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Abstract: 

 

Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires an 

understanding of how cellular networks change following therapy. We describe a therapeutic 

atlas for Crohn’s disease (CD) and ulcerative colitis (UC) following anti-tumour necrosis 

factor (TNF) therapy. We generated ~1 million single-cell transcriptomes, organised into 109 

cell states, from 216 gut biopsies from 38 patients and three controls, revealing disease- and 

therapy-specific differences. A systems-biology analysis identified distinct spatially-resolved 

cellular microenvironments: granuloma signatures in CD and interferon (IFN)-response 

signatures localising to T-cell aggregates and epithelial damage in CD and UC. Longitudinal 

comparisons demonstrated that disease progression in non-responders associated with 

myeloid and stromal cell perturbations in CD and increased multi-cellular IFN signalling in 

UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a 

lymphoid pathotype. Our therapeutic atlas informs drug positioning across IMIDs, and 

suggests a rationale for the use of janus kinase (JAK) inhibition following anti-TNF 

resistance.  

 

Key words: single cell transcriptomics, immune mediated inflammatory diseases, anti-

tumour necrosis factor, Crohn’s disease, ulcerative colitis, rheumatoid arthritis 
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Introduction 

Immune-mediated inflammatory diseases (IMIDs) are characterised by impaired immune 

tolerance leading to chronic inflammation and end-organ damage. The discovery that anti-

TNF therapy ameliorates the signs and symptoms of inflammation and tissue damage over 

three decades ago marked a new era in the treatment of IMIDs1,2. However, with non-

response rates reaching 40% and the lack of durable remission, medications beyond anti-TNF 

therapy are required for a large proportion of patients, including many with CD, UC and 

RA3–6. 

 

Recent studies have explored the cellular7–19 and molecular basis20–26 for these diseases, as 

well as their associated histopathological features27. However, in the gut, the cellular 

distinctions between inflamed CD and UC, and their respective tissue niches remain poorly 

understood. Although previous studies have implicated fibroblast activation states12,13,27, 

neutrophils25–27, inflammatory monocytes12,28, and activated T and IgG+ plasma cells7,12 with 

anti-TNF non-response in IBD, no biomarker is currently approved in clinical practice to 

predict patient response to therapy. Given the absence of validated biomarkers and a plethora 

of treatment options now available, formulating effective drug sequencing strategies 

following anti-TNF treatment failure is an unmet clinical need. Understanding the cellular 

impact of therapeutic agents can inform these strategies. However, no study has directly 

interrogated the cellular landscape in any IMID before and after anti-TNF therapy using 

single-cell RNA sequencing (scRNA-seq). 

 

Here, we aimed to create a cell census of two IMIDs, CD and UC to deliver a proof-of-

concept therapeutic atlas as a resource for precision medicine. Through the ‘Tissue 
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biomarkers for AdalimUmab in inflammatory bowel disease and RheUmatoid arthritiS’ 

(TAURUS) study, we sought to understand the implications of gut region and disease 

activity, as well as the dynamic nature of tissue responses in IBD in the context of the most 

commonly used class of biologic therapy. Furthermore, we extended our approach beyond 

the gut to the synovium in RA. 

 

Results 

A longitudinal scRNA-seq atlas of anti-TNF therapy in CD and UC 

We collected biopsies from 38 biologic naïve patients with CD or UC, and three healthy 

controls across five distinct regions of the gut (terminal ileum, ascending colon, descending 

colon, sigmoid and the rectum) before and after treatment with adalimumab (Fig. 1 and 

Supplementary Table 1). Eighty-nine percent of patients (n=34) had at least one pair of site-

matched biopsies before and after treatment. The mean age of patients with CD and UC was 

36 (SD=10.6; range=17-61) and 33 (SD=10.10; range=17-55) years, respectively. Serum 

trough levels of adalimumab were monitored and patients with anti-drug antibody-mediated 

loss of response were excluded from the study. Our study comprises 987,743 high-quality 

single-cell transcriptomes from 216 gut samples (Fig. 1 and Extended Data Fig. 1a). 

