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Abstract 
Measures of bone compactness in amniote tetrapods of varying lifestyle were used to infer that 
two spinosaurid dinosaurs (Spinosaurus aegyptiacus, Baryonyx walkeri) were diving 
“subaqueous foragers,” whereas a third spinosaurid (Suchomimus tenerensis) and other sampled 
nonavian dinosaurs were non-diving terrestrial feeders entering water only as waders. We outline 
shortcomings in this analysis that involve bone compactness sampling and measurement, 
lifestyle categorization, the inclusion and exclusion of taxa in the dataset, and flawed statistical 
methods and inferences. These many shortcomings undermine the evidence used to conclude that 
two spinosaurid taxa were avid divers. Bone compactness indices remain a valuable tool for 
interpretation of lifestyle in extinct species when based on sound dataset composition, robust 
statistical analysis, and consilience with evidence from functional, biomechanical, or 
paleoenvironmental considerations. 

Introduction 
Secondarily aquatic tetrapods often exhibit greater bone density than terrestrial counterparts 
when examining cross sections from limb bones [1,2]. This density correlation in recent decades 
has been analyzed using quantitative indices based either on histologic thin sections or 
radiographic images [3–6]. Bone density has been used, in particular, to assess lifestyle within 
tetrapod clades with extinct members that have evolved secondary adaptions to an aquatic 
lifestyle, including amphibians (lissamphibians, temnospondyls) [5,7], reptiles (lizards, 
plesiosaurs, ichthyosaurs) [8–11], and eutherian mammals (talpid moles, sloths, mustelids 
cetaceans) [12–15]. Caution is warranted nonetheless because bone density also has been found 
to correlate with body mass and its skeletal manifestations as well as with stressful behaviors 
such as burrowing [12,14–17]. 

Bone compactness in spinosaurid dinosaurs 
Recently Fabbri et al. [18] paired a metric of bone compactness with a relatively new statistical 
method to investigate whether particular nonavian dinosaurs had an aquatic lifestyle. For most of 
the nonavian dinosaurs they examined, no association with an aquatic lifestyle was found. For 
the three spinosaurids, however, they reached definitive, if partially counterintuitive, 
conclusions. Spinosaurids were determined to be “aquatic specialists” but with “surprising 
ecological disparity.” Spinosaurus and Baryonyx, they argued, made regular use of “subaqueous 
foraging” with “fully submerged behavior,” whereas Suchomimus, a close relative of Baryonyx, 
was a non-diving terrestrial predator restricted to wading in the shallows [18: 852]. 

When Stromer first described Spinosaurus in 1915 from Upper Cretaceous outcrops in 
Egypt’s Western Desert, he highlighted the spaced, conical teeth and elongate jaws as crocodile-
like adaptations for a piscivorous diet [19]. Similar inferences were made some 70 years later in 
descriptions of two closely related spinosaurids, Baryonyx walker [20] and Suchomimus 
tenerensis [21], from Lower Cretaceous outcrops in England and Niger, respectively. Although 
the particulars of lifestyle were not analyzed in detail in these papers, these large bipedal 
predators were viewed as semiaquatic, i.e., hunting aquatic prey as ambush predators along the 
shore and while wading into shallow water. 
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In 2014, the notion of a semiaquatic lifestyle for Spinosaurus was reinforced with the 
description of a partial skeleton from Morocco’s Upper Cretaceous Kem Kem Group [22]. Again 
it was viewed as a wading shoreline predator or surface swimmer, not a diving pursuit predator. 
Later discovery of the high-spined tail of the Moroccan skeleton, however, inspired the “aquatic 
hypothesis,” which viewed the tail as an “aquatic propulsive structure” powering a “highly 
specialized aquatic predator that pursued and caught its prey in the water column” [23].  

The central proposition that Spinosaurus was capable of submerged swimming in pursuit of 
prey drew challenges: critics pointed out the discordance in morphological comparisons to extant 
divers, presented paleogeographic evidence of this very large theropod dinosaur in inland 
habitats, and detailed biomechanical calculations that show both that Spinosaurus would have 
been unstable when floating in water and too buoyant to dive, and that available propulsive force 
from its hind limbs or tail was insufficient for pursuit predation [24–26]. 

In response, many of the authors of the “aquatic hypothesis” turned to bone compactness as 
an additional means to assess lifestyle. Fabbri et al. ([18]; “Fabbri et al.” below) used bone cross 
sections and an index of bone density, global bone compactness (Cg), to argue that Spinosaurus 
and Baryonyx were “fully submerged” subaqueous foragers but that the African spinosaurid 
Suchomimus was a terrestrial non-diver that at best waded into shallow waters. 

Categorization caveats 
Fabbri et al. assembled datasets of exemplar taxa (“training datasets”) using two categorical 
variables for functional capability, “subaqueous foraging” and “flying,” with three potential 
values (0–2) for range of presence: subaqueous foraging: unable (0), able but infrequent (1), 
frequent (2); flying: unable (0), non-sustained flight (1), sustained flight (2). If behaviors of an 
extinct species were regarded as uncertain, it was categorized as “unknown.” 

“Subaqueous foraging” was never defined in the original paper [18] and was supplanted by 
“diving” in a table of behavioral scores [18: Suppl. information]. “Subaqueous,” etymologically, 
means complete submergence and does seem equivalent to “diving.” “Foraging,” by definition, 
means searching for food, be it plant or animal. A “subaqueous forager” is thus either a 
habitually diving predator in pursuit of underwater prey, such as a sperm whale, or a habitually 
diving herbivore that feeds on underwater plant resources, such as a manatee. 

Yet when challenged as to why they classified as “subaqueous foragers” hippos and tapirs, 
which do not forage appreciably underwater [27], the authors responded that what they really 
meant in using the term “subaqueous foraging” was habitual “subaqueous submersion” [28], 
whether for foraging or simply for concealment. “Habitual diving” thus seems to capture the 
behavior of interest, which then brings into question whether their subgroup of “subaqueous 
foragers” is adequate to evaluate spinosaurids as underwater pursuers of prey. 

Fabbri et al. represented each sampled taxon with a two-dimensional data point (Cg, 
log10(MD)), where Cg is their chosen index for bone compactness calculated by the Bone 
Profiler program [3] and MD is the maximum diameter of a sampled bone. Two datasets were 
assembled from bone-shaft cross sections, one based on femora and the other on dorsal ribs. 
Most taxa are represented by one compactness measurement from a single thin section or from a 
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radiograph of the shaft of one bone. A phylogenetic consensus tree was used to control for 
phylogenetic bias. 

For clarity and concision, we abbreviate the functional groups identified by Fabbri et al., 
using F and D to designate “flying” and “diving,” respectively, for the two lifestyle behaviors 
they identified. Each lifestyle was categorized using one of three potential values (0–2): “absent” 
(0), “present but infrequent” (1), and “frequent” (2) (Table 1). Here we abbreviate each taxon 
score as FxDy, where x and y denote the flying and diving variables, respectively. Habitual 
(frequent) divers, or “subaqueous foragers” in the terminology of Fabbri et al., is a category they 
allied with the extinct spinosaurids Spinosaurus and Baryonyx (Table 1: F0D2, subgroup 6). 
Suchomimus, by comparison, was considered an extinct nonflying/nondiving (presumably 
“terrestrial”) nonavian dinosaur (Table 1: F0D0, subgroup 3). The razorbill Alca torda, as 
another example, is an extant seabird that frequently flies and dives (Table 1: F2D2, subgroup 8). 
In sum, there are two functions, three variables, and three ways to subdivide members as to 
whether they are living, extinct, or a mix of the two for a total of 18 potential subgroups (Table 
1: 9 subgroups shown). 

Table 1. Example functional groups and subgroups in Fabbri et al. [18] as designated in 
this paper. 

 

Fabbri et al. [18] assigned for “flying” the values 0 = “unable,” 1 = “non-sustained flight,” and 
2 = “sustained flight.” They assigned for “diving” the variables 0 = “unable” to dive, 
1 = “infrequent” diving, and 2 = “frequent” diving. Some taxa were designated “unknown” rather 
than assigned a variable. The three most important subgroups are shown in the table. 

Full and culled datasets 
Fabbri et al. used four datasets in their analysis, which are termed as “training” datasets for their 
classification method (Table 2). The first two datasets included all sampled taxa for femur data 

Our 
abbreviation Lifestyle 

Subgroup 
number 

Taxon 
type Subgroups 

F0D0 
Terrestrial 

(nonflying/nondiving) 

1 All  Terrestrial 

2 Extant  Extant terrestrial 

3 Extinct  Extinct terrestrial 

F0D2 Nonflying diver 
(nonflying/frequent diving) 

4 All Divers 

5 Extant Extant divers 

6 Extinct Extinct divers 

F2D2 
Flying diver 

(frequent flying & diving) 

7 All Flying divers 

8 Extant Extant flying divers 

9 Extinct Extinct flying divers 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.04.539484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539484


 5 

and ribs (labeled here ds1, ds2), whereas the last two datasets (labeled here ds3, ds4) purged taxa 
regarded as “graviportal” or “pelagic.” The taxa in these four datasets were categorized as 
described above according to their “flying” and “diving” capacities. 

Table 2. Four training datasets used by Fabbri et al. [18: Suppl. information]. 
Dataset label Bone Taxa included Source file 
ds1 Femur 200 Femur_compactness_all.csv 
ds2 Rib 174 Rib_compactness_all.csv 
ds3 Femur 187 Femur_compactness_no_graviportals_no_pelagics.csv 
ds4 Rib 148 Rib_compactness_no_graviportals_no_pelagics.csv 

 

Taxa included is the count in the dataset across all categorical variables. Two taxa (for femur, one 
for rib) are present in the dataset files but not in the associated phylogenetic tree so are discarded 
by the analysis of Fabbri et al., who state that 83 taxa were shared between femur and rib datasets. 
We count 76 shared taxa. 

We discuss below several issues regarding the composition of these datasets to adequately 
assess the meaning of bone density in spinosaurids. 

PGLS and pFDA analyses 
Fabbri et al. first performed phylogenetic generalized least squares (PGLS) analyses that showed 
weak, but statistically significant, correlations between Cg and D = 2 (“frequent diving”). 
Correlations between Cg and values for F (“flying”) were weak or not considered statistically 
significant. Their second tier of analyses use the relatively new phylogenetic flexible 
discriminant analysis (pFDA) algorithm [29,30] to process training datasets and then classify 
other data points that include spinosaurids and other taxa by statistical properties “learned” from 
the training dataset. 

In this paper we reexamine the analysis of Fabbri et al., not only to evaluate the viability of 
their central conclusion regarding the lifestyle of three spinosaurids, but also as a case study to 
consider the relevance of variability in bone sampling, variation in the calculation of bone 
compactness indices, and the assumptions underlying the use of statistical analyses of bone 
compactness across living and extinct taxa. To that end, we take a close look at the extant taxa 
labeled “subaqueous foragers” by Fabbri et al. to determine the validity of that categorization. 
Then we critically examine the composition of the training datasets and the assumptions required 
for use of the pFDA algorithm. 

Like many statistical methods, pFDA is based on assumptions about the statistical 
distribution of the data. In particular, pFDA requires multivariate normal distributions [29,30]. 
We applied multiple statistical tests to key datasets in Fabbri et al. but find that they fail to meet 
this prerequisite. Indeed, some of the datasets are statistically indistinguishable from a uniform 
random distribution of points in two dimensions. These findings question the validity of pFDA 
results for these data. 

Because pFDA does not automatically generate a p value, confidence interval, or other 
quantitative metrics for random error, it is not rigorous as a statistical hypothesis test or as an 
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estimation procedure. We performed supplementary analyses to generate such estimates. No 
prior analysis of pFDA has examined uncertainty due to the finite sizes of training datasets. We 
show that random effects and sample-size uncertainties appear to significantly undermine 
confidence in the results of Fabbri et al. 

Materials and methods 

Institutional Abbreviations 
BSPG  Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany. 
FMNH  Field Museum of Natural History, Chicago, Illinois, United States of America. 
FSAC  Faculté des Sciences Aïn Chock, University of Casablanca, Morocco. 
MNBH Musée National Boubou Hama, Niamey, République de Niger. 
CMN  Canadian Museum Nature, Ottawa, Canada. 
UCRC  University of Chicago Research Collection, Chicago, United States of America. 

Computed tomography 
Computed-tomographic (CT) scans were generated for femora of Suchomimus tenerensis 
(MNBH GAD500, MNBH GAD72) and Spinosaurus aegyptiacus (FSAC-KK 11888) at the 
University of Chicago Hospitals by Dr. Nicholas Gruszauskas and Dr. David Klein using a 
Philips Brilliance iCT 256-slice multi-detector CT scanner. CT scans for the Spinosaurus sp. 
femora (CMN 41869, CMN 50382) were generated by Vincent Bolduc at the Transportation 
Safety Board of Canada’s North Star Imaging CT scanner. Scan settings for each of the 
specimens are included in S1 Table. 

Bone compactness measurement 
We used Materialise Mimics Innovation Suite 23.0 to segment CT scans of specimens new to 
this study. We positioned long bones for cross section perpendicular to the shaft axis. We used a 
threshold that highlighted bone, exporting that image of the cross-sectional slice. To ensure 
pixels were correctly read by Bone Profiler, Affinity Photo was used to binarize the image. 

We used the BoneProfileR R package [3] and the binarized femoral slice images provided by 
Fabbri et al. in their Fig 1 and Extended Data Figs 1–5 [18] to generate additional BoneProfileR 
variables along with Cg and to determine how they varied. Because user-input parameters for the 
program were not reported in Fabbri et al., some variance in our results is likely. For complete 
sections, we used the ontogenetic center (recommended by BoneProfileR authors) in the 
BP_EstimateCompactness function and defaults of 60 angles and 100 distances. We collected 
bone compactness data from the flexit and flexit with pi rotation models. There were three partial 
cross sections, which were run using a user-defined center with setting partial = TRUE in the 
BP_EstimateCompactness function. A few of the cross sections in Fabbri et al. are low-
resolution and necessitated re-binarization. 

Useful metrics, besides Cg, include P, S, and TRC [3,31]; we recorded the min, median, max 
of P, S, and TRC for each specimen. For standardization of the dataset, we z-scored all of these 
variables as well as midshaft diameters provided by Fabbri et al. [18: Suppl. information]. 
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Statistical methods. All pFDA results in this paper were based on R scripts and associated data 
files obtained from the authors of Fabbri et al. [18] and on base-level pFDA code deposited by 
Motani and Schmitz in an online repository [32]. Bootstrap trials and related modifications were 
done in R, with minimal changes necessary to the base-level pFDA code for debugging. 
Bootstrapping pFDA requires randomly selecting with replacement a sample of the dataset taxa 
of the same length as the original dataset. Phylogenetic trees must be pruned appropriately, 
which was accomplished in the same manner as pFDA using the same R library functions. The 
data-gathering aspect of the BCa bootstrap algorithm, which is based on both bootstrap and 
jackknife trials, was also implemented in R. 

Permutation tests on the rank distribution of Cg between extinct and extant taxa were 
implemented in Mathematica using standard methods [33]. Statistical analysis of the output of 
the trials gathered in R, along with the data tables and figures, were generated with code written 
in Mathematica v13.2 [34]. Statistical tests such as Brown-Forsythe, Conover, and Levene 
variance equivalence tests used standard library functions in Mathematica. Other library 
functions were used for distribution fitting in the construction of smooth kernel distribution plots 
and quantile-quantile plots. 

Code was written by the authors for simple LDA and a Monte Carlo simulation using LDA. 
Confidence intervals were calculated in code written in Mathematica that processed data output 
from R scripts. Equation (3) was obtained by symbolic mathematical derivation in Mathematica. 

Code implementing the Hopkins statistics tests was implemented in Mathematica, using the 
published algorithms [35,36]. Under the null hypothesis, the Hopkins statistic is expected to 
approximate a beta distribution Beta (m, m), where m is the number of points sampled. As 
recommend in the literature, a random sample of 20% of the points in a test set was used. As an 
additional verification, a Monte Carlo suite of 1000 pseudorandom examples of a uniformly 
random distribution were generated and tested to build an empirical sampling distribution for the 
null hypothesis. This was done separately for each of the variants of the Hopkins statistic test, as 
well as for each point count in a set being tested. 

