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Abstract:

Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires an
understanding of how cellular networks change following therapy. We describe a therapeutic
atlas for Crohn’s disease (CD) and ulcerative colitis (UC) following anti-tumour necrosis
factor (TNF) therapy. We generated ~1 million single-cell transcriptomes, organised into 109
cell states, from 216 gut biopsies from 38 patients and three controls, revealing disease- and
therapy-specific differences. A systems-biology analysis identified distinct spatially-resolved
cellular microenvironments: granuloma signatures in CD and interferon (IFN)-response
signatures localising to T-cell aggregates and epithelial damage in CD and UC. Longitudinal
comparisons demonstrated that disease progression in non-responders associated with
myeloid and stromal cell perturbations in CD and increased multi-cellular IFN signalling in
UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a
lymphoid pathotype. Our therapeutic atlas informs drug positioning across IMIDs, and
suggests a rationale for the use of janus kinase (JAK) inhibition following anti-TNF

resistance.

Key words: single cell transcriptomics, immune mediated inflammatory diseases, anti-
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Introduction

Immune-mediated inflammatory diseases (IMIDs) are characterised by impaired immune
tolerance leading to chronic inflammation and end-organ damage. The discovery that anti-
TNF therapy ameliorates the signs and symptoms of inflammation and tissue damage over
three decades ago marked a new era in the treatment of IMIDs“% However, with non-
response rates reaching 40% and the lack of durable remission, medications beyond anti-TNF
therapy are required for a large proportion of patients, including many with CD, UC and

RA%S,

Recent studies have explored the cellular™® and molecular basis®®2° for these diseases, as
well as their associated histopathological features?’. However, in the gut, the cellular
distinctions between inflamed CD and UC, and their respective tissue niches remain poorly

understood. Although previous studies have implicated fibroblast activation states'>*3?’,

25-27 12,28

neutrophils®?’, inflammatory monocytes**?, and activated T and 1gG* plasma cells"*? with
anti-TNF non-response in IBD, no biomarker is currently approved in clinical practice to
predict patient response to therapy. Given the absence of validated biomarkers and a plethora
of treatment options now available, formulating effective drug sequencing strategies
following anti-TNF treatment failure is an unmet clinical need. Understanding the cellular
impact of therapeutic agents can inform these strategies. However, no study has directly

interrogated the cellular landscape in any IMID before and after anti-TNF therapy using

single-cell RNA sequencing (scRNA-seq).

Here, we aimed to create a cell census of two IMIDs, CD and UC to deliver a proof-of-

concept therapeutic atlas as a resource for precision medicine. Through the ‘Tissue
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biomarkers for AdalimUmab in inflammatory bowel disease and RheUmatoid arthritiS’
(TAURUS) study, we sought to understand the implications of gut region and disease
activity, as well as the dynamic nature of tissue responses in IBD in the context of the most
commonly used class of biologic therapy. Furthermore, we extended our approach beyond

the gut to the synovium in RA.

Results

A longitudinal scRNA-seq atlas of anti-TNF therapy in CD and UC

We collected biopsies from 38 biologic naive patients with CD or UC, and three healthy
controls across five distinct regions of the gut (terminal ileum, ascending colon, descending
colon, sigmoid and the rectum) before and after treatment with adalimumab (Fig. 1 and
Supplementary Table 1). Eighty-nine percent of patients (n=34) had at least one pair of site-
matched biopsies before and after treatment. The mean age of patients with CD and UC was
36 (SD=10.6; range=17-61) and 33 (SD=10.10; range=17-55) years, respectively. Serum
trough levels of adalimumab were monitored and patients with anti-drug antibody-mediated
loss of response were excluded from the study. Our study comprises 987,743 high-quality
single-cell transcriptomes from 216 gut samples (Fig. 1 and Extended Data Fig. 1a).
Subclustering of nine cell compartments (myeloid cells, B cells, plasma cells, CD4" T helper
cells, CD8" cytotoxic lymphocytes, innate lymphoid cells (ILCs), stromal cells, ileal and
colonic epithelial cells) yielded 109 distinct cell states (Extended Data Fig. 1b, Extended

Data Fig. 2, Supplementary Table 2).

Epithelial heter ogeneity drives transcriptomic variation in the ileum compared to colon
Given that variance in our transcriptomic dataset could be attributable to biopsy region or

disease type, as well as treatment and associated response, we sought to systematically


https://doi.org/10.1101/2023.05.05.539635

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.05.539635; this version posted May 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

explore these variables. We first examined healthy samples for differences between terminal
ileum and colon across all cell compartments (Extended Data Fig. 3a-c and Supplementary
Table 3). Differences were most apparent in the epithelium with 5,493 differentially
expressed genes (DEGs) (Extended Data Fig. 3a). Principal component analysis (PCA)
demonstrated that 59.7% of variance in the epithelium was explained by the difference
between the terminal ileum and colon (PC1l) (Extended Data Fig. 3d). PC2 (12.4% of
variance) highlighted differences along the colon. Genes involved in the absorption and
metabolism of vitamin C (SLC23Al), fat soluble vitamins (RBP2, CYP4F2), vitamin B12
(TCN2) and iron (SLC40A1, CYBRD1) were preferentially expressed in the terminal ileum,
alongside pathways relating to fatty acid metabolism such as unsaturated fatty acid, long-
chain fatty acid, as well as triglyceride metabolic processes (Extended Data Fig. 3e-i).
Distribution of mucin expression varied across ileum and colon. MUC1, MUC4, MUC5B,
and MUC12 were predominantly seen in the colon whilst MUCL17 was preferentially

expressed in the terminal ileum (Extended Data Fig. 3j).

A molecular approach to quantifying inflammation acr oss samples

Previous research has highlighted that macroscopically non-inflamed gut samples can
nevertheless be histologically and transcriptomically inflamed™. Therefore, we generated a
gene-based inflammation score using an external dataset examining patient heterogeneity in
IBD?. We used this gene score to quantify inflammation in our cohort (Supplementary
Table 4, Fig. 2a, and Extended Data Fig. 4a-g). Our inflammation score derived from
histologically inflamed samples highly correlated with a recently described molecular
inflammation score (R=0.89, P < 2.2x107%°) (Extended Data Fig. 4h)?. The inflammation
score was comparable between inflamed samples in both CD and UC (Fig. 2b). We identified

several common features in inflamed CD and UC, including cell state expansion in B cells
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(CCL22" memory B), myeloid cells (pDC, S100A8/9"™ monocyte and C1Q" IL1B"
macrophage), and stroma (THYL" FAP" PDPN' fibroblast, NOTCH3" TNC" LOXL2"
pericyte, NOTCH3" TNC™ CCL19" pericyte, and CD74™ HLA-DRB1" venous pericyte) (Fig.

2c-g, Extended Data Fig 4i,j, and Supplementary Table 4).

Cellular distinctions between CD and UC are underpinned by differences in
lymphocytic and epithelial stoichiometry

Given the distinct clinical and histopathological features of CD and UC, we sought to extract
differences between these two conditions at single-cell resolution. In patients with CD, we
observed a specific expansion of the Thl cell state in inflammation (Fig. 2c). Epithelial
remodelling in CD consisted of enrichment of an enterocyte cell state (PLCG2" enterocyte),
characterised by potent expression of PLCG2 alongside PIK3R3 (Fig. 2g). Missense variants
of PLCG2, which encodes for a phospholipase enzyme, are associated with IBD** and result
in intestinal inflammation®". Point mutations in the murine orthologue are associated with
inflammation driven by autoantibody immune complexes as well as the innate immune
system®. In addition to being associated with B-cell development® and tuft cells in health®,
our findings indicate that PLCG2 expression may be of specific relevance in enterocytes in

CD.

Shared features of inflammation were observed in UC and CD, most notably within the B,
plasma and CD4" T cell compartments. An IFN-responsive B-cell state (GBP1, STAT1, MX1,
ISG15) was also found to be more abundant in inflamed samples in CD and UC, although
more pronounced in CD (Fig. 2e and Extended Data Fig. 2c). A similar B-cell state has

been described in a damage and recovery mouse model of dextran sulfate sodium (DSS)
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colitis and prevented mucosal healing®*. Expansion of 1gG* plasma cells and plasmablasts
were seen in both diseases. However, a greater preponderance of IgG* CXCR4" plasma cell
(OR=4.24, 95% CI=2.56-7.02, P,3=5.45x10""), IgG* CXCR4" plasma cell (OR=2.65, 95%
Cl=1.75-4.02, Pa3=0.0001), and plasmablasts (OR=2.79, 95% CI=1.79-4.34, P,4;=0.0001)

was observed in UC compared to CD (Fig. 2f).

CXCL13" Tph/Tfh and Th17 cell states were more abundant in inflamed compared to non-
inflamed tissue in both CD and UC (Fig. 2c). However, the expansion of CXCL13" Tph/Tfh
and Th17 cell states was much more pronounced in UC (OR=2.02, 95% CI=1.58-2.59,
Pai=1.79x10%, and OR=2.27, 95% CI=1.76-2.93, P.5=4.59x10%, respectively). We
observed multiple cell states of CD4" FOXP3" regulatory T cells (Tregs)within our dataset
(Extended Data Fig. 2a). A select number of these were enriched in UC compared to CD,
specifically the CD4" IKZF2" TNFRSF18"° Tregs and CD4* TWIST1" Tregs (OR=1.26, 95%
Cl1=1.08-1.47, P45=0.02 and OR=1.72, 95% CI1=1.33-2.24, P,4=0.001, respectively). TWIST1
has been reported to be a potent negative regulatory factor which represses Th17 and Tfh, as

well as Thl phenotypes via STAT3 and STAT4 induction, respectively*>.