Subclustering of nine cell compartments (myeloid cells, B cells, plasma cells, CD4+ T helper 

cells, CD8+ cytotoxic lymphocytes, innate lymphoid cells (ILCs), stromal cells, ileal and 

colonic epithelial cells) yielded 109 distinct cell states (Extended Data Fig. 1b, Extended 

Data Fig. 2, Supplementary Table 2).   

 

Epithelial heterogeneity drives transcriptomic variation in the ileum compared to colon 

Given that variance in our transcriptomic dataset could be attributable to biopsy region or 

disease type, as well as treatment and associated response, we sought to systematically 
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explore these variables. We first examined healthy samples for differences between terminal 

ileum and colon across all cell compartments (Extended Data Fig. 3a-c and Supplementary 

Table 3). Differences were most apparent in the epithelium with 5,493 differentially 

expressed genes (DEGs) (Extended Data Fig. 3a). Principal component analysis (PCA) 

demonstrated that 59.7% of variance in the epithelium was explained by the difference 

between the terminal ileum and colon (PC1) (Extended Data Fig. 3d). PC2 (12.4% of 

variance) highlighted differences along the colon. Genes involved in the absorption and 

metabolism of vitamin C (SLC23A1), fat soluble vitamins (RBP2, CYP4F2), vitamin B12 

(TCN2) and iron (SLC40A1, CYBRD1) were preferentially expressed in the terminal ileum, 

alongside pathways relating to fatty acid metabolism such as unsaturated fatty acid, long-

chain fatty acid, as well as triglyceride metabolic processes (Extended Data Fig. 3e-i). 

Distribution of mucin expression varied across ileum and colon. MUC1, MUC4, MUC5B, 

and MUC12 were predominantly seen in the colon whilst MUC17 was preferentially 

expressed in the terminal ileum (Extended Data Fig. 3j). 

 

A molecular approach to quantifying inflammation across samples 

Previous research has highlighted that macroscopically non-inflamed gut samples can 

nevertheless be histologically and transcriptomically inflamed13. Therefore, we generated a 

gene-based inflammation score using an external dataset examining patient heterogeneity in 

IBD27. We used this gene score to quantify inflammation in our cohort (Supplementary 

Table 4, Fig. 2a, and Extended Data Fig. 4a-g). Our inflammation score derived from 

histologically inflamed samples highly correlated with a recently described molecular 

inflammation score (R=0.89, P < 2.2×10−16) (Extended Data Fig. 4h)29. The inflammation 

score was comparable between inflamed samples in both CD and UC (Fig. 2b). We identified 

several common features in inflamed CD and UC, including cell state expansion in B cells 
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(CCL22+ memory B), myeloid cells (pDC, S100A8/9hi monocyte and C1Qhi IL1Blo 

macrophage), and stroma (THY1+ FAP+ PDPN+ fibroblast, NOTCH3hi TNChi LOXL2+ 

pericyte, NOTCH3hi TNCint CCL19+ pericyte, and CD74hi HLA-DRB1hi venous pericyte) (Fig. 

2c-g, Extended Data Fig 4i,j, and Supplementary Table 4).   

 

 

Cellular distinctions between CD and UC are underpinned by differences in 

lymphocytic and epithelial stoichiometry 

Given the distinct clinical and histopathological features of CD and UC, we sought to extract 

differences between these two conditions at single-cell resolution. In patients with CD, we 

observed a specific expansion of the Th1 cell state in inflammation (Fig. 2c). Epithelial 

remodelling in CD consisted of enrichment of an enterocyte cell state (PLCG2hi enterocyte), 

characterised by potent expression of PLCG2 alongside PIK3R3 (Fig. 2g). Missense variants 

of PLCG2, which encodes for a phospholipase enzyme, are associated with IBD30 and result 

in intestinal inflammation31. Point mutations in the murine orthologue are associated with 

inflammation driven by autoantibody immune complexes as well as the innate immune 

system32. In addition to being associated with B-cell development23 and tuft cells in health33, 

our findings indicate that PLCG2 expression may be of specific relevance in enterocytes in 

CD.  