Results 

Bone density interpretation 

Bone density and aquatic function. Increased bone density as a secondary adaptation to an 
aquatic environment occurs by pachyostosis, which involves an increase in dense peripheral 
bone deposits, and/or by osteosclerosis, which involves an increase in bone deposition toward 
the center of the medullary cavity of long bones. The potential advantages for semiaquatic and 
fully aquatic tetrapods are well summarized by Houssaye [37]: 

Nopcsa (1923a) suggested that pachyostosis s.l. [sensu lato] might cause an increase in weight of the 
thoracic region in animals with large lungs, to correct the obliquity of their body trim to facilitate 
swimming and breathing. Kaiser (1960) considered that the aim is to counterpoise the volume of air present 
in the lungs to facilitate diving. Wall (1983) added the idea of a counteraction against waves to improve 
stability in agitated waters. More recently, Taylor (2000) suggested that increasing skeletal mass might be 
useful not so much to neutralize the buoyancy of existing lungs, but to allow their enlargement and thereby 
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provide a larger oxygen store. Even if bone ballast reduces acceleration abilities and manoeuvrability, this 
cost in locomotion is probably less important in slow-swimming or bottom-walking animals. Taylor (2000) 
considered that pachyostosis s.l. allows these animals to lose buoyancy quickly with depth and, therefore, 
to reach neutral buoyancy at shallower depths, which means that they can float stationarily or hover at 
shallow depth, without expending energy to maintain their horizontal position; or (ii) walk on the bottom in 
shallow waters, while searching for slowly-moving or stationary food. Moreover, the increased oxygen 
store would allow them an extension of dive duration. This is typically the case for sirenians which, during 
their dives, can adjust their position with minor corrective movements of the forelimbs and tail fluke. 
Therefore, this increase in skeletal mass would have more advantages than disadvantages in forms that 
cannot swim very fast or dive very deep (Taylor 2000). 

A key point in the passage is that the biomechanical needs of buoyancy for herbivores can be 
quite distinct from active predators. Predatory species chasing fast or deep aquatic prey, in fact, 
experience tradeoffs that can disfavor increased bone density, as summarized by Houssaye [37]: 

Whereas pachyostosis s.l. is observed in early mosasauroids, nothosaurs and Archaeoceti, it is absent in 
fast-swimming taxa. Therefore, it appears that pachyostosis s.l. is lost in a lineage in taxa adapting to open 
sea and feeding on mobile preys, and, therefore, needing good manoeuvrability, diving and accelerating 
abilities. Indeed, the new environmental constraints would favor bone lightening and lung reduction (as 
deep diving calls for storage of oxygen in tissues rather than in lungs to minimize problems of 
decompression) in these fast swimming taxa that use a hydrodynamic buoyancy control strategy (Taylor 
2000). 

Decreased bone density has been documented in many fully aquatic, deep-diving taxa 
[10,11,38–40]. In a PGLS model, Sun et al. [41] found a statistically significant correlation 
between diving depth and reduced bone density, including reduced Cg, which has been 
corroborated in studies of cetaceans and other taxa [42]. 

The relationship between Cg and semiaquatic or fully aquatic taxa is thus not simple 
[6,7,11,16], as some taxa exhibit increased and others decreased Cg. The fully aquatic sirenians 
have very dense bones, as noted above, because it suits minimal energy expenditure while 
foraging for stationary underwater vegetation, whereas the fully aquatic orca has lower Cg for 
fast pursuit of prey. The D = 2 (“diving”) datasets in Fabbri et al., however, include herbivorous 
underwater grazers like the manatee, which are of questionable comparative value for 
spinosaurid predators hypothesized to be in pursuit of subaqueous prey. In sum, increased bone 
density per se does not characterize all fully aquatic or deep-diving pursuit predators nor 
correlate with average or maximum diving depth. 

Bone density and body size. Large-bodied terrestrial taxa often have increased Cg [7,11,16,43–
48], and Spinosaurus is in the top tier of body mass among theropods. Other lifestyles, namely 
arboreal [13] and fossorial (burrowing) taxa [12] have been associated with increased Cg, but 
these are not relevant for spinosaurids. The potential for increased Cg as a consequence of large 
body size, however, must be considered as a viable alternative hypothesis, especially when using 
cross-sectional data from the femur of a biped. The effect of large body size has been well 
considered in the common hippo [11]: 

However, it is difficult to determine whether the pattern observed in Hippopotamus reflects its 
graviportal limbs or the benefit of a slight increase in bone mass in its legs enabling their use as ballast 
and offering stability in water. As a result, both adaptations might be mistaken, or even synergistic, and it 
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seems almost pointless to try to unravel their evolutionary integration. Adaptation to a graviportal limb 
morphology should thus be taken into consideration when analyzing possibly amphibious taxa displaying 
a terrestrial-like morphology, and thus notably in the study of the early stages of adaptation to an aquatic 
life in amniotes. 

The dataset includes very few large nonavian dinosaurs comparable to spinosaurids, many of 
which have infilled medullary spaces in limb bones [5,6]. Large-bodied ornithischians are 
represented only by Stegosaurus, and Alamosaurus is the only full-sized sauropod in the dataset. 
Both of these genera as well as the African elephant Loxodonta have femoral compactness 
comparable to Baryonyx. Increased Cg in Spinosaurus, hence, may be a secondary semiaquatic 
adaptation, a consequence of its large body size, or conceivably a combination of the two. 

Lifestyle interpretation 

Lifestyles of extant “subaqueous foragers.” Datasets in Fabbri et al. include taxa in the 
“subaqueous forager” category that do not forage underwater. This includes the common hippo 
(Hippopotamus amphibious), pygmy hippo (Choeropsis liberiensis) [49], common tapir (Tapirus 
terrestris) [50], Malayan tapir (Tapirus indicus) [51], beaver (Castor fiber) [52], and European 
water vole (Arvicola amphibius) [53]. Although each of these taxa has secondary semi-aquatic 
adaptations to aquatic habitats, they nevertheless forage substantially—in some cases 
exclusively—on land and above water. These species habitually enter aquatic habitats to avoid 
predators, not to forage. 

The Fabbri et al. training sets include the American mink (Neovision vision) [54] and 
Pyranean desman (Galemys pyrenaicus) [55] that forage for the majority of their diet above 
water. Both are assigned D = 2 and therefore misclassified as “subaqueous foragers” in femoral 
and rib datasets. Similarly, the American alligator (Alligator mississippiensis) [56,57] and the 
Nile crocodile (Crocodylus niloticus) [58] are misclassified as subaqueous foragers despite 
ample evidence that both have a largely terrestrial diet as adults, though frequently concealing 
themselves partially or fully submerged while stalking animals on the shore [56,59–64]. These 
species also document the complexity of functional assignment, as they grow by orders of 
magnitude and often exhibit dietary change during ontogeny [62,65,66]. Crocodilians may be 
insectivores while very small, submerged piscivores at moderate size, and transition to terrestrial 
prey as adults. A scheme that does not specify ontogenetic stage cannot classify such species. 
This issue is highly relevant because ontogenetic dietary niche partitioning has also been 
identified in theropod dinosaurs [67–69]. Like crocodilians, some predatory dinosaurs spanned a 
similar range of body size from hatchling to adult and almost certainly accessed a range of size-
appropriate prey. Spinosaurids, which include one of the largest known theropod dinosaurs, are 
likely to have sought a sequence of preferred ecological niches during ontogeny. 

Many other terrestrial species forage by capturing aquatic prey just under the water 
surface without being submerged themselves. Terrestrial brown bears, black bears, and wolves 
(not included in Fabbri et al. training datasets) prey upon spawning salmon [70–73], often 
plucking them from below the surface. Jaguars hunt caiman or capybara both above and below 
water [74–76]. In each case, the prey being foraged is underwater, but the predator doing the 
foraging is either partly or wholly above the water. Occasional full submersion would never 
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qualify them as secondarily aquatic or even semi-aquatic species, even when aquatic prey 
comprise a substantial, or even critical, component of their diet [77]. 

Eagles, osprey and other raptors, and many other birds such as skimmers and egrets 
similarly forage while flying by grabbing fish from under the water surface [78–81]. The 
foraging is clearly subaqueous, but it is equally clear that the airborne forager is almost entirely 
above the water. Birds such as herons, storks, egrets, and cranes stand in shallow water with 
most of their body above water, plunging their head underwater to capture fish and other aquatic 
prey [82–84]. That behavior, which literally would qualify as “subaqueous” foraging, does not 
involve diving. 

The commonality across these cases is that the prey item is underwater, so the foraging 
by necessity occurs there, but the forager does not fully submerse its body. As a result, there is 
no connection between foraging behavior and diving frequency, and thus no plausible direct 
connection with bone density. Animals that forage for prey underwater may or may not be 
underwater themselves and thus may not need the ballast effect of higher bone density. Full 
representation of “subaqueous foragers” would necessitate including these taxa in the D = 2 
category. 

The D = 2 dataset in Fabbri et al. appears to have been composed of animals that dive, 
rather than those that forage underwater. The pivot between one concept to the other occurs in 
this passage [18]: 

Previous studies applied different categorizations for the characterization of aquatic lifestyles 
among extant and extinct taxa: ‘aquatic’ and ‘semiaquatic’ were used contra ‘subaqueous 
foraging’ applied in this study. Our ecomorphological attribution is focused on a specific 
behaviour linked to an ecology, rather than a categorization of its entirety. We find our 
categorization to be more accurate: for example, previous studies coded penguins and cetaceans as 
aquatic, while crocodilians were stated as semiaquatic. Whereas penguins and crocodilians are still 
ecologically dependent on terrestrial environments (for example, for laying eggs), cetaceans are 
completely independent from land. On the other hand, all these clades engage in subaqueous 
foraging. Therefore, our ecological attribution is in agreement with previously applied ecological 
categories, but do not exclude dependency to terrestrial environments to satisfy autecological 
requirements, such as reproductive behaviour. 

Essentially no supporting evidence is presented to support the utility or “accuracy” of 
substituting “subaqueous foraging” in place of the more traditional characterizations “semi-
aquatic” and “aquatic.” The examples we have cited above of animals that dive but do not forage 
underwater and those that forage underwater without diving show this proposition to be false. 
Again, it seems that Fabbri et al. use “subaqueous foraging” to categorize “subaqueous” activity 
or habitual diving. 

 The novel claim of Fabbri et al. is to demonstrate correlation between Cg and 
“underwater foraging” or habitual diving. Absent such a correlation, their analysis would 
conclude that spinosaurids had some degree of semi-aquatic adaptation, which has long been 
proposed. 

Lifestyles of extinct “subaqueous foragers.” Training datasets usually are restricted to extant 
taxa with observable lifestyles when the aim is to discern lifestyle in extinct species. The lifestyle 
for many extinct species, in contrast, is specified in the training datasets of Fabbri et al. The 
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categorical variable D (“diving”) is scored in many extinct species as nondiving or as rarely or 
frequently diving “subaqueous foragers” (0–2). For taxa with flippers, such as Plesiosaurus, this 
interpretation is a reasonable extrapolation based on morphology and paleoenvironment of 
fossilization. For others, such as the extinct hippopotamus Hexaprotodon, there would be 
considerable uncertainty regarding its habits in water, as it has fewer secondary aquatic 
adaptations than the living common hippo [17], which forages in terrestrial environments. 

Lifestyles of extinct “nondivers.” Similar extrapolation regarding the lifestyle of extinct species 
was not granted to those long interpreted as fully terrestrial. A large subset of taxa, 37 nonavian 
dinosaurs, are scored as nonflying reptiles with “unknown” diving capacity (F = 0, 
D = unknown). All nonavian dinosaurs in the analysis (including Spinosaurus), could thus 
potentially have been rare or frequent “divers.” That subset includes Stegosaurus with 
elephantine feet, Oviraptor, which is known to have lived and nested in xeric habitats far from 
any shoreline, and Alamosaurus, with columnar limbs discovered in inland terrestrial deposits. It 
seems arbitrary to be able to score in advance nearly all “subaqueous foragers,” while remaining 
blind to the habits of non-spinosaurid nonavian dinosaurs, all of which have long been regarded 
as fully terrestrial [5]. The categorization of these taxa as “unknown” for diving is a major reason 
that the terrestrial cohort (non-flying, non-diving; F0D0) consists almost entirely of extant 
species. 

Inclusion and exclusion of taxa 

Body size inclusion and exclusion. The datasets in Fabbri et al. for lifestyle evaluation of large-
bodied spinosaurids include taxa across a wide range of body size. Taxa of body size more 
comparable to spinosaurids were removed prior to analysis. Some taxa included in the datasts are 
truly miniscule by comparison: the smallest have femoral diameters less than 1 mm and body 
massed of 7 g or less. Spinosaurus achieved masses approximately 106 times larger. 

If the small end of vertebrate body size is correlated with low Cg, then including small 
crouching terrestrial taxa, such as shrews and voles, may bias the training dataset to associate the 
low Cg of small taxa with a non-diving lifestyle. Conversely, increased Cg, which is correlated 
with large body size, is an alternative hypothesis to account for elevated Cg in the (less hollow) 
hind limb long bones of Spinosaurus [26]. Fabbri et al. pruned “graviportal” taxa from the full 
dataset of 200 taxa (Table 2, ds1) prior to the pFDA analysis, effectively removing all large-
bodied terrestrial taxa closest in body size to Spinosaurus. 

Taxa removed can be assessed from two files provided by Fabbri et al.: “femur compactness 
all no graviportals and pelagic.csv” (Table 2, ds3) and “rib compactness all no graviportals and 
pelagic.csv” (Table 2, ds4). These files are read by their R script that performs the pFDA 
analysis. Taxa removed include the woolly mammoth Mammuthus primigenius with a large 
femoral diameter (172 mm). The largest taxon remaining in the pruned dataset is the digitigrade 
(hooved) European bison Bison bonasus (femoral diameter 63.6 mm), which is considerably 
smaller than adult Spinosaurus (femoral diameter ~81 mm). Although Hippopotamus 
amphibicus, with adult body mass over one metric ton, exceeds that of Bison bonasus and would 
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be the heaviest extant animal in the pruned dataset, the individual included has a smaller femoral 
diameter (59.3 mm). 

Fabbri et al. defined “graviportal” succinctly as species with “columnar limbs” [18: 855]. 
The R script used for taxon exclusion, however, removed a more diverse set of species. Three 
rhinoceroses (Ceratotherium simum, Rhinoceros sondaicus, Rhinoceros unicornis) and the 
extinct hippopotamus Hexaprotodon were culled, despite their distinctly flexed limb postures. 
Culled taxa also include the living pygmy hippo Choeropsis liberiensis and extinct Desmostylus 
hesperus, neither of which can be construed as graviportal. Fabbri et al. also asserted that 
“graviportality does not affect rib compactness” [18], but recent studies suggest that bone density 
in these two skeletal components is often correlated [38,85]. 

The term “graviportal,” finally, has no universal definition [43,48,86,87]. Originally it 
referred to a specific posture or mode of terrestrial locomotion. More recent studies, however, 
have shown that both posture and locomotor mode lie on a continuum, with position better 
captured by osteological indices (long bone length/width ratios) [43,44,86,88,89]. Some regard 
“graviportal” as a mode of quadrupedal locomotion, whereas others outline criteria for 
“graviportal bipeds” [47,90–92] that would include spinosaurids [84,85]. The precise definition, 
however, is irrelevant as higher Cg tends to characterize all large-bodied animals irrespective of 
posture or mode of locomotion [17,44–46]. 

Removal of “deep diving” or “pelagic” taxa. Fabbri et al. also remove taxa that they deem 
“pelagic” or “deep diving.” Although these terms are used for very distinctive—and sometimes 
nonoverlapping—lifestyles, Fabbri et al. used them interchangeably. Setting that distinction 
aside, Fabbri et al. used anatomical observations to distinguish “deep diving” taxa: 

High bone density is therefore an excellent indicator for the initial stages of aquatic adaptation, but 
poorly distinguishes between wading, deep diving, and terrestrial habits. These limitations can be 
overcome using anatomical observations because deep diving shows other transformations of the 
body plan, such as presence of fins and flippers. 

We agree that finned or flippered taxa are poor models for comparison to spinosaurids which 
manifestly do have terrestrial limbs. Even if one supposed that spinosaurids were on an 
evolutionary trajectory to become fully aquatic (highly speculative, as no fully aquatic 
descendants have been discovered), the best points of comparison would still be other taxa with 
terrestrially useful limbs at an early stage of secondary aquatic adaptation. 

Applying their stated anatomical criteria for identifying “deep diving” would mean removing 
all taxa that show the anatomical features they identify. Taxa removed in the file “femur 
compactness all no graviportals and pelagic.csv,” however, do not follow the anatomical criteria 
specified —i.e., transformations of the body plan or the presence of fins and flippers. The extant 
cetaceans Bryde’s whale Balaenoptera brydei and orca Orcinus orca were removed, however the 
flippered extinct whale Basilosaurus was retained. The extinct seal (Callophoca obscura) was 
removed, yet the extant harbor seal (Phoca vitulina) was retained. The plesiosaur Cryptoclidus 
was retained despite recent work suggesting an open-ocean lifestyle for many plesiosaurs [93]. 
Despite their flippers, fins, and flukes, sirenians, plesiosaurs, ichthyosaurs, and nothosaurs were 
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all retained. Instead of following the anatomical signature, Fabbri et al. seem to have simply 
removed taxa with low Cg from the D = 2 group. 

