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Abstract

Background

Machine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in
predictive mass spectrometry (MS) for enhancing the data processing pipeline from raw data analysis to
end-user predictions and re-scoring. ML models need large-scale datasets for training and re-purposing,
which can be obtained from a range of public data repositories. However, applying ML to public MS
datasets on larger scales is challenging, as they vary widely in terms of data acquisition methods,
biological systems, and experimental designs.

Results

We aim to facilitate ML efforts in MS data by conducting a systematic analysis of the potential sources of
variance in public MS repositories. We also examine how these factors affect ML performance and
perform a comprehensive transfer learning to evaluate the benefits of current best practice methods in the
field for transfer learning.

Conclusions

Our findings show significantly higher levels of homogeneity within a project than between projects,
which indicates that it's important to construct datasets most closely resembling future test cases, as
transferability is severely limited for unseen datasets. We also found that transfer learning, although it did

increase model performance, did not increase model performance compared to a non-pre-trained model.
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Background

Large-scale studies of proteomes are essential to our understanding of the biological processes within an
organism. The leading technology for characterizing thousands of proteins is Liquid-Chromatography
Mass Spectrometry (LC-MS), which enables high-throughput quantification of protein abundances in a

biological sample [1,2] (Figure 1).
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Figure 1. Simplified workflow of a Mass Spectrometry-based proteomics experiment. First, proteins are
extracted from the biological samples, after which they are digested into peptides using enzymes, most often trypsin.
Next, peptides are chromatographically separated and injected into the mass spectrometer where they are measured
according to the mass over charge (m/z) and abundance (MS1). MS1 spectra from all peptide precursor ions are
reported, and certain peptides are chosen for tandem-mass spectrometry (MS2), where they are fragmented along
their amino acid backbone and identified by having their MS2 spectrum matched to a database of theoretical spectra.
Lastly, peptides are quantified and summarized into proteins.[3—6]


https://paperpile.com/c/s1w5jP/acQYU+iobBi
https://paperpile.com/c/s1w5jP/HWo41+1HZ3F+JpDG2+uJlA
https://doi.org/10.1101/2023.05.01.538996
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.01.538996; this version posted May 2, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

LC-MS has become the standard within proteomics procedures and continues to generate vast amounts of
data which, due to increasing demands from journals and reviewers, is often made publicly available in
data repositories. This change has led to numerous public data sets being registered in online repositories
such as the ProteomeXchange (PX) consortium [6]. The PXC contains references to over 17.000 projects,
and its largest member, PRIDE, has more than a million raw files. Each raw file contains an average of
6.778 MS1 and 32.016 MS2 spectra, which amounts to over 39 billion mass spectra. These data
repositories provide an invaluable resource for data repurposing to address novel biological questions or
to benchmark new computational techniques for proteomics data analysis.

While efforts in harmonizing data accessibility within ProteomeXchange and standardizing the
computational pipelines are ongoing [7], repurposing data from these repositories comes with a

significant entry barrier, as they do not yet have any systematic criteria for metadata or data types.

Due to the advancements in machine learning (ML) model development, there is now an increasing
interest in repurposing this rich LC-MS data to train complex ML models that can produce new insights
and results not achievable by previous computational methods [8]. However, the large diversity of
experimental procedures and biological systems requires careful consideration when applying
bioinformatics methods to larger extracts of publicly available data as ML relies on careful balancing to
reach optimal and correct performance.

Multiple ML algorithms and methods have been applied to MS data, such as regression models [9],
random forest [10], and more recently neural networks [11]. Machine learning applications in proteomics
are primarily focused on two aspects; (1) improving current methodologies such as database searches or
de-novo sequences, or (2) predicting physico-chemical peptide properties such as LC-MS/MS spectra,

retention time, or post-translational modifications (PTMs) [12—14]. Deep learning (DL) approaches
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function by generalizing the data, thereby generating distributions of the training data. However, due to
the high complexity and large noise found in LC-MS data, many of the current approaches suffer from
limited transferability, as they utilize synthetic, limited, or heavily stratified datasets for the purpose of
training and testing their models [12,15,16]. These issues are further exacerbated by technical advances in
the field such as ion mobility [17], which further increases the complexity and diversity of the data. The
majority of current ML methods within computational proteomics also rely on unique and complex
post-processing pipelines, such as peptide-specific indexed retention times (iRT) calculations, rendering
the methods difficult to replicate and reducing their application range outside the original publication.
One of the biggest shortcomings in machine learning, and particularly deep learning, is the problem of
under and overfitting. These refer to situations in which a model either performs too well on the training
data (overfitting) and generalizes poorly on unseen test data, or not well enough on the training data
(underfitting) and subsequently also on unseen test data. Despite multiple attempts and the breadth of
available data, these problems are still present in the field of predictive proteomics.