Given the use of anti-TNF therapy in both CD and UC, we next characterised the expression
of TNF and its receptors (TNFRSF1A and TNFRSF1B, that encode TNFR1 and TNFR2,
respectively) in our atlas. During inflammation, mean expression of TNF on a per cell basis
was highest in monocytes and CD4" T memory cells in both CD and UC (Fig. 2h). Of the
total TNF transcripts detected in inflamed CD and UC, the main cellular sources were CD4"
T memory (mean percentage, CD: 29%, UC: 30%), CD8" T memory (CD: 20%, UC: 18%)
and CD4" T helper (CD: 15%, UC: 14%) cells (Fig. 2i). Although thought to be ubiquitously

expressed®’, TNFRSF1A was mainly expressed in structural cells including the epithelium
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and the stroma, as well as myeloid cells. TNFRSF1B was preferentially expressed in immune
cells. Beyond profiling cytokine and receptor expression patterns, we also leveraged footprint
gene set-based analysis using PROGENYy to quantify TNF signalling®®. TNF signalling pre-
treatment in inflamed gut samples was relatively higher in CD4" T helper cells, cells of the
myeloid lineage, stromal cells, and selected epithelial populations (e.g. M-like cells)
compared to B and plasma cells in both CD and UC (Fig. 2h). The relatively diminutive role
for TNF signalling in B and plasma cells in IBD is in keeping with the recently suggested

association between plasma cells and anti-TNF non-response’.

Taken together, this cellular census revealed that CD is characterised by an increase in Thl
cells, as well as expansion of the PLCG2" epithelial cell state. Other changes in the CD4*
compartment such as Th17 and CXCL13" Tph/Tfh increases, along with IgG* plasma cell
expansion, occurred in both diseases but were particularly prominent in UC. However, whilst
differences in cell state abundance exist, expression of TNF, its receptors, as well as

signalling patterns are similar across both forms of inflammatory bowel disease.

Inflammatory hubs are associated with distinct spatial niches in CD and UC with
implicationsfor anti-TNF therapy response

Most scRNA-seq studies rely on partitioning cells into discrete clusters which may not
capture the full spectrum of cell identity and activity. We leveraged consensus non-negative
matrix factorisation (C(NMF) to identify gene expression programmes (GEPs) within cell
types®. GEPs can represent bona fide cell identity but can also be reflective of metabolic
processes, activation states as well as response to cytokine signalling occurring concurrently
in any individual cell (Supplementary Table 5 and Extended Data Figs. 5,6). We assessed

each cell compartment to identify GEPs associated with inflammation (Supplementary
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Table 6) and examined correlations between GEPs within inflamed samples. Groups of
correlated GEPs, termed hubs may represent participants in the same or related biological
processes. Given the differences between inflamed CD and UC, we derived hubs separately
for each disease. This yielded 14 hubs in CD and six in UC (Extended Data Figs. 7,8). Hubs
in which more than half of the constituent GEPs were enriched in inflammation were
considered to be ‘inflammatory hubs’ (Fig. 3a,b). Correlations were also observed between
GEPs from different inflammatory hubs which suggests that these hubs are not mutually

exclusive (Extended Data Fig 7,8).

Notably, in both CD and UC, we observed two hubs characterised by response to IFN
signalling: hub 4 and hub 3, respectively (Fig. 3a,b). Top weighted genes shared across
constituent GEPs included CXCLY9, IFIT2, IFIT3, 1SG15 and STAT1 resulting in enrichment
for terms relating to both type I and type Il IFN response as well as janus kinase (JAK)/STAT
signalling (Supplementary Table 5). Within these hubs, a myeloid and a fibroblast/pericyte
GEP (pM14 and pFP11, respectively) were specifically shared between CD and UC (Fig.
3a,b). pM14 was enriched in LAMP3" IL1B* DCs and to a lesser extent, SI00A8/9" TNF"
IL6" monocytes (Extended Data Fig. 6f). pFP11 included the follicular reticular cell marker,
CCL19, trafficking molecules such as MADCAM1, selectins (SELE, SELP) and MHC class
II. Enrichment of this GEP was observed not only in C3" CCL19" fibroblasts, but also

CD74" HLA-DRB1" venous pericytes in CD and UC (Extended Data Fig. 6g).

We used the CCL19 (pFP11) and CXCL9 (pM14 and pFP11) protein markers to localise the
shared GEPs spatially within matched biopsy sections. CCL19 was expressed on COL1A1"
stromal cells (pFP11) and also on LAMP3* CCR7" DCs present in CD3" T-cell aggregates

(Fig. 3c,d, region 4). In our scRNA-seq data, this DC cell state was described by pMO08
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(LAMP3, CCR7, CCL19) (Extended Data Fig. 5,6f) and positively associated with
inflammation in both CD and UC (Supplementary Table 5). CXCL9 was also found in T-
cell aggregates and was expressed on CD14" CD40"™ CD11c* monocyte-derived DCs (Fig.
3c, region 3). CXCL9" monocyte-derived DCs were additionally situated around damaged
epithelial crypt cells (Fig. 3d, region 2). Given the expression pattern of CXCL9, this
suggests that IFN signalling is associated with inflammation and can be found in both T-cell

aggregates and/or regions of epithelial damage in both CD and UC.

Shared GEPs were also seen in hub 7 (CD) and hub 1 (UC). These included pCD8T11
(FGFBP2, GZMB, FCGR3A), pM02 (S100A8, S100A9), and pFPOl (MMP1, MMP3,
CXCL5). These GEPs mapped to CD8" FGFBP2" T cells, monocytes and THYL" FAP*
PDPN" activated fibroblasts, respectively. GZMB, encoding granzyme B, is a marker of
CD8" FGFBP2" T cells (Extended Data Fig. 2b). The GZMB* CD8A" T cells localised to
areas of epithelial (CK8") damage (Fig. 3c, region 2, and Fig. 3d, region 3), in close
proximity to S100A9" MPO" CD66B" neutrophil aggregates and CXCL9" monocyte-derived
DCs. This suggests that in the context of epithelial damage, CD8" FGFBP2" T cells, which
potently express IFNG (Extended Data Fig. 2b), are driving the IFN response in these
monocyte-derived DCs. We have previously described a neutrophil-stromal interaction in
context of epithelial damage?’. Here, we have extended our observations by also localising a

CD8" T-cell population, in which granzyme B is detected, to these regions.

In both CD and UC, pCD4T08 (CXCL13, PDCD1, CXCR5) strongly correlated with pP01
(IGHG1, IGHGS) in hubs 3 and 1 respectively (Supplementary Table 5). These GEPs
mapped to CXCL13" Tph/Tfh and 1gG" plasma cells, respectively (Extended Data Fig.

6a,d). CD4" CXCL13" PD1" Tph/Tth cells spatially co-localised with CD20" B-cell

10
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aggregates in CD and UC (Fig. 3c,d, region 1). This co-localisation was also associated with
the presence of plasma cells (MZB1") in the lamina propria, a dominant feature in UC (Fig.
3d) but was also observable in some CD patients (Fig. 3c, CD1). This is consistent with our
earlier findings comparing the abundance analysis of these cell states in inflamed CD and UC

(Fig. 2c,f).

Hub 2 in CD also shared multiple GEPs with hub 1 in UC: pCD4T07 (FOXP3, TIGIT),
pCD8T16 (CAV1, CXCL13), pCD8T05 (GZMK, HLA™) and pCD8T09 (CTLA4, MAF).
Notably, two GEPs (pM04, pCD4T15) present in hub 2 in CD were absent in hub 1 in UC.
pMO04 was most prominently expressed in a resident macrophage cell state (C1Q"™ IL1B"
macrophage) (Extended Data Fig. 6f). Top genes in pMO04 included CHIL3L1, APOCL,
CYP27Al, APOE, CTSD, and CTSK (Extended Data Fig. 5). GO term enrichment
highlighted multiple terms relating to cholesterol homeostasis and lysosomal transport
(Supplementary Table 5). These genes were recently described in the context of
granulomatous macrophages in sarcoidosis-affected skin*’. pCD4T15 (HLA-DRB1, HLA-
DRA, IFNG) mapped to Thl and Th1/17 cells (Supplementary Table 5 and Extended Data
Fig. 6a). These cells have also been implicated in granulomas in sarcoidosis*. This is
suggestive of hub 2 being representative of granulomas seen specifically in CD (see Fig. 3c,
regions 3 and 5). In UC, which is not a granulomatous condition, pCD4T15 was instead

strongly correlated with pFP11 within the IFN-response hub 3.

Having placed inflammatory hubs and their associated GEPs in a spatial context, we then
assessed whether the GEPs that were positively correlated with inflammation were associated
with anti-TNF therapy non-response in an independent cohort (GSE16879)%. We discerned

multiple GEPs associated with anti-TNF resistance at baseline in this IBD cohort

11
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(Supplementary Table 7 and Fig. 3e). Notably, both of the constituent GEPs in the IFN-
responsive hub 4 in CD (pM14, pFP11) and more than half of the GEPs comprising hub 3 in
UC (pM14, pB11, pCDA4T15) were associated with anti-TNF non-response at baseline.
Additionally, three lymphocyte GEPs including pCD4T07 (FOXP3, TIGIT, IKZF2, CTLA4),
pCD8TO5 (GZMK, HLA™), and pCD8T09 (CTLA4, IL4I1, MAF, LTB), which map to CD4"
Tregs, CD8" GZMK™ T cells, and to CD8" IL17A" IL26" IL23R" T and MAIT cells,

respectively, were enriched in non-responders across both CD and UC at baseline.

Profiling cdlular and molecular changes following anti-TNF therapy in CD and UC

We next sought to characterise cellular abundance and molecular changes following
treatment in non-responders and responders to adalimumab (Fig. 4a and Supplementary
Table 8). No baseline differences in cell state abundance were identified distinguishing
responders and non-responders in CD or UC. Rather, in anti-TNF responders, reconstitution
of the epithelium occurred, with a corresponding reduction in immune cells. However, this
reduction in immune cells differed between CD and UC. A significant reduction in B and
plasma cells was specific to UC, potentially reflective of the preponderance of these cell
types in this disease. In CD, the reduction was primarily seen in myeloid and T cells. Unlike
the case for anti-TNF response, no changes in cell abundance were seen in non-responders

with CD, however, an increase in myeloid cells was observed in non-responders with UC.

Using an interaction term consisting of treatment and response status*’, we examined gene
expression changes following therapy in CD and UC (Supplementary Table 9). In patients
with CD who did not benefit from anti-TNF therapy, the largest number of Differentially
Expressed Genes (DEGs) was observed in the myeloid compartment. Genes indicative of an

inflammatory monocyte phenotype (SLO0OA9, S1I00A12, FTH1, IL1RN) were increased in non-

12
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responders but decreased in responders (Fig. 4b). This also included the pro-inflammatory
cytokine, 1L6. GO pathway overrepresentation analysis also highlighted a role for B-cell
activation and differentiation in non-responders, in which IL-6 is known to play a role
(Extended Data Fig. 9a and Supplementary Table 10). A similar pattern was noted with
IL7R, which is known to increase in expression on monocytes following exposure to
lipopolysaccharide, and is associated with active spondyloarthritis®. Inflammatory
monocytes also can induce a neutrophil-attractant program in the stroma®’. Fibroblast and
pericyte remodelling following therapy in non-responding patients with CD consisted of

neutrophil chemoattractants such as CXCL6 and CXCL8 (Fig. 4c).