Ignored and redundant taxa. Fabbri et al. incorporated 78 taxa in the rib dataset from 
Canoville et al. [38] but ignored an additional 43 extant species that merit inclusion, including 
semiaquatic, large-bodied terrestrial varanids (Varanus salvator, water monitor; Varanus 
komodoensis, Komodo dragon). The Triassic aquatic reptile Nothosaurus, in contrast, is 
represented by six specimens (Table 3). Nothosaurus and its close relatives (three genera) are 
overrepresented, accounting for ~15% of the nonflying/diving (F0D2) dataset and 21% of the 
extinct taxa. Bone density in Nothosaurus, in addition, is significantly negatively correlated with 
body size (femoral diameter) (S1 Fig; R2 = 0.84). The bone density data for this taxon, thus, 
would not scale to the body size of a spinosaurid (where Cg would drop to near zero) and 
probably should be removed from the analysis for that reason alone. 

Other dataset concerns 

Bone density disparity between extinct and extant taxa. Bone compactness (Cg) ought to be a 
determinant of secondary aquatic adaptation in both extinct and extant taxa. For a given lifestyle, 
bone compactness should not be systematically higher or lower in living versus extinct species. 
Striking differences in bone compactness, nonetheless, are apparent between extinct and extant 
taxa of similar lifestyle in some of the datasets (Table 3). The femoral dataset for nonflying 
divers (F0D2), for example, shows a strong bias in values of Cg, with values among extinct taxa 
higher than those of extant taxa. Of the top 21 taxa ranked by Cg, 20 are extinct (Table 3). The 
two extant taxa having the highest Cg rank 16 and 22 in this dataset (Table 3). The disparity is 
particularly worrisome because spinosaurids were clearly nonfliers (F = 0) and therefore must 
either have been nonflying divers (F0D2) or terrestrial (F0D0). The greater average density of 
extinct taxa may be the result of secondary mineral deposition/precipitation in porous bone 
during fossilization. The differences might instead arise from the specific choices of extinct taxa 
included or some other reason. 

Table 3. Nonflying, diving subsample of taxa (F0D2) based on femoral data are ranked by 
bone compactness (Cg). 

Rank Taxon 
Femoral 
diameter (mm) Cg 

Extant 
(E) 

Extant  
subaqueous forager 

1 Serpianosaurus 4.8 0.989 — — 
2 Large Eocene stem penguin 16.744 0.988 — — 
3 Maiacetus 30.43 0.985 — — 
4 Nanophoca vitulinoides 20.3 0.973 — — 
5 Cryptoclidus 84.08 0.97 — — 
6 Champsosaurus_ 7.85 0.968   
7 Neusticosaurus 19.1 0.968 — — 
8 Phocanella pumila 29.5 0.966 — — 
9 Placondontia indet. 23.38 0.959 — — 
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10 Nothosaurus_102 5.168 0.955 — — 
11 Champsosaurus 12.389 0.952 — — 
12 Small Eocene penguin 9.457 0.942 — — 
13 Paraplacodus 9.05 0.939 — — 
14 Nothosaurus_150 8.125 0.938 — — 
15 Rhaeticosaurus 36 0.936 — — 
16 Caiman yacare 12.623 0.929 E yes 
17 Basilosaurus 21.96 0.926 — — 
18 Nothosaurus_568 5.464 0.909 — — 
19 Anarosaurus 10 0.901 — — 
20 Plesiosaurus 41 0.90 — — 
21 Rodhocetus 26.863 0.893 — — 
22 Desmana moschata 5.1 0.89 E yes 
23 Alligator 18 0.884 E no [56,57] 
24 Cricosaurus 16.265 0.874 — — 
25 Spheniscus humboldti 8.06 0.872 E yes 
26 Ornithorhynchus anatinus 5.21 0.871 E yes 
27 Indohyus 7.44 0.867 — — 
28 Simosaurus 22.97 0.865 —  
29 Aptenodytes 16.395 0.864 E yes 
30 Placodontia indet._1 20.97 0.859 — — 
31 Lutra vulgaris 10.02 0.85 E yes 
32 Chironectes minimus 4.78 0.849 — — 
33 Pistosaurus 27.56 0.845 — — 

34 
Micropotamogale 
euwenzorii 2.31 0.844 E yes 

35 Psephoderma 9.37 0.843 — — 
36 Metryorhynchus 27.384 0.828 — — 
37 Nothosaurus mirabilis 16.09 0.828 — — 
38 Hippopotamus amphibius 59.34 0.828 E no [13] 
39 Otaria byronia 22.28 0.821 E yes 
40 Palaeospheniscus 8.52 0.792 — — 
41 Ichthyosaur sp. 165.44 0.776 — — 
42 Nothosaurus mirabilis_1 21.7 0.776 — — 
43 Choeropsis liberiensis 29.78 0.767 E no [49] 
44 Remingtonocetus 35.72 0.765 — — 
45 Simosaurus_1 22.9 0.764 — — 
46 Castor fiber 29 0.749 E no [14] 
47 Nothosaurus giganteus 26.819 0.738 — — 
48 Callophoca obscura 25.86 0.733 — — 
49 Leptophoca proxima 28.9 0.729 — — 
50 Neomys fodiens 0.969 0.729 E yes 
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51 Hexaprotodon garyam 69.4 0.726 — no [17] 
52 Hesperornis 22.914 0.725 — — 
53 Hydromys chrysogaster 5.42 0.689 E yes 
54 Tapirus terrestris 33.2 0.687 E no [16] 
55 Protochampsidae 10.17 0.673 — — 
56 Ichthyosaurus 86.48 0.659 — — 
57 Dyrosaurid 12.54 0.635 — — 
58 Phalacrocorax harrisi 9.26 0.623 E yes 
59 Desmostylus Hesperus 38 0.596 — — 

The femoral dataset used in the analysis of bone density by Fabbri et al. [18] includes 59 
specimens listed here that are categorized as F = 0 and D = 2. Among the extant species 
represented (shaded grey), four do not feed underwater (shaded red). The data set includes six 
specimens of Nothosaurus (bold), which range in rank from 10 to 47. The top 21 ranking taxa by 
Cg include 20 that are extinct and only one extant taxon. 

The nonflying diver (F0D2) subset of 59 taxa has more extinct (43) than extant (16) species, 
an imbalance that may have biased results given their differing Cg. To evaluate that possibility, 
we used a permutation test of Cg rank, the null hypothesis being no difference between the Cg 
values of extinct versus extant taxa (see Materials and methods). We calculated p values for the 
null hypothesis (Table 4). In a second, “coin-flip” test, a binomial distribution was used to 
determine p values for an alternative null hypothesis that the counts of extinct and extant 
specimens in each dataset resulted from random chance. These tests were performed on all four 
dataset variations (Table 1, ds1–ds4) for both F0D0 and F0D2 subsets of femur and rib data. 
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Table 4. Permutation and coin-flip tests of rib and femoral datasets. 

 All Extinct Extant Permutation test 
Minority 

group 

Rank 
Coin-flip 
 p value Dataset n n % n % 

Trials 
(×106) p 1st 2nd 

Femur F0D2 from ds1 59 43 72.9% 16 27.1% 16 0.0011 Extant 16 22 0.00019 
Femur F0D2 from ds3 51 36 70.6% 15 29.4% 16 0.00028 Extant 16 22 0.00142 
Femur F0D0 from ds1 59 5 8.5% 54 91.5% 16 0.556 Extinct 6 13 8.7×10-12 
Femur F0D0 from ds3 50 15 30.0% 19 38.0% 16 0.142 Extinct 6 13 1.7×10-11 
Rib F0D2 from ds2 49 25 51.0% 24 49.0% 16 0.385 Extant 2 4 0.112 
Rib F0D2 from ds4 34 15 44.1% 19 55.9% 16 0.813 Extinct 2 4 0.108 
Rib F0D0 from ds2 63 2 3.2% 61 96.8% 100 <10-8 Extinct 3 41 2.1×10-16 
Rib F0D0 from ds4 58 1 1.7% 57 98.3% 16 n.a. Extinct 2 n.a. 2.1×10-16 

The key datasets used for comparison purposes are summarized by the count of points belonging 
to extinct or extant taxa, along with their percentages. Each dataset contains a minority of either 
the extinct or extant taxa. The top two ranks of the minority group for each dataset are listed. See 
text for details of the permutation and coin-flip tests, which assess the probability that each dataset 
is a representative sample. Abbreviations: 1st and 2nd, rank numbers of highest-ranking and 
second-highest-ranking specimens in the minority group, respectively; n.a., not applicable. 
Shading indicates p < 0.05. 

The permutation test on F0D0 femoral data from ds1 and ds3 have p ≤ 0.0011; we therefore 
reject the null hypothesis that the distribution of Cg values is the same for extinct and extant taxa 
(Table 4, shaded). The test results for the F0D0 rib data from ds2 similarly rejects the null 
hypothesis with high probability (Table 4, shaded). Overall, these statistical tests and p values 
suggest the sampling for Cg is incomparable between extinct and extant taxa. This violates the 
foundational assumption that Cg can be used as a marker for both groups.  

The results of the coin-flip tests on F0D0 (femora and rib) datasets and respective variants 
further indicate that it is extraordinarily unlikely that the pronounced imbalances between extinct 
and extant taxa in these datasets are the result of random chance (Table 4, shaded). 

The rib (ds2) F0D2 dataset, in contrast, sampled roughly equal numbers of extinct and extant 
taxa, and our statistical test are consistent with the null hypothesis. Discordant findings between 
rib and femoral datasets run contrary to the claim that the same Cg signal is preserved in both 
limb bones and axial skeleton. 

A further concern about the imbalance between extinct and extant taxa is that pFDA relies on 
correction of bias based on a phylogenetic tree with branch lengths. Phylogenetic relationships 
and branch lengths are often less well known for extinct than extant taxa. Biased results may be 
generated if there is a marked imbalance between extinct and extant taxa, as occurs in the 
femoral dataset. 

Inclusion of parameters and data shown to be non-significant. Fabbri et al. began their 
analysis with a PGLS linear regression model to determine the statistical significance of 
correlations among their categorical variables (F, D) and two measured parameters (diameter, 
Cg), alone and in combination. They found correlations between the D = 2 (habitual diving) and 
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femoral or rib Cg that are statistically significant (p < 0.001) although extremely weak 
(R2 = 0.172 for femora, 0.108 for ribs). Judging statistical significance solely on p values can be 
misleading [94]. They found no statistically significant correlation of Cg with D = 0 (nondiving) 
or D = 1 (occasional diving), further weakening the argument that Cg alone can predict 
ecology/behavior. 

When bone diameter and Cg were included in the regression, the result was considered 
significant. Fabbri et al. computed the Akaike Information Criterion (AIC) weights [18: 
Supplementary tables 3,4]. Their own calculation thus shows that in the femoral dataset, the 
model that includes diameter Cg and MD is (under the assumptions behind AIC weights) has 
about 49 times less explanatory power than a model that includes Cg alone. For the rib dataset, 
the model including Cg and MD similarly has AIC weights 34 times smaller than those of the 
model that includes Cg without bone diameter. 

Despite these results favoring simpler models based on Cg alone, Fabbri et al. conducted 
their main analysis using a two-dimensional (MD, Cg) dataset. A similar situation occurs for the 
cases where D = 1 and F = 1, 2. For D = 1 in combination with MD, the correlation falls well 
short of statistical significance with p = 0.648 for femoral data and p = 0.492 for rib data. The 
correlation is also very weak for F = 1, 2.  

In conventional practice, such PGLS results would require excluding irrelevant taxa with 
D = 1 and F = 1, 2, from the training set to avoid further weakening the correlation with D = 2. 
Instead, the R script of Fabbri et al. treats these taxa as D = 0 in the training dataset by means of 
an auxiliary variable (“diving_or_not”). In our analysis, we used both the Fabbri et al. method 
(denoted “Many vs. F0D2”) and a second analysis with the better-justified use of F0D0 and 
F0D2 taxa as the only members of the training dataset. 

The pFDA method allows the assignment of prior probabilities for the membership of a test 
taxon for Bayesian calculation of posterior probabilities of class membership. The default 
approach used in pFDA is that the prior probabilities are proportional to class membership [95], 
which is the count of taxa in the F0D2 group versus the count in the alternative group (either 
“Many” or F0D0). While this may make sense in some contexts, using class membership to bias 
the classification in this case is problematic. Whether spinosaurids are “subaqueous foragers” or 
not should not depend on the vagaries of how many taxa investigators collect. Analysis should 
employ unbiased priors, i.e., an equal probability of membership in F0D2 or not. 

Axial pneumaticity and buoyancy 

Impact of pneumaticity. Research on increased bone density (pachyostosis, osteosclerosis) has 
focused on its potential role as ballast decreasing buoyancy in secondarily semiaquatic and 
aquatic amniotes. Buoyancy, nonetheless, is impacted far more strongly by pneumaticity in 
theropods like Spinosaurus because pneumatic invasion replaces soft tissue or bone of density 
greater than 1 g/ml with air. Cancellous or dense bone infilling, by comparison, replaces soft 
tissue (blood vessels/marrow of density near that of water, 1 g/ml) with bone of only slightly 
greater density (~1.2 g/ml). Pneumaticity in the axial and appendicular bones in theropods 
(including birds) thus increases buoyancy far more than a comparable volume of dense bone 
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decreases it. The simpler adaptation in extant nonflying diving birds to decrease buoyancy is to 
reduce or eliminate pneumaticity. 

Extant birds include some that fly but do not dive (F2D0) and others that regularly perform 
both functions (F2D2). Bone compactness (Cg) is generally higher in those divers that do not fly, 
but their bone compactness polygons broadly overlap (Fig 1A and 1B). Bone compactness 
among proficient avian divers thus does not cleanly distinguish those that have abandoned flight 
and might be thought to have evolved heavier bone mass as ballast. Decreased pneumaticity, on 
the other hand, has been shown to be correlated with the evolution of pursuit diving in birds. The 
postcranial skeletons of darters, loons, cormorants, and penguins are all less pneumatic than 
those of other birds that fly or forage while wading or floating [96]. 
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Fig 1. Lifestyle overlap in femoral and rib data from Fabbri et al. [18]. Femoral (A, C) and rib 
(B, D) plots of bone diameter versus bone compactness (Cg). (A, B) Convex hull polygons 
colored by functional group, as defined by Fabbri et al. (C, D) Points and corresponding convex 
hull polygons for terrestrial (F0D0) and nonflying/diving (F0D2) groups. Abbreviations: 0, 
absent; 1, rarer; 2, habitual; Ba, Baryonyx; D, diving; F, flying; Sp, Spinosaurus; Su, Suchomimus; 
u, unknown. 

Spinosaurid axial pneumaticity. Fabbri et al. remarked that “osteosclerosis is observed across 
multiple skeletal elements in Baryonyx and Spinosaurus” and that the absence of similar bone 
density in Suchomimus is “secondary loss.” They concluded that “subaqueous foraging is 
ancestral for Spinosauridae” [18: 856]. On its face, the argument is ambiguous regarding the 
ancestral spinosaurid condition, given opposing conditions in closely related sister taxa 
(Baryonyx, Suchomimus) to Spinosaurus. A shift to osteosclerosis in ancestral spinosaurids with 
a reversal in Suchomimus (their argument), in other words, is parsimoniously equivalent to two 
independent shifts toward osteosclerosis in Baryonyx and Spinosaurus. 

Bone structure in these three spinosaurids, however, provides ample evidence of well-
developed paraxial pneumaticity that would supersede any ballast effect from variable long bone 
infilling. There are also large medullary cavities (presumably fat-filled) that hollow the centra at 
the base of the tail that would further reduce bone density [26]. The internal volume of cervical 
paraxial pneumaticity (~25% by volume) is well documented in Spinosaurus [97] with evidence 
that external paraxial air sacs extended along the entire dorsosacral column (Fig 2). In 
Suchomimus and Baryonyx, most precaudal vertebrae have internal pneumatic chambers 
(camerae) within the centra and deep fossae for pneumatic sacs on the neural arch (Fig 2B–2D). 
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Fig 2. Pneumatic features in the dorosacral column in spinosaurids. (A) Suchomimus 
tenerensis (MNBH GAD500) precaudal column and pelvic girdle showing pneumatic features in 
(B) D2 in lateral view with coronal (B1) and axial (B2) CT cross sections, (C) D13 in lateral view 
with axial (C1) and sagittal (C2, 3) CT cross sections, and (D) S2 in ventral view with axial (D1) 
and coronal (D2) CT cross sections. (E) Spinosaurus aegyptiacus precaudal column and pelvic 
girdle showing pneumatic features in (F) ~D2 in lateral, anterior and dorsal views with coronal 
(F1, 2) and axial (F3) CT cross sections, (G) ~D6 in dorsal and lateral views showing coronal (G1) 
and axial (G,2, 3) CT cross sections, (H) ~D8 in dorsal and lateral views with axial (H1) and 
coronal (H) CT cross sections, and (I) S3 centrum in ventral and lateral views with coronal (I1) 
and axial (I2) CT scan sections. Neotypes FSAC-KK-11888 (panels G, H, I) and BSPG-2006-I-54 
(panel F). CT section lines are color-coded by orientation (magenta, coronal; blue, axial-
horizontal; black, sagittal/parasagittal). Scale bars are 10 cm. Abbreviations: bs, bony septum; c, 
cervical vertebra; cmr, camera; d, dorsal vertebra; for, foramen; fos, fossa; nc, neural canal. 

