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Abstract

Background. The availability of reliable biomarkers of Parkinson’s disease (PD)
progression is critical to the understanding of the disease and development of treatment
options. Magnetic Resonance Imaging (MRI) provides a promising source of PD
biomarkers, however, neuroimaging results have been shown to be markedly sensitive to
analytical conditions and population sampling, which motivates investigations of their
robustness. This study is part of a project to investigate the replicability of 11
structural MRI measures of PD identified in a recent review. Objective. This paper
attempts to reproduce (similar data, similar analysis) and replicate (variations in data
and analysis) the design of the machine learning (ML) model described in [1] to predict
PD progression from T1-weighted MRIs. Methods. We used the Parkinson’s
Progression Markers Initiative dataset (PPMI, ppmi-info.org) used in [1] and we
followed as closely as possible the original methods. We also investigated slight
methodological variations in cohort selection, feature extraction, ML model design, and
evaluation techniques. Results. The Area under the ROC Curve (AUC) achieved by
our model closely reproducing the original study remained lower than 0.5. Across all
tested models, we obtained a peak AUC of 0.685, which is better than chance
performance but remained lower than the AUC value of 0.795 reported in [1].
Conclusion. We managed to train a model that predicts disease progression with a
performance better than chance on a cohort extracted from the PPMI dataset, using
methods adapted from [1]. However, the performance of this model remains
substantially lower than the one reported in [1]. Our difficulties to reproduce or
replicate the original work are likely explained by the relatively low sample size in the
original study. We provide recommendations on how to improve the reproducibility of
MRI-based ML models of PD in the future.

Introduction 1

Identifying biomarkers that can predict the progression of Parkinson’s disease (PD) is 2

essential to support the development of new therapies and track responses to these 3

therapies. T1-weighted magnetic resonance imaging (MRI) is a promising source of PD 4

biomarkers as it non-invasively provides detailed information about disease-related 5

changes to brain structure. Among MRI analysis methods, machine learning (ML) 6
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techniques are growing in popularity due to their excellent predictive ability. For 7

example, a recent review [2] identified 110 studies that used ML for PD prediction, 8

among which 79 used some form of brain imaging data including MRI. However, despite 9

their potential, MRI-based measurements of PD have yet to be widely adopted in 10

clinical and research settings, in part due to the lack of reliability, robustness, and 11

reproducibility of such measures. 12

As with many other disciplines, the reproducibility and replicability of neuroimaging 13

findings has been under increasing scrutiny. For instance, the study in [3] asked 70 14

independent teams to test nine different hypotheses using the same functional MRI 15

dataset and highlighted substantial discrepancies among the teams for five of these 16

hypotheses. Moreover, the work in [4] showed that longitudinal MRI-based measures of 17

cortical thickness led to conflicting results for PD progression. Further, studies have 18

shown that measurements of anatomical volume and cortical thickness are affected by 19

the software versions, workstation types, and versions of operating system used [5]. ML 20

itself is also subject to reproducibility concerns. For instance, the study in [6] attempted 21

to reproduce 20 ML-based studies from 17 fields and revealed several pitfalls related to 22

data leakage between the training and test sets, resulting in a substantial number of 23

failed replications. Therefore, the reproducibility and replicability of ML-based MRI 24

studies need to be investigated. 25

The terms reproducibility and replicability are distinct and may cause confusion. In 26

this article, reproducibility refers to the ability to obtain the same results as in the 27

original study by running the same software on the same input data, whereas 28

replicability refers to the ability to obtain results comparable to the original ones by 29

repeating the experiment with different data and software [7]. In practice, the 30

distinction between reproducibility and replicability is blurry, and these terms have to be 31

understood as the extrema of a continuous range of variations from the original study. 32

This paper is an attempt to both reproduce and replicate the study in [1]. Among 33

MRI-based studies of PD that used ML (e.g., [8] [9]), the work of [1] is particularly 34

interesting as it relies on an openly accessible dataset — the Parkinson’s Progression 35

Markers Initiative (PPMI [10]) — and it targets the clinically-relevant problem of 36

predicting PD progression. In [1], the authors trained a support vector machine 37

(SVM [11]) classifier using whole-brain white matter (WM) and clinical features to 38

predict the progression of PD over 3 years. To do so, they segmented WM masks from 39

T1-weighted MRI scans of n=144 patients (72 stable, 72 progressive), extracted 40

radiomics features from the WM, trained a classifier with these features, and evaluated 41

its capability to predict PD progression measured by the Hoehn and Yahr Scale (HYS), 42

resulting in a AUC of 0.795. The work in [1] also developed a joint model that combined 43

radiomics features with clinical features, and achieved a slightly better performance 44

with an AUC of 0.836. Our study focuses primarily on imaging biomarkers, hence, we 45

focused on evaluating the reproducibility and replicability of the radiomics model only. 46

Methods 47

The authors of [1] trained a linear SVM from radiomics features to predict disease 48

progression measured with the Hoehn and Yahr Scale (HYS). The resulting model 49

achieved an AUC of 0.795 and a relative standard deviation (RSD) of 3.23 % across 100 50

bootstrap samples. Our objective was to assess the reproducibility and replicability of 51

the original study. For the reproducibility experiment, we attempted to reproduce the 52

cohort, feature set, model, and evaluation technique using the methods described in [1]. 53