  

Shared features of inflammation were observed in UC and CD, most notably within the B, 

plasma and CD4+ T cell compartments. An IFN-responsive B-cell state (GBP1, STAT1, MX1, 

ISG15) was also found to be more abundant in inflamed samples in CD and UC, although 

more pronounced in CD (Fig. 2e and Extended Data Fig. 2c). A similar B-cell state has 

been described in a damage and recovery mouse model of dextran sulfate sodium (DSS) 
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colitis and prevented mucosal healing34. Expansion of IgG+ plasma cells and plasmablasts 

were seen in both diseases. However, a greater preponderance of IgG+ CXCR4lo plasma cell 

(OR=4.24, 95% CI=2.56-7.02, Padj=5.45×10-06), IgG+ CXCR4hi plasma cell (OR=2.65, 95% 

CI=1.75-4.02, Padj=0.0001), and plasmablasts (OR=2.79, 95% CI=1.79-4.34, Padj=0.0001) 

was observed in UC compared to CD (Fig. 2f). 

 

CXCL13+ Tph/Tfh and Th17 cell states were more abundant in inflamed compared to non-

inflamed tissue in both CD and UC (Fig. 2c). However, the expansion of CXCL13+ Tph/Tfh 

and Th17 cell states was much more pronounced in UC (OR=2.02, 95% CI=1.58-2.59, 

Padj=1.79×10-05, and OR=2.27, 95% CI=1.76-2.93, Padj=4.59×10-06, respectively). We 

observed multiple cell states of CD4+ FOXP3+ regulatory T cells (Tregs)within our dataset 

(Extended Data Fig. 2a). A select number of these were enriched in UC compared to CD, 

specifically the CD4+ IKZF2hi TNFRSF18lo Tregs and CD4+ TWIST1+ Tregs (OR=1.26, 95% 

CI=1.08-1.47, Padj=0.02 and OR=1.72, 95% CI=1.33-2.24, Padj=0.001, respectively). TWIST1 

has been reported to be a potent negative regulatory factor which represses Th17 and Tfh, as 

well as Th1 phenotypes via STAT3 and STAT4 induction, respectively35,36.   

 

Given the use of anti-TNF therapy in both CD and UC, we next characterised the expression 

of TNF and its receptors (TNFRSF1A and TNFRSF1B, that encode TNFR1 and TNFR2, 

respectively) in our atlas. During inflammation, mean expression of TNF on a per cell basis 

was highest in monocytes and CD4+ T memory cells in both CD and UC (Fig. 2h). Of the 

total TNF transcripts detected in inflamed CD and UC, the main cellular sources were CD4+ 

T memory (mean percentage, CD: 29%, UC: 30%), CD8+ T memory (CD: 20%, UC: 18%) 

and CD4+ T helper (CD: 15%, UC: 14%) cells (Fig. 2i). Although thought to be ubiquitously 

expressed37, TNFRSF1A was mainly expressed in structural cells including the epithelium 
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and the stroma, as well as myeloid cells. TNFRSF1B was preferentially expressed in immune 

cells. Beyond profiling cytokine and receptor expression patterns, we also leveraged footprint 

gene set-based analysis using PROGENy to quantify TNF signalling38,39. TNF signalling pre-

treatment in inflamed gut samples was relatively higher in CD4+ T helper cells, cells of the 

myeloid lineage, stromal cells, and selected epithelial populations (e.g. M-like cells) 

compared to B and plasma cells in both CD and UC (Fig. 2h). The relatively diminutive role 

for TNF signalling in B and plasma cells in IBD is in keeping with the recently suggested 

association between plasma cells and anti-TNF non-response7.   