Precaudal vertebral pneumaticity is present in Spinosaurus to an even greater degree than in 
its baryonychine relatives Baryonyx and Suchomimus. The pneumatic foramina and camerae in 
the anterior dorsal vertebrae (Fig 2F) are larger than in Suchomimus, and mid dorsal centra have 
marked, oval pneumatic fossae that reduce intervening bone to a thin sagittal septum (Fig 2G and 
2H). Similarly, mid-sacrals have large pneumatic foramina and internal camerae (Fig 2I). 

These findings challenge the hypothesis that increased long bone or rib density served as 
ballast for diving in either Baryonyx or Spinosaurus, because decrease in buoyancy from 
increased long bone or rib compactness (Cg) is more than offset by pneumaticity in the axial 
skeleton. In Spinosaurus, in addition, bone mass loss from reduction in hind limb length is 
greater than the mass gained from medullary infilling [26]. A flesh model reconstruction of this 
genus that incorporates body partition densities confirms net buoyancy as a serious impediment 
for underwater submergence [26]. 

Variation in Cg 
Significant variation may exist in Cg values unrelated to ecology or behavior, such as variation 
among individuals of a species, changing values during ontogeny, variation in different skeletal 
elements, and variation at different locations along the shaft of a single bone. Measurement error 
may accrue from several sources, such as calculating the index from thin sections or CT scans, 
decisions taken in thresholding images, and the degree of repair of cracks and missing bone in 
damaged or incomplete specimens. Attempting to replicate Cg values from the original bone thin 
sections used in Fabbri et al. demonstrate that all these sources of variation are present and can 
figure importantly in the interpretation of bone compactness data. 

Bone compactness variation among individuals, during ontogeny, and along bone shafts. 
Most species data points in bone compactness studies, including Fabbri et al., are based on a 
single measurement from a single individual. The reliability of bone compactness data requires 
data on individual variation, variation during growth and maturation, and variation within 
individual bones, although very little research has established any of these across vertebrates. 
 In the manatee Trichechus manatus latirostris, Cg values in ribs were measured from thin 
sections in 12 individuals that included males and females, as well as growth stages from 50 to 
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1057 kg [98]. Cg values ranged from 0.8389 to 0.9962, with a mean of 0.9109 and a standard 
deviation of 0.0417, a relative range of 13.9% (relative range: high minus low values divided by 
the mean and then multiplied by 100). Excluding the youngest three individuals of least body 
mass reduces the size range (161 to 1057 kg) without reducing the relative range significantly 
(13.2%). 

We compiled multiple measurements of Cg from multiple individuals within or across 
studies for taxa present in the datasets of Fabbri et al. (Table 5). We did the same for taxa in a 
recent multi-individual study of flightless birds (Table 6) [47]. Multiple measurements of Cg in 
the same bone of the same species often exhibit relative ranges exceeding 10%, and the median 
relative range among the entries in Tables 5 and 6 is 18.6%.  
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Table 5. Examples of individual variation in Cg measurements across sources used by 
Fabbri et al. [18]. 

Taxon Bone References MD (mm) Cg Cg range (%) 

Phoca vitrulina Rib 
[99] 7.8 0.436 

22.0% 
[38] 11.49 0.544 

Sphenicus humboldti Rib 
[18] 4.08 0.908 

24.3% 
[38] 4.98 0.711 

Giraffa 
camelopardalis 

Rib [38] 
21.4 0.544 

1.6% 
18.16 0.553 

Metriorhynchus Femur 
[11] 27.38 0.828 

46.1% 
[100] — 0.518 

Ceratherium simum Femur [11] 
78.6 0.669 

20.5% 92.6 0.819 
70.2 0.827 

Mammuthus Femur [11] 
102.9 0.846 

14.9% 139.5 0.898 
172 0.773 

Nothosaurus mirabilis Femur [101] 
16.09 0.828 

6.5% 
21.7 0.776 

Nothosaurus Femur [102] 
5.168 0.955 

4.9% 8.125 0.938 
5.464 0.909 

Simosaurus Femur [103] 
22.97 0.865 

12.4% 
22.9 0.764 

Diceros bicornis Humerus [11] 
79.6 0.866 

7.9% 
70.2 0.937 

Ceratherium simum Humerus [11] 
90.7 0.771 

12.1% 
89.3 0.87 

Dicerorhinus 
sumatrensis Humerus [11] 

50.6 0.941 
17.5% 

52.8 0.7895 

Scutellosaurus lawleri Humerus [11] 
6.1 0.767 

18.6% 6.2 0.748 
139.5 0.898 

Data compiled for taxa in Fabbri et al. [18] that have multiple Cg and MD measurements from the 
same bone. Cg variation (largest to smallest) ranges from 1.6 to 46.1% relative to respective 
means. (Cg range = (max − min)/mean × 100). Most are based on only two or three specimens. 
Abbreviations: MD, maximum bone diameter; Cg, global bone compactness; max, maximum; 
min, minimum.  
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Table 6. Examples of individual variation in Cg measurements of flightless birds from 
Canoville et al. [47]. 

Taxon Bone MD (mm) Cg Cg range (%) 
Dromaius 
novaehollandae 

Tarsometatarsus 
32.7 0.655 

15.6% 
28.5 0.560 

Rhea americana 

Femur 
n.a. 0.656 

47.5% 
22.6 0.404 

Tibia 
17 0.459 

33.5% 
21.6 0.644 

Tarsometatarsus 
20.3 0.826 

28.2% 
16.5 0.618 

Struthio camelus Femur 
46.3 0.392 

30.2% 
55.1 0.289 

Aepyornithidae Femur 
96.5 0.512 

28.1% 
82.4 0.386 

Variation in bone diameter and compactness among multiple specimens of four flightless birds. 
Abbreviation: MD, maximum bone diameter; Cg, global bone compactness; n.a., not available. 

Median variation of 18.6% is a very large percentage, considering the limited range in Cg 
(0.43–1) reported by Fabbri et al. Our tabulation suggests that variation within a single taxon 
could account for as much as ~33% of the total variation across taxa. Even if that variation 
proved atypical, even a few taxa with large discrepancies—such as the maximum range in Cg 
observed in flightless birds (47.5% in femora of Rhea americana, Table 6)—could bias a 
discriminant analysis. Most of the taxa in Tables 5 and 6 are represented by only two or three 
specimens. Better assessment of variation in Cg will require larger sample sizes for Cg among 
conspecifics and across a greater range of taxa. These data underscore the caution needed when 
drawing conclusions based on isolated measurement of Cg. 

Variable long bone infilling. Medullary cavities in long bones of the fore and hind limb of 
Spinosaurus are variably infilled (Fig 3B and 3C). Fabbri et al. based their estimated Cg for 
Spinosaurus on one thin section taken from one fully infilled subadult femur (Fig 3D). A second 
femur of Spinosaurus [104] (Fig 3A and 3B) is slightly larger than the infilled neotypic femur 
(Fig 3C) but has a significant medullary cavity lined with cancellous bone that would register as 
significantly less dense in thin section at midshaft. With only two subadult femora available for 
Spinosaurus, the meaning of such variation is uncertain. In extant birds, intraspecific variation 
has also been recorded in the volume and location of medullary cavities [105]. These examples 
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underscore the need to sample species more broadly rather than to accept a single measurement 
of bone compactness as representative of a given species. 

 

 

Fig. 3. Femora and a manual phalanx of cf. Spinosaurus aegyptiacus from the Kem Kem 
Group in Morocco. (A, B) proximal one-half of an isolated right femur in anterior view and distal 
midshaft cross-sectional views (CMN 41869); (C) CT scan of the left femur of the neotype with 
eight cross sections (FSAC-KK 11888); (D) CT scan of an isolated right phalanx I-1 in sagittal 
cross section (UCRC PV8). Abbreviations: at, anterior trochanter; h, head; mc, medullary cavity. 

Bone density metrics and variation. The Cg metric used by Fabbri et al. as a proxy for bone 
density is one of many metrics available to capture bone compactness. Over the last decade, 
other metrics generated by the Bone Profiler program (S, P, Min, Maxrad, Cc, Cp) have been 
shown to better correlate with lifestyle in extant amniotes [3,8,82,99]. Comparing results 
generated by metrics other than Cg is beyond the scope of the present study. 

Fossil specimens are often damaged pre- or postmortem, as well as during collection and 
preparation. Spread cracks are common and often infilled with matrix. Exterior portions of bone 
are frequently eroded or broken away. Digital repair of these imperfections are needed to more 
accurately assess Cg. Repairs of this kind generally increase Cg slightly because repaired bone is 
usually filled in as solid black on a binarized image, no matter the vascularity present in adjacent 
bone. Fabbri et al., for example, repaired the broken edge of a bone cross section from a marine 
reptile, filling in the missing piece with solid black (Fig 4). Comparing and remeasuring bone 
compactness in the sections suggests that the black infill for the missing bone may have raised 
the Cg by ~5%. 
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Fig 4. Comparison of the original binarized and digitally repaired versions of a bone cross 
section from the marine reptile Neusticosaurus. (A) Threshold-filtered cross section of 
Neusticosaurus edwardii [106: fig 5, panel D] with dashed lines showing bone lost to erosion. (B) 
Digitally-repaired image using solid black infill from Fabbri et al. [18: Extended data Fig 4]. 

One can anticipate Cg varying along the shaft of long bones or ribs as bone diameter changes 
and cross sections encounter external trochanters or condylar ends. This can be a significant 
source of sampling variation. A sequence of thin sections along the shaft of a dorsal rib of the 
marine reptile Nothosaurus [107] shows Cg variance of ~35% (Fig 5). Although this particular 
specimen was not used by Fabbri et al., nothosaurs compose a significant component of their 
dataset. Cg variation along the shaft of femora or ribs in other taxa has not been documented. 
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Fig 5. Variation of Cg at different points along a single Nothosaurus dorsal rib. Images from 
Klein et al. [107: Fig 3, panels B1–B8] were used to measure variation in Cg (~35%) along the rib 
shaft. 

Bone density in spinosaurid femora. We report below on significant sampling and 
methodological variations in reported Cg values for all three spinosaurids that were used by 
Fabbri et al. as the basis for evaluating spinosaurid lifestyle as either habitually diving (a 
“subaqueous forager” seeking underwater prey) or nondiving (a wading terrestrial shoreline 
predator). 

Sampling variation in fossil taxa involves the location of a section on a long bone or rib (the 
bones most commonly sampled), the developmental stage and potentially the sex of the 
specimen, and diagenetic and taphonomic factors (e.g., fracturing, deformation, infilling, and 
external erosion). 

Methodological variation in bone density determination includes, but is not limited to the 
chosen bone compactness metric; the type of bone section analyzed (CT digital scan, mounted 
thin section); the threshold value used to binarize a section image; and contour, masking, or 
repair steps taken prior to measurement of Cg. These many sources of variation ensure that 
independent researchers will not obtain the same quantitative value for bone compactness from a 
single specimen, even when deriving measurements from the same cross section. 

Spinosaurus aegyptiacus. Fabbri et al. reported a very high Cg of 0.968 for Spinosaurus 
calculated from a binarized image based on an image taken of a two-part thin section from the 
femoral shaft of the neotype skeleton [22]. That thin section, which was made by one of us 
(PCS), was taken on the narrow portion of the femoral shaft below the fourth trochanter (Fig 3C, 
section 5) and shows complete infilling of the medullary cavity. Fabbri et al. calculated their Cg 
on a binarized image of this section that showed a small oval core of low density and an open 
(white) crack separating a portion of the cortex [18: Fig 1b,28: Fig 1a]. 

Inspection  of the thin section under magnification reveals several details that are otherwise 
impossible to discern from whole or half thin-section images. First, there is no medullary cavity, 
despite a dark-stained region in the center of the bone shaft (Fig 6). The central core is entirely 
filled in with bone that is slightly more cancellous. Second, a vertically oriented dark red zone to 
the right of the core, which shows up as a less-dense zone in the binarized image of Fabbri et al., 
is an artifact of hematitic stain. Under magnification, there is no difference in the bone texture or 
density of this zone. Third, a crack separating a portion of the lower left thin section occurred 
during production and mounting of the thin section. The gap created by the crack should be 
closed digitally prior to Cg measurement. These three factors each slightly elevate the Cg of the 
neotype femoral section to 0.998, which is our best estimate. This section shows an essentially 
fully in-filled condition, whereas the binarized image reported by Fabbri et al. shows what 
appears to be an ovoid, less-dense core that generated a Cg approximately 3% lower (0.968). 
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Fig 6. Reevaluation of Cg in a two-part thin section from the left femur of the neotype 
specimen of Spinosaurus aegyptiacus (FSAC-KK 11888). (A) Transmitted light image of a two-
part thin slice from the mid shaft. (B) Thin slice image modified to close gaps created by natural 
breaks. (C) Binary image and associated Cg value without filling the break between section 
halves. (D) Binary image and associated Cg after filling the gap between section halves. 

In response to our critique of Fabbri et al. [27], they incorrectly cited our response and 
introduced misinformation [28]: 

Additionally, based on CT scan imaging, Myhrvold et al.1 accuse us of ignoring a medullary cavity in the 
femur of the neotypic specimen of Spinosaurus and that we are incorrectly oversampling bone tissue based 
on a thin section of the femur. As shown in Figure 1, cross sections obtained from the CT scan presented by 
Myhrvold et al.1 lack adequate contrast and resolution, obscuring any details of its internal structure, 
contrary to the thin section used in our study. 
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We never suggested there was a medullary cavity in the neotypic femur, either when the thin 
section was first published [22] or as later discussed in our critique [27]. The femoral CT scan 
figured here (Fig 3C, section 5), standard for a large bone CT taken by a medical scanner, is 
more accurate than the binarized image used to calculate Cg in Fabbri et al., as it accurately 
shows a slight lessening of density toward the core but no medullary cavity. 

More significantly, infilling of the medullary cavity of the femur in Spinosaurus is variable, 
as shown by a second specimen of similar body size from the same beds in Morocco [27]. A 
persistent reduced medullary cavity is exposed by fracturing of the shaft (Fig 3A and 3B) and has 
been visualized with a CT scan proximal to the break (Fig 7). The absence of matrix infilling of 
cracks or external erosion sets aside the need for digital repair prior to bone compactness 
measurement. To calculate Cg, we subjected the original gray-scale CT image (Fig 7A) to 
thresholding using pixel gray values from 0 to 255, transforming it into binary (0, 1) values. 
Three optional thresholds generated Cg values from 0.804 to 0.888, a relative range of 9.9% (Fig 
7B–7D). As anticipated, these Cg values are significantly lower than reported on the basis of the 
nearly solid neotypic femur. Our median Cg value of 0.849 is somewhat less than that reported 
by Fabbri et al. for Baryonyx (0.876). 

 

Fig 7. Impact of threshold choice on Cg in a cross section of the femoral shaft in a second 
subadult specimen of cf. Spinosaurus aegyptiacus (CMN 41869). (A) CT section from the 
proximal end of the shaft. (B–D) Section images and corresponding Cg values after processing 
with gray-value (GV) lower thresholds ranging from 26 to 36 GV on a 256 GV gradient. 
Threshold values determine which pixels are regarded as bone versus non-bone; higher thresholds 
yield lower Cg values. 
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Given the results from three optional thresholds (Fig 7B–D) for the cross section of the 
second femur of Spinosaurus, we selected the middle image with a Cg of 0.849 as the best binary 
visualization because it registers the less-dense cancellous bone near the medullary cavity 
without also obliterating what appears to be vascular canals in adjacent cortex on the left and 
lower sides of the medullary cavity. This Cg value is very close to the mean value (0.847) from 
our thresholding range. In this case, there is no physical thin section to examine under 
magnification in polarized light to verify what is bone or mineralized infill. 

Although this CT-based femoral section (Fig 7A) was not available to Fabbri et al., they later 
reported its Cg as 0.914 [28] without presenting the binarized image they used for Cg 
measurement. Presumably they employed more extreme thresholding than the maximum we 
considered reasonable (Fig 7B). Extreme thresholding would raise Cg by obliterating some of the 
smaller spaces in the binarized section. In this case, the Cg measurements on the same section 
differ by 7% due to procedures used in preparation of binarized images. 

Nonetheless, it is clear from available specimens of Spinosaurus aegyptiacus that some 
individuals nearing maturity maintained a reduced medullary cavity with a femoral-shaft Cg 
under 0.900. We reported accurately on this variable condition of medullary cavities in the long 
bones and their presence in certain vertebral centra in Spinosaurus [27]: 

A second femur of Spinosaurus2 (Fig. 1a, b), which is nearly identical in size to the infilled neotypic 
femur3 in their study (Fig. 1c), has a significant medullary cavity lined with cancellous bone that 
would register as significantly less dense as a thin section at mid shaft. Medullary cavities are also 
variably present in forelimb bones of Spinosaurus (Fig. 1d) resembling those in the long bones of 
Suchomimus, a fully “terrestrial” spinosaurid by their account. Fabbri et al.1:ED, Fig. 10 state that 
Spinosaurus and Baryonyx “possess dense, compact bone throughout the postcranial skeleton,” yet 
all three have pneumatic spaces in their cervical column4 that exceed in volume the variable long 
bone infilling, as well as large medullary cavities hollowing the centra at the base of the tail. Neither 
of these features are present in any secondarily aquatic vertebrate divers that employ bone density 
as ballast. 