In non-responders following treatment in UC, markers of the activated fibroblast phenotype
(THY1 and FAP), as well as chemokine ligands with potent neutrophil attracting capacity
such as CXCL5 and CXCL6, were increased in fibroblasts and pericytes (Fig. 4d and
Extended Data Fig 9b). Expansion of THY1" FAP" synovial fibroblasts has been previously
associated with RA suggesting that this may be a pathogenic fibroblast cell state in different
IMIDs **. GO term enrichment revealed persistent IL-1, TNF, and NIK/NF-kappaB
signalling pathways alongside neutrophil activation and cell chemotaxis in this compartment
despite therapy (Extended Data Fig. 9b-d and Supplementary Table 10). Angiogenesis, as
indicated by upregulation of the vascular endothelial growth factor receptor and ephrin
receptor signalling pathways, was also active in the stroma (Extended Data Fig. 9e).
Evidence of persistent NF-kappaB and TNF signalling was not limited to the stroma but seen
across the colonic epithelium, CD4" T cell, B cell, and myeloid compartments (Extended

Data Fig. 10a-d and Supplementary Table 10).
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Multi-compartmental (CD4" T cell, myeloid, stroma and enterocyte) response to IFN
signalling was also seen despite therapy in non-responders with UC. For example, in CD4™ T
cells, multiple genes indicative of IFN response (MX1, STAT1, GBP2) were upregulated. GO
term enrichment analysis suggested response to IFNy as well as type | IFN (Fig. 4ef).
Plasmacytoid DCs, which are amongst the main producers of type | IFN, were specifically
expanded after therapy in non-responders (Extended Data Fig. 10e, Supplementary Table
8). Taken together, these findings suggest that as opposed to stable disease, non-response to
anti-TNF therapy is strongly associated with worsening of disease at a cellular and molecular
level, indicating a need to promptly switch to alternative therapies in non-responding

patients.

Following anti-TNF treatment, a significant reduction in TNF signalling was observed in
monocytes, DCs, CD4" T cells, CD8" T cells, and the stromal compartment in responders
with CD. In UC, significant decreases were observed in the stromal compartment. Notably in
both CD and UC, reductions were also specifically seen in the THY1" PDPN" FAP" activated
fibroblast. Changes in TNF signalling in responders negatively correlated with pre-treatment
TNF signalling in CD (R=-0.43, p=0.0031) and UC (R=-0.45, p=0.0049) (Extended Data
Fig. 11a-c). This suggests that cells with the largest decrease in TNF signalling following
anti-TNF treatment in responders had amongst the highest levels of TNF signalling before

treatment.

The ability of anti-TNF to induce mucosal healing represents one of the major advances in
the clinical management of IBD. Outcome measures in IBD have now evolved to incorporate
histological remission, and most recently, molecular remission®®. We sought to ascertain

whether anti-TNF could also induce cellular remission. We conducted PCA analysis to
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examine whether non-inflamed post-treatment samples from sites which were inflamed pre-
treatment, were distinguishable from non-inflamed pre-treatment or healthy samples. Across
the top 10 PCs, there was no correlation between any PC and the treatment variable. Treated
samples which achieved cellular remission were comparable to non-inflamed pre-treatment

or healthy samples suggesting cellular remission occurs (Supplementary Table 11).

M apping tar gets of advanced therapiesin anti-TNF non-response

Finally, we examined targets of approved advanced therapeutic agents for treating IBD across
all cell compartments, specifically using paired samples from non-responders to anti-TNF
therapy in CD and UC (Fig. 4g and Extended Data Fig. 12). Ustekinumab, vedolizumab,
ozanimod, and JAK inhibitors are the options currently available to clinicians to treat patients
following failure of anti-TNF therapy. Out of these options, JAK1 was the only target
ubiquitously detected in all cell compartments. Both upadacitinib and filgotinib are
particularly attractive given their specificity for JAK1. Given the plethora of compounds in
development, we also amalgamated a list of cytokines, chemokines, as well as their
associated receptors, immune checkpoint molecules, and members of the JAK family to
highlight expression at the cell state resolution in the context of genetics and in terms of drug
targeting potential to serve as a resource for drug discovery (Extended Data Fig. 13,14). Our
resource describes the aforementioned targets specifically using inflamed samples from non-

responders to anti-TNF therapy, whilst still on treatment.

Inflammatory pathways shared between IBD and RA are associated with a lymphoid
pathotypein thejoint
Shared efficacy to anti-TNF therapy across IMIDs suggests shared biological mechanisms.

We therefore wanted to determine whether the cellular hubs and interactions we identified in
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IBD might underpin inflammation and hold implications for drug response in other anti-TNF
responsive diseases such as RA. We recruited patients before and after treatment with
adalimumab; n=8 patients with paired samples from 4 patients (Fig. 5a and Supplementary
Table 1). Whole digestion of synovial tissue following scRNA-seq yielded 65,588 high
quality single-cell transcriptomes. We then integrated our data with other whole-digested
synovial tissue datasets">'®. This resulted in a meta-atlas of 520,603 cells (Fig. 5a and

Extended Data Fig. 15).

Expression of TNF was highest in cells of the myeloid lineage as well as T cells (Fig. 5b).
Similar to IBD, prominent TNFRSF1A expression was seen on stromal cells, whilst
TNFRSF1B expression was highest on immune cells and specifically myeloid cells. In
keeping with our findings from the gut, TNF signalling was highest on myeloid cells and

fibroblasts, and relatively lower on B cells and plasma cells in the RA synovium.

Next, we derived cNMF profiles within each cell compartment and associated hubs for RA,
as we had done for CD and UC (Fig. 5c, Extended Data Fig. 16,17, and Supplementary
Table 12). To determine which GEPs were associated with inflammation, we used a recently
developed score for discerning inflammation in the synovium®. Twenty out of 58 GEPs
across six hubs positively correlated with inflammation (Fig. 5¢c,d and Supplementary
Table 13). We assessed whether GEPs were associated with specific histological features
that have been characterised in RA synovial tissue. Fourteen GEPs correlated with infiltrate
density, of which 11 belonged to hub 2. Of these five were also associated with aggregates
(worst grade) (Fig. 5d). All GEPs enriched in patients with the lymphoid pathotype (pM13,

pS10, pT04, pT18) were found in hub 2 (Fig. 5€).

16


https://doi.org/10.1101/2023.05.05.539635

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.05.539635; this version posted May 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Like hub 4 (CD) and hub 3 (UC) in IBD, genes in multiple GEPs across cell compartments in
RA hub 2 (pM13, pS10, and pT22), specifically indicated response to IFN signalling (GBPL1,
STAT1, CXCLD9), as well as B-cell activation and proliferation (e.g. TNFSF13B) (Extended
Data Fig. 18a). pM13 was most enriched in IFN-responsive macrophages, whilst expression
of pS10 was most prominent in sublining fibroblast cell states, specifically CHI3L2" GGT5"
NOTCH3" and CXCL12" SFRP1" sublining fibroblasts (Extended Data Fig. 17). Other GEPs
such as germinal centre B cells (pB03) and T-cell-associated GEPs facilitating B-cell
recruitment (pTO04) and activation (pT18) were detected in CXCR6"° and CXCR6" Tph,

respectively, provided further evidence that hub 2 represents a pro-B cell microenvironment.

Given the paucity of well-powered independent longitudinal cohorts examining anti-TNF
response using synovial tissue, we sought to examine GEPs in the context of advanced
therapy in RA, specifically rituximab and tocilizumab (Supplementary Table 13)**. Three B
cell GEPs (pB03, pB06, pB08), and a plasma cell GEP (pP01) were associated with therapy
response to rituximab at baseline (Extended Data Fig. 18b). pB03 and pB06 were indicative
of germinal centre (MME, SUGCT) and naive (IGHD, TCL1A) B cell states, respectively,
whilst pB08 was characterised by mitochondrial (MT-) genes. pB03 and pB08 belonged to
hub 2. Although generated from the plasma cell compartment, MSAL (encoding CD20) in
addition to multiple MHC class Il genes (HLA-DRA, HLA-DPA1, HLA-DPBL1) were amongst
the most top ranked genes in pPO1 (Extended Data Fig. 18c). pB06 and pP01 belonged to

hub 3. No individual GEP was associated with response to tocilizumab at baseline.

Taken together, these findings suggest that across inflamed gut and joint, there are
similarities with respect to TNF expression, receptor distribution, as well as cellular

responders to TNF signalling. Furthermore, although the constituent GEPs might differ,
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lymphocyte infiltration programmes associated with IFN signalling are present in multiple
cell types across all three IMIDs we studied suggesting that targeting IFN signalling might be

considered in these diseases.

Discussion

Here, we have profiled intestinal tissues at single-cell resolution in CD and UC, before and
after administration of the most used biologic agent in the world, adalimumab. This resource
represents the first longitudinal, therapeutic SCRNA-seq atlas comprising ~1 million cells
from 216 samples across 41 individuals (including controls) (Extended Data Fig. 19). This

atlas will aid patient stratification and drug discovery efforts in the IBD research community.

We first explored the shared and distinct drivers of inflammation in CD and UC. Although
clinically disparate entities, bulk RNA sequencing studies have been limited in their ability to
distinguish between them®. Through analysis of 145,704 CD4" T cells from the gut, we can
confirm Thl expansion as a hallmark of inflammation in CD but not UC. In addition, we
observed a marked expansion of Tph/Tth cells, IgG™ plasma cells, and plasmablasts in UC, as
recently reported’. However, rather than being characteristic of UC alone, this expansion was
observed, albeit to a lesser degree, in CD. Distinctions between both diseases also extended
to the epithelium. We describe an enterocyte cell state characterised by PLCG2 expression

that is specifically expanded in inflammation in CD.