 

Taken together, this cellular census revealed that CD is characterised by an increase in Th1 

cells, as well as expansion of the PLCG2hi epithelial cell state. Other changes in the CD4+ 

compartment such as Th17 and CXCL13+ Tph/Tfh increases, along with IgG+ plasma cell 

expansion, occurred in both diseases but were particularly prominent in UC. However, whilst 

differences in cell state abundance exist, expression of TNF, its receptors, as well as 

signalling patterns are similar across both forms of inflammatory bowel disease. 

 

Inflammatory hubs are associated with distinct spatial niches in CD and UC with 

implications for anti-TNF therapy response 

Most scRNA-seq studies rely on partitioning cells into discrete clusters which may not 

capture the full spectrum of cell identity and activity. We leveraged consensus non-negative 

matrix factorisation (cNMF) to identify gene expression programmes (GEPs) within cell 

types40. GEPs can represent bona fide cell identity but can also be reflective of metabolic 

processes, activation states as well as response to cytokine signalling occurring concurrently 

in any individual cell (Supplementary Table 5 and Extended Data Figs. 5,6). We assessed 

each cell compartment to identify GEPs associated with inflammation (Supplementary 
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Table 6) and examined correlations between GEPs within inflamed samples. Groups of 

correlated GEPs, termed hubs may represent participants in the same or related biological 

processes. Given the differences between inflamed CD and UC, we derived hubs separately 

for each disease. This yielded 14 hubs in CD and six in UC (Extended Data Figs. 7,8). Hubs 

in which more than half of the constituent GEPs were enriched in inflammation were 

considered to be ‘inflammatory hubs’ (Fig. 3a,b). Correlations were also observed between 

GEPs from different inflammatory hubs which suggests that these hubs are not mutually 

exclusive (Extended Data Fig 7,8).  

 

Notably, in both CD and UC, we observed two hubs characterised by response to IFN 

signalling: hub 4 and hub 3, respectively (Fig. 3a,b). Top weighted genes shared across 

constituent GEPs included CXCL9, IFIT2, IFIT3, ISG15 and STAT1 resulting in enrichment 

for terms relating to both type I and type II IFN response as well as janus kinase (JAK)/STAT 

signalling (Supplementary Table 5). Within these hubs, a myeloid and a fibroblast/pericyte 

GEP (pM14 and pFP11, respectively) were specifically shared between CD and UC (Fig. 

3a,b). pM14 was enriched in LAMP3+ IL1B+ DCs and to a lesser extent, S100A8/9hi TNFhi 

IL6+ monocytes (Extended Data Fig. 6f). pFP11 included the follicular reticular cell marker, 

CCL19, trafficking molecules such as MADCAM1, selectins (SELE, SELP) and MHC class 

II. Enrichment of this GEP was observed not only in C3hi CCL19+ fibroblasts, but also 

CD74hi HLA-DRB1hi venous pericytes in CD and UC (Extended Data Fig. 6g).  

 

We used the CCL19 (pFP11) and CXCL9 (pM14 and pFP11) protein markers to localise the 

shared GEPs spatially within matched biopsy sections. CCL19 was expressed on COL1A1+ 

stromal cells (pFP11) and also on LAMP3+ CCR7+ DCs present in CD3+ T-cell aggregates 

(Fig. 3c,d, region 4). In our scRNA-seq data, this DC cell state was described by pM08 
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(LAMP3, CCR7, CCL19) (Extended Data Fig. 5,6f) and positively associated with 

inflammation in both CD and UC (Supplementary Table 5). CXCL9 was also found in T-

cell aggregates and was expressed on CD14+ CD40hi CD11c+ monocyte-derived DCs (Fig. 

3c, region 3). CXCL9+ monocyte-derived DCs were additionally situated around damaged 

epithelial crypt cells (Fig. 3d, region 2). Given the expression pattern of CXCL9, this 

suggests that IFN signalling is associated with inflammation and can be found in both T-cell 

aggregates and/or regions of epithelial damage in both CD and UC. 