We then compared the AUC and RSD of our reproducibility experiment to the results 54

reported in [1]. For the replicability experiment, we created several variations of the 55

methods described in [1] by creating multiple cohorts from the PPMI dataset, various 56
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Fig 1. Configurations tested in the reproduction and replication experiments. Cohorts
include the Verio Reproduction Cohort (VRC), Siemens Replication Cohort (SRC),
Multiple Scanner Replication Cohort (MSRC), No Filter Replication Cohort (NFRC)
and the Functional State Cohort (FSC). Features include the mapped radiomic features
(RF1), selected radiomic features (RF2), and volumes of regions of interest (ROI
volumes). The green line represents the configuration for the reproducibility experiment
while the black lines represent the different configurations of the replicability
experiment.

feature sets, and two different evaluation techniques. We tested each possible 57

combination of these variations and compared the resulting AUC values to those 58

achieved in [1]. Figure 1 shows a summary of all the configurations tested. 59

Cohort construction 60

The original study in [1] included PD patients matched by age, sex, and baseline HYS 61

value across each group from the PPMI dataset. MRI data was collected from 32 62

international sites using a Siemens Verio 3T MRI machine. The protocol used for data 63

acquisition was standardized by PPMI protocols and included the following parameters: 64

repetition time = 2300 ms, echo time = 2.98 ms, inversion time = 900 ms, slice 65

thickness = 1 mm, field of view = 256 mm, and matrix size = 240 × 256. Each patient 66

was evaluated through a baseline visit that included MRI acquisition and clinical 67

examination, and a follow-up clinical examination after 3 years (36 months). Patients 68

with HYS values higher at follow-up than at baseline were included in the progressive 69

set (n=72) and patients with the same HYS value at follow-up and at baseline were 70

included in the stable set (n=72). Data was collected after approval of the local ethics 71

committees of the PPMI’s participating sites. All participants provided written 72

informed consent. 73

We constructed a total of 5 cohorts by applying different combinations of filters to 74

the PPMI database (Table 1). For all cohorts, we filtered the PPMI database for 75

patients meeting the following inclusion criteria: 76

• C1: received a diagnosis of idiopathic PD; 77

• C2: has a pair of visits spaced 3 years apart, with a T1-weighted MRI available at 78

the first visit; 79

• C3: has HYS values available at both visits. 80
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Our study was conducted in accordance with the Declaration of Helsinki and was 81

exempt from the Concordia University’s Research Ethics Unit. We did not have access 82

to any personal information such as patients names or addresses. By using the PPMI 83

dataset we accepted its Data Usage Agreement which in particular prevents us from 84

redistributing the data or sharing patients identifiers publicly. 85

Data was collected by PPMI between 2010 and 2023, we have accessed the database 86

November 22nd, 2022. Since PPMI is a longitudinal dataset, a single patient could 87

potentially meet the criteria for both groups at different points in the study, or be 88

included multiple times in the same group. Therefore, after constructing the cohort, we 89

also verified that (i) both groups (stable and progressive) were of equal size, (ii) no 90

patient was present more than once in each group, and (iii) no patient was present in 91

more than one group. We generated two groups of cohorts which will be referred to as 92

the reproduction cohort and the replication cohorts. 93

Reproduction cohort 94

In our reproducibility experiment, our objective was to build a cohort as close as 95

possible to the one in [1]. The resulting cohort will be referred as the Verio 96

Reproduction Cohort (VRC) as it is the only cohort built with the manufacturer model 97

set to Verio (Table 1). We built the VRC using all the filters that we could extract from 98

the methods section of [1]. 99

Replication cohorts 100

To evaluate the sensitivity of the predictions to data variations, we constructed 3 101

cohorts with increasingly permissive filters. The first cohort included patients scanned 102

using a Siemens manufactured MRI machine but not necessarily with the Verio model. 103

We will refer to this cohort as the Siemens Replication Cohort (SRC). Compared to the 104

VRC, the SRC has a slightly more permissive manufacturer model filter, which is meant 105

to accommodate variations in manufacturer model descriptions throughout the PPMI 106

study. We constructed two more cohorts with increasingly permissive filters. The 107

Multiple Scanner Replication Cohort (MSRC) includes patients scanned with any 108

scanner manufacturer, and the No Filter Replication Cohort (NFRC) includes patients 109

scanned with any field strength and a slice thickness between 1 mm and 1.2 mm. 110

We also constructed a functional state cohort (FSC) that takes into account the 111

functional state of patients at each visit. The PPMI protocol requires that clinical 112

assessments be conducted twice per visit in different functional states (“ON state” vs 113

“OFF state”). The methods in [1] did not mention if patients in their cohort were in the 114

ON or OFF state. The variables related to a patient’s functional state during a visit are 115

reported in MDS-UPDRS Part III evaluations and include: 116

• PDSTATE (ON/OFF): the current functional state of the patient 117

• PDTRTMNT (0/1): 1 if the participant is on PD medication or receives deep 118

brain stimulation, 0 otherwise 119

• PDMEDTM: time of most recent PD medication dose 120

• PDMEDDT: date of most recent PD medication dose 121

In the FSC, we modified inclusion criterion C3 so that HYS measures of a given patient 122

were obtained with the same PDSTATE (ON or OFF) at both visits. This was meant 123

to ensure that HYS measures were consistently obtained between visits and were 124

therefore comparable. Moreover, the MDS-UPDRS Part III evaluations available in 125