Previous studies have endeavoured to uncover patterns of cell abundance that may relate to
anti-TNF resistance’®. However, discrete cell states do not account for continuous

phenotypes. Therefore, we supplemented differential cell abundance analysis with cNMF-
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derived GEPs and identified communities of closely correlated GEPs, termed ‘hubs’
reflective of tissue ecology. Similarities were seen in inflammatory hubs in both diseases
such as those characterised by response to IFN signalling, namely hub 4 in CD and hub 3 in
UC. Notably, at least half of the constituent GEPs of the IFN-responsive hubs in CD and

UC, including pM14 were associated with anti-TNF therapy non-response at baseline.

Using protein markers, pM14 (CXCL9*) was present in CD14* CD40™ CD11c" monocyte-
derived DCs which localised to two distinct spatial niches: (1) co-occurrence with CCL19"
stromal cells (pFP11) in T-cell aggregates and (2) areas of epithelial damage. CCL19"
fibroblasts and associated IFN signalling have been described in many IMIDs including
RA®. We find that this signalling is also present in other stromal cells such as venous
pericytes. In UC, pFP11 was strongly correlated with pCD4T15. This GEP is expressed in
Thl and Th1/17 cells which could be the source of IFNy in this niche. Interestingly, Th1/17
cells have also been implicated in aberrant lymphoid developmental programmes driving
granuloma formation in sarcoidosis-affected skin®’. In CD, we observed that pCD4T15
correlated with pM04. pM04 was characterised by genes considered hallmarks of granuloma-

associated macrophages*.

In regions of epithelial damage, neutrophil attractant fibroblasts are present™. In our data,
these cells are represented by pFP0O1. This GEP was present in the same hub as pCD8T11.
pCD8T11 was highly expressed in CD8" FGFBP2" T cells, demarcated by GZMB
expression. Through multiplexed imaging, we observed that GZMB* CD8A" T cells localised
to areas of epithelial damage along with SI00A9" MPO" CD66B" neutrophil aggregates and
the CXCL9" monocyte-derived DCs. As CD8* FGFBP2" T cells potently express IFNG, they

could be driving the IFN response in the DCs within this niche.
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Although scRNA-seq studies have previously explored anti-TNF resistance, they have neither
directly profiled tissue from responders or non-responders, nor done so in a longitudinal
manner'>3, As such, the inflammatory landscape following exposure to anti-TNF therapy in
non-responders has remained uncharacterised at single-cell resolution. We sought to address
this with our longitudinal study design. In CD, we describe an increase in genes associated
with inflammatory monocytes (IL1RN, IL6) in non-responders post treatment. Despite TNF
blockade, evidence of persisting and increasing TNF, IL-1 and NF-kappaB signalling was
evident in the myeloid compartment in UC. Our group has previously described the relevance
of inflammatory monocyte-derived IL-1 and subsequent autocrine signalling in anti-TNF
resistance®® as well as their capacity to induce a neutrophil attractant programme on
fibroblasts?’. Consistent with these findings, we found an upregulation of genes (THY1, FAP)

indicative of this pathogenic cell state in fibroblasts and pericytes in non-responders with UC.

We also detected evidence of type | and Il IFN response increasing across the CD4" T,
stroma, myeloid and colonic epithelial cells following treatment in non-responders with UC.
Distinguishing between the various IFNs based on transcriptomics alone is challenging. IFNs
are pleiotropic cytokines and type | and 111 IFN can enable epithelial regeneration®. The cell-
specific, and time-specific role of IFNs, and whether this increase is indeed pathogenic
remains unknown. It has been reported that type | IFN released by pDCs contributes to
paradoxical psoriasis following the administration of anti-TNF agents*’ and interestingly, we
did see an expansion of pDCs in non-responders with UC. Examining licensed advanced
therapeutic agents in the non-responder cohort following treatment demonstrated that JAK1

was expressed across all cell compartments despite anti-TNF therapy. As such, our data
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suggest a rationale for why selective modulation of JAK1 may be effective in the subsequent

treatment of anti-TNF non-responders, as appears to be the case in clinical practice .

The amenability of RA to anti-TNF therapy led us to compare across organ systems. We
discerned common patterns in terms of TNF expression, as well as TNFR distribution in the
inflamed gut and synovium. We also detected a hub of GEPs with IFN-response (pM13,
pS10, and pT22) enriched in the lymphoid pathotype of patients with RA. As in IBD, we find
this IFN-signature is shared with other stromal cell states and with haematopoietic cell states
depending on disease context. Thus, we further refine our current understanding of

lymphocyte infiltration programmes across IMIDs.

Our longitudinal profiling strategy is a starting point to capture the dynamic evolution of
IMIDs at a cellular level over time. To reduce batch effect associated with longitudinal
sampling, it was necessary to use frozen samples in this study. This, along with known
limitations of droplet-based scRNA-seq did not allow us to detect neutrophils. Another
limitation of this study given its observational nature, was the disparity in sampling time after
treatment. All patients were sampled after at least eight weeks of exposure to treatment, but
sampling time varied up to 1.5 years after therapy initiation due to the COVID-19 pandemic.

However, all patients were on therapy at the time of post-treatment sampling.

With the advent of biosimilars and the plethora of available biologic therapies, it is
imperative to characterise the impact of individual therapeutic interventions on the cellular
landscape in diseased tissues to optimise drug positioning strategies for particular patient
subpopulations®®2. Therefore, we examined the cellular basis of inflammation and drug

response across CD, UC, and RA, specifically in the context of therapy. As the most used
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first-line biologic, our in vivo perturbation atlas of adalimumab serves as a foundation for the

investigation of other existing and emerging therapeutic agents in a wide range of IMIDs.
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Methods
No statistical method was used to predetermine sample size, and patients were not

randomised as this was an observational study.

Patient cohortsand ethics

Biologic naive patients with IBD due to be escalated to adalimumab were recruited from the
IBD outpatient clinic at the John Radcliffe Hospital in Oxford. We selected patients with an
inflammatory phenotype of CD as biopsies do not always reflect stricturing or penetrating
phenotypes affecting the deeper bowel wall layers. Depending on the procedure, biopsies
were collected [(IBD Cohort 09/H1204/30)/(GI Ethics 16/YH/0247)] from either terminal
ileum, ascending colon, descending colon and rectum (colonoscopy) or the descending colon,
sigmoid and rectum (flexible sigmoidoscopy). Clinical history and examination were
undertaken to ascertain disease activity; Harvey Bradshaw Index (HBI) for CD and Simple
Clinical Colitis Activity Index (SSCAI) for UC. Endoscopic (ulcerative colitis endoscopic
index of severity (UCEIS) for UC, and the presence and absence of ulceration for CD) and

histologic readouts (Nancy index) were also obtained from the electronic patient records.
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During follow-up, serum trough adalimumab levels were taken to exclude antibody mediated
therapy failure. Samples from the same regions as the pre-treatment endoscopy were taken in

post-treatment endoscopy, subject to patient consent and welfare.

Patients with clinically diagnosed RA were recruited to and followed up in an observational
standard of care cohort (West Midlands Black Country: 14/WM/1109). Within this, serial
synovial biopsies were taken from biologic naive patients under the following nested ethics

(West Midlands Black Country: 07/H1203/57). Patients with RA, according to ACR/EULAR
2010 criteria with a DAS28-ESR score of at least 5.1 and active inflammation in at least one
biopsiable joint on ultrasound scanning (GE LogiqE9/6-25MHz probe) underwent
ultrasound-guided synovial biopsy. Small joints were biopsied using a spring loaded 16-
gauge biopsy needle (Bard Mission); large joints were biopsied using flexible 2.2 mm
(Tontarra, Germany) forceps via a single 7 Fr disposable portal placed using Seldinger
technique. Four to six synovial fragments were obtained for each small joint needle biopsy,
and six to eight synovial fragments from each large joint, taking samples systematically from
all available joint recesses. All biopsies were taken by an experienced operator with
experience of over 300 procedures; no significant adverse events to biopsy were observed.
Clinical assessments (including Disease Activity Score-28) were undertaken at time of
biopsy. Patients were re-biopsied in the same joint for follow-up after treatment with

adalimumab, subject to patient consent and welfare.

Obtaining samples and pr eparation of samplesfor sScRNA-seq
All gut tissue samples were obtained in RPMI 1640 Medium (Gibco) in 50 ml falcon tubes
and kept on ice. All samples were processed within 2h of the procedure. Sample processing

was performed under sterile conditions. Samples to be used for single-cell analyses were
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gently washed with 1X PBS, finely macerated with a scalpel and placed into 2 ml of
CryoStore CS10 Cell Freezing Medium (CS10; Sigma-Aldrich). Following this, they were
kept on ice for 10 min, after which they were transferred to -80°C freezer in Nalgene Mr.
Frosty Freezing Containers. After 24 h, they were moved to liquid nitrogen. Samples for
histology were placed into formalin for paraffin embedding. Synovial tissue was minced
using scalpels to ensure fragments were <1 mm in diameter and randomly assigned into 1 ml
cryovials into which 1 ml/vial of CS10 was added. Vials were equilibrated at 4°C for 10 min

before transfer into a 4°C Mr. Frosty and storage at -80°C.

10X Genomics scRNA-seq library preparation, tissue dissociation and sequencing

Gut tissue samples were thawed into warm IMDM media with foetal bovine serum (FBS).
CS10 was removed by washing. Samples were treated with EDTA pre-digestion with rotation
for 15 min to remove dead/damaged epithelial cells. Samples were then dissociated
enzymatically with Liberase TM and DNase into a single-cell suspension with rotation. Cells
were washed, strained and counted for viability using acridine orange/propidium iodide and a

maximum of 10,000 cells were loaded per 10X Chromium channel.

Synovial tissue samples were thawed into warm IMDM with 10% FBS and washed two times
to remove preservation media. Samples were then digested in a cocktail of Liberase TL and
DNase in warm media for 30 min, with agitation. Samples were then strained at 40 microns,
and washed two times with PBS with 0.4% BSA. Live events were counted using acridine
orange/propidium iodide and a maximum of 10,000 cells were loaded per 10X Chromium
channel. The GEX 3’ V3 protocol was followed throughout sequencing for both gut and

synovium.
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scRNA-seq pre-processing and quality control filtering

Cell Ranger v3.1.0 was used to align reads to the hgl9 human transcriptome and generate
feature-barcode matrices from the Chromium single-cell RNA-seq output for TAURUS
samples. Panpipes was used to generate anndata objects following quality control, and batch
correction®. Filtering steps for high-quality single cells included removal of: doublets using
Scrublet™, cells expressing fewer than 500 genes, and cells with mitochondrial gene count

percentage greater than 60%. Genes that were detected in fewer than 3 cells were removed.