Commenting on this new information on variability, Fabbri et al. introduced several errors 
[28]: 

Myhrvold et al.1 state that a single phalanx of the neotype of Spinosaurus possess a medullary cavity, 
invalidating our inference of widespread osteosclerosis across the postcranium of this animal; we 
show here that a cross section of the phalanx lacks any medullary cavity, as previously described in 
Ibrahim et al.13–14 

and later: 
Caudal vertebrae 1 and 4 of the neotype of Spinosaurus: contrary to what suggested by Myhrvold 
et al.1, no pneumatization is present in the caudal region of this taxon. 

We clearly described the variable presence of the medullary cavity in both fore and hind limb 
long bones in Spinosaurus, figuring the medullary cavity along the length of a manual phalanx 
from an adult individual as opposed to the subadult neotype (Fig 3D). We were aware of the 
infilled manual phalanges of the neotype. The image they republished of this infilled shaft 
condition was taken by one of us (PCS in [22]) from a break in the proximal shaft of a proximal 
manual phalanx, not at midshaft as they indicated [28: Fig 1c]. Medullary cavities are variably 
present in CT scans of a broader sampling of manual phalanges referable to Spinosaurus 
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aegyptiacus from the Kem Kem Group. The centra of anterior caudal vertebrae in Spinosaurus 
and other spinosaurids, likewise, have a capacious medullary space that hollows the interior of 
the centrum, as we reported [26]. Contrary to Fabbri et al. [28], no one has claimed that the 
hollowed anterior caudal centra in various spinosaurids are pneumatic. 

We present here CT cross sections from a third femur of Spinosaurus aegyptiacus from a 
very young individual collected in the same beds in Morocco as the first two (Fig 8E). This 
femur, which measures only 11.8 cm in length [104], has a large medullary cavity extending 
along the length of its shaft and would pertain to an individual with a body length of 
approximately ~2.0 meters. Ontogenetic infilling of the medullary cavity does not appear to have 
been initiated, with a midshaft Cg of approximately 0.695 (Fig 9).

 

Fig 8. CT cross sections of the femoral shaft in two spinosaurids adjusted to the same side 
(left) and length. (A) Suchomimus tenerensis, adult (holotype), length 107.5 cm (MNBH 
GAD500). (B) Suchomimus tenerensis, juvenile, length 54.6 cm (MNBH GAD72, reversed). (C) 
Spinosaurus aegyptiacus, subadult (holotype), length 61.0 cm (MNBH GAD500). (D) 
Spinosaurus aegyptiacus, subadult, estimated length 61.0 cm (CMN 41869, reversed), (E) 
Spinosaurus aegyptiacus, juvenile, length 11.8 cm (CMN 50382, reversed). 
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Fig 9. Bone compactness derived from CT scan of a juvenile femur of cf. Spinosaurus 
aegyptiacus (CMN 5038). (A) 3-D rendering and midshaft cross section generated from a CT scan 
with binarized images (green) differing in their lower threshold gray-value setting. (B) Plot 
showing linear change of about 10% in Cg over threshold range. 

Baryonyx walkeri. Only the distal one-third of the right femur of the holotype is preserved [108]. 
There is crushing inward of anterior and posterior intercondylar areas, leaving only a small 
section of the shaft available for estimating bone compactness. This portion of the shaft was CT-
scanned. Fabbri et al. used three closely spaced cross sections across ~6 cm of the shaft to 
generate three estimates of Cg ranging from 0.826 to 0.876 (relative variance of 5.8%). The two 
most complete sections generated the minimum and maximum Cg values [18: Suppl. 
information, Fig 3e, f]. For the section generating the maximum value, the cracks had been 
infilled with solid bone and used for Baryonyx in their femoral dataset [18: Fig 1b]. 

We attempted to replicate their Cg estimate of 0.876 for Baryonyx using the CT scan they 
published [18: Suppl. Fig 3e]. We prepared three CT sections across ~2 cm of shaft (Fig 10) in 
the region of their preferred section. We also infilled the cracks with solid bone density. We 
prepared two options for removal of matrix from the medullary cavity, each binarized with three 
different threshold values. The first option attempted to replicate the exact shape of the 
medullary cavity they defined and removed [Fig 10A–10C, top row of each panel]. As a second 
option, we examined the CT section and made an independent evaluation of the limits of 
fossilized bone, adjusting the medullary cavity boundary outward to include more material that 
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did not show bone texture [Fig 10A–10C, bottom row of each panel]. We see no positive 
evidence in the scan for cancellous bone in this band. 
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Fig 10: Cg measured in three adjacent CT cross sections through the distal shaft of the right 
femur of the spinosaurid Baryonyx walkeri (NHMUK 9951). For each of three CT sections (A–
C, posterior aspect of femur oriented toward bottom) taken in successively in more distal positions 
across 1 cm on the distal shaft of the femur in the portion of the shaft used by Fabbri et al. [18: 
Suppl. Fig 3e] for their best estimate of Cg. The small inset view shows distal end of the femur in 
medial view with mm distance from the bottom of the radiograph provided by Fabbri et al. To the 
right are three gray-value (GV) thresholds (left to right; 40–243, 36–243, 36–235) capturing a 
reasonable range of values that might be selected by researchers to binarize the radiograph. For 
each threshold, masking of the matrix infilling of the medullary space is shown in transparent 
(left) and binarized (right) views. Option 1 (top row) attempts to replicate medullary masking as 
published by Fabbri et al. Option 2 (bottom row) eliminates additional medullary material that we 
confirmed from the CT scan as matrix infill rather than cancellous medullary bone. Fabbri et al. 
reported a Cg of 0.876. The Cg range for our three slices in the vicinity of their preferred CT 
section using their masking is 0.773–0.887 (mean 0.830); their Cg measure is near the high end of 
that range. The Cg range with our masking is 0.767–0.778 (mean 0.773); their Cg measure is well 
above that range. 

When we replicated their medullary cavity masking, their reported measure of 0.876 fell into 
the high end of the range of Cg we obtained for our three sections (0.773–0.877). When we 
chose our own (slightly larger) masking for the medullary cavity, the range of values obtained 
(0.767–0.778) excludes their higher value for Baryonyx (Cg = 0.876). Our mean Cg value for the 
distal shaft of Baryonyx (0.773) remains higher than the value reported by Fabbri et al. for 
Suchomimus (Cg = 0.682), but that value seems artificially low, as discussed in the next section. 
What seems clear at this point is that Baryonyx, like Suchomimus, retained an average-sized 
medullary cavity for a large theropod, the distal shaft of which generates a Cg less than 0.800. 

Suchomimus tenerensis. Fabbri et al. figured two magnified thin sections for Suchomimus 
tenerensis identified as “G51” and “G94,” which are field numbers for the holotype (MNBH 
GAD500) and a referred subadult individual (MNBH GAD70), respectively [18: Suppl. Fig 2d, 
e]. Neither of these specimens were sectioned, however, and MBNH GAD70 does not preserve 
more the proximal end of one femur. We do not believe these thin sections pertain to 
Suchomimus. 

One of us (PCS) made a four-part thin section from the distal end of an adult femur of 
Suchomimus tenerensis (Fig 11), which has a length (107.5 cm) and distal condylar width (23 
cm) identical to that of the holotype. The position of the section on the distal shaft is similar to 
that taken in Baryonyx. An image of this thin section was refigured as a binarized image by 
Fabbri et al. [18: Fig 3d], who reported a Cg of 0.682 (Fig 11E). We commented, after 
reexamining the bone and original thin section, that there was additional cancellous bone not 
shown in their binarized image that likely lowered their reported Cg value [27]. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.04.539484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539484


 35 

 

Fig 11. Cg derived from ta thin section from the distal femoral shaft of an adult specimen of 
Suchomimus tenerensis (MNBH GAD99). (A) Composite image of the four-part thin section 
with an enlargement showing the complex relation between cancellous bone and dark-stained 
mineral infilling. (B) Cancellous bone (red) adjacent to dark-stained matrix in the core of the 
femoral shaft. (C) Digital removal of matrix adjacent to cancellous bone. (D) Distal femur 
showing position of thin section. (E) Cg and binarized image from Fabbri et al. (F) Cg from 
binarized image after digital removal of matrix adjacent to cancellous bone. (G) Final Cg after 
filling in matrix-filled cracks. 

In response, they introduced misinformation without examining either the thin section or host 
bone [28]: 

Myhrvold et al.1 suggest that we underestimated bone density in Suchomimus during the conversion 
of the femoral thin section into a black & white figure (the curating step prior to estimation of bone 
compactness), causing us to mis-identify bone as rock matrix. However, we did not apply our 
techniques blindly, but instead used careful observation to quantify bone compactness. As shown in 
Figure 1, the bone tissue in this specimen has a distinct white hue: Myhrvold et al.1 conflate the 
mineral infilling surrounding the trabecular bone and bone tissue. 

Due to color variation, many thin sections including those examined here cannot be properly 
evaluated without examining them under a stereoscope or at least accessing magnified views of 
the thin section. In this case, a magnified view of the section clearly shows differentially 
distributed cancellous bone invading the medullary cavity, especially in the lower two thin-
section quadrants (Fig 11A), contrary to Fabbri et al. [28]. We differentiated cancellous bone 
from adjacent dark-stained mineral deposits under stereoscopic magnification of the thin section 
(Fig 11B). After removal of mineral deposits and binarizing the image, a Cg of 0.726 was 
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obtained, which is 6% greater than that reported by Fabbri et al. (Fig 11C, 11E, and 11F). We 
made that measurement to be fully comparable to Fabbri et al. without repair of matrix-filled 
cracks, which also effectively lower Cg. When those cracks are repaired, the final best estimate 
of the Cg of this specimen of Suchomimus is 0.740 (Fig 11G), approximately 8% higher than 
reported by Fabbri et al. and only 4% less than our best estimate of Cg in Baryonyx. Distal 
femoral shaft sections in Suchomimus appear to have Cg greater than 0.700. 
 We also took a thin section from the midshaft of a femur from a juvenile Suchomimus 
tenerensis, with femur length approximately half that of the adult, which shows a relatively large 
medullary cavity (Fig 8B, S3 Fig). Cg in the juvenile would be quite low and increase 
considerably during growth to adult body size. 

Use of phylogenetic flexible discriminant analysis 

Methodological origin. Fabbri et al. have employed a relatively new statistical procedure, 
phylogenetic flexible discriminant analysis (pFDA), to reach their conclusions regarding the 
identification of habitual behaviors in extinct tetrapods. pFDA, a phylogenetic adaptation of 
flexible discriminant analysis (FDA), was first applied to study nocturnality in dinosaurs via 
statistical analysis of eye and scleral ring shape [29,30]. FDA, in turn, was generalized by Hastie 
et al. [109] from Fisher’s much earlier linear discriminant analysis (LDA) [110]. 

Fisher created LDA to separate point clouds that follow multivariate normal distributions. 
Later work has shown that LDA is closely related to ANOVA and regression techniques. It 
represents an extension that creates a discriminant or decision boundary, a line that that can be 
used to estimate which data points more likely to belong to two or more multivariate normal 
distributions. LDA has been used with bone-compactness data to create discriminants between 
groups [6,29,30,99,111] without incorporating phylogenetic data in the analysis. 

The general form of the probability density function for a bivariate normal distribution is 
given by Equation (1), where x is a two-dimensional position vector, μ is a two-dimensional 
position of the centroid of the distribution, Σ is a 2 × 2 covariance matrix, and |Σ| is its 
determinant, and the superscript T denotes matrix transpose. 

 

𝑃(𝑥, 𝜇, Σ) =
𝑒!

"
#(%!&)

!("#(%!&)

2𝜋-|Σ|
	 (1) 

In the case of 2-class or binary classification, LDA assumes that there is a different 
distribution for each class, with centroids μ = μ1, μ2 that are distinct (μ1 ≠ μ2), but that both 
distributions have the same covariance matrix Σ. Mathematically, this assumption ensures that 
the decision boundary is a line. 

LDA classifies points by computing the Mahalanobis distance from a test point to the 
centroid of two or more reference groups, using the pooled, within-group covariance matrix. The 
squared Mahalanobis distance appears in an argument to the exponential function in Equation 
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(1). In the case of a distribution with unit variance and a covariance matrix that is the identity 

matrix, i.e., Σ = 	01 0
0 13, it reduces to the Euclidean distance. 

In LDA and FDA, a fundamental assumption is that a test point can be classified by 
assigning it to the group that has the smallest Mahalanobis distance between the point and the 
group centroids 𝜇1,	𝜇2 (i.e., the multidimensional means of the classes). The locus of points 
equidistant between group centroids corresponds to the decision boundary. Hastie et al. [109] 
generalized LDA to FDA by including nonlinear decision boundaries, as well as a Bayesian 
approach to integrate prior probabilities with a penalized Mahalanobis-distance metric, to create 
a system for scoring test points. 

Motani and Schmitz [95] introduced pFDA as a specific instance of FDA in which a 
phylogenetic-bias correction is done in a similar fashion to PGLS using branch lengths from 
phylogenetic trees that cover the taxa in the analysis to determine phylogenetic correlation 
between taxa under an evolutionary model, such as Brownian motion. In principle, FDA could 
allow the use of nonlinear decision boundaries, but pFDA as implemented by Motani and 
Schmitz (and thus by Fabbri et al.) uses linear boundaries, thereby assuming that both groups 
have the same covariance matrix as in Equation (1). pFDA is thus a phylogenetic version of 
LDA. 

The procedure advocated by Motani and Schmitz [95] is to use only extant taxa that have 
well-constrained phylogenies and branch lengths for the training set. They do not recommend 
including extinct taxa. To cope with the phylogenetic uncertainty, Fabbri et al. created a set of 
100 random trees, each having its own phylogenetic covariance matrix. The matrices are 
sequentially passed to code that uses them to perform FDA. Each such trial results in a 
classification probability for each test taxon and for each random tree. A point is considered 
classified if, among all 100 trees, the median probability of its belonging to a given class exceeds 
50%.  

We note in passing that use of the median is not justified; by construction, the random trees 
are equally likely models of past evolution. Using medians to eliminate extreme values is 
therefore unjustified. Further analysis than that reported by Fabbri et al. would be required to 
determine how accurately a sample of only 100 branch-length trials characterizes possible 
topological and branch-length errors in the tree and how this would impact the analysis. 

In principle, the phylogenetic signal could have a strong effect. In practice, Fabbri et al. find 
very little evidence of phylogenetic signal in their dataset, with Pagel’s λ parameter taking values 
0.02 ≤ λ ≤ 0.07 across the various datasets and trials. This is consistent with other studies of Cg 
with comparable datasets [38,41] that seek to analyze convergent features across many clades. 
As a result, one would expect little difference between these results and those obtained with 
ordinary LDA. In view of that and the uncertainty in the tree for extinct taxa, we question 
whether this dataset is worth analyzing with a phylogenetic method. 

To illustrate the properties of LDA and pFDA, we consider a special case of Equation (1) for 
two distributions having the properties given in Equation (2), where the covariance matrix Σ is 
identical for both distributions and is a multiple σ2/2 of the 2 × 2 identity matrix.  
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Σ = 	σ# 01 0
0 13 , 𝜇" =	−𝜇# = 01.21.23	 (2) 

The centroids of the two distributions, μ1 and μ2, are reflected in the origin across the line 
y = −x. We can take these two groups of points and use them as the training dataset. It is easily 
shown that the optimal decision boundary must be the perpendicular bisector of the line between 
the centroids μ1 and μ2, which in this case is given by the line y = −x. We show a plot of 1000 
points drawn from each of two distributions that follow Equation (2), denoted group 1 and group 
2 (Fig 12). In both cases, σ = 0.55, which plays a role in these bivariate distributions that is very 
similar to the parameter in a conventional univariate normal distribution. The distance between 
the centroid of either distribution and the decision boundary is d = 1.7 = 3.1σ. As a result, the 
concentration of points matches what one would expect of a univariate normal distribution: most 
of the points are concentrated near the centroid and thus appear on the same side of the decision 
boundary as the centroid. Such points would be correctly classified by the decision boundary. 
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Fig 12. Simulated data plots for LDA methods. (A) 1000 pseudorandom points drawn from 
each of two multivariate normal distributions given by Equations (1) and (2) and σ = 0.55 are 
plotted, with points from each distribution colored according to the legend. The decision boundary 
for LDA is given by the red line; points above the line are classified as group 1, points below the 
line are classified as group 2. Note that one point from group 1 lies on the other side of the 
decision boundary and is incorrectly classified as group 2. One point from group 2 is similarly 
misclassified. The centroid of each distribution is denoted by the black cross mark, the distance 
from the centroid to the decision boundary d is denoted by a dashed blue line. The confusion 
matrix c (Equation (4) in S1 Appendix) is shown. (B) 59 points from distributions with the same 
centroids as (A) but with σ = 1.414. The higher value of σ leads to a larger number of points being 
misclassified. (C) The underlying probability density functions for the same distributions as in (B). 
The distributions of blue and gold points are equal at the red decision boundary line y = −x. 
Abbreviations: G1, group 1; G2, group 2. 