PPMI contain inconsistencies and missing data that we corrected as described in 126
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https://github.com/LivingPark-MRI/livingpark-utils/blob/main/livingpark_ 127

utils/notebooks/pd_status.ipynb. 128

For each sub-cohort, we used the list of patients returned by the PPMI query and 129

kept those that have a pair of MRI visits spaced 3 years apart. Furthermore, we 130

matched patients from both groups based on age, sex and baseline HYS value. 131

132

VRC SRC MSRC NFRC FSC

Research Group PD PD PD PD PD

Acquisition Type 3D 3D 3D 3D 3D

Field Strength 3T 3T 3T any 3T

Slice Thickness 1mm 1mm 1mm 1mm ≤ 1.2mm 1mm

Manufacturer Siemens Siemens any any Siemens

Manufacturer model Verio any any any any

Weighting T1 T1 T1 T1 T1

133

Table 1. Summary of PPMI filters used in the 5 constructed cohorts.

MRI Feature extraction 134

We extracted two sets of image features for each cohort. The first set of features (RF1 135

and RF2) was radiomics-based as per the methods reported in [1]. The second set of 136

features (ROI) consisted of WM, gray matter (GM) and ventricle volumes measured 137

from known ROIs involved in Parkinsonian syndromes [12]. 138

Segmentation of T1-weighted images 139

For RF1 and RF2, we used the Segmentation module of Statistical Parametric 140

Mapping (SPM; https://www.fil.ion.ucl.ac.uk/spm/software/spm12 [13]) 141

version 12 that was also the segmentation method used in [1]. We used SPM12’s default 142

parameters to get the tissue probability masks and build a WM binary mask for each 143

patient. For ROI, we used FreeSurfer v6.0 (recon-all tool with parameter -brainstem) 144

to extract the ROI volumes needed, as done in [12]. 145

Quality control 146

In [1], two experienced neuro-radiologists used ITK-snap to manually edit WM 147

segmentations. The modifications included (i) removal of non-brain tissue, brain stem 148

and cerebellum and (ii) correcting segmentation errors in WM tissues. We used 3D 149

Slicer v.5.0.3 to visualize and assess the quality of WM segmentations produced by 150

SPM12. For each MRI scan, we reviewed the axial, coronal and sagittal slices. Data 151

were excluded if it met at least one of the following criteria: 152

• There is WM outside of the segmented WM mask; 153

• There is GM inside the segmented WM mask; 154

• The MRI has any common artifacts; 155

• The MRI has a low signal-to-noise (SNR) ratio. 156

We processed and applied these exclusion criteria to all the images meeting inclusion 157

criteria C1, C2 and C3, leading to a total of 7 excluded images. In addition, 11 images 158

could not be processed with FreeSurfer due to execution errors. We applied the cohort 159

selection filters to the resulting set of images. 160
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Radiomic features 161

The A.K. software (Artificial-Intelligent Radio-Genomics Kits; GE Healthcare, Chicago, 162

IL, USA) used in [1] is not publicly available. Therefore, we used PyRadiomics [14], an 163

open-source Python package for the extraction of radiomics features. PyRadiomics can 164

extract a total of 56 features relevant to our study, including 24 gray level co-occurrence 165

matrix (GLCM) features, 16 gray level size zone matrix (GLSZM) features and 16 gray 166

level run length matrix (GLRLM). 167

In [1], the authors extracted a total of 378 features, including 42 histograms features, 168

10 Haralick features, 9 FormFactor features, 126 GLCM features, 180 GLRLM features, 169

and 11 gray level region matrix features (GLZSM). From these 378 features, the authors 170

used the maximum relevance minimum redundancy (mRMR) algorithm to extract the 171

following top 7 features and train the model: 172

• Feature 1: GLCMEntropy AllDirection offset1 173

• Feature 2: RunLengthNonuniformity angle45 offset7 174

• Feature 3: Correlation angle45 offset1 175

• Feature 4: HaralickCorrelation angle90 offset4 176

• Feature 5: ShortRunEmphasis angle0 offset7 177

• Feature 6: HaralickCorrelation AllDirection offset7 178

• Feature 7: Inertia AllDirection offset4 179

We extracted two sets of features using PyRadiomics. The first set, RF1, included 5 180

PyRadiomics features that best match the 7 A.K software features from [1], namely: 181

• Feature 1: Joint Entropy 182

• Feature 2: Run Length Non Uniformity 183

• Feature 3 / Feature 4 / Feature 6: Correlation 184

• Feature 5: Short Run Low Gray Level Emphasis 185

• Feature 7: Contrast 186

The mapping between A.K software and PyRadiomics features is not exact. Indeed, the 187

A.K software, unlike PyRadiomics, provides every feature at a specific angle and offset. 188