In this manuscript, we investigate the general reusability of public mass spectrometry data for machine
learning applications, with a specific focus on potential pitfalls that could result in poor translatability to
independently sampled data sets. We will do so by performing statistical analyses on the effect of the
experimental setups on the variance of the generated data, and see how these effects impact the predictive
capabilities of state-of-the-art deep learning models. This work is expected to have an impact on the data
selection process in predictive proteomics, elevating the capabilities of current and future models, as well

as highlighting the necessity for appropriate pre-processing and algorithmic choices.

Data Description

For a comprehensive representation of publicly available MS data, we analyzed data from ~60.500 raw

files across ~820 PRIDE projects, totaling ~60 TB of raw files and metadata. 546 projects containing
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33.426 raw files were used for neural network testing. All selected data had been previously analyzed

with MaxQuant [18].

140 A

=

N

o
1

=

o

o
L

(0]
o
1

(e)]
o
1

Peptides (millions)

D
o
I

100 150 200 250
Scores

20 A

0 50

Figure 2. Andromeda score (MaxQuant) distribution plot of the ~151M unmodified peptides in the complete data.

The full dataset was gathered from randomly sampled projects on PRIDE using MS2AI [19]. We
restricted the retrieval to data from standard bottom-up proteomics experiments. We also did not have any
initial queries on experimental or sample preparation, resulting in data from a wide breadth of sources
from which we have sub-sampled smaller datasets for in-depth analyses (Table 1). In total, we gathered

spectra and metadata for ~151M individual unmodified peptides (Figure 2).
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Table 1. Overview of datasets used in model training or testing

Name Section Minimal score Peptide counts | Description

PT17 1 100 750.000 | Dataset constructed from PXD004732

PTI19 1 100 750.000 | Dataset constructed from PXD010595

Limit 1 100 750.000 | 750.000 peptides excluding PXD004732 and
PXDO010595

Wide 1 150 2.000.000 | 2.000.000 peptides excluding PXD004732 and
PXDO010595

Long 2 150 2.000.000 | Gradient length equal to or above 100 minutes

Short 2 150 2.000.000 | Gradient length equal to or below 60 minutes

Lower 3 100 125.000 | Peptides with m/z values below 360

Upper 3 100 125.000 | Peptides with m/z values above 1300

Orbitrap Supp. 150 2.000.000 | Instrument “orbitrap” according to PRIDE
metadata

0. Exactive Supp. 150 2.000.000 | Instrument “exactive” according to PRIDE
metadata

Human Supp. 150 2.000.000 | “Human (Homo Sapiens)” from PRIDE
metadata

Mouse Supp. 150 2.000.000 | “Mus musculus (mouse)” in PRIDE metadata

All subset datasets are randomly sampled from the full ~151M peptide dataset, with Andromeda score and subset

filters described in the “Minimal score” and “Description” columns respectively, no other filters were added when

sampling. We also annotated the size of the subset dataset in the “Peptide count” column, with a 2M peptide count
limit for each dataset.

Results and discussions

We performed a thorough statistical assessment of the data and trained multiple neural networks, in order
to gauge the variance and evaluate the transferable capabilities of state-of-the-art models. However, in the
field of predictive proteomics, and especially in retention time prediction, it is common to apply transfer

learning to pre-trained models. This is done as a result of the poor transferability of the original networks,

as the models do not achieve setup independence by being constrained to the experimental settings of the
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training data. However, transfer learning requires a large amount of data in a format suitable for machine
learning, as well as significant computational expense, making it both data- and
computationally-intensive. Additionally, it also requires expertise in both machine learning and
programming. In order to test the effectiveness of transfer learning in predictive proteomics, we
exhaustively transferred all of the trained models to every other dataset in the same section to assess the
impact of transfer learning on performance.