Points that fall on the opposite side of the decision boundary are considered misclassified. 
Because these points are part of the training dataset, they would be termed training-data errors 
[112]. Because the points are highly concentrated and the decision boundary is relatively far in 
terms of σ, there are only a few of these points in the random sample shown. Fig 12B shows an 
example with the same distribution centroids, but this time with 59 points in each group, and 
σ = 1.414, which means that d = 1.2σ. The shorter distance in terms of σ greatly increase the 
number of training set errors. 

The fundamental idea behind LDA is shown in a plot of the probability density functions for 
the multivariate normal distributions given by Equations (1) and (2) (Fig 12C) with the same 
σ = 1.414 (Fig 12B). The two normal distributions meet where they cross each other. This is a 
line in space which falls along the line y = −x when projected onto the (x, y)	plane. That is the 
decision boundary. Along that line there is an equal probability from either probability density 
function, so one cannot say which it belongs to. At other points, the probability is higher of 
belonging to one point or another. 

One can calculate the exact probability that a point will lie on the wrong side of the decision 
boundary by integrating the probability density function over the half plane defined by the wrong 
side of the decision boundary to yield Equation (3), where erfc() is the error function and d is the 
distance from the distribution centroid to the decision boundary. 

 

𝑃)*+,- =
1
2 	erfc ;

𝑑
𝜎√2

?	 (3) 

This relation matches the familiar case of the marginal distribution of points in a normal 
distribution, expressed in terms of the standard-deviation-adjusted distance. Thus, we expect 
from Equation (3) that 68.27% of the points would be misclassified if d = σ, 2.5% of the points to 
be misclassified if d = 1.96 σ, and 1% if d = 2.33 σ, following usual rules of thumb. 

In the example shown in Fig 12B, Pwrong = 0.115, so we can expect about 11.5% of points in 
each group will be misclassified in a very large sample. The section above on variation in Cg 
shows data suggesting (very roughly) that the median variation in Cg is 18% or a variation of 
0.18 on the scale of Cg. If we assume that the Cg errors are normally distributed, then effect on 
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this on classification error is 𝜎 →	-𝜎# + (0.18)#, which could be a large effect, depending on 
the size of 𝜎 without error and the distance between centroids d. 

For the distributions in Fig 12A, Pwrong = 0.00955, which is just below 1 in 1000. As a result, 
we expect zero to a few errors in a training set of 1000 points. That is what we see in the 
example plotted in Fig 12A: one error misclassifying a group 1 point as group 2, and one error 
misclassifying group 2 as group 1. As the number of trials increases, the number of incorrect 
points converges toward n × Pwrong, with some statistical variation. 

Equation (3) reveals an important principle: even when we use synthetic data drawn from 
multivariate normal distributions, classification via LDA or FDA can never be error-free. That 
follows from the simple fact that the domain of the multivariate normal distribution ranges across 
the interval (−∞, ∞) in each independent variable, whereas the distance from the distribution 
centroids to the decision boundary is finite. Therefore there can always be valid points from one 
distribution that lie on the other side of any decision boundary—not as an outlier (which implies 
an erroneous point) but rather as an entirely valid data point that LDA will misclassify. Note that 
this effect does not depend on the sample size. As the number of data points in the training set 
grows to infinity, the error converges to Equation (3). 

When should classification be believed? All practitioners of statistical analysis face a common 
challenge. What probability of incorrect results due to random effects is acceptable? In normal 
statistical analysis, all results are accompanied by estimates of their statistical quality, such as the 
p value, confidence level, confidence interval, or other quantitative error estimates. 
Unfortunately, pFDA is relatively novel and does not natively produce a formal p value, 
confidence interval, or other metric of random effects—nor can we find any in prior literature. 
Instead, there are two primary sources of classification within pFDA: posterior probabilities and 
empirical classification performance on known cases. 

An invocation of a pFDA classifier returns a list of values for each of the test taxa to be 
classified. These values can be denoted P2—the posterior probability that the point belongs to the 
class with categorical variable D = 2. A minor complication is that, in the application of pFDA 
by Fabbri et al., each test point is classified for 100 random phylogenetic trees, so the result for a 
single taxon is typically a list of P2 values of length 100. The criterion that Fabbri et al. use is to 
classify the taxon as D = 2 if the median value of the P2 list is greater than 0.5. Fabbri et al. 
discussed this criterion [18: 859]: 

“We summarised our results by providing the median value of those 100 posterior probabilities and the 
number of times a particular taxon is predicted as subaqueous forager (median probability of 50% or more). 
This gives us two proxies of the likelihood of each taxon to be an actual subaqueous forager. For instance, a 
taxon could be predicted 100 times as subaqueous forager with a median probability of 51% which means 
the evidence for this extinct species to be an actual subaqueous forager is very weak and this inference has 
to be considered very unlikely. Median probabilities need to be within the range of 80–100% to be 
considered as strong evidence of subaqueous forager.” 

Fabbri et al. clearly recognized the weakness in the criterion, as a value of P2 only marginally 
greater than 0.5 is weak evidence indeed. Since there are two classes, a classification probability 
of 0.5 is equivalent to a random guess, such as flipping a coin. Normally, a result that is only 
infinitesimally better than random would be accorded little probative value. Despite their clear 
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recognition of the weakness inherent in this approach, the criterion used for classification 
remains P2 > 0.5 rather than 1.0 ≥ P2 ≥ 0.8, as discussed in the passage. 

If P2 was an absolute probability, then P2 = 1.0 would indicate absolute certainty, and there 
could be no possibility of misclassification. But this interpretation is incorrect. P2 is not an 
absolute probability—instead it is a classification score which at best is a possibly erroneous 
estimate of the relative probability of being in one class versus the alternative, conditioned on the 
assumption that the classes are multivariate normal distributions.  

Indeed, the predicted probability P2 can, and typically does, erroneously classify at least 
some of the points in the training dataset. Fabbri et al. mention classification performance only 
in this passage [18: 856]: 

The correct classification rates of our phylogenetically flexible discriminant analyses ranges are 84–85% 
(femora) and 83–84% (ribs) (Figs. 2, 3, Supplementary Materials, Supplementary Tables 7–10). This 
increases to 90% in both datasets when excluding graviportal and deep diving taxa (Figs. 2, 3, Supplementary 
Tables 7–10). 

The Supplementary Tables 7–10 they cite in the passage do not define precisely what is 
meant by “correct classification rates.” Significant ambiguity exists because there are multiple 
classification performance metrics (see S1 Appendix, section 4). The referenced tables contain 
only posterior probability predictions P2 for the dinosaur test taxa, including the spinosaurids, 
rather than taxa of known class in the training datasets, so they cannot be used as a basis for a 
correct classification rate. The most likely source of these “correct classification rates” is that 
they are training-set classification errors.  

If the method has “84–85%” correct classification on its training set, then the erroneous 
classifications must be 15% to 16%. If the method fails 15% of the time, then it is performing at 
least three times worse than the usual threshold for random errors in statistical methods, which is 
5%. Such a result would normally be considered not statistically significant.  

Adding an unfortunate complication, we discovered a flaw in the pFDA code that 
systematically misstates the confusion matrix from which classification performance is measured 
(S1 Appendix, section 5). Our replication attempts produce classification rates slightly different 
from those reported by Fabbri et al. This issue may be why they do not match exactly. 

Although it may seem intuitively obvious that increasing the P2 classification threshold 
would offer better evidence, the situation is actually quite complex. Increasing the classification 
threshold does make for a more stringent criterion, but it also means that a higher percentage of 
the training dataset will be misclassified (S1 Appendix, section 3). 

If the goal is to achieve a result that is of statistical quality comparable to normal statistical 
significance, we would ask for no more than a 5% chance of an error due to random effects. 
Naively this would imply that the classification errors in the training set ought to be less than 5% 
and also that the posterior probability P2 > 0.95. Both criteria should be met with 95% 
confidence. Ideally, pFDA would produce a formal p value, confidence interval, or other 
mechanism to estimate the total statistical error in the classification, but unfortunately the 
method lacks this critical mathematical feature. Until it does, requiring both a low classification-
error rate in the training set and a high posterior probability seems prudent, but is not 
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mathematically rigorous. Currently there is no mathematically rigorous way to perform pFDA 
with quantitative assessment of the impact of statistical errors on the results. 

Effects of sample size on classification. A tacit assumption in Fabbri et al., as in most other 
statistical analyses in biology, is that biological factors underlying the dataset classes produce a 
true statistical distribution of the variates. The pFDA method assumes that the true distribution 
for each class conform to a multivariate normal distribution, or a close approximation thereof. 
But the parameters of those true distributions are unknown. The pFDA method must estimate the 
parameters from the finite sample in the training dataset. This situation is common to virtually all 
statistical analyses but strangely seems to have been overlooked in the literature on pFDA. It has 
also been largely overlooked in biological applications of LDA, save for a few examples [113]. 

The sample size is a key element determining the statistical power and precision of a 
statistical analysis because it controls the how well the finite sample approximates the underlying 
biological distribution. Neither Fabbri et al. nor any other pFDA study of which we are aware 
offers any analysis of how the size of the training dataset affects classification accuracy.  

Fig 13 presents the results of Monte Carlo simulations of an LDA classifier that explore 
sample-size effects for the case of symmetric multivariate distributions of the form given by 
Equations (1) and (2). The accuracy of binary classification has been long studied, and many 
different mathematical metrics have been developed to measure it, as discussed further in S1 
Appendix, section 4. 
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Fig 13. Sample-size effects in LDA/FDA. (A) Decision boundaries and centroids of point groups 
for 500 trials of 59 points drawn from a multivariate normal distribution of Equations (1) and (2) 
with specified values of σ and d. The centroids of the distributions are shown by the magenta 
crosses; empirical centroids of each group of 59 points are black dots. The decision boundaries are 
red lines. Groups of 59 points are insufficient to accurately estimate the distribution centroid. The 
estimation error leads to variations in both the empirical-group centroids and the decision 
boundaries. (B) A histogram of the training-dataset classification accuracy is shown for 10,000 
trials with the same parameters as (A). The theoretical accuracy for the values of 𝜎	and	𝑑	is 0.885, 
but the 95% confidence interval extends from 0.831 to 0.941, a width of 10%. (C) Monte Carlo 
simulations of classification accuracy for point groups with d = 1.7 and varying values of σ and n 
points per group. Lines show an empirically derived relationship for the width of the 95% 
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confidence interval in classification accuracy: CI width = a/n1/2, where is a is a fitting constant 
determined for each value of σ. Abbreviations: CI, confidence interval. 

There is noticeable scatter among the empirical centroids derived from groups of 59 
pseudorandom data points (Fig 13A). The empirical centroids only roughly approximate the true 
centroids of the distributions from which they were drawn. The decision boundaries from these 
groups also show considerable scatter in both midpoint and slope. Assessing the classification 
accuracy of 10,000 trials of two groups of 59 points yields a histogram, which peaks at the 
theoretical classification accuracy of 0.885 with considerable scatter (Fig 13B). With a 95% 
confidence interval spanning 0.831 to 0.941, there is 10% accuracy. 

Repeating this 10,000-run Monte Carlo experiment for multiple points per group 
10 ≤ n ≤ 500 and for values of the standard-error parameter 0.707 ≤ σ ≤ 2.83, we find that the 
width of the 95% confidence interval on classification accuracy closely follows an empirically 
derived relation (Fig 13C). The general behavior is that the width of the confidence interval 
scales proportionately to 1/n1/2 for sample size n, as is typical for the normal distribution. The 
sample size effect is thus of critical importance to the application of FDA or LDA classification 
because it greatly lowers expected classification performance at small points per group counts. 

A consequence of the relationship shown in Fig 13C is that, depending on the values of σ and 
d, the classification performance of LDA might not meet the criterion a = 0.05 for significance 
(see Equation (6) of S1 Appendix, section 4), unless there are hundreds of points in each class. 
However, for cases of low classification error (Fig 13C), statistical significance might be 
achieved at fairly low point counts.  

Conversely for d/σ < 1.64, Equation (3) tells us that even an infinite number of data points 
will not achieve statistical significance. This pattern is an example of the “ecological fallacy,” a 
common error in statistical inference. Briefly stated, one generally cannot accurately classify a 
point by comparing it to its statistical distribution, or the average and variance derived from the 
distribution; specific cases may work, but only if the variance of the distributions is sufficiently 
small. The ecological fallacy is discussed further in S1 Appendix, section 1. 

These results pertain to classification accuracy of the training dataset, but a similar 
phenomenon occurs for any metric of classification performance. Classification accuracy is 
linear in the confusion-matrix components, whereas some metrics, such as MCC, are nonlinear in 
the components (S1 Appendix, section 4). The exact form of the relation between 95% CI width 
and the distribution parameters will thus change, but we expect the overall behavior to be 
qualitatively similar. In actual practice, we do not know the exact distribution and instead have 
only the finite sample to work with. Another complication is that pFDA, as used in Fabbri et al., 
has an additional source of random variation due to the creation of randomly generated 
phylogenetic trees.  

Here we take the Fabbri et al. datasets and apply a bootstrap approach [114] to estimate the 
finite sample-size effects on pFDA (see Methods and materials). In essence, a straightforward 
bootstrap creates a training dataset for each trial by randomly sampling the existing training 
dataset (with replacement). The data is then processed with the Fabbri et al. R script and 
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associated datasets for pFDA, including the creation of 100 random trees for each trial. Each 
random tree creates its own decision boundary. 

Fig 14A presents results for 100 trials and 10,000 random trees. Each decision boundary has 
a corresponding classification of the points, yielding a confusion matrix, which can then be 
converted into classification accuracy for the training dataset. The distribution of accuracy values 
is plotted as a histogram (Fig 14B). The bootstrap samples also affect the posterior classification 
probabilities P2 (Fig 14C). These results are qualitatively what one would expect, given the result 
on the simplified synthetic dataset (Fig 13). The effect of small sample size leads to scatter in 
both the group centroids and the decision boundaries. 
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Fig 14. Sample size effects for pFDA with data from Fabbri et al. [18]. (A) Decision 
boundaries (red lines) and point-group centroids (black dots) for 100 trials created using a 
bootstrap method described in the text, operating on the F0D0 and F0D2 subsets of the Fabbri et 
al. femoral dataset. Each bootstrap trial draws 100 trees at random, each with its own decision 
boundary, as generated by the Fabbri et al. R script. As in Fig 13, considerable scatter is evident in 
both the centroid positions and decision boundaries. Data points for Spinosaurus, Baryonyx, and 
Suchomimus are plotted in green. The downward slopes of most of the decision boundaries, as 
well as the leftward offset of the centroids of F0D0 subset versus that for F0D2, show the effect of 
lower MD for F0D0. (B) A histogram of classification accuracy of the training dataset is shown 
for 2000 trials of a parametric bootstrap as in (D). The median training set classification accuracy 
is 0.752, and the 95% confidence interval is 0.658 to 0.829, a width of 0.171. (C) Histograms of 
𝑃$, the posterior probability of belonging to group D = 2, for Spinosaurid taxa across 2000 trials 
of the same dataset as (A) and (B). (D) Histogram of training-set classification accuracy similar to 
(B), but for rib data. The median training-set classification accuracy is 0.821, and the 95% 
confidence interval is 0.643 to 0.884, a width of 0.241. Abbreviations: Sp, Spinosaurus; Ba, 
Baryonyx; Su, Suchomimus; CI, confidence interval; BCa, bias-corrected-and-accelerated method. 

The 95% confidence interval can be estimated using bootstrap methods. We performed 2000 
bootstrap trials for each dataset and tabulated the training dataset errors. The bias-corrected-and-
accelerated (BCa) method was used to assure good results on the confidence interval [114]. 
Because each case also has 100 random trees, 200,000 results were used for the creation of the 
confidence intervals (Table 7). The training-set error rate is widely considered to be 
overoptimistic, and our use of it is thus very conservative. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.04.539484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539484


 48 

Table 7. Bootstrap-estimated 95% confidence intervals for training-set classification 
performance metrics. 