In PyRadiomics, for each feature class, the value of a feature is calculated for each angle 189

separately, after which the mean of these values is returned. The exact definitions of 190

these features are available in the PyRadiomics documentation 191

(https://pyradiomics.readthedocs.io/en/latest/features.html) and in the 192

supplementary material of [1], Table S2. 193

The second set of radiomics features, RF2, included the top 7 features from the 56 194

ones extracted by PyRadiomics. We selected the top 7 features using the mRMRe R 195

package [15] also used in [1], with R v4.2.1 and k=7. 196

Volumes of regions of interest 197

We used FreeSurfer v6.0 to extract 13 ROIs that contribute to Parkinsonian syndromes 198

as shown in [12]. Those include the midbrain, pons, putamen, posterior putamen, 199

caudate, thalamus, pallidum, precentral cortex and insular cortex in the gray matter, 200

the superior cerebellar peduncle, and the cerebellum white matter including the middle 201

cerebellar peduncles in the white matter and the third and fourth ventricles. Every 202

region’s volume was used as input features in the ML models. 203
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Feature normalization 204

We normalized and centered the features using scikit-learn’s StandardScaler, resulting in 205

the following transformation: 206

Z =
x− µ

σ

where µ is the mean of the training samples and σ is the feature standard deviation in 207

the training set. We then applied this transformation to the test set, reusing the mean 208

and standard deviation values learned from the training set. 209

Prediction model 210

To predict disease progression, the authors of [1] trained a linear SVM based on the 7 211

top features extracted and selected from segmented WM masks of PD patients. The 212

authors compared the SVM with three other machine learning methods, including 213

Gaussian Naive Bayes (GNB), k-nearest neighbours (KNN), and decision tree (DT) 214

classifiers. Since the methods of [1] did not mention the name and values of the 215

classification hyper-parameters that were optimized, we optimized the usual parameters 216

for these classifiers using the ranges in Table 2. We implemented the models using 217

scikit-learn v1.1.3 and Python v3.10.4. 218

Model selection and evaluation using bootstrap 219

In [1], the authors used a bootstrap approach to compare classifiers and optimize their 220

hyper-parameters. To reproduce this process, we split the dataset into training (100 221

patients) and test (44 patients) sets having matched the HYS values of the patients in 222

training and test sets. The size of the training and test sets matched the ones reported 223

in [1]. We implemented model selection using 100 iterations of a bootstrap sampling 224

loop applied to the training set. Each iteration randomly selected (with replacement) 50 225

patients, normalized the features for these 50 patients, fitted the models to these 50 226

patients, and measured the AUC of the models on the remaining patients. To measure 227

the stability of the models across the 100 bootstrap samples, we computed the RSD 228

defined as: 229

RSD =
σAUC

µAUC
× 100

where σAUC and µAUC are the standard deviation and mean of the AUC values 230

obtained on the 100 bootstrap samples. We selected the model with the lowest RSD 231

and applied it to the test set. 232
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Model Hyper-parameter Range

SVM
Regularization pa-
rameter

0.1, 1, 10, 100, 1000

Gamma 1, 0.1, 0.01, 0.001,
0.0001

Kernel type Linear, Poly, RBF

Decision Tree
Max depth of tree 1, 2, 3, 4, 5, 8, 16, 32
Max number of leaf
nodes

2, 3, 4 , . . . , 19

Min samples to split
node

2, 3, 4, 5, 8, 12, 16,
20

K-nearest neighbors
Number of neighbors 1, 2, 3, . . . , 30
Power parameter 1, 2
Weight function uniform, distance

Gaussian NB Distribution vari-
ance

np.logspace(0,-9, num=100)

233

Table 2. Ranges used in hyper-parameter optimization.

Model selection and evaluation using cross-validation 234

As part of the replication experiment, we also implemented a Stratified K-fold 235

cross-validation (CV) loop similar to the one in [12] and more commonly seen in the ML 236

literature than the bootstrap loop mentioned previously. We first split the cohort into 237

training (100 patients) and test (44 patients) sets randomly. For model selection, we 238

applied to the training set a CV loop including 50 repetitions of a 5-fold CV stratified 239

with the target variable (progressive/stable class) to preserve its distribution across 240

folds. For each fold, we normalized the features using the standard scaler mentioned 241

above, selected hyper-parameters based on the performance of the validation set and 242

reported the AUC computed on the test set using the model that produced the best 243

average AUC in the validation fold. We implemented this CV loop independently for 244

the SVM, GNB, kNN, and DT, with a scikit-learn validation pipeline, using 245

scikit-learn’s RepeatedStratifiedKFold function with 5 splits and 50 repetitions, and 246

scikit-learn’s GridSearchCV function with the parameters in Table 2. 247

Infrastructure & code availability 248

We used Pandas v.1.4.3 and Numpy v1.22.4 to construct the cohorts. The extraction of 249

WM using SPM12 was carried out by running Boutiques tool with DOI 250

10.5281/zenodo.6881412 using Docker v20.10.12 and Boutiques v0.5.25 [16]. The 251

construction of the cohort, extraction of radiomics features, and training of the ML 252

models were performed on a local computer using Ubuntu OS version 22.04. The 253

FreeSurfer segmentations, on the other hand, were executed remotely through the Cedar 254

cluster of the Digital Research Alliance of Canada, which operated on CentOS Linux 7 255