All model metrics are measured in RTA, which measures the average time difference between predicted RT

values and actual values.

1 Single vs multi-project variance

In our model comparisons, we found that the models trained on the P77 and PT19 datasets performed
significantly better than the models trained on the Limit and Wide datasets during both training and
validation (Figure 3). Interestingly, the PT models also outperformed the Wide model, and performed
comparably to the Limit model, when testing on the wide and limited datasets.

While we expected the training and validation of the PT models to outperform the Wide and Limit model,
we did not expect the P7 models to outperform the Wide and Limit models on the Wide and Limit test
datasets. Furthermore, we also found that the Limit model outperformed the Wide model for all test cases,
suggesting that increasing the amount of data and using stricter scoring criteria does not necessarily
improve the performance of trained models, and may even cause the models to underfit. One possible
explanation for this is that longer and more complex peptides, which are easier to detect and in general
receive higher peptide identification scores, also exhibit more variance in their elution times. We tested
this and found that the peptides in both PT datasets have average peptide lengths of ~12, with the Limit
datasets containing a longer average peptide length of ~13, and the Wide dataset containing an even

longer average length of ~14.
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It is also possible that the reduced performance observed in the randomly sampled datasets is due to the
presence of multiple variance-inducing factors in the experimental setup. These factors, such as the type
of MS instrument or the selected species, are often difficult or impossible to account for when relying on
large bulks of public data. Changing them can result in considerably different model performances
(Supplementary Figure 1-2). In contrast, the PT datasets were measured under the same conditions on
synthetic peptides, which reduces the presence of such variance-inducing factors. Additionally, the PT
datasets have the advantage of using one single gradient length, while the limited and wide datasets use

multiple different gradient lengths.
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Figure 3. General variance model performance comparison. Each model was trained and validated on its original
source datasets and then cross-tested for all test datasets. We compared the training and validation for all models, as
well as cross-testing datasets and their respective model performance in terms of RTA

In order to evaluate their transferability, we applied transfer learning to all four models and found that,

while some of the models improved performance compared to previous external testing, they mostly
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performed similarly to non-transferred models on the same dataset (Figure 4). In the case of the Wide
dataset, transfer learning actually resulted in reduced performance for all transferred models. This
suggests that the Wide dataset has significantly higher levels of heterogeneity between training and testing
data compared to the other datasets. While these results show that transfer learning can be beneficial in
certain scenarios, they also showed that most of the models simply improved or regressed to the transfer
dataset. However, even if transfer learning did not provide significant predictive benefits, it did reduce the

time needed to train the models by an average of 5.5% by converging faster (Supplementary Table 2).
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Figure 4. General variance transfer model performance comparison. Each model was transferred to each of the
external datasets and re-tested on all four datasets. Datasets are separated by plots, denoting the performance
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difference of each model when trained on or transferred to identical datasets. Each bar has the original test metric in
blue, and the transfer learning test metric overlaid in orange.

2 Gradient lengths

The retention time of a peptide in an LC-MS/MS system is determined by the interactions between the
peptide and the stationary and mobile phases of the liquid chromatography system. In identical setups, the
retention time of a peptide is considered reproducible[9].

Plotting the distribution of gradient length for all raw files with an overlaid cumulative distribution
function (Figure 5a), we observe significant peaks at 60, 90, and 120 minutes, with ~60% of all gradients
being 0—120 minutes in length and the longest gradient being 800 minutes. While we did find single
projects with as many as 15 different gradients, we also found that 70% of the 820 projects kept the same
gradient length for all files, while only ~5% employed more than two unique gradients (Figure 5b),

indicating high levels of consistency in instrument configurations within individual projects.
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Figure 5. Gradient length distribution and unique gradient per project. We illustrated the gradient distribution
of all 60.000+ raw files overlaid with the cumulative distribution (A). Also illustrated is the number of unique
gradients found within any of the 820 projects (B)
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The results of our deep learning use case showed that the Short gradient model performed significantly
better than the Long gradient model (Supplementary Figure 3). This is further supported by its decreased
performance on the Long gradient test dataset compared to the Short model.