 

Shared GEPs were also seen in hub 7 (CD) and hub 1 (UC). These included pCD8T11 

(FGFBP2, GZMB, FCGR3A), pM02 (S100A8, S100A9), and pFP01 (MMP1, MMP3, 

CXCL5).  These GEPs mapped to CD8+ FGFBP2+ T cells, monocytes and THY1+ FAP+ 

PDPN+ activated fibroblasts, respectively. GZMB, encoding granzyme B, is a marker of 

CD8+ FGFBP2+ T cells (Extended Data Fig. 2b). The GZMB+ CD8A+ T cells localised to 

areas of epithelial (CK8+) damage (Fig. 3c, region 2, and Fig. 3d, region 3), in close 

proximity to S100A9+ MPO+ CD66B+ neutrophil aggregates and CXCL9+ monocyte-derived 

DCs. This suggests that in the context of epithelial damage, CD8+ FGFBP2+ T cells, which 

potently express IFNG (Extended Data Fig. 2b), are driving the IFN response in these 

monocyte-derived DCs. We have previously described a neutrophil-stromal interaction in 

context of epithelial damage27. Here, we have extended our observations by also localising a 

CD8+ T-cell population, in which granzyme B is detected, to these regions.  

 

In both CD and UC, pCD4T08 (CXCL13, PDCD1, CXCR5) strongly correlated with pP01 

(IGHG1, IGHG3) in hubs 3 and 1 respectively (Supplementary Table 5). These GEPs 

mapped to CXCL13+ Tph/Tfh and IgG+ plasma cells, respectively (Extended Data Fig. 

6a,d). CD4+ CXCL13+ PD1+ Tph/Tfh cells spatially co-localised with CD20+ B-cell 
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aggregates in CD and UC (Fig. 3c,d, region 1). This co-localisation was also associated with 

the presence of plasma cells (MZB1+) in the lamina propria, a dominant feature in UC (Fig. 

3d) but was also observable in some CD patients (Fig. 3c, CD1). This is consistent with our 

earlier findings comparing the abundance analysis of these cell states in inflamed CD and UC 

(Fig. 2c,f).  

 

Hub 2 in CD also shared multiple GEPs with hub 1 in UC: pCD4T07 (FOXP3, TIGIT), 

pCD8T16 (CAV1, CXCL13), pCD8T05 (GZMK, HLAhi) and pCD8T09 (CTLA4, MAF). 

Notably, two GEPs (pM04, pCD4T15) present in hub 2 in CD were absent in hub 1 in UC. 

pM04 was most prominently expressed in a resident macrophage cell state (C1Qhi IL1Blo 

macrophage) (Extended Data Fig. 6f). Top genes in pM04 included CHIL3L1, APOC1, 

CYP27A1, APOE, CTSD, and CTSK (Extended Data Fig. 5). GO term enrichment 

highlighted multiple terms relating to cholesterol homeostasis and lysosomal transport 

(Supplementary Table 5). These genes were recently described in the context of 

granulomatous macrophages in sarcoidosis-affected skin41. pCD4T15 (HLA-DRB1, HLA-

DRA, IFNG) mapped to Th1 and Th1/17 cells (Supplementary Table 5 and Extended Data 

Fig. 6a). These cells have also been implicated in granulomas in sarcoidosis41. This is 

suggestive of hub 2 being representative of granulomas seen specifically in CD (see Fig. 3c, 

regions 3 and 5). In UC, which is not a granulomatous condition, pCD4T15 was instead 

strongly correlated with pFP11 within the IFN-response hub 3.  

 

Having placed inflammatory hubs and their associated GEPs in a spatial context, we then 

assessed whether the GEPs that were positively correlated with inflammation were associated 

with anti-TNF therapy non-response in an independent cohort (GSE16879)23. We discerned 

multiple GEPs associated with anti-TNF resistance at baseline in this IBD cohort 
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(Supplementary Table 7 and Fig. 3e). Notably, both of the constituent GEPs in the IFN-

responsive hub 4 in CD (pM14, pFP11) and more than half of the GEPs comprising hub 3 in 

UC (pM14, pB11, pCD4T15) were associated with anti-TNF non-response at baseline. 