(Core) operating system with Linux kernel v3.10.0. 256

All our methods are available in a publicly available notebook 257

(https://github.com/LivingPark-MRI/shu-etal). To comply with PPMI’s Data 258

Usage Agreements that prevent users to re-publish data, the notebook queries and 259

downloads data directly from PPMI. Since PPMI does not have a data access API, we 260

developed our own Python interface to PPMI using Selenium, a widely-supported 261

Python library to automate web browser navigation. Using this interface, the notebook 262

downloads PPMI study and imaging files to build the cohorts and train the ML models. 263

The utility functions to download and manipulate PPMI data are implemented in 264
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LivingPark utils, a Python package available on GitHub 265

(https://github.com/LivingPark-MRI/livingpark-utils). 266

Results 267

Cohorts 268

Table 3 summarizes the demographics of the reproduction and replication cohorts that 269

we obtained. Although we built the VRC using the same PPMI filters as in [1], we were 270

not able to reproduce the original cohort due to a shortage of subjects scanned with a 271

Verio scanner. In fact, when we performed the query, we found a total of 29 visit pairs 272

for progressive patients with HYS=1, 98 visit pairs for progressive patients with 273

HYS=2, 0 visit pairs for stable patients with HYS=1, and 66 visit pairs for progressive 274

patients with HYS=2. Using these visit pairs, we were not able to match the number of 275

patients in [1] while ensuring that a given patient appears in at most one group. 276

The SRC is the closest cohort to the one in [1] that we were able to build. As in [1], 277

the SRC includes 72 progressive and 72 stable patients scanned with a Siemens 278

manufactured MRI machine. However, the patient breakdown by HYS value differs 279

from [1] in each group: in the SRC, both groups have 32 patients with baseline HYS=1 280

and 40 patients with baseline HYS=2 whereas in [1] these numbers are respectively 47 281

and 25. The age and F/M balance in the SRC are comparable to the one reported in [1], 282

with 29 females and 43 males per group, an average age of the stable group of 61.0±8.8, 283

and an average age of the progressive group of 61.1±8.6. Finally, it should be noted 284

that out of 144 patients in the SRC, 96 have a different value of PDSTATE (ON/OFF) 285

at their baseline and follow-up visits. 286

The MSRC includes all the patients meeting the SRC’s inclusion criteria except for 287

the MRI machine used. In the MSRC, 132 patients have been scanned with a Siemens 288

machine, 4 with a GE Medical Systems machine, 8 with a Philips machine and 1 with 289

an unknown machine. There are 29 females and 43 males per group. The average age of 290

the stable group is 60.7 yrs ± 9.4 and the average age of the progressive group is 60.7 291

yrs ± 9.3. Both groups have 40 patients with baseline HYS=1 and 32 patients with 292

baseline HYS=2. Finally, 103 patients have a different value of PDSTATE (ON/OFF) 293

at their baseline and follow-up visits. 294

The NFRC included patients with an MRI of any field strength and slice thickness 295

between 1 mm and 1.2 mm. In the NFRC, 108 patients have been scanned with a 296

Siemens machine, 19 with a GE Medical Systems machine, 15 with a Philips machine 297

and 2 with unknown scanners. There are 35 females and 37 males per group. The 298

average age of the stable group is 62.0 ± 9.4 and the average age of the progressive 299

group is 62.0 ± 9.2. Both groups have 40 patients with baseline HYS=1 and 32 patients 300

with baseline HYS=2. Finally, 100 patients out of the 144 have a different value of 301

PDSTATE (ON/OFF) at their baseline and follow-up visits. 302

The FSC includes an additional filter to only keep visit pairs with consistent values 303

of PDSTATE (ON/OFF) between the baseline and follow-up visits. The FSC only 304

includes 102 patients and therefore does not reproduce the sample size in the cohort 305

of [1]. In total, we could only find 22 patients with HYS=1 and 29 patients with 306

HYS=2 in each group, totalling 102 patients in the cohort. 307
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Shu et al. [1] VRC SRC MSRC NFRC FSC

Stable Progr Stable Progr Stable Progr Stable Progr Stable Progr Stable Progr

Subjects,
No.

72 72 12 12 72 72 72 72 72 72 51 51

F/M No. 29/43 22/50 3/9 3/9 29/43 29/43 29/43 29/43 35/37 35/37 19/32 20/31

Age, mean
SD

61.30 ±
10.09

61.45 ±
11.44

66.5 ±
10.5

68.1 ±
6.9

61.0 ±
8.8

61.2 ±
8.6

60.7 ±
6.4

60.7 ±
9.3

62.0 ±
9.4

62.0 ±
9.2

60.3 ±
8.6

63.8 ±
8.9

Hoehn &
Yahr Stage
1 (n)

47 47 0 0 32 32 32 32 32 32 22 22

Hoehn &
Yahr Stage
2 (n)

25 25 12 12 40 40 40 40 40 40 29 29

308

Table 3. Summary of the reproduction and replication cohorts constructed.
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Extracted features 309

The second set of features, RF2, consisted of the top 7 features selected by the mRMR 310

algorithm applied to the 56 features available in PyRadiomics. The top 7 features 311

identified varied by cohort and are reported in Table 4. The cluster shade and Size-Zone 312