Selection of variable genes, dimensionality reduction, clustering and annotation

To account for differences in sequencing depth across cells, UMI counts were normalised by
the total number of UMIs per cell and converted to transcripts-per-10,000. Data were then
log-normalised. Highly variable genes were selected following which, a subset of genes
consisting of T-cell receptor, immunoglobulin and HLA genes were removed. Data were then
scaled prior to PCA. For gut samples, BBKNN was used for batch correction of samples and
Leiden clustering was applied to derive broad cell populations™. This included: B cells,
plasma cells, T cells, myeloid cells, ileal epithelial cells, colonic epithelial cells, and stromal
cells. In the synovium, harmony was used to integrate across samples and the study of
origin®. Leiden clustering was applied to derive broad cell populations including: B cells,

plasma cells, T cells, myeloid cells, and stromal cells.

These broad cell populations were then further clustered as described above, with tailored
PCAs and n_neighbors as per dataset complexity in addition to harmony for batch correction.
In instances where individual cell clusters in these partitioned datasets demonstrated
biological anomalies (such as high B cell marker gene expression in a distinct T cell cluster),

the Scrublet score was used to assess the likelihood that this cluster could be a doublet, in
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which case these cells would be removed from the analysis. The Wilcoxon rank-sum test was
used to conduct differential expression between clusters to derive marker genes. False
discovery rate (FDR)-adjusted P-value < 0.05 considered significant for marker genes and all

other analyses unless otherwise specified.

Derivation of theinflammation score

The inflammation score is a composite gene score. We identified genes differentially
expressed between histologically inflamed (as per Nancy index) IBD resections to non-
inflamed/non-1BD gut tissue following multiple comparison correction using DESeq2Re"
(Supplementary Table 4). Data derived from TAURUS were pseudobulked (sum) at the
sample level. We then used the aforementioned list of differentially expressed genes as a
gene signature and applied the enrichlit function from the escape package®®. The score was
then scaled between 0-10. This resulted in a vector representing enrichment of the
inflammation score on a per sample basis. The highest inflammation score in the healthy
sample was selected as a heuristic cut off for the inflammation score. This corresponds to the

90™ percentile of inflammation score found in macroscopically non-inflamed samples.

Treatment response criteria

Patients with CD who experienced 30% decrease in HBI and changed to no macroscopic
ulceration following treatment were considered to be responders. Patients with UC who
experienced 30% decrease in SSCAI, Nancy index and UCEIS were considered to be
responders. If these outcome measures were incongruent, the inflammation score in the post
treatment samples were examined. Patients in whom any post-treatment samples remained
inflamed as per the inflammation score (>6.5) were categorised as non-responders. If all post-

treatment samples were below the inflammation score threshold (<6.5), patients would be
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considered responders. Any patient who required surgical intervention, or necessitated
change in therapy due to disease activity was categorised as a non-responder. For RA, we

used a EULAR good or moderate response to define binary response in RA™.

Differential abundance analysis

Differential abundance was carried out using MASC with nested random effects accounting
for multiple samples per patient, and covariates including treatment status®®®. Differential
abundance was conducted in two ways:

i To detect cell state specific changes in inflammation, comparison across CD and
UC, treatment response associations at baseline and effect of treatment, cell state
abundance was analysed as proportion of the ‘low’ resolution category (Extended
Data Fig. 1b)

ii. To detect compartment-specific changes following treatment across responders
and non-responders, compartment abundance was analysed as proportion of the

entire sample.

PROGENYy analysis

To quantify TNF signalling, we applied PROGENYy to our dataset®. Each cell received a
score for each of 14 pathways including TNF signalling. Linear mixed effects model using
the Imer function as part of the ImerTest package was used to test for association between
TNF signalling scores before and after anti-TNF therapy with the patient variable accounted

as random effects.

scRNA-seq differential expression and pathway analysis
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Pseudobulked profiles were generated at the compartment level for differential expression
analysis. Comparisons between ileum and colon were performed using limma-voom with
duplicateCorrelation to account for multiple samples per patient®”. Linear model was fit
using ImFit, and moderated t-statistics as well as associated P-values were generated using

the ebayes function.

To longitudinally monitor compartmental changes following therapy, we applied glmmSeq to
paired samples”®. Counts Per Million (CPM) normalisation was applied to pseudobulked
profiles. Given that glmmSeq used negative binomial models, we generated estimates of the
common, trended and genewise dispersions across all genes using estimateDisp function in
edgeR®. An interaction term of treatment (pre/post) by response (responder/non-responder)
was used alongside a nested random effects design to account for multiple samples from the
same patient. For overrepresentation analysis, enrichGO from cluster Profiler was used®. All
genes tested were used as the background genes i.e. the gene universe. Genes with positive
fold change in non-responders as well as g-value < 0.05 for treatment:response were tested

for Gene Ontology (GO) term enrichment.

I dentification of gene expression programmes (GEPS) by consensus hon-negative matrix
factorisation (cCNMF)

We leveraged cNMF to complement the Leiden-based clustering approach to simultaneously
capture functional programmes, and activation states in addition to cell identity*’. cNMF was
iteratively applied to broad categories of cell types as identified with Leiden clustering. In the
gut, this consisted of: B cells, plasma cells, CD4" T cells, CD8" T cells, myeloid cells
(monocytes, macrophages and dendritic cells, mast cells), stromal cells (fibroblasts and

pericytes), myofibroblasts, endothelial cells, colonic epithelial cells, ileal epithelial cells, glial
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cells and innate lymphoid cells. In the synovium, this consisted of: B cells, plasma cells, T

cells, myeloid, and the stroma.

Briefly, we applied cNMF to a count matrix, N (cells) x M (genes) to derive two matrices: k
(GEP) x M (genes), and, N (cells) x k (GEP) with the usage of each GEP for each cell®.
Selection of k was dependant on several factors including prioritising solutions that were
biologically meaningful according to top weighted genes, factorisation stability as determined
by the silhouette score and minimisation of the Frobenius reconstruction error. Consensus
solutions were then filtered for outliers through inspections of distances between components
and their nearest neighbours through a histogram. Genes statistically associated with each
GEP was identified using multiple least squares regression of normalised (z-scored) gene
expression against the consensus GEP usage matrix. Overrepresentation analysis for all GEPs
were conducted through using GOATOOLS with top 150 weighted genes® as input and all

genes in the relevant matrix as the gene universe.

I dentification of hubs and calculating NM F transcriptional programme activity

Hubs were identified through analysis of covarying GEPs in inflamed samples for CD and
UC separately®. Programme activity was calculated for every GEP according to the cell type
in which the GEP was initially discerned. For the gut, this was restricted to the main non-
epithelial cell types; B cells, plasma cells, CD4" T cells, CD8" T cells, myeloid cells
(monocytes, macrophages and DC), and stromal cells (fibroblasts and pericytes). For the

synovium, this included B cells, plasma cells, T cells, myeloid, and the stroma.

As previously demonstrated, we summarised programme activity for each GEP across

individual samples®. We calculated GEP expression across five quantiles (0.25, 0.5, 0.75,
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0.95, 0.99) individually for each sample. For each quantile, a Pearson correlation co-efficient
(R) was derived for each pair of GEPs across all samples. The correlation was Fisher
transformed and the mean of these correlations were used as a test statistic. We compared R
against a null distribution derived through permuting the sample identity 10,000 times
keeping cell type constant. A P-value was generated through counting how often the
permuted R value was above and below the true R value. The minimum count was scaled by
two and designated the P-value statistic. Multiple comparisons were corrected at Benjamini-
Hochberg FDR of 10%. We derived an adjusted R value by calculating the difference of

mean true R values and the mean of permuted R values.

Significant Fisher transformed associations, R (edges) and their constituent GEPs (nodes)
were used to create a signed weighted network. Hubs within this network were detected using
a module detection algorithm used for signed graphs®’. This was applied by resolution
parameter in the range of 0.001 to 0.2, and tau=0.2. This method was iteratively applied, and

hubs split if they were larger than three nodes, and improved modularity of the solution.

Testing GEP enrichment in inflammation

In order to capture GEPs that are active even in a small number of cells, we calculated the
mean of programme activity values at five percentiles (0.25 0.5, 0.75, 0.95, 0.99). Linear
mixed effects model using the Imer function as part of the ImerTest package was used to test
for enrichment of GEPs in inflammation in the gut. Association between mean GEP
expression and inflammation status was tested with covariates including patient and
treatment. Hubs in IBD were deemed to be inflammatory if more than half of the constituent

GEPs in a particular hub was enriched in inflammation. Hubs in RA were deemed to be
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inflammatory if more than half of the constituent GEPs in a particular hub was positively

correlated with the proportion of CD45" cells in samples®.

Projection of GEPsto bulk RNA sequencing/microarray data

As outlined above, cNMF vyields a k (GEP) x M (genes) matrix, henceforth referred to as H.
The gene expression matrix from the relevant microarray/bulk RNA sequencing data were
subsetted to genes shared with H. NMF was initialised with H and the gene expression matrix
to generate the projected component matrix, W (samples x k). The NMF implementation

used was sklearn.decomposition.non_negative factorization.

Processing bulk RNA sequencing data from R4RA

FASTQ files generated from the R4RA trial were downloaded from EMBL-EBI (E-MTAB-
11611). FASTQ files were trimmed to remove low-quality reads using trimgalore (0.6.6) in
paired mode. FASTQ files were aligned to the human genome (GRCh38, Ensembl release
101) using STAR (2.7.3a). Gene counts were summarised using featureCounts (Subread
v2.0.1). Raw counts were RPKM-normalised using edgeR functions calcNormFactors

(TMM) and rpkm.

Multiplexed imaging using Cell DIVE

Slide clearing and blocking

4 uM Formalin-Fixed Paraffin Embedded (FFPE) biopsy tissues slides (CD or UC) were
deparaffinised and rehydrated. The slides were then permeabilised for 10 min in 0.3% Triton
X-100 and washed further in 1X PBS. Antigen retrieval was performed using the NxGen
decloaking chamber (Biocare Medical, Pacheco, CA, USA) in boiling pH6 Citrate (Agilent,

S1699) and pH9 Tris-based antigen retrieval solutions for 20 min each. Tissue slides were
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blocked in 1X PBS with a 3% BSA (Merck, A7906), 10% Donkey serum (Bio-Rad, CO6SB)
solution for 1 h at room temperature. Slides were washed in 1X PBS for 10 min and then
stained with DAPI (Thermo, D3571) for 15 min. Slides were washed in 1X PBS for 5 min
and coverslipped with mounting media (50% glycerol — Sigma, G5516 and 4% propyl gallate

— Sigma, 2370).

