknown genes. (a) scGPT attention mask in training where only query gene and the known
genes participate in attention computation. (b) At inference time, the attention mask at each step
during the iterative process of scGPT cell-prompt generation.
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scGPT (Zero-shot) 
Celltype, AvgBIO = 0.728

Gene Embedding (Zero-shot) A B

Figure S2: Visualization of Zero-shot scGPT Learned Cell and Gene Embeddings on the PBMC
10K Dataset. (a) UMAP visualization of cell embeddings colored by cell types. (a) UMAP visual-
ization of gene embeddings. The highly variable genes corresponding to each celltype were colored
accordingly.
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scVI Seurat Harmony

PBMC 10K

scGPT (Few-shot)

Immune Human

Batch, AvgBATCH = 0.940 Batch, AvgBATCH = 0.950 Batch, AvgBATCH = 0.934 Batch, AvgBATCH = 0.945

Batch, AvgBATCH = 0.894 Batch, AvgBATCH = 0.923 Batch, AvgBATCH = 0.883 Batch, AvgBATCH = 0.914

Figure S3: Benchmark of scGPT with scVI [34], Seurat [55], and Harmony [29] on the Immune
Human (10 batches) [36] and PBMC 10K (2 batches) [21] Datasets for Batch Correction. UMAP
visualization of cell embeddings colored by sequencing batches.
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