Dataset Metric 
F0D0 vs. F0D2 Many vs. F0D2 

Median 95% CI Median 95% CI 

ds1 
A 0.752 0.658 0.829 0.826 0.777 0.899 
B 0.751 0.658 0.831 0.821 0.794 0.904 

MCC 0.539 0.392 0.710 0.623 0.553 0.788 

ds2 
A 0.821 0.643 0.884 0.809 0.642 0.846 
B 0.819 0.656 0.878 0.799 0.657 0.843 

MCC 0.637 0.328 0.764 0.573 0.309 0.664 

ds3 
A 0.794 0.618 0.863 0.894 0.789 0.938 
B 0.794 0.608 0.863 0.891 0.763 0.928 

MCC 0.615 0.258 0.730 0.764 0.548 0.855 

ds4 
A 0.913 0.739 0.924 0.89 0.713 0.926 
B 0.895 0.720 0.909 0.868 0.691 0.917 

MCC 0.812 0.440 0.838 0.715 0.349 0.808 

To determine how well taxa in the training dataset are correctly classified by pFDA, we measured 
three classification performance metrics: A, B, and MCC (described in S1 Appendix, section 4). In 
each case, 2000 bootstrap trials, each with 100 random trees for a total of 200,000 data points, 
were gathered for A, B, and MCC. The BCa bootstrap method was used to construct accurate 95% 
confidence intervals for both the method of Fabbri et al. [18] (columns “Many vs. F0D2”), which 
retain taxa with F = 0,1,2 and D = 0,1 as the alternative to the F0D2 group, and also for the better-
supported F0D0 vs. F0D2 approach. The lower bound on the accuracy metrics formed by the 
minimum of the 95% CI shows that the training-data classification with these datasets has errors 
ranging from approximately 20% to 40%—higher in some cases. Abbreviations: CI, confidence 
interval. 

The primary effect of the sample size is that the 95% confidence interval is much broader 
than the point estimates. The importance to the interpretation of pFDA classification results is 
that they are even more uncertain than one would expect from simply evaluating the training set 
error from a single run. Consider dataset ds1: using the method of Fabbri et al. (Table 7 columns 
“Many vs. F0D2”), the median value of the accuracy metric A (Equation (5) in S1 Appendix, 
section 5) is 0.826, which is roughly consistent with the claim in that the correct classification 
rate is “84–85% (femora)” [18]. However, the 95% CI for this value ranges from 77.7% to 
89.9%. If one uses the better-supported method of only comparing the F0D0 and F0D2 subsets, 
the median drops slightly to 75.2% error, and the lower bound of the 95% CI is 65.8%. This 
implies that at 95% confidence, the classification error on training data could be as high as 33%, 
more than six times the random-error threshold of 5% typical for statistical studies. 

As noted above, Fabbri et al. removed “pelagic” and “graviportal” taxa from data sets ds1 
and ds2 to yield the ds3 and ds4 data sets. The stated purpose was to improve classification rates, 
and one can see that for F0D0 vs. F0D2, the median values for accuracy A do improve between 
ds1 (0.752) and ds3 (0.794). However, in practical terms this improvement is undermined by the 
greater uncertainty in the smaller ds3 dataset; the lower bounds of the 95% CI are 0.658 and 
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0.618 for ds1 and ds3, respectively. Thus, at the 95% confidence level, accuracy decreased with 
the smaller ds3 dataset. This effect does not occur for the Many vs. F0D2 approach because it 
contains far more taxa. 

If we wish to use a similar error threshold to that typically used for p values and confidence 
levels, then the conventional choice of a = 0.05 would, in terms of the performance metrics A, B, 
and MCC (Equations (5) and (6) in S1 Appendix, section 4), be translated into the criteria A > 
0.95, B > 0.95, and MCC > 0.9. More theoretical work would have to be done to create metrics 
analogous to p values or confidence intervals. Nevertheless, these crude metrics express the basic 
premise that a 5% chance of random error is acceptable. None of the 95% intervals in Table 7 
would meet that usual criteria for statistical evidence that supports a scientific conclusion, as the 
lower bound on their classification errors are well below the criteria above.  

A similar effect occurs with P2, the posterior probability of membership in the F0D2 
category. Rather than being a single value, P2 becomes a distribution of values (Fig 14). We can 
use BCa bootstrap to create 95% confidence intervals from this distribution.  

In order to assess the impact of variations in the data for the spinosaurid test taxa, we tested 
the data points used by Fabbri et al., as well as hypothetical modifications to them (Table 8). We 
are not proposing that these modified values are necessarily more correct or believable; our 
intention is to perform a sensitivity analysis to see how P2 for a taxon is affected by changes in 
its test data point. 
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Table 8. Alternative test-data points for spinosaurids. 
Dataset Taxon MD Cg MD source Cg source 

ds1 
(Femur) 

Baryonyx 0 154 0.876 ref. [18] ref. [18] 
Baryonyx 1 154 0.887 ref. [18] Fig 10, high 
Baryonyx 2 154 0.826 ref. [18] Fig 10, median 
Baryonyx 3 154 0.767 ref. [18] Fig 10, low 
Spinosaurus 0 81.52 0.968 ref. [18] ref. [18] 
Spinosaurus 1 81.52 0.804 ref. [18] Fig 7, low 
Spinosaurus 2 81.52 0.849 ref. [18] Fig 7, med 
Spinosaurus 3 81.52 0.888 ref. [18] Fig 7, high 
Spinosaurus 4 81.52 0.914 ref. [18] ref. [28] 
Spinosaurus 5 133.434 0.968 Scaled by 1.64 ref. [18] 
Spinosaurus 6 133.434 0.804 Scaled by 1.64 Fig 7, low 
Spinosaurus 7 133.434 0.849 Scaled by 1.64 Fig 7, med 
Spinosaurus 8 133.434 0.888 Scaled by 1.64 Fig 7, high 
Spinosaurus 9 133.434 0.914 Scaled by 1.64 ref. [28] 
Suchomimus 0 120.6 0.682 ref. [18] ref. [18] 
Suchomimus 1 120.6 0.628 ref. [18] Scaled by 0.92 
Suchomimus 2 146.4 0.682 Actual max GAD500 ref. [18] 
Suchomimus 3 146.4 0.628 Actual min GAD500 Scaled by 0.92 

ds2 
(Rib) 

Baryonyx 0 42.2 0.921 ref. [18] ref. [18] 
Baryonyx 1 42.2 0.8289 ref. [18] Scaled by 0.9 
Spinosaurus 0 35.10 0.931 ref. [18] ref. [18] 
Spinosaurus 1 35.10 0.838 ref. [18] Scaled by 0.9 
Spinosaurus 2 57.45 0.931 Scaled by 1.64 ref. [18] 
Spinosaurus 3 57.45 0.838 Scaled by 1.64 Scaled by 0.9 

Fabbri et al. [18] used one data point for each of the spinosaurid taxa Baryonyx, Spinosaurus, and 
Suchomimus, and these points are denoted by 0 after the name(e.g., Baryonyx 0). Higher-
numbered variations explore the possibility of different values for either MD or Cg. For example, 
the Spinosaurus 1 data point uses the same MD as Spinosaurus 0, but the value of Cg for that 
point is taken from our attempt to replicate the Cg values found by Fabbri et al. in Fig 7. The point 
Spinosaurus 5 has the same Cg as Spinosaurus 0, but MD is scaled by a factor of 1.34 to reflect 
allometric scaling from the neotype, which is considered to be 72% of adult size. The purpose of 
these alternative test points is to assess the sensitivity of the pFDA results to variations in the test-
taxa data. Abbreviations: MD, maximum bone diameter; Cg, global bone compactness. 

The variations cover three principal approaches. The first covers the maximum diameter MD. 
The Spinosaurus neotype has been estimated at 72% of full size. On allometric grounds, one 
would expect that MD would therefore scale by a factor of 1.64 = (1/0.72)1.5. This factor follows 
from the assumption that body mass scales as the cube of linear size (i.e., isometrically), while 
MD scales as the square root of load. This scaling is not relevant for the other spinosaurids in the 
analysis, many of which are subadults short of maximum size but not juveniles. However our 
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scanning of an adult Suchomimus femur MNBH GAD500 (S3 Fig) did reveal a quite different 
maximum diameter than that reported by Fabbri et al., so we use our value as a variation. 

The values of Cg are also varied based on our attempts to replicate the measurements of 
Fabbri et al. using CT scans, as discussed above and shown in Figs 7 and 10. In the case of the 
rib data, we did not have alternative measurements and instead considered a hypothetical scaling 
of Cg by 0.9, equivalent to a 10% reduction. 

The results of the P2 confidence intervals are shown in Table 9. The first broad conclusion is 
that finite-size effects have a strong impact on P2 for the original test points of Fabbri et al. The 
point Baryonyx 0 in ds1 has a median of 0.97 in the Many vs. F0D2 case, which seems to be 
strong evidence. But finite-size effects mean that to 95% confidence its lower bound is 0.94, 
slightly below the 95% threshold discussed above. Using the better-supported F0D0 vs. F0D2 
method, the lower bound drops to 0.84. Qualitatively similar results occur for the Spinosaurus 0 
and Suchomimus 0 data points in both ds1 and ds2. 
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Table 9. 95% confidence intervals for posterior probability prediction P2 for spinosaurids.  

Dataset Variant 
F0D0 vs. F0D2 Many vs. F0D2 

Median 95% CI Median 95% CI 

ds1 
(Femur) 

Baryonyx 0 0.96 0.84 0.98 0.97 0.94 1.00 
Baryonyx 1 0.97 0.85 0.98 0.97 0.90 0.99 
Baryonyx 2 0.93 0.75 0.95 0.91 0.75 0.95 
Baryonyx 3 0.85 0.59 0.90 0.74 0.46 0.85 
Spinosaurus 0 0.98 0.90 0.99 0.99 0.98 1.00 
Spinosaurus 1 0.88 0.71 0.90 0.83 0.66 0.88 
Spinosaurus 2 0.93 0.79 0.95 0.92 0.82 0.95 
Spinosaurus 3 0.96 0.85 0.97 0.96 0.89 0.98 
Spinosaurus 4 0.97 0.86 0.97 0.98 0.95 0.99 
Spinosaurus 5 0.99 0.95 1.00 0.99 0.98 1.00 
Spinosaurus 6 0.89 0.68 0.92 0.83 0.59 0.89 
Spinosaurus 7 0.94 0.79 0.96 0.92 0.80 0.96 
Spinosaurus 8 0.96 0.83 0.97 0.96 0.89 0.98 
Spinosaurus 9 0.97 0.86 0.98 0.98 0.96 1.00 
Suchomimus 0 0.61 0.35 0.73 0.32 0.12 0.47 
Suchomimus 1 0.43 0.24 0.63 0.13 0.04 0.25 
Suchomimus 2 0.62 0.34 0.75 0.32 0.12 0.50 
Suchomimus 3 0.44 0.24 0.66 0.13 0.04 0.27 

ds2  
(Rib) 

Baryonyx 0 1.00 0.96 1.00 0.95 0.86 0.98 
Baryonyx 1 0.97 0.81 0.99 0.85 0.67 0.92 
Spinosaurus 0 0.99 0.92 1.00 0.94 0.81 0.98 
Spinosaurus 1 0.96 0.79 0.98 0.84 0.69 0.91 
Spinosaurus 2 1.00 0.96 1.00 0.95 0.82 0.98 
Spinosaurus 3 0.97 0.80 0.99 0.86 0.64 0.93 

Using the alternative test-data points of Table 8 and 2000 bootstrap trials, each with 100 random 
trees, the posterior probability of membership in class 2 (F0D2) was calculated from 200,000 
samples. The BCa bootstrap method was used to construct accurate 95% confidence intervals on 
P2 for each hypothetical test taxon. Values less than 0.95 are highlighted in yellow. In these cases, 
with 95% confidence we cannot conclude that the error rate in membership in F0D2 is 5% or less; 
membership is thus not supported at the 95% level. 

The sensitivity analysis using hypothetical points shows that P2 is highly dependent on data 
point values. In the case of Baryonyx, the lower bound on P2 from 0.84 (F0D0 vs. F0D2) drops 
to 0.75 for the median value found in Fig 7 to 0.59 for the low value from Fig 10 (Baryonyx 3, 
ds1), and even lower to 0.46 in the Many vs. F0D2 case. Similar effects are seen in the ds2 (rib) 
datasets: Baryonyx 0 has a lower bound of 0.95 for F0D0 vs. F0D2, but this drops to 0.81 in 
Baryonyx 1, which differs only by the Cg scaled by 0.9. Since the median percent difference in 
Cg found for multiple specimens of the same taxon (Tables 5 and 6) is 18.6%, this 10% variation 
seems quite conservative. Yet it shifts the expected value of P2 from significant to dubious. 
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Qualitatively similar results hold for the variations in Spinosaurus and Suchomimus. The only 
Spinosaurus data point that has a lower bound on P2 ≥ 0.95 is one of the variation data points: 
Spinosaurus 5, which is based on scaling MD to adult size and using the same Cg value as Fabbri 
et al. did.  

The basic result of this section is that finite-size effects, which occur due to the relatively 
small number of datapoints relative to the variance in those datapoints, greatly reduce our 
confidence in the key parameters of training-set classification performance and posterior 
probability P2. None of the original datapoints for spinosaurids used by Fabbri et al. should be 
accorded much evidentiary weight. Our sensitivity analysis shows that even small variations in 
Cg (10% or less) can have a decisive effect on P2.  

Verification of assumptions for pFDA. Statistical methods have validity only if they are 
applied to datasets that match the assumptions used in developing the method. Normal statistical 
practice is to test those assumptions, but Fabbri et al. do not report such tests. Here we perform 
several simple tests of the data. 

As discussed above, the pFDA method is based on FDA and LDA, which were originally 
derived for multivariate normal distributions. However, it is clear upfront that the distributions of 
(log10(MD), Cg) points cannot closely follow a normal distribution in the Cg axis because normal 
distributions are defined on the open interval (−∞,∞), whereas Cg is restricted to the interval 
(0,1]. Note that this is true even after adjustment for phylogenetic bias; multiplication by a 
matrix with finite elements cannot make the Cg range become infinite. 

One approach to testing the assumptions directly is to examine the discriminant values 
generated by the pFDA algorithm. This has two advantages. First, the discriminant values are 
directly used to calculate posterior probabilities, so the assumption of normality for them is quite 
important. Second, the discriminant values have already been corrected for phylogenetic bias 
correction, and the dimensionality has been reduced. The smoothed kernel distributions derived 
from the discriminant values are plotted in Fig 15. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.04.539484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539484


 54 

 

Fig 15. Smoothed kernel distributions for the pFDA discriminants from the (A) femur ds1 
and (B) rib ds2 datasets of Fabbri et al. [18]. Distributions for the discriminants from both the 
F0D0 and F0D2 subsets of each dataset are plotted. There is considerable overlap between the 
F0D0 and F0D2 groups for both femoral and rib datasets. None of these distributions appear to be 
normal distributions; statistical tests confirm that they are not. 

As seen in Fig 15, the discriminants do not closely follow a normal distribution, nor does 
each pair of distributions appear to have equal variance. In addition, there is considerable overlap 
between the discriminants for two groups, indicating a high classification-error rate in the 
training sets. High overlap is demonstrated for the original datasets in Fig 1C and 1D, and via 
simple effect-size statistics (S5 Fig). Phylogenetic-bias correction does not eliminate the overlap 
between groups, which is to be expected given the very low values of Pagel’s λ found by Fabbri 
et al. The overlap between the F0D0 and F0D2 groups is a clear example of the ecological 
fallacy (S1 Appendix, section 1).  

 In order to assess the deviation from normality, we made maximum-likelihood estimates of 
the best-fitting distributions, including both standard distributions and mixtures of them. The 
parameters of the best-fitting distributions are shown in Table 10, along with their log-likelihood 
values, the information-theoretic fitting metrics BIC and AIC, and an overall fitting score, which 
is based on a Bayesian estimate that combines BIC, log-likelihood, and prior probabilities. These 
distributions are plotted in Fig 16. 

Table 10. Parameters and fitting metrics of best-fitting distributions to pFDA 
discriminants.  

Set Dist. Mix Param1 Param2 Param3 Var BIC AIC 
Log-
Like Score 

Uniform 1 −2.79075 1.36502  2 −2.92564 −2.92172 −1.4245 −2.97255 
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ds1 
F0D0 

Normal 1 −0.745417 1.09452  2 −3.00533 −3.00142 −1.46435 −3.02978 
Weibull 1 2.81477 3.13253 −3.52991 3 −3.0111 −3.00725 −1.44807 −3.13576 

ds1 
F0D2 

Normal 1 0.98883 0.865144  2 −2.52778 −2.52329 −1.22593 −2.55182 
Uniform 1 −0.85619 2.52029  2 −2.50959 −2.5051 −1.21684 −2.55571 
Weibull 1 6.0638 4.76879 −3.43045 3 −2.5206 −2.51581 −1.20336 −2.64315 

ds2 
F0D0 

Normal 1 −0.612085 0.840423  2 −2.41616 −2.41011 −1.17116 −2.43903 
Mix: 
Normal, 
Normal 

0.929453 −0.764716 0.650705  
5 −2.40066 −2.39462 −1.10802 −2.44692 

0.070547 1.39881 0.287749  

Mix: 
Normal, 
Uniform 

0.626313 −0.806336 0.507906  
5 −2.37859 −2.37254 −1.09699 −2.45469 

0.373687 −2.22421 1.68769  

ds2 
F0D2 

Normal 1 0.968889 1.28094  2 −3.26207 −3.26519 −1.58912 −3.29101 
Weibull 1 24.7765 26.0346 −24.4948 3 −3.19447 −3.20205 −1.53436 −3.34204 
Mix: 
Normal, 
Normal 

0.413881 0.010717 1.26865  
5 −3.28384 −3.30682 −1.53713 −3.34238 

0.586119 1.64549 0.746214  

Multiple continuous distributions and mixtures thereof were fit to the pFDA discriminant data (see 
text). Fitted distribution parameters and fitting metrics are shown for each behavioral group and 
datasets ds1 and ds2, as well as for several distribution variants: normal, uniform, Weibull, a 
mixture of two normal distributions, and a mixture of a normal and uniform distributions. The Mix 
value is the relative weighting of the two distributions being mixed, or 1 for a single distribution. 
Parameters of each component distribution are given in the Paramx columns. For normal 
distributions, Param1 is the mean μ, and Param2 is the standard deviation σ. For uniform 
distributions, Param1 is the lower bound, and Param2 the upper bound. For Weibull distributions, 
the parameters are α, β, μ in the usual three-parameter formulation. The Var column indicates the 
total number of parameters in the distribution; for mixture distributions, this includes both 
component distributions and their relative weight. BIC and AIC criteria indicate a best fit when 
they are low; the minimum value across the alternative distributions, suggesting best fit, is 
highlighted in yellow. Score is a Bayesian score metric that includes BIC, log-likelihood, and 
priors. The rightmost two columns indicate a best fit by a high value; the maximum for each set is 
highlighted in green. Abbreviations: Dist., distribution; BIC, Bayesian information criterion; AIC, 
Akaike information criterion; Log-like, log-likelihood.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.04.539484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.04.539484


 56 

 

 

Fig 16. Histograms and fitted distributions for pFDA discriminants. (A, B) Histograms (light 
blue) of the discriminants for the F0D0 and F0D2 subsets of ds1, with fitted distributions (black, 
red, and blue curves). (C, D) Comparable plots for ds2. In each panel, the best-fitting distribution 
by Bayesian score is plotted in black, second best in red, and third in blue. Abbreviations: N, 
normal; U, uniform; Mix, a mixture of two distributions. 