Scan plan and background acquisition

The GE Cell DIVE system was used to image all FFPE slides. A scan plan was acquired at
10X magnification to select regions of interest followed by imaging at 20X to acquire
background autofluorescence and generate virtual H&E images. Background imaging is used
to subtract autofluorescence from all subsequent rounds of staining. Slides were decover-

slipped in 1X PBS prior to staining.

Staining and bleaching

Multiplexed imaging consisted of staining for the following protein markers: CD68, CD3,
CCL19, CD8A, CK8, CD4, CXCL13, CD20, CD208, CXCL9, S100A9, Kl67, MPO,
GZMB, CD66B, CD14, MZB1, CK8, COL1Al, CCR7, CD11C, CD40, PD1. Each staining
round consisted of a mix of three antibodies prepared in blocking buffer (PBS, 3% BSA, 10%
donkey serum). The initial round used primary antibodies which were incubated overnight at
4°C followed by washes in 1X PBS and 0.05% Tween20 (Sigma, P9416). Secondary
antibodies raised in Donkey were then incubated for an additional hour at room temperature
which were either conjugated to Alexa Fluorophore 488, 555 or 647 (Invitrogen). Each
subsequent staining round used directly conjugated antibodies to either of these dyes and
were incubated overnight at 4°C. Antibodies manually conjugated were purchased in a BSA-

AZIDE free format and conjugated using antibody labelling kit (Invitrogen). Fluorophores
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were bleached between each staining round using NaHCO; (0.1 M, pH 11.2; Sigma, S6297)
and 3% H,O, (Merck, 216763). Fresh bleaching solutions were prepared and slides were
bleached two times (15 min each) with a 1 min 1X PBS wash in between bleaching rounds.
Slides were re-stained for DAPI for 2 min and washed in 1X PBS for 5 min before imaging
the dye-inactivated round as the new background round (for subsequent background
subtraction). DAPI staining between imaging rounds assists in image registration and
alignment. Slides were multiplexed with the next panel of three markers with iterative

staining, bleaching and imaging.
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Figurelegends

Fig. 1| An overview of the TAURUS study.

a, TAURUS-IBD study design outlining sample collection before and after treatment from
biologic naive patients with IBD. b, Clinical characteristics of patients included in TAURUS-
IBD. See Supplementary Table 1 for more details. c, TAURUS workflow outlining number
of high-quality transcriptomes (987,743 cells) generated across compartments with associated
cell states and uniform manifold approximation and projection visualisations. AC, ascending
colon; CD, Crohn’s disease; colono, colonocyte; DC, dendritic cell; DC, descending colon;
EEC, enteroendocrine cell; entero, enterocyte; F, female; fibro, fibroblast; GC, germinal
centre; hi, high; HBI, Harvey-Bradshaw Index; IFN-resp, interferon-responsive; ILC, innate
lymphoid cell; lo, low; M, male; macro, macrophage; MAIT, mucosal-associated invariant T;
MNP, mononuclear phagocyte; mono, monocyte; NK, natural killer cells; pDC, plasmacytoid
dendritic cell; peri, pericyte; R, rectum; RPS™, ribosomal protein S-high; SSCAI, simple
clinical colitis activity index; SC, sigmoid colon; TA, transit-amplifying; Tfh, CD4" follicular

helper T cell; Tph, CD4" peripheral helper T cell; Th, CD4" T helper cell; T, terminal ileum;
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Treg, CD4" regulatory T cell; UCEIS, ulcerative colitis endoscopic index of severity; UC,

ulcerative colitis; Undiff, undifferentiated.

Fig. 2| Epithelial and lymphocyte stoichiometry under pins cellular distinctions between
CD and UC.

a, Stacked barplots showing proportion of cell compartments within individual gut samples.
Samples are ordered according to inflammatory score. b, Violin plots showing distribution of
inflammation scores across healthy (n=12 samples from 3 patients), CD (n=33 inflamed, 63
non-inflamed samples from 16 patients) and UC (n=50 inflamed, 53 non-inflamed samples
from 22 patients) samples. Wilcoxon rank-sum test used to test significance. c-g, Boxplots
showing cell state as a proportion of the ‘low’ resolution cell subpopulations (see Extended
Data Fig. 1 for cellular hierarchy), for CD non-inflamed (CD-NI), CD inflamed (CD-I), UC
non-inflamed (UC-NI), and UC inflamed (UC-I) gut samples. Sample numbers as in (b).
MASC used to test abundance across inflammation status and disease with nested random
effects accounting for multiple samples per patient, and covariates including treatment status.
Only significant (P.g < 0.05) differences after multiple comparisons correction with
Benjamini-Hochberg are shown. h, Mean expression of mRNA transcripts at the
‘intermediate’ cell resolution is shown for TNF, TNFRSF1A and TNFRSF1B in pre-treatment
inflamed samples in CD and UC. PROGENYy was applied to pre-treatment inflamed samples
to calculate TNF signalling scores®®. Heatmap shows relative enrichment of TNF signalling
scores. i, Fraction of total TNF transcripts (mean across inflamed samples) at the
‘intermediate’ cell resolution in inflamed samples pre-treatment. DC, dendritic cell; EEC,
enteroendocrine cell; entero, enterocyte; GC, germinal centre; hi: high; ILC, innate lymphoid
cell; lo, low; MNP, mononuclear phagocyte; Tfh, CD4" follicular helper T cell; Tph, CD4"

peripheral helper T cell; Th, CD4" T helper cell; Treg, CD4" regulatory T cell.

41


https://doi.org/10.1101/2023.05.05.539635

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.05.539635; this version posted May 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fig. 3| Hubs of gene expression programmes are associated with spatial nichesin CD
and UC with implicationsfor anti-TNF therapy response.

a,b, Network graph of covarying GEPs that constitute inflammatory hubs in (a) CD and (b)
UC. Common weighted genes (within top 50) across constituent GEPs within hubs are shown
below network graph. See Supplementary Table 5 for full list of cNMF GEPs in IBD and
associated GO term enrichment in GEPs. c,d, Virtual H&E with multiplexed imaging
highlighting representative regions of tissue and associated protein markers in (c) CD and (d)
UC. Sections shown from two patients from each disease. e, Boxplots showing expression of
GEPs significantly associated with anti-TNF therapy outcome at baseline in both CD (n=36
patients, 17 non-responders, 19 responders) and UC (n=24 patients, 16 non-responders, 8
responders) in an external microarray dataset of gut tissue (GSE16879)%. Wilcoxon rank-
sum test used to assess significance of pre-treatment differences in GEP expression across
response status. DC, dendritic cell; FC, fold change; IL, innate lymphoid; MAIT, mucosal-
associated invariant T; Non-resp, anti-TNF non-responders; pB, B cell GEP; pCD4T, CD4" T
cell GEP; pCDS8T, CD8" T cell/NK GEP; pFP, fibroblast and pericyte GEP; pM, myeloid cell
GEP; pP, plasma cell GEP; pV, vascular cell GEP; Resp, anti-TNF responders; Treg, CD4"

regulatory T cell.

Fig. 4] Cellular and molecular changes following anti-TNF therapy in IBD.

a, Effect of treatment on the cell compartment as a proportion of total cells per sample in
anti-TNF responders and non-responders with CD (R: n=36 samples from 10 patients, NR:
n=16 samples from 7 patients) and UC (R: n=18 samples from 5 patients, NR: n=40 samples
from 12 patients). Dots show the odds ratio (OR) and error bars show the 95% confidence

interval (Cl). b-d, Longitudinal changes in gene expression within (b) myeloid cells in CD,
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and (c) fibroblasts and pericytes in CD and (d) UC. Each paired dot represents median gene
expression in a single patient. Significance testing (Pag < 0.05) performed using glmmSeq for
treatment:response (TxR) with nested random effects for multiple samples per patient. Only
paired samples included. ef, Following over-representation analysis in cell compartments,
genes differentially expressed for TxR and associated with type | IFN response
(G0:0034340), and type Il IFN response (GO:0034341; GO0060333 in CD4" T cells) were
examined in the paired samples included in the differential expression analysis. Genes were
log-transformed, and scaled from raw counts. The heatmap was generated using
ComplexHeatmap and split into responders and non-responders with column-wise and row-
wise hierarchical clustering. Expression was scaled between -1 to 1. g, Dotplot showing
expression of genes associated with approved advanced therapies, before and after anti-TNF
in non-responders with UC. Bar chart shows median abundance of compartment in context of

treatment (pre/post) as a proportion of total cells in sample.

Fig. 5| Inflammatory pathways shared between IBD and RA are associated with the
lymphoid pathotypein thejoint.

a, TAURUS-RA study design and integration with external datasets to create a meta-atlas for
synovial tissue™'®. b, Mean expression of mMRNA transcripts at the cell state resolution is
shown for TNF, TNFRSF1A and TNFRSF1B in inflamed samples with RA. PROGENy was
applied to inflamed RA samples to calculate TNF signalling scores®. Heatmap generated to
show relative enrichment of TNF signalling scores. c, Correlations of gene expression
programmes (GEPs). Asterisk (*) indicates significantly correlated GEP pairs (Pag < 0.1).
Solid lines demarcate hubs of highly correlated GEPs. d, Only samples from the AMP2 were
included in this analysis as only this dataset had H&E grading for aggregates, and H&E

infiltrate density. Spearman correlations between GEP expression and proportion of CD45"
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cells per sample, worst grade of aggregates and mean infiltration as indicated by associated
H&E with FDR correction for number of GEPs within cell compartments. Number of
asterisks indicates level of significance. e, Associations between GEP expression and
histological pathotypes. Only AMP2 data were included in this analysis; diffuse (n=30
patients), lymphoid (n=33 patients) and pauci-immune (n=7 patients) pathotypes. One-way
ANOVA conducted to test association between GEPs within cell compartments which were
positively correlated with proportion of CD45" cells, with FDR correction for number of
GEPs within cell compartments. Pairwise Wilcoxon rank-sum tests only conducted for
significant GEPs, with FDR correction for pairwise comparisons between histological
pathotypes. Significant adjusted P-values displayed above relevant comparisons. CRP, C-
reactive protein; CDAI, clinical disease activity index; DC, dendritic cell; ESR, erythrocyte
sedimentation rate; fibro, fibroblast; GC, germinal centre; H&E, haematoxylin-eosin; HSP",
heat shock protein-high; IFIT", Interferon induced proteins with tetratricopeptide repeat
genes-high; ILC, innate lymphoid cell; MAIT, mucosal-associated invariant T; MNP,
mononuclear phagocyte; MT™, mitochondrial-high; NK, natural killer; OA, osteoarthritis;
pB, B cell GEP; pDC, plasmacytoid dendritic cell; physglob, physician global assessment
RA; pM, myeloid cell GEP; pP, plasma cell GEP; pS, stromal cell GEP; pT, T/NK cell GEP;
RPS" ribosomal protein S-high; Tph, CD4" peripheral helper T cell; Treg, CD4" regulatory

T cell.