Non-Uniformity Normalized appear in all three cohorts. Notably, none of the features 313

extracted in [1] appear in any of the cohorts. 314

Cohort RF2

SRC

original glrlm LongRunLowGrayLevelEmphasis
original glcm Idn
original glcm ClusterShade
original glrlm GrayLevelNonUniformity
original glszm SizeZoneNonUniformityNormalized
original glcm ClusterProminence
original glcm Imc2

MSRC

original glcm InverseVariance
original glcm JointEnergy
original glcm MCC
original glszm LargeAreaHighGrayLevelEmphasis
original glszm SizeZoneNonUniformityNormalized
original glcm ClusterShade
original glszm SmallAreaLowGrayLevelEmphasis

NFRC

original glszm LowGrayLevelZoneEmphasis
original glszm LargeAreaHighGrayLevelEmphasis
original glszm SizeZoneNonUniformityNormalized
original glcm ClusterShade
original glcm Imc1
original glcm InverseVariance
original glcm Autocorrelation

315

Table 4. Feature extraction (RF2) per cohort using mRMRe (k=7)

Reproducibility experiment 316

Our first objective was to reproduce the pipeline of [1]. For this reproducibility 317

experiment, we used the SRC since it is the closest cohort to the one in [1] that we could 318

create. We used the 5 radiomic features (RF1) extracted with PyRadiomics (Figure 2). 319

We trained the 4 models mentioned previously (SVM, kNN, GNB, DT), optimized the 320

hyperparameters as described in Table 2, and used the bootstrap evaluation approach. 321

The evaluation results for all the models on the validation set are reported in 322

Table 5. After hyper-parameter tuning, none of the models achieved an average AUC 323

higher than 0.501 on the validation set. The Decision Tree model had the lowest RSD 324

and was therefore selected for evaluation on the test set (with hyperparameters max 325

depth=1, max leaf nodes=2, min samples split=2) on which it achieved an AUC of 326

0.523, only slightly better than chance performance. We were not able to reproduce the 327

AUC of 0.795 reported in [1]. 328

Figure 3 shows the ROC of every model in the validation set. The observed average 329

AUCs reached a maximal value of 0.501. The maximal AUC value observed across all 330

bootstrap samples was 0.657, reached by the SVM model. The difference between the 331

average and maximal AUC values achieved by the models suggests that, if the 332

PyRadiomics features are indeed equivalent to the original ones, the performance values 333

reported in [1] might have been the result of a random sampling artifact whereby the 334

validation procedure picked a test set favorable to the classifier performance. 335
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Fig 2. Distribution of RF1 features in the training set in the SRC. 0: stable group; 1:
progressive group.

AUC RSD (%)
SVM 0.456 10.819

Decision Tree 0.473 7.443
kNN 0.501 10.182

Gaussian NB 0.441 12.387

Table 5. AUC and RSD values of each model’s best performer (defined as model with
lowest RSD) in the validation set. The Decision Tree achieved the lowest RSD and was
therefore selected for the test set in which it achieved an AUC of 0.523.
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Fig 3. ROC curves per classifier. Gray lines represent ROC curves for model instances
over different bootstrap iterations and hyper-parameters. The green curves show the
100 iterations of the hyper-parameter configuration that produced the lowest RSD
across bootstrap samples.
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SRC MSRC NFRC
RF1 RF2 ROI RF1 RF2 ROI RF1 RF2 ROI

SVM 0.54 0.59 0.6 0.629 0.354 0.513 0.42 0.634 0.374
DT 0.418 0.433 0.533 0.486 0.524 0.379 0.521 0.685 0.561
kNN 0.387 0.536 0.498 0.536 0.579 0.453 0.652 0.626 0.652
GNB 0.472 0.437 0.434 0.609 0.557 0.248 0.484 0.416 0.444

Table 6. Model AUCs obtained on the test set for the the replicability experiment.

Replicability experiment 336

Our second objective was to test the replicability of the model described in [1] by using 337

several cohorts and feature sets variations. For every cohort, we trained the four models 338

with the 3 feature sets (RF1, RF2, and ROI volumes) using the repeated stratified 339

K-fold CV loop, resulting in 12 sets of results per cohort. The evaluation results for all 340

the models are reported in Table 6 and in Figure 4. While a few configurations reached 341

a mean AUC greater than 0.6, none of them reached the AUC of 0.795 reported in [1]. 342

Most of the results were under chance level (AUC=0.5). 343

Discussion 344

We investigated the reproducibility and replicability of the MRI-based ML model of PD 345

progression described in [1]. The performance of the model trained with the methods 346

and cohort closest to the ones described in [1] (reproducibility experiment) did not 347

exceed chance level. When introducing variations in the cohort selection, feature 348

selection, and model evaluation (replicability experiment), several models had AUC 349

values greater than 0.6, with a maximum of 0.685. In summary, we managed to train a 350

model that predicts disease progression with a performance higher than chance on a 351

cohort extracted from the PPMI dataset, using methods adapted from [1]. From that 352

point of view, we could conclude that the replication experiment was successful. 353

However, the peak performance of our models remained significantly lower than the 354