Inspection of Table 10 shows that all the fitted distributions have strong support under AIC 
or BIC, differing only slightly in the various metrics. The Bayesian score indicates that a uniform 
distribution is the best fit for ds1 F0D0. The log-likelihood metric also would select the uniform 
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distribution. The BIC and AIC metrics would select the fit to a Weibull distribution as best. In 
the case of ds1 F0D2, log-likelihood selects the Weibull distribution, while BIC, AIC, and the 
Bayesian score select the normal distribution. 

In order to correctly predict class membership and calculate the posterior probabilities, pFDA 
requires both F0D0 and F0D2 datasets to be normal distributions. In the case of ds1, the best 
choices vary with the metrics, but no metric chooses the normal distribution as best for F0D0; 
for F0D2 the best chosen vary between normal and Weibull. Under these model selection 
criteria, we find no statistical support for applying pFDA to the ds1 dataset. 

The ds2 dataset is split; by Bayesian score, both F0D0 and F0D2 are best fit by normal 
distributions and thus qualify for pFDA. In contrast, the BIC, AIC, and maximum log-likelihood 
metrics would choose non-normal distributions, indicating that ds2 is also not suitable for pFDA.  

Two issues produce these conflicting results. First, the datasets are inadequate, producing 
pFDA discriminants that are equivocal as to which distribution they support—there is very little 
variation in the actual metrics among the supposedly “best” choice and others.  

The second issue is that each of the metrics measures a different aspect of fit. Although these 
metrics all have value, the most salient characteristic for their use in pFDA is whether the left tail 
of the F0D0 distribution and the right tail of the F0D2 distribution are accurate, because those 
are the portions of the distributions involved in the computation of the decision boundary and the 
assignment of posterior classification probabilities. This can be visualized from the overlap of 
the distributions in Fig 15.  

A quantile-quantile plot allows direct comparison of the quantiles of the discriminant set with 
those of the fitted distributions (Fig 17). Significant deviation is observed in the right tail of 
F0D0 versus a normal distribution (Fig 17A), in contrast to the much closer adherence by a 
uniform distribution (Fig 17B). 
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Fig 17. Quantile-Quantile plots of pFDA discriminants from dataset ds1 subsets F0D0 and 
F0D2. Quantiles of normal (A, C) and uniform (B, D) distributions are shown as heavy brown (for 
F0D0) or blue (for F0D2) dots plotted against plot the quantiles of the discriminant distributions 
(thin dotted lines). (A) The pFDA discriminant for ds1 F0D0 shows strong deviation from the 
normal distribution for the right tail of the distribution. (B) The deviation is much smaller for the 
uniform distribution. (C, D) Similar but smaller effects are observed for the left tails of the 
distributions for ds1 F0D2. Corresponding plots for the ds2 dataset are provided in S4 Fig. 

A quantile-quantile plot for the ds2 dataset appears in S4 Fig. There we see that the right tail 
of ds2 F0D0 strongly deviates from the normal distribution (S4A Fig), but closely matches the 
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mixture of two normal distributions (S4B Fig). For ds2 F0D2, neither the normal nor Weibull 
distributions closely match the left tail. 

The net result of both the distribution fitting and the quantile-quantile analysis is that there is 
little statistical confidence that the ds1 and ds2 datasets meet the assumption that they are 
normally distributed. The pFDA discriminants are not normally distributed under the most 
common model selection criteria, or at best are equivocal. 

A second assumption required by pFDA is that the F0D0 and F0D2 subsets being compared 
have discriminants with the same variance. This prerequisite is fundamental to both LDA and the 
subset of FDA used by pFDA. Conventional variance equivalence tests can be used, if care is 
taken to choose those that are robust to deviations from a normal distribution, in light of the 
results above. Results of such tests show that neither the ds1 nor ds2 datasets meet the 
assumption of equal variances (Table 11). 

Table 11. Results of variance-equivalence tests for pFDA discriminants. 

Test 
ds1 F0D0 vs. F0D2 ds2 F0D0 vs. F0D2 
Statistic p Statistic p 

Brown-Forsythe 5.29316 0.023212 7.62504 0.006756 
Conover 2.33821 0.019377 -2.67815 0.007403 
Levene 5.18783 0.024593 9.70682 0.002347 

Three tests of variance equivalence, an assumption of pFDA, were performed on the discriminants 
of the F0D0 and F0D2 groups being compared. These tests were chosen because they are 
considered robust to deviations from normality in the distributions. In both the ds1 and ds2 cases, 
the null hypothesis that the variances are equal is rejected with p < 0.05 by all three tests. 

Linear discriminant analysis, as used by pFDA, is not appropriate where classes have 
unequal variances. Quadratic discriminant analysis (QDA) would be appropriate (assuming 
normal distributions in both classes) because the decision boundary between the datasets would 
be a quadratic curve (conic section). If LDA were applied to such a dataset, however, one would 
expect highly inaccurate classification because the straight-line assumption is violated [112]. As 
currently conceived, pFDA does not address phylogenetic QDA, but conceivably a pQDA could 
be developed. 

Normal statistical practice in clustering or classification problems is to use the Hopkins 
statistic to assess whether the points have any genuine clustering [36,115–117]. The null 
hypothesis under this test is that the data points are distributed randomly in space. Failure to 
reject the null hypothesis implies that any apparent clusters are illusory and attributable to 
random chance. Here we apply the standard Hopkins statistic, as well as two variations by 
Lawson and Jurs [36] and Fernandez Pierna and Massart [35] (see Materials and methods), to the 
F0D0 and F0D2 subsets of both ds1 and ds2 (Table 12). 

Table 12. Results (p values) from Hopkins statistic tests on datasets from Fabbri et al. [18].  

Dataset Class subset 
Hopkins p values 

Original FPM LJ 
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ds1 

F0D0 0.391 0.864 0.977 
F0D2 0.984 0.238 0.005 
F0D0: λ = 0.06 0.548 0.449 0.706 
F0D2, λ = 0.06 0.821 0.580 0.587 

ds2 

F0D0 0.621 0.140 0.409 
F0D2 0.145 0.193 0.602 
F0D0: λ = 0.07 0.738 0.234 0.865 
F0D2, λ = 0.07 0.432 0.231 0.542 

Three versions of the Hopkins statistical test for clustering were applied to the F0D0 and F0D2 
subsets of ds1 and ds2, for both the original datasets and phylogenetically adjusted datasets that 
are corrected with the same N matrix used within pFDA (see Materials and methods), at the 
optimal values of Pagel’s λ found by Fabbri et al. [18]. Hopkins p values apply to the null 
hypothesis that the dataset is indistinguishable from a uniform random distribution. None of the 
test results indicate significant clustering in any of the data sets. Abbreviations: FPM, Fernandez 
Pierna and Massart variant [35]; LJ, Lawson and Jurs variant [36]. 

 
In each case, and for each variation of the Hopkins statistic test, we find that we cannot reject 

the null hypothesis. The datasets are thus statistically indistinguishable from a uniform random 
distribution in the (log10(MD), Cg) space under the various Hopkins statistic tests. This is true 
both for the original, untransformed datasets as well as those that have been phylogenetically 
corrected using the same optimal values of Pagel’s λ found by Fabbri et al. This result is 
visualized in Fig 18, which shows as one example a plot of F0D0 from ds1 compared to a 
uniformly random distribution that has been clipped to the same convex hull. 
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Fig 18. Comparison of real data from Fabbri et al. [18] to uniform random points. (A) Data 
points for the terrestrial (F0D0) group (black dots) in the femoral dataset of Fabbri et al. are 
plotted along with (B) uniform random points (red dots), both clipped to the convex hull enclosing 
the F0D0 data. The apparent absence of any non-random concentration or clustering of the F0D0 
data is confirmed by statistical tests (Table 12). 

For pFDA to be valid, both class subsets being compared must have a multivariate normal 
distribution and therefore the clustering that produces the normal distribution. But pFDA also 
requires that data not have more than one cluster because a bimodal or multi-modal distribution 
would also not be suitable. Our finding that the datasets appear to be uniformly random with no 
detectable clustering puts an important constraint on using these datasets for pFDA. 

This result is consistent with the uniform distribution being a best or near-best fit for some 
the pFDA discriminants class subsets. The relatively strong performance of mixture distributions 
in Fig 16 and Table 10 suggests that, for some datasets, the distributions might be bimodal. The 
Hopkins-statistic results suggest (but do not prove) that apparent bimodal behavior in the 
discriminants may be an artifact of the low data count. 

A uniformly random distribution of data points may seem strange, but biologically this 
corresponds to the points in (log10(MD), Cg) space being equally likely, at least within some 
range of values in each parameter. The effect might be accidentally enhanced if the goal of the 
creating the datasets included some notion of sampling a diversity of values in both MD and Cg. 
Such a goal could bias selection of taxa for the dataset toward greater spread and less clustering. 

Phylogenetic bias removal might also come into play; if a cluster of values in (log10(MD), 
Cg) space is due to closely related taxa, then they may be deemphasized by the phylogenetic 
correction. These are general observations; whether either or both of these factors apply to the 
datasets under examination is unknown. A more likely factor is the effect of low n. Datasets that 
use 49 to 62 points across many clades may simply be too small to show evidence of clustering. 

Discussion 
Using a bone-compactness index (Cg) assessed from thigh bone (femur) and trunk rib, Fabbri et 
al. [18] published two novel claims: first, that spinosaurids evolved initially as “subaqueous 
foragers,” a lifestyle characterization defined on habitual diving in pursuit of underwater food 
resources; and second that the spinosaurids Baryonyx and Spinosaurus maintained this lifestyle 
whereas a third, Suchomimus, reverted to a terrestrial, nondiving lifestyle despite its close 
phylogenetic and morphological affinity to Baryonyx. 

We tested these hypotheses by examining how bone compactness, as captured in the single 
metric Cg, was sampled and measured, how lifestyles were defined and categorized, and on what 
basis taxa were included or excluded from datasets prior to statistical analysis. We also examined 
the assumptions and statistical properties of the relatively new method they utilized to make both 
of their principal claims, an adapted statistical procedure called phylogenetic flexible 
discriminant analysis (pFDA). 

Our examination reveals irregularities in the composition of the dataset. The use of pFDA to 
infer properties of dinosaurs rests on a fundamental assumption that extinct and extant taxa have 
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comparable values of bone compactness (Cg). Yet some of the datasets assembled and analyzed 
by Fabbri et al. actually demonstrate the opposite: they show a large and statistically significant 
bias in Cg values for extent taxa compared to extant taxa. 

Other aspects of femoral and rib datasets raise serious questions. In some datasets, either 
extinct or extant taxa predominate, and some taxa are either included or excluded on 
questionable grounds. Are there not sufficient extant taxa available for training datasets—or at 
least enough to balance extinct taxa? Why are flying birds and tiny shrews and voles relevant 
points of comparison for flightless spinosaurids that had body masses a million times greater? 
Why are Nothosaurus and its close relatives heavily represented, while other relevant groups are 
ignored altogether? 

The datasets include taxa scored for two variables, body size (log10(MD)) and bone 
compactness (Cg), despite the authors’ own PGLS regression analysis showing that Cg alone is 
approximately 50 times more powerful in explaining the habitual diving (D2) categorical 
variable. Taxa with categorical variables found to have little to no statistical correlation with D2 
(i.e., F1, F2, D1) are retained in the analysis for unknown reasons. Fabbri et al. created two 
derivative datasets (ds3, ds4) by culling so-called “graviportal” and “pelagic” taxa, claiming 
clear anatomical signals as the criteria. These exclusions are questionable, especially since 
Fabbri et al. did not follow their own stated anatomical criteria. 

At a more basic level, the study of bone compactness in femora and trunk ribs is motivated 
by the idea that denser bones can act as ballast or otherwise assist diving. This is an established 
correlation for some extant terrestrial groups. However, there is an equally well-established 
correlation between increased Cg and body size, which the Fabbri et al. analysis fails to explore 
as an alternative hypothesis or confounding factor.  

Little is known about the effects of Cg on femora or ribs of taxa with large body size that 
have substantial vertebral pneumaticity, such as the spinosaurids. Given that this pneumaticity 
demonstrably has a much larger effect on buoyancy than could be counteracted by increased Cg 
in limb bones or ribs, it is unclear that Cg increases observed in other clades are relevant.  

We document a strong subjective component to assessing Cg, particularly from CT scans. 
Despite diligent efforts, we could not replicate bone-density measurements reported by Fabbri et 
al. as reasonable or without less dense alternatives for Fabbri et al.’s singular spinosaurid 
specimens. Instead, we found measurements skewed toward increased or decreased bone density. 
Determining Cg in fossilized long bones requires investigators to assess what is bone versus 
matrix to be masked, what cracks or missing fragments should be digitally removed or 
“restored,” and what thresholding intensity to use in transforming CT scans to binary images. 
None of these decisions are governed by specific protocols. 

Although Cg plays a critical role in the analysis of Fabbri et al., often on the basis of single 
measurements per taxon, experts’ understanding of its variability remains rudimentary. We have 
found no studies on extinct or extant tetrapods that systematically compare Cg from multiple 
specimens of the same taxon, multiple bones within an individual, or even multiple places along 
the shaft of a bone. Sporadic examples collected from the literature support median variation of 
18.6% among different individuals of the same taxon, which is about 33% of total variation in 
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Cg in datasets of Fabbri et al. Such high intraspecific variation and lack of large-n benchmark 
studies suggest that the suitability of Cg for classification is far from a foregone conclusion. 

We also examined the prerequisites and limitations of pFDA for this kind of classification 
analysis. We find that no previous study has examined the effect of finite sample size on 
accuracy of classification or on the predicted posterior probability of class membership. Using 
bootstrap trials, we constructed confidence intervals on the relevant statistical metrics. We find 
that the lower bound of the 95% confidence interval suggests that for most of the datasets, pFDA 
has an error rate of 20% to 33% in classifying its own training data. Random guesses, by 
comparison, would generate a 50% error rate. What scientific conclusions can be drawn from a 
method and dataset that is only marginally better than random chance when applied to known 
cases? 

The posterior probability of membership in the F0D2 class (nonflying divers) is similarly 
greatly weakened when taking the 95% confidence interval into account. Our sensitivity analysis 
shows that small variations in Cg, either pro-forma or from our attempted replication, also have a 
strong impact. 

Finally, we attempted to verify that the datasets meet the distribution assumptions of pFDA 
by examining the classification discriminant values. For pFDA to be valid, the two datasets being 
compared (e.g., F0D0/F0D2; terrestrial/nonflying divers) must both have normal distributions, 
different means, and the same variance. We find no statistical support that these conditions are 
met by any of the datasets. To the contrary, common clustering tests show that the data points in 
key datasets are statistically indistinguishable from a uniform random distribution. 

In order to have any power of inference, statistical analysis must be applied to suitable data 
and datasets. Is Cg or any other metric for bone compactness free enough from measurement 
imprecision and biological variation to represent a species with a single data point? Can one 
plausibly infer “foraging” from a dataset that catalogs propensity for “diving”? Is the foraging of 
grazing herbivores biomechanically similar enough to active predation that it is a relevant point 
of comparison? This critique across many levels aims to improve future use of pFDA and other 
quantitative statistical methods in paleontology, because sound datasets and statistical analysis 
can generate inferences that go beyond structural or functional hypotheses based on select taxa. 
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