Extended Data Fig. 1| Sample processing and annotation hier ar chy

a, Schematic showing bioinformatic pre-processing strategy for gut samples. Panpipes
pipeline was used for pre-processing®®. Uniform manifold approximation and projection
(UMAP) visualisations show the cellular landscape of gut samples coloured by inflammation

status, and batch. See Methods for more details. b, Hierarchy shows annotation across
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increasing cell type resolution: compartment, low, intermediate and cell state. Colono,
colonocyte; DC, dendritic cell; EEC, enteroendocrine cell; entero, enterocyte; fibro,
fibroblast; GC, germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate
lymphoid cell; lo, low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP,
mononuclear phagocyte; mono, monocyte; NK, natural killer; PC: principal components;
pDC, plasmacytoid dendritic cell; peri, pericyte; TA, transit-amplifying; Tfh, CD4" follicular
helper T cell; Th, CD4" helper T cell; Tph, CD4" peripheral helper T cell; Treg, regulatory T

cell; Undiff, undifferentiated.

Extended Data Fig. 2| Marker genes of cell statesin the gut.

Dotplot showing expression of marker genes of cell states in the SCRNA-seq dataset: (a)
CD4" T cell, (b) CD8" T/innate T/NK/IL cell, (c) B cell, (d) myeloid cell, (€) plasma cell,

(f) stromal cell, (g) ileal epithelial cell and (h) colonic epithelial cell. Genes relate to
Supplementary Table 2. Colono, colonocyte; DC, dendritic cell; EEC, enteroendocrine cell;
entero, enterocyte; fibro, fibroblast; GC, germinal centre; hi, high; IFN-resp, interferon-
responsive; ILC, innate lymphoid cell; lo, low; macro, macrophage; MAIT, mucosal-
associated invariant T; MNP, mononuclear phagocyte; mono, monocyte; NK, natural killer;
pDC, plasmacytoid dendritic cell; peri, pericyte; TA, transit-amplifying; Tfh, CD4" follicular
helper T cell; Th, CD4" helper T cell; Tph, CD4" peripheral helper T cell; Treg, regulatory T

cell; Undiff, undifferentiated.

Extended Data Fig. 3| Differences between the healthy ileum and colon.
a, Barplot summarising number of differentially expressed genes (DEGS) (P.q < 0.05)
comparing healthy ileum (three samples) to healthy colon (nine samples) in three patients in

each cell compartment. Limma-voom with DuplicateCorrelation used to adjust for multiple

45


https://doi.org/10.1101/2023.05.05.539635

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.05.539635; this version posted May 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

samples per patient®. b,c, Cell state distribution within the epithelial compartment in (b)
ileum and (c) colon displayed on a bar plot. Error bar indicates standard error of mean. d,
prcomp from base R used to conduct PCA on CPM normalised and log-transformed read
counts. Samples in context of principal components (PC) 1 and 2 along with associated
percentage of variation explained. e, Loadings of genes associated with PC1 and PC2 shown
in the bar plots. f, VVolcano plot showing results of differential expression between ileum and
colon in the epithelial compartment. Dashed lines demarcate P, =0.05 and log, fold change
(FC)=0.5. g, Relative expression of vitamin-associated epithelial genes differentially
expressed between ileum and colon shown in dotplot. Full results can be found in
Supplementary Table 3. h,i, Over-representation analysis was performed by using the
enrichGO function from clusterProfiler®. All genes significantly associated with (h) ileum
and (i) colon respectively tested for overrepresentation using gene ontology (GO) biological
process gene sets. Red dashed line indicative of g-value=0.05. j, Relative expression of
mucin and mucin-associated genes differentially expressed between ileum and colon shown

in dotplot. Full results can be found in Supplementary Table 3.

Extended Data Fig. 4| The inflammation scorein context of CD and UC.

a, Violin plot showing the distribution of the inflammation score across healthy and
macroscopically non-inflamed, as well as inflamed samples. b, PCA examining compartment
abundance as a proportion of sample in CD. ¢, PCA of samples with CD with inflammation
score plotted as a quantitative variable. d, PC1 loadings associated with cell compartment in
samples with CD. e, PCA examining compartment abundance as a proportion of sample in
UC. f, PCA of samples with UC with inflammation score plotted as a quantitative variable g,
PC1 loadings associated with cell compartment in samples with UC h, Spearman correlation

between inflammation score per sample and the recently described biopsy molecular
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inflammation score (bM1S)® i, j, Differential abundance of cell states in CD (i) and UC (j)
comparing non-inflamed to inflamed tissue. Error bars show 95% confidence interval. DC,
dendritic cell; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low;
macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte;
mono, monocyte; NK, natural killer; pDC, plasmacytoid dendritic cell; TA, transit-
amplifying; Tfh, CD4" follicular helper T cell; Th, CD4" helper T cell; Tph, CD4" peripheral

helper T cell; Treg, regulatory T cell.

Extended Data Fig. 5| Top weighted genes of GEPsin the gut.

Weighted genes for each gene expression programme (GEP) derived from the gut. cNMF
was run separately in: CD4" T, CD8" T, B, plasma cells, myeloid cells (monocytes,
macrophages and DC), vascular cells, and fibroblasts and pericytes. See Supplementary
Table 5 for full list of weighted genes, as well as results of overrepresentation analysis. See
Supplementary Table 6 for results of enrichment testing of GEPs in inflammation. pB: B
cell GEP; pCDAT: CD4" T cell GEP; pCD8T: CD8" T cell/NK GEP; pFP: fibroblast and

pericyte GEP; pM: myeloid cell GEP; pP: plasma cell GEP; pV: vascular cell GEP.

Extended Data Fig. 6| Enrichment of GEPs acr oss cell statesin the gut.

cNMF was used to derive GEP score for individual cells from inflamed samples with CD and
UC in (a) CD4" T, (b) CD8" T, (c) B, (d) plasma, (€) vascular, (f) myeloid, and (g) fibroblast
and pericyte cells. Mean expression of GEP quantified per cell state is plotted. pB: B cell
GEP; pCDAT: CD4" T cell GEP; pCD8T: CD8" T cell/NK GEP; pFP: fibroblast and pericyte
GEP; pM: myeloid cell GEP; pP: plasma cell GEP; pV: vascular cell GEP. DC, dendritic cell;
fibro, fibroblast; GC, germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate

lymphoid cell; lo, low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP,
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mononuclear phagocyte; mono, monocyte; NK, natural killer cell; pDC, plasmacytoid
dendritic cell; peri, pericyte; Tfh, CD4" follicular helper T cell; Tph, CD4" peripheral helper

T cell; Th, CD4" T helper cell; Treg, CD4" regulatory T cell.

Extended Data Fig. 7| Covarying GEPsin inflamed sampleswith CD.

Correlogram demonstrating significant correlations (asterisks: FDR< 0.1) between GEPs
across cell compartments in inflamed samples with CD. Lines demarcate hubs. A module
detection algorithm used for signed graphs was leveraged to detect hubs from a graph
consisting of significantly correlated GEPs (nodes) and associated fisher-transformed
correlations (edges)®’. DC, dendritic cell; fibro, fibroblast; GC, germinal centre; hi, high;
HSP, heat-shock proteins; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo,
low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear
phagocyte; mono, monocyte; MT™, mitochondrial-high; NK, natural killer cell; pB, B cell
GEP; pCDA4T, CD4" T cell GEP; pCD8T, CD8" T cell/NK GEP; pDC, plasmacytoid
dendritic cell; peri, pericyte; pFP, fibroblast and pericyte GEP; pM, myeloid cell GEP; pP,
plasma cell GEP; pV, vascular cell GEP; RPS", ribosomal protein S-high; Tfh, CD4*
follicular helper T cell; Tph, CD4" peripheral helper T cell; Th, CD4" T helper cell; Treg,

CD4" regulatory T cell.

Extended Data Fig. 8| Covarying GEPsin inflamed sampleswith UC.

Correlogram demonstrating significant correlations (asterisks: FDR< 0.1) between GEPs
across cell compartments in inflamed samples with UC. Lines demarcate hubs. A module
detection algorithm used for signed graphs was leveraged to detect hubs from a graph
consisting of significantly correlated GEPs (nodes) and associated fisher-transformed

correlations (edges)®’. DC, dendritic cell; fibro, fibroblast; GC, germinal centre; hi, high;
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HSP, heat-shock proteins; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo,
low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear
phagocyte; mono, monocyte; MT™ mitochondrial-high; NK, natural killer cell; pB, B cell
GEP; pCDA4T, CD4" T cell GEP; pCD8T, CD8" T cell/NK GEP; pDC, plasmacytoid
dendritic cell; peri, pericyte; pFP, fibroblast and pericyte GEP; pM, myeloid cell GEP; pP,
plasma cell GEP; pV, vascular cell GEP; RPS" " ribosomal protein S-high; Tfh, CD4"
follicular helper T cell; Tph, CD4" peripheral helper T cell; Th, CD4" T helper cell; Treg,

CD4" regulatory T cell.