These findings suggest that peptides from longer gradients generally express higher variance compared to
peptides from shorter gradients, even after attempted peptide normalization. It also indicates that our
normalization method for the effective gradient, which aims to mimic the linear iRT calculations used in
the original Prosit paper, may not be effective for all gradients and raw files, reiterating the necessity of
targeted post-processing pipelines.

Performing inference dropout on all models in the previous section shows that all of the models exhibit
significantly higher uncertainty for the earliest and latest eluted peptides compared to those eluted closer
to the middle of the gradient (Figure 6). Additionally, we observe that the PT models show a more linear
prediction gradient than the Limit and Wide models, further suggesting the controlled nature of the
ProteomeTools datasets outputs peptides in a more linear gradient, which fits better for our first-last
peptide gradient normalization. We also observe less overall uncertainty in the PT models, likely due to
the fact that they were trained on datasets with fewer peptides, lower average peptide retention times of
approximately 32 minutes, and unified gradients, whereas the average retention times of the limit and
wide datasets were significantly higher at 60+ minutes from multiple gradient lengths. This suggests that

longer gradients lead to an increase in data variance and model uncertainty.
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Figure 6. Bayesian model uncertainty estimates of general variance models. For each model; PT17, PT19, Limit,
and Wide, we performed model inference on individual test datasets 25 times with dropout applied. The mean
predicted retention times are plotted against the real retention time values with the normalized relative variance of
each peptide illustrated in the colorization of the dots. The distribution of the underlying data points (line) are
overlaid together with a y=x line (dot) for linearity comparison

Performing transfer learning on the gradient length models (Supplementary Figure 4) we observe that
refining the Long model to the Short dataset resulted in a significant performance improvement. However,
refining the Short model to the Long dataset did not result in any significant change in performance,
although it still outperformed its non-transferred counterpart. Unlike what we observed in the previous
section, transfer learning of the gradient length models came at an increase or stagnation in performance,

indicating that the models retained information from the initial training datasets. We also note that
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transferred models took on average 25% longer to train compared to non-transferred models

(Supplementary Table 3).

3 Mass-to-charge range filter

MS instruments have a range of setup parameters that can tailor the experiment to the needs of
researchers. The m/z range filter is one of those parameters, as it restricts peptide data acquisition to a
given m/z range. However, for data re-purposing, this range can also lead to a biased dataset for machine
learning, as the sample might have contained a large range of peptides not reported by the instrument.
When plotting the m/z filters of the mass acquisition range (Figure 7), we observe significantly more
variance in the upper bound compared to the lower bound, meaning that our upper bound is highly
correlated to the length of the filter. All violin plots exhibit a peak at one specific value, 350 for the lower
bound, and 1500 for the upper bound, with a corresponding peak at 1150 for the filter lengths. These

peaks correspond to the most commonly used filter which accounts for 33.9% of all raw files.
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Figure 7. Illustration of the variability of m/z range filters found in different projects. Violin plots depicting the
m/z filter bound distributions, with the lower bound plotted in blue (A), upper bounds plotted in red (B), and filter
length plotted in yellow (C). A histogram of the total number of unique filters found within projects (D).
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We also observed that 47% of all projects applied a single filter across all raw files, 43% of projects
applied two filters and only 10% of the projects applied more than two unique filters. Consequently, there
is significant homogeneity within a project while between projects the filters can differ considerably. If
datasets are constructed using only one or a few unique filters, large portions of the data space may never

be used for training, potentially limiting the transferability of the models (Supplementary Figure 5).

We also tested the model performance of the PT77 and PT19 models on peptide datasets only containing
peptides outside of the original filter bounds (out-of-bounds, OOB, Supplementary Figure 6), and found
that model performance was significantly worse when compared to the source test datasets. The OOB
testing performance is also significantly worse when compared to Limit and Wide testing (results and
discussion section 1), which also contained peptides in the OOB range. Interestingly, the models
performed slightly worse on heavier OOB peptides than on lighter OOB peptides (Figure 8), despite
lighter peptides exhibiting higher individual variance, and the distribution of lighter peptides being more
concentrated at one end of the distribution compared to the heavier peptides (Supplementary Figure 7).
Similarly to Figure 6, we again observe significantly more model uncertainty tied to earlier and later
eluted peptides.