AUC of 0.795 reported in [1]. We therefore did not replicate nor reproduced the original 355

prediction performance. 356

While attempting to reproduce and replicate the original study, difficulties occurred 357

in all phases of the analysis, namely cohort construction, feature extraction, and ML 358

model construction. We first attempted to reproduce the exact cohort used in [1] by 359

applying the same filters as described in the original paper, which did not produce 360

enough samples to reconstruct the original cohort. Instead, the Siemens Replication 361

Cohort (SRC) was used as the main reference since it matched the sample size and class 362

distribution in [1]. However, major differences remained between the SRC and the 363

cohort used in [1], in particular regarding the distribution of HYS values (1/2) in each 364

group, which was 32/40 in the SRC and 47/25 in [1]. This disparity in HYS values is a 365

potential reason explaining the observed discrepancies between our models and the ones 366

in [1], as disease progression critically relates to disease stage. 367

The withdrawal of participants from the PPMI study might be a possible reason why 368

we could not reproduce the cohort of [1]. However, according to the PPMI protocol 369

(section 22), data collected before the withdrawal of a participant should not be 370

removed from the dataset. Another possible explanation could be due to changes in the 371

PPMI user interface or data schema, which may have led to different query results. For 372

instance, during our experiments we found out that approximately 800 images labeled 373

as Proton Density weighted in the image search tool were actually T1-weighted images, 374

which obviously impacted the result of cohort searches. The introduction of the “Mfg 375
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Fig 4. ROC curves of replicability experiment across all cohorts and feature sets on the
test set.
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Model” (manufacturer model) filter may also have impacted our ability to search the 376

database, as not all patient metadata may have been updated with the Mfg Model 377

information. 378

While we acknowledge the technical and ethical challenges associated with the public 379

release of multimodal longitudinal data for large, multicentric cohorts, and the 380

permanent need for data curation, the outcome of our reproducibility experiment leads 381

us to urge data-sharing initiatives — including PPMI — to adopt clear data versioning 382

practices and to document data releases. Several mechanisms and tools currently exist 383

to provide these functionalities for neuroimaging data. For instance, DataLad [17] is an 384

extension of the Git version control system to keep track of data file versions, and has 385

been adopted by major data sharing initiatives including OpenNeuro [18] or the 386

Canadian Open Neuroscience Platform [19]. Other initiatives, such as the Human 387

Connectome Project [20], version and periodically release data through their web 388

portals. With clear data releases, we might have identified and possibly resolved the 389

discrepancies between the version of the PPMI dataset that was accessible to us at the 390

time of the experiment, and the version used in [1]. 391

Reproducing the feature extraction pipeline of [1] also raised challenges as we did 392

not have access to the code used in the original study, and the methods section lacked 393

details to fully reproduce the original protocols. In particular, the original study 394

involved a manual correction step of the white-matter masks, which we were unable to 395

replicate. Instead, we quality controlled the white-matter masks through visual 396

inspection, which might have introduced differences with the original study. Moreover, 397

the A.K software used in [1] to extract radiomics features is not publicly accessible and 398

we could not obtain access to it. Instead, we used the PyRadiomics open-source library 399

to extract similar radiomics features, which might have introduced differences with the 400

original study. Overall, the challenges encountered while reproducing the feature 401

extraction step of [1] could have been mitigated by (1) a clear documentation of all 402

manual steps involved in data pre-processing, including quality control and other 403

corrections, (2) the exclusive use of publicly available software. 404

The ML model trained with the methods reported in [1] yielded under-performing 405

results, achieving AUC values that did not exceed chance level. We believe that this 406

poor performance is due to the small size (n=100) of the training set given the difficulty 407

of the prediction task. Indeed, our models exhibited clear patterns of overfitting that 408

likely resulted from the sparsity of the feature and class distribution samples in the 409

dataset. For instance, the most stable decision tree model (RSD=7.4%) had a 410

maximum depth of 1, which is clearly too shallow to predict disease progression. Deeper 411

decision trees likely overfitted the training set, resulting in larger RSD values still not 412

exceeding chance AUC. The relative small size of the test set (n=44) is also likely to 413

explain the observed fluctuations of classification performance, as illustrated by the 414

jagged ROC curves in Figure 3, as well as the inconsistent performance of classifiers and 415

feature sets across cohorts. In summary, we believe that the differences in classification 416

performance between our models and the one reported in [1] originate in random 417

sampling artifacts resulting from the low sample size. We recommend that future 418

MRI-based ML models of PD prediction be trained on substantially larger samples, to 419

improve the reproducibility of their performance evaluations. 420

The fact that some of the models included in our replicability experiment performed 421

better than chance on the test set (AUC ≥ 0.6) suggests that the methods described 422

in [1] might produce well-performing classifiers when the feature and class distributions 423

in the training set correctly approximate the ones in the test set. In that sense, our 424

results could be interpreted as a successful replication of the original study. However, 425

given the small size of the test set, it is equally plausible that our reported AUC values 426

are also the result of a random fluke. Here again, further experimentation with larger 427
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samples is required. 428