Extended Data Fig. 9] GO over-representation analysis of changes following anti-TNF
therapy in the myeloid and stromal compartments of non-responding patients with CD
and UC.

a,b, Over-representation analysis was performed by using the enrichGO function from
clusterProfiler®. Genes with positive fold change in non-responders with significance (P
<0.05) for treatment:response (TxR) were tested for GO term enrichment and shown in
barchart for (a) myeloid compartment in CD (b) stromal compartment in UC. Dashed line
indicates g-value = 0.05. c-€) Following over-representation analysis in the stromal
compartment of non-responders with UC, genes differentially expressed and associated with
specific GO terms, (¢) GO:0038061 (d) GO:0042119 (e) GO: 0001525 were examined in the
paired samples included in the differential expression analysis. Genes were log transformed,
and scaled from raw counts. The heatmap was then generated using ComplexHeatmap and
split into responders and non-responders with column-wise and row-wise hierarchical

clustering. Expression was scaled between -1 to 1.
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Extended Data Fig 10| Changes in colonic epithelium, CD4" T cdlls, B cells and myeloid
cellsfollowing treatment with anti-TNF in non-responding patients with UC.

a-d, Over-representation analysis was performed by using the enrichGO function from
clusterProfiler®. Genes with positive fold change in non-responders with significance (Pagj <
0.05) for treatment:response were tested for GO term enrichment and shown in bar chart for
(a) colonic epithelium (b) CD4" T cells (c) B cells and (d) myeloid cells in UC. e, Boxplot
showing proportion of plasmacytoid DC (pDC) cell state out of the proportion of
mononuclear phagocytes before and after treatment with anti-TNF in non-responders with
UC. Only paired samples included in the analysis. Differential abundance tested using MASC

with nested random effects accounting for multiple samples per patient (Pag; < 0.05).

Extended Data Fig. 11| Characterisation of the TNF pathway following anti-TNF
therapy in 1BD.

a, PROGENy was used to calculate TNF signalling scores at a per cell level®. The 75"
percentile score for TNF signalling in each of cell types at the ‘intermediate’ level of
resolution was taken to be representative of individual samples. Only paired samples were
used to calculate median fold change (medFC) in responders (Resp) and non-responders
(Non-resp) with significance testing using Imer function as part of the ImerTest package with
individual patients modelled as random effects. b,c, Spearman correlation between TNF
signalling fold change and TNF signalling score pre-therapy in responders to anti-TNF
treatment in (b) CD and (c) UC. DC, dendritic cell; EEC, enteroendocrine cell; GC, germinal
centre; hi: high; ILC, innate lymphoid cell; lo, low; MNP, mononuclear phagocyte; Th, CD4"

T helper cell; Treg, CD4" regulatory T cell.
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Extended Data Fig. 12| Expression of genes associated with approved advanced
therapiesin CD and UC in post-anti-TNF samples from non-responders.

a, Dotplot showing expression of genes associated with advanced therapies before and after
therapy at the compartment level in inflamed samples (inflam) from non-responders (NR)
with CD. Bar chart shows median abundance of cell compartment in context of treatment (pre
and post) as proportion of total cells in sample. b, Dotplot showing expression of genes
associated with advanced therapies before and after anti-TNF therapy at the ‘intermediate’
level of resolution in inflamed samples (inflam) from non-responders (NR) with CD and UC.
Bar chart shows median abundance of intermediate cell subpopulation in context of treatment

(pre and post) as proportion of total cells in sample.

Extended Data Fig. 13| Ther apeutic atlasfor CD.

Inflamed samples with CD following treatment with anti-TNF were pseudobulked at the cell-
state resolution. A list of therapeutically relevant genes including curated cytokine and
receptors from KEGG (M9809)%, members of the JAK family, checkpoint co-inhibitory and
co-stimulatory molecules, and cell trafficking molecules was compiled. Genes with
expression in over 97% of cells were kept. Column-wise, and row-wise k-means clustering
was applied. The first column to the right of the genes indicates whether the gene has been
implicated in genome-wide association studies (GWAS; yellow). The second column
indicates stage of development of therapeutic agent associated with the gene (Phase 1/2/3/4),
green colour indicative of trial success. The third column is indicative of the number of
druggable pockets as outlined on Pi®. DC, dendritic cell; EEC, enteroendocrine cell; GC,
germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low;
macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte;

mono, monocyte; NK, natural Killer cells; pDC, plasmacytoid dendritic cell; peri, pericyte;
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TA, transit-amplifying; Tfh, CD4" follicular helper T cell; Tph, CD4" peripheral helper T

cell; Th, CD4™ T helper cell; Treg, CD4" regulatory T cell.

Extended Data Fig. 14| Ther apeutic atlasfor UC.

Inflamed samples with UC following treatment with anti-TNF were pseudobulked at the cell-
state resolution. A list of therapeutically relevant genes: curated cytokine and receptors from
KEGG (M9809)%, members of the JAK family, checkpoint co-inhibitory and co-stimulatory
molecules, cell trafficking molecules was compiled. Genes with expression in over 97% of
cells were kept. Column-wise, and row-wise K-means clustering applied. The first column to
the right of the genes indicates whether the gene has been implicated in in genome-wide
association studies (GWAS; yellow). The second column indicates stage of development of
therapeutic agent associated with the gene (Phase 1/2/3/4), green colour indicative of trial
success. The third column is indicative of the number of druggable pockets as outlined on
Pi®®. DC, dendritic cell; EEC, enteroendocrine cell; GC, germinal centre; hi, high; IFN-resp,
interferon-responsive; ILC, innate lymphoid cell; lo, low; macro, macrophage; MAIT,
mucosal-associated invariant T; MNP, mononuclear phagocyte; mono, monocyte; NK,
natural Killer cells; pDC, plasmacytoid dendritic cell; peri, pericyte; TA, transit-amplifying;
Tfh, CD4" follicular helper T cell; Tph, CD4" peripheral helper T cell; Th, CD4" T helper

cell; Treg, CD4" regulatory T cell.

Extended Data Fig. 15| Cell states of the synovium.
Uniform manifold approximation and projections (UMAPSs) and associated dot plots show the
expression of marker genes of cell states in the SCRNA-seq dataset: (a) myeloid cells, (b)

T/NKI/IL cells, (c) B cells, (d) stromal cells. DC, dendritic cell; fibro, fibroblast; GC,
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germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low;
macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte;
mono, monocyte; MT"  Mitochondrial high; NK, natural killer cell; pDC, plasmacytoid
dendritic cell; Tfh, CD4" follicular helper T cell; Tph, CD4" peripheral helper T cell; Treg,

CD4" regulatory T cell.

Extended Data Fig. 16| Top weighted genes of GEPsin the synovium.

Weighted genes for each gene expression programme (GEP) derived from the synovium.
cNMF was run separately in: T cells, B cells, plasma cells, myeloid cells and stromal cells.
See Supplementary Table 12 for full list of weighted genes, as well as results of
overrepresentation analysis. See Supplementary Table 13 for results of enrichment testing
of GEPs in inflammation. pB, B cell GEP; pM, myeloid cell GEP; pP, plasma cell GEP; pS,

stromal cell GEP; pT, T/NK cell GEP.

Extended Data Fig. 17| Enrichment of GEPs across cell statesin the synovium.

cNMF was used to derive GEP score for individual cells from inflamed samples with RA in
(a) T/NK/IL, (b) B, (c) plasma, (d) myeloid, and (€) stromal cells. Mean expression of GEP
quantified per cell state. DC, dendritic cell; endo, endothelium; fibro, fibroblast; GC,
germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low;
MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte; MT™: Mitochondrial
high; NK, natural killer cell; pB: B cell GEP; pDC, plasmacytoid dendritic cell; pM: myeloid
cell GEP; pP: plasma cell GEP; pS: stromal cell GEP; pT: T/NK cell GEP; Tfh, CD4"

follicular helper T cell; Tph, CD4" peripheral helper T cell; Treg, CD4" regulatory T cell.
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Extended Data Fig. 18| Association of synovial GEPs with clinical response to rituximab
and GO pathway enrichment analysis.

a, Baseline visit samples in the R4RA study was selected for analysis®. GEPs positively
correlated with inflammation were tested for association with therapy non-response.
Wilcoxon signed-rank test used to test for significance (Pag < 0.05) between responders (29
patients) and non-responders (39 patients) to rituximab (n=68 patients) at baseline. See
Supplementary Table 13 for full results. b, GO term enrichment for GEPs associated with
clinical response to rituximab. See Supplementary Table 13 for full results. GO terms were
generated through applying overrepresentation analysis through GOATOOLS to the top 150
weighted genes in constituent GEPs®. All genes tested were used as the gene universe. See
Supplementary Table 12 for full list of cNMF GEPs in RA and associated GO term

enrichment in GEPs. pB, B cell GEP; pP, plasma cell GEP.

Extended Data Fig. 19| A longitudinal single-cell therapeutic atlas of anti-TNF
treatment in IBD.

Schematic summarising the TAURUS study design and key findings. Our resource provides a
longitudinal, therapeutic SCRNA-seq atlas comprising ~1 million cells organised into 109 cell
states from 216 gut biopsies across 41 individuals (16 responders, 22 non-responders, 3
healthy). This atlas reveals differences in gut cell state abundance that distinguish CD and
UC. Using a systems-biology approach we identify hubs of multi-cellular communities, based
on 75 IBD gene programmes, which localise to distinct tissue microenvironments including
granulomas specific to CD and areas of epithelial tissue damage and lymphoid aggregates
found in both CD and UC. Specific programmes are associated with anti-TNF resistance pre-
treatment, thereby linking drug response to spatial niches in the inflamed gut. Analysis of the

longitudinal dynamics of therapeutic perturbation demonstrates that whilst cellular remission
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occurs in responders, in non-responders disease progression is associated with increased
multi-cellular IFN and NF-kappaB signalling after anti-TNF. Extending the study to RA
through the generation of a synovial meta-atlas comprising 520,603 cells reveals a shared
TNF pathway expression pattern in CD, UC and RA, as well IFN signalling associated with a
lymphoid pathotype. Our therapeutic atlas informs drug positioning across IMIDs, and
suggests a rationale for the use of JAK inhibition following anti-TNF resistance. DC,
dendritic cell; pCDS8T, CD8" T cell/NK GEP; pFP, fibroblast/pericyte GEP; pM: myeloid cell
GEP; Th, CD4" helper T cell; Tfh, CD4" follicular helper T cell; Tph, CD4" peripheral helper

T cell.
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Extended Data Figure 14

Post anti-TNF treatment inflamed UC
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