Additionally, three lymphocyte GEPs including pCD4T07 (FOXP3, TIGIT, IKZF2, CTLA4), 

pCD8T05 (GZMK, HLAhi), and pCD8T09 (CTLA4, IL4I1, MAF, LTB), which map to CD4+ 

Tregs, CD8+ GZMKhi T cells, and to CD8+ IL17A+ IL26+ IL23R+ T and MAIT cells, 

respectively, were enriched in non-responders across both CD and UC at baseline. 

 

Profiling cellular and molecular changes following anti-TNF therapy in CD and UC 

We next sought to characterise cellular abundance and molecular changes following 

treatment in non-responders and responders to adalimumab (Fig. 4a and Supplementary 

Table 8). No baseline differences in cell state abundance were identified distinguishing 

responders and non-responders in CD or UC. Rather, in anti-TNF responders, reconstitution 

of the epithelium occurred, with a corresponding reduction in immune cells. However, this 

reduction in immune cells differed between CD and UC. A significant reduction in B and 

plasma cells was specific to UC, potentially reflective of the preponderance of these cell 

types in this disease. In CD, the reduction was primarily seen in myeloid and T cells. Unlike 

the case for anti-TNF response, no changes in cell abundance were seen in non-responders 

with CD, however, an increase in myeloid cells was observed in non-responders with UC.   

 

Using an interaction term consisting of treatment and response status42, we examined gene 

expression changes following therapy in CD and UC (Supplementary Table 9). In patients 

with CD who did not benefit from anti-TNF therapy, the largest number of Differentially 

Expressed Genes (DEGs) was observed in the myeloid compartment. Genes indicative of an 

inflammatory monocyte phenotype (S100A9, S100A12, FTH1, IL1RN) were increased in non-
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responders but decreased in responders (Fig. 4b). This also included the pro-inflammatory 

cytokine, IL6. GO pathway overrepresentation analysis also highlighted a role for B-cell 

activation and differentiation in non-responders, in which IL-6 is known to play a role 

(Extended Data Fig. 9a and Supplementary Table 10). A similar pattern was noted with 

IL7R, which is known to increase in expression on monocytes following exposure to 

lipopolysaccharide, and is associated with active spondyloarthritis43. Inflammatory 

monocytes also can induce a neutrophil-attractant program in the stroma27. Fibroblast and 

pericyte remodelling following therapy in non-responding patients with CD consisted of 

neutrophil chemoattractants such as CXCL6 and CXCL8 (Fig. 4c).  

 

In non-responders following treatment in UC, markers of the activated fibroblast phenotype 

(THY1 and FAP), as well as chemokine ligands with potent neutrophil attracting capacity 

such as CXCL5 and CXCL6, were increased in fibroblasts and pericytes (Fig. 4d and 

Extended Data Fig 9b). Expansion of THY1+ FAP+ synovial fibroblasts has been previously 

associated with RA suggesting that this may be a pathogenic fibroblast cell state in different 

IMIDs 16,44. GO term enrichment revealed persistent IL-1, TNF, and NIK/NF-kappaB 

signalling pathways alongside neutrophil activation and cell chemotaxis in this compartment 

despite therapy (Extended Data Fig. 9b-d and Supplementary Table 10). Angiogenesis, as 

indicated by upregulation of the vascular endothelial growth factor receptor and ephrin 

receptor signalling pathways, was also active in the stroma (Extended Data Fig. 9e). 