The challenges faced when attempting to reproduce the original ML model might 429

also come from differences in ML validation pipelines. In particular, the bootstrap 430

validation approach used in [1] could be implemented in different ways, which would 431

impact performance evaluations. In addition, it is common for ML model evaluations to 432

be impaired by circularity and data leakage between the training and test sets [6], which 433

in the original study might have happened at multiple pipeline steps including missing 434

value imputation, feature selection, feature normalization, or hyper-parameter 435

optimization. Such issues can artificially inflate AUC values measurably. Our study 436

reiterates the need to adopt more detailed reporting practices (reporting checklists were 437

published for ML [21] and MRI [22] studies) and to publicly share all software used in 438

the analyses. 439

In addition to checklists, a possible option to improve reporting practices is to 440

implement analyses using Jupyter notebooks and share them through an online version 441

control platform such as GitHub. We are aware of the pitfalls of Jupyter notebooks 442

regarding good coding practices and potential hidden execution states creating 443

ambiguity. Nevertheless, we believe that their ability to mix code, data, and natural 444

text makes them an excellent platform to report data analyses. We implemented such a 445

notebook for our analysis (available at 446

https://github.com/LivingPark-MRI/shu-etal), which turned out to be more 447

challenging than initially anticipated due to the fact that (1) the PPMI data usage 448

agreement forbid data redistribution and (2) the dataset was not accessible through an 449

application programming interface (API). Therefore, our notebook had to access PPMI 450

by controlling a web browser, which is not maintainable in the long run. To facilitate 451

the development of similar notebooks in the future, we recommend that data sharing 452

initiatives that must prevent data redistribution provide a mechanism to access and 453

query the data programmatically. 454

Finally, we acknowledge the importance of involving the original authors in 455

reproduction or replication studies. We contacted the senior author of [1] to seek their 456

feedback on an initial draft of this manuscript. Our exchanges confirmed that the 457

discrepancies in classification performance between our models and the one reported 458

in [1] are likely due to (1) undocumented variations in cohort construction, (2) 459

differences in radiomics feature extraction between the A.K software and PyRadiomics, 460

and (3) variations in ML model construction (in particular hyper-parameter 461

optimization) and evaluation, aggravated by the use of a relatively small sample size. 462

This feedback reiterates our previous recommendations on data versioning, sample sizes, 463

reporting practices, and the use of publicly-available software to improve the 464

reproducibility of MRI-based ML studies. 465
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8. Cherubini A, Morelli M, Nisticó R, Salsone M, Arabia G, Vasta R, et al. 493

Magnetic Resonance Support Vector Machine discriminates between parkinson 494

disease and Progressive Supranuclear Palsy. Movement Disorders. 495

2013;29(2):266–269. doi:10.1002/mds.25737. 496

9. Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, et al. 497

Machine learning on brain MRI data for differential diagnosis of parkinson’s 498

disease and progressive supranuclear palsy. Journal of Neuroscience Methods. 499

2014;222:230–237. doi:10.1016/j.jneumeth.2013.11.016. 500

10. Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, et al. The 501

Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology. 502

2011;95(4):629–635. doi:https://doi.org/10.1016/j.pneurobio.2011.09.005. 503

11. Cortes C, Vapnik V. Support-vector networks. Machine learning. 504

1995;20:273–297. 505

12. Chougar L, Faouzi J, Pyatigorskaya N, Yahia-Cherif L, Gaurav R, Biondetti E, 506

et al. Automated categorization of Parkinsonian syndromes using magnetic 507

resonance imaging in a clinical setting. Movement Disorders. 2021;36(2):460–470. 508

13. Ashburner J. SPM: a history. Neuroimage. 2012;62(2):791–800. 509

14. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, 510

et al. Computational radiomics system to decode the radiographic phenotype. 511

Cancer Research. 2017;77(21). doi:10.1158/0008-5472.can-17-0339. 512

15. De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, 513

Haibe-Kains B. MRMRe: An R package for parallelized mRMR Ensemble 514

Feature Selection. Bioinformatics. 2013;29(18):2365–2368. 515

doi:10.1093/bioinformatics/btt383. 516

16. Glatard T. SPM batch; 2022. Available from: 517

https://doi.org/10.5281/zenodo.6881412. 518

May 5, 2023 18/19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2023. ; https://doi.org/10.1101/2023.05.05.539590doi: bioRxiv preprint 

https://arxiv.org/abs/2207.07048
https://doi.org/10.5281/zenodo.6881412
https://doi.org/10.1101/2023.05.05.539590
http://creativecommons.org/licenses/by/4.0/


17. Halchenko Y, Meyer K, Poldrack B, Solanky D, Wagner A, Gors J, et al. 519

DataLad: distributed system for joint management of code, data, and their 520

relationship. Journal of Open Source Software. 2021;6(63). 521

18. Markiewicz CJ, Gorgolewski KJ, Feingold F, Blair R, Halchenko YO, Miller E, 522

et al. The OpenNeuro resource for sharing of neuroscience data. Elife. 523

2021;10:e71774. 524

19. Poline JB, Das S, Glatard T, Madjar C, Dickie EW, Lecours X, et al. Data and 525

Tools Integration in the Canadian Open Neuroscience Platform. Scientific Data. 526

2023;10(1):189. 527

20. Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JL, Burgess GC, 528

et al. The human connectome project: a retrospective. NeuroImage. 529

2021;244:118543. 530

21. Pineau J, Vincent-Lamarre P, Sinha K, Larivière V, Beygelzimer A, d’Alché-Buc 531
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