The significant reduction in performance we observed in the OOB testing suggests that the models do not
learn the underlying nature of AA weights, folding, and physico-chemical properties, factors which
impact RT as well as the ionization and detectability [16] of peptides, as much as they memorize the

retention times of certain peptide sequence patterns.
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Figure 8. Bayesian model uncertainty estimates for out-of-bounds peptides. For PT/7 (A), and PT19 (B) we
performed model inference 25 times on peptides from datasets outside of the initial training datasets m/z bounds,
with random dropout applied. The mean predicted retention times are plotted against the real retention time values
with the normalized variance of each peptide illustrated in the colorization of the dots. The distribution of the
underlying data points (line) are overlaid together with a y=x line (dot) for linearity comparison

4 Fragmentation patterns

A perfect peptide fragmentation spectrum is a theoretical concept that consists of a discrete set of all
characteristic peaks defined only by the peptide sequence. In reality, fragmentation spectra only contain
subsets of these theoretical peaks with patterns based on the background contaminants from the
instrument, fragmentation technique, collision energy, and more. In order to understand the challenges
and limitations of the MS2 spectra for machine learning algorithms, we analyzed MS2 spectra peaks from
86 randomly sampled raw files containing more than 768 million peaks, as well as from three
representative samples from the ProteomeTools 2019 dataset. This allows us to visualize not just the
overall distributions found in MS2 spectra, but also how these distributions change and are affected by
fragmentation techniques and activation energy. While the different techniques differ in activation
energies; normalized collision energy (NCE) for CID and HCD, and charge state-dependent reaction time
for ETD, we simplify both as the activation energy (AE) [20]. In hybrid fragmentation methods (ETciD

and EThcD), the CID/HCD NCE is fixed while the ETD reaction time is varied.
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When looking at the distribution of all m/z values found in the 86 randomly sampled files, we observe a
clear bimodal distribution independent of peak selection or bin sizes; one distribution is located at
~50-250 m/z, and the second distribution at ~250-2000 m/z. The distribution at the lower m/z range
disrupts the expected normally distributed peptide fragment ions found at 250-2000 m/z, and consists of
clearly distinguishable high-density peaks corresponding almost exclusively to single amino acid residues
(Fig. 9E and 9F) and some background noise. The singly charged amino acid residues are shown in the
cumulative distribution plots in Figure 9, where amino acids are annotated if the m/z of the peak matches
the collision ions a, b, or y or the electron-transfer ions ¢ or z. The most abundant amino acid peaks are
highlighted in Supplementary Table 1, and we observe that these peaks become more frequent at higher
levels of peak selection (Supplementary Figures 8-9). It should be noted that the exact AA contribution to

some peaks is uncertain, as multiple AA ions match the exact same m/z peaks.
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Figure 9. Illustration of how peak picking and peak binning affect the MS2 peak density plot and single amino
acid density. The density distributions of peak m/z values shown were obtained without peak picking (C, D) and
with the top 50 peaks (A, B). The spectra were then imposed into 50 (A, C) and 500 (B, D) bins. For each value of
peak picking, we also illustrated the cumulative distribution plot of the peaks in 50-250 m/z with single AA residues
overlaid. No stratification on the fragmentation method or its settings has been considered during this analysis.

When we compare the ProteomeTools files, we see that these single AA peaks are present in all
fragmentation methods except CID (Figure 10, Supplementary Figures 10-11). Interestingly, the AA peak
information gets weakened at different levels of activation energy for different files. In Supplementary
Figures 12-13 these peaks are drastically reduced or almost non-existent in ETD variants at 32.27 ms
reaction time, specifically, whereas Supplementary Figure 13 exhibits a more gradual loss of signal as
activation energy is decreased. This suggests that more energy is needed to fragment sequences into single

AAs, and without sufficient energy, these signals are weakened. The potential use of these ions will

heavily depend on the applied fragmentation method and activation energies of the system.
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Figure 10. MS2 peak distribution of identical samples analyzed by different fragmentation techniques. Single
sample density plot of the m/z (left) and intensity (right) peak distributions for CID, HCD, ETD, ETciD, and EThcD.
Sample 02079a BE2-TUM isoform_ 50 01 01

While the three sample files from ProteomeTools display significant differences between the files, our
results show that individual samples share significant similarities between fragmentation methods (Figure
10, Supplementary Figures 10-11), where we observe all ETD variants exhibiting similar distributions for
both m/z and intensity values. HCD exhibits some of the same peaks and valleys as the ETD variants but
is still distinct, while the CID has a completely different pattern for all files.

Along with the fragmentation technique, we also find that activation energy has a significant impact on
the m/z peak distributions (Supplementary Figures 12-14). Moreover, we again observe a high correlation
between ETD variants at the same reaction times, while exhibiting a significantly lower correlation within
either of the variants at different activation energies. While activation energy does change the distribution
of intensities, these are less impacted than m/z values.

These results show that even though two samples contain identical peptides, the fragmentation technique
as well as the activation energy has a significant impact on the distribution of the reported peptide

patterns. We also observe that certain methods at higher activation energies contain information about
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single AAs, and while these residues provide limited information for the identification of a peptide, they
could be of crucial value when considering internal fragment ions in the database search. Single AA peaks
and their frequencies can also contain valuable information about peptide composition and are potentially
valuable for machine learning predictions. Previous attempts at using AE (specifically NCE) for ML
prediction found that AE was inconsistent across files [21], that transferring between fragmentation

techniques or AE limited model transferability, and that AE correction improved model performance [12].

Conclusions.

Mass spectrometry remains a powerful tool to quantify thousands of protein abundances in biological
samples. Analysis of the raw experimental data is increasingly dependent on suitable computational
methods [22] with a major focus on algorithms for peptide identifications and protein quantifications.
However, despite a variety of different statistical, conceptual, and graph approaches, methods such as
database search engines still suffer from limitations both in accuracy and run time. Novel machine
learning methods hold the promise of advancing the analysis of upcoming data, as well as having a high
potential for re-purposing the ample body of public data for the retrieval of valuable new biological

information.

In this manuscript, we have investigated and highlighted some of the main sources of variance found
within the high-throughput MS data. We identified a range of factors that increase variance in the
data-generating process and analyzed the homogeneity of the variance within a project when comparing
different projects. Our main finding from the statistical analyses was that global variance, which is found
between projects, is significantly larger than internal variance, which is found between files in the same

projects. This is exhibited through instrument settings, sample preparation, and experimental choices, all
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of which are significantly more homogenous within any given project, compared between projects.
Furthermore, we also wanted to see how these sources of variance impacted ML capabilities by training
Prosit retention time predictors on each source individually, whenever applicable.

We trained nine Prosit models, tested these models on twenty-seven datasets, and performed transfer
learning fourteen times. Our findings show that training models on data most closely resembling real-life
test cases is crucial, as the models' ability to generalize outside the training data confinements are severely
limited. This is illustrated by the PT models outperforming any other model during training and validation
while having considerable performance drops when tested on randomly acquired data, or peptides not in
the original m/z range.

Our results also found evidence that transfer learning can occasionally improve the performance of a
pre-trained model. However, the most common scenario we observed was that models ended up
mimicking non-transferred models for the same dataset, while not reducing the average amount of epochs
needed for convergence. This tendency resulted in model regression in 5 of the 14 cases, and only resulted
in model improvement in 1 of 14 cases. While our findings do indicate that models need to be trained on
datasets from representative sources, they do not indicate that transfer learning outperforms training a new
model in accuracy or computational needs (Supplementary Tables 4,5).

We argue, since a representative dataset is needed, that a research environment either has to train
specialized models to their individual data collection methods or generate an unbiased dataset from
publicly available data sources that attempts to mimic the intended post-training application through
software such as MS2AI [19].

We further found that fragmentation spectra are rich in yet neglected information. Given the rather
abundant single residue fragment ions, particularly present at higher activation energies, considerable
amounts of internal ions should be present. This information has been so far mostly untapped due to the

complexity to include internal ions in database search and spectrum prediction. Advanced machine
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learning methods might be capable of making sense of these ions despite their noisy and ubiquitous
nature.

We note that a prevailing issue with the current data repositories is the missing or mislabeling of
metadata. With the ongoing standardization efforts in large repositories such as PRIDE [23], this issue
should fade over time. Through the analysis, we also identified the need to report more details about the
experimental design, the data acquisition, and the post-processing in a comprehensive and standardized
way to make them amenable as additional input for machine learning applications and thus allow for the

direct training of the confounding factors.

Methods

We use different methods to evaluate the variance caused by different setup parameters of the LC-MS
experiments and their effect on ML transferability to unseen data. To assess the impact of biases and
experimental heterogeneity, we trained identical deep-learning models over a range of data properties and
compared their results. We used the Prosit retention time model with peptide sequence and retention time
as input and output, respectively. The Prosit model architecture consists of a sequence embedding layer, a
bidirectional GRU layer, and an attention layer, followed by fully connected dense layers. The retention
time of all peptides in a raw file has been linearly normalized to an effective gradient; spanning between
the first (0) and last (1) identified peptide to mimic the iRT calculations performed in the original paper.
No further data refinement or re-annotation has been applied to the files. Initially, we followed the
hyperparameter setup described in the Prosit paper but found that 32 epochs were not sufficient for model
training convergence. As a result, we increased the training to 100 epochs and applied a 20-epoch
patience for early stopping instead. All other parameters were identical to those described in the original
paper [12]. The Prosit deep learning architecture was implemented by using the DLOmix framework [24],

and all modified peptides were removed due to DLOmix constraints.
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For all trained networks we sample 10% of each dataset as a hold-out test set on which all testing is
conducted. The remaining data is split into training and validation sets with a ratio of 80:20. For datasets
composed of multiple PRIDE projects, the hold-out datasets consist of separate projects that were
randomly sampled, whereas for datasets consisting of a single project, the hold-out dataset consists of
randomly sampled raw files. This provides the most accurate heterogeneous test scenarios without overlap
across projects or MS runs. Furthermore, the training and validation datasets are split by peptide
sequences, meaning that no peptide will be present in both the training or the validation dataset. However,
since the testing data is randomly split at the project or file level, these may contain sequences that are

also present in the training datasets.

The data acquisition along with filtering and model training and testing was managed using MS2AI with
MongoDB in Python 3.8 with an NVIDIA v100 GPU. The data were acquired in November 2021 with the
extractor API with the options “-p -mo -t 128” which allows for en-mass data acquisition from PRIDE
(-p) while only fetching MaxQuant information (-mo), and increasing thread counts to 128 to allow for
faster runtime (-t 128). This requires the current version of the PRIDE metadata which is downloaded
using the scraper API and the -db option. The filtering was performed using the filter API using the -q
option with MongoDB or string filters available in the GitHub repository. The model training and testing
were performed using the network API with “-t prosit -e 100 -sos -s n” to train a Prosit model for 100
epochs with training and validation being split based on unique sequences and a given seed for consistent
training, validation, and test splitting. When performing transfer learning, the only difference is “-t
prosit-ID”” which uses the weights of the trained model with the same ID. Model training times varied
from 4 to 10 hours based on the size of the dataset and epochs needed to converge. All code is available in

the GitHub repository along with the seeds for the runs.

22


https://doi.org/10.1101/2023.05.01.538996
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.01.538996; this version posted May 2, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We utilized a Bayesian approximation of the model uncertainty, by performing model inference with
dropout enabled [25,26]. The real retention time values are then plotted against the mean predicted values,
with the color of the data point corresponding to the normalized variances of the predicted values. The
dropout for inference testing was applied to all layers where dropout was originally applied, with original
dropout rates. This allows us to evaluate the models not just on their metric performances, but also
determine the retention time ranges where the models are least certain of their predictions. This method is
available in MS2AI network API using the “-id n”” option to run »n dropout tests and automatically

generate the data visualization plots.

1 Single vs multi-project variance

In order to measure the difference in variance not caused by individual factors, but instead caused by
systemic changes in experimental protocol, we compared the model performance of two single-project
models to the performance of two multi-project models. We did this by training four Prosit models on
data from four different sources: 2017 [27] and 2019 [28] ProteomeTools datasets (P717 and PT19,
respectively) and two sets of acquired data from randomly sampled PRIDE projects; one limited to the
750.000 peptides filtered at 100 Andromeda score threshold, which is the score reported by MaxQuant
(Limif), and one with 2.000.000 peptides filtered at 150 Andromeda score threshold (Wide). Alongside the
initial training and testing, we also performed transfer learning on all models for all non-source datasets to

compare their initial performance to post-transfer learning performance.

2 Spectra and gradient lengths

To compare and analyze the variance in gradient lengths, we extracted the metadata from each raw file
(found in the files.bson.gz) and we extracted the gradient lengths of all runs individually, which we plotted
in a histogram against the probability of each gradient length. We then calculated the cumulative

distribution function of the gradient lengths for all files which we overlaid on the histogram. Then we
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calculated the number of unique gradients across all files from the same PRIDE accession, allowing us to
visualize the variance found within projects when plotting the number of unique gradients in a histogram
against the probability of each number of unique gradients.

Along with gradient length visualizations, we also trained two Prosit models to evaluate the effect of
gradient length on model performance. The models were trained datasets that were divided into two
groups based on their gradient lengths: short (< 60 minute gradients) and long (> 100 minutes gradients).
The data were randomly sampled from the full 398M peptide dataset and only peptides with > 150
Andromeda scores were kept. We also performed transfer learning of both gradient models to the
opposing datasets. Furthermore, to test model uncertainty across the gradient, we performed model

inference with dropout enabled on all four models, as described in method section 1.

3 m/z range filter

To visualize and compare m/z filters across files and projects, we extracted the m/z filter bounds from
each raw file, and plotted the lower bounds, upper bounds and the difference between the upper and lower
bounds to get the lengths. We then visualized these values in a violin plot, in order to see possible patterns

or key values in the distributions.

In order to evaluate the impact of m/z filters on model performance we created two subsets of data, this
time much smaller due to low peptide count; one in which all peptides lie below 360 m/z (Lower), and
one in which all peptides lie above >1300 m/z (Upper). These bounds were chosen as we are going to
re-use the PT17 and PT19 models, which have m/z filter bounds of 360-1300 m/z, and using these
datasets will allow us to evaluate peptides that are outside original filter bounds. As we did not train new
models for this section, no transfer learning was applied. Again we also perform model inference with

dropout enabled, in order to assess the model uncertainty for these out-of-bounds (OOB) peptides.
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4 Fragmentation Pattern

To analyze the distribution of MS2 peaks we extracted every peak from 86 raw files [29], where we
compared the raw spectra with all peaks preserved, to spectra filtered by top n peaks based on intensity
for three values of n: 50, 100, and 200. MS2 spectra are often annotated or binned in order to make it fit
into typical ML architectures. To illustrate how this type of binning affects the outcome distribution, we
also binned each of the combined peak selected spectra at 50, 100, 200, and 500 total bins from 0-2000
m/z. We then calculated the collision ions a, b, and y as well as the ETD ions ¢, and z for all amino acids
separately. This was done by adding -27, 1, 19, 18, and 2 mass to their single charged molecular residue
weights for @, b, , ¢, and z ions respectively [30,31].

Furthermore, we also sampled three representative samples from the ProteomeTools 2019 dataset: two
files taken from the isoform set of tryptic peptides (02079a_BE2-TUM isoform 50 01 01l and
02079a_BF4-TUM isoform_64_01 01), and one taken from the missing protein datasets

(01974c BHI-TUM missing first 8 01 _01)[32]. Each identical sample has been tested 4 times, with
different fragmentation techniques and varying normalized collision energies (NCE); collision-induced
dissociation (CID), high-energy C-trap dissociation (HCD), electron-transfer dissociation (ETD),
electron-transfer/higher-energy collisional dissociation (EThcD) and electron-transfer/collision-induced

dissociation (ETciD).

Abbreviations

ML: Machine Learning
DL: Deep Learning
MS: Mass Spectrometry

LC-MS or MSI: Liquid Chromatography-Mass Spectrometry
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LC-MS/MS, MS/MS or MS2: Tandem mass-spectrometry

m/z: Mass to charge ratio

NCE: Normalized Collision Energy

PTM: Post-translational modification

CID: Collision induced dissociation

HCD: high-energy C-trap dissociation

ETD: electron-transfer dissociation

ETciD: electron-transfer and collision-induced dissociation
EThcD: electron-transfer and higher-energy collision dissociation

PX: ProteomeXchange
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