Evidence of persistent NF-kappaB and TNF signalling was not limited to the stroma but seen 

across the colonic epithelium, CD4+ T cell, B cell, and myeloid compartments (Extended 

Data Fig. 10a-d and Supplementary Table 10). 
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Multi-compartmental (CD4+ T cell, myeloid, stroma and enterocyte) response to IFN 

signalling was also seen despite therapy in non-responders with UC. For example, in CD4+ T 

cells, multiple genes indicative of IFN response (MX1, STAT1, GBP2) were upregulated. GO 

term enrichment analysis suggested response to IFNγ as well as type I IFN (Fig. 4e,f). 

Plasmacytoid DCs, which are amongst the main producers of type I IFN, were specifically 

expanded after therapy in non-responders (Extended Data Fig. 10e, Supplementary Table 

8). Taken together, these findings suggest that as opposed to stable disease, non-response to 

anti-TNF therapy is strongly associated with worsening of disease at a cellular and molecular 

level, indicating a need to promptly switch to alternative therapies in non-responding 

patients. 

 

Following anti-TNF treatment, a significant reduction in TNF signalling was observed in 

monocytes, DCs, CD4+ T cells, CD8+ T cells, and the stromal compartment in responders 

with CD. In UC, significant decreases were observed in the stromal compartment. Notably in 

both CD and UC, reductions were also specifically seen in the THY1+ PDPN+ FAP+ activated 

fibroblast. Changes in TNF signalling in responders negatively correlated with pre-treatment 

TNF signalling in CD (R=-0.43, p=0.0031) and UC (R=-0.45, p=0.0049) (Extended Data 

Fig. 11a-c). This suggests that cells with the largest decrease in TNF signalling following 

anti-TNF treatment in responders had amongst the highest levels of TNF signalling before 

treatment.  

 

The ability of anti-TNF to induce mucosal healing represents one of the major advances in 

the clinical management of IBD. Outcome measures in IBD have now evolved to incorporate 

histological remission, and most recently, molecular remission29. We sought to ascertain 

whether anti-TNF could also induce cellular remission. We conducted PCA analysis to 
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examine whether non-inflamed post-treatment samples from sites which were inflamed pre-

treatment, were distinguishable from non-inflamed pre-treatment or healthy samples. Across 

the top 10 PCs, there was no correlation between any PC and the treatment variable. Treated 

samples which achieved cellular remission were comparable to non-inflamed pre-treatment 

or healthy samples suggesting cellular remission occurs (Supplementary Table 11).   

 

Mapping targets of advanced therapies in anti-TNF non-response 

Finally, we examined targets of approved advanced therapeutic agents for treating IBD across 

all cell compartments, specifically using paired samples from non-responders to anti-TNF 

therapy in CD and UC (Fig. 4g and Extended Data Fig. 12). Ustekinumab, vedolizumab, 

ozanimod, and JAK inhibitors are the options currently available to clinicians to treat patients 

following failure of anti-TNF therapy. Out of these options, JAK1 was the only target 

ubiquitously detected in all cell compartments. Both upadacitinib and filgotinib are 

particularly attractive given their specificity for JAK1. Given the plethora of compounds in 

development, we also amalgamated a list of cytokines, chemokines, as well as their 

associated receptors, immune checkpoint molecules, and members of the JAK family to 

highlight expression at the cell state resolution in the context of genetics and in terms of drug 

targeting potential to serve as a resource for drug discovery (Extended Data Fig. 13,14). Our 

resource describes the aforementioned targets specifically using inflamed samples from non-

responders to anti-TNF therapy, whilst still on treatment. 

 

Inflammatory pathways shared between IBD and RA are associated with a lymphoid 

pathotype in the joint 

Shared efficacy to anti-TNF therapy across IMIDs suggests shared biological mechanisms. 

We therefore wanted to determine whether the cellular hubs and interactions we identified in 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2023. ; https://doi.org/10.1101/2023.05.05.539635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539635


16 
 

IBD might underpin inflammation and hold implications for drug response in other anti-TNF 

responsive diseases such as RA. We recruited patients before and after treatment with 

adalimumab; n=8 patients with paired samples from 4 patients (Fig. 5a and Supplementary 

Table 1). Whole digestion of synovial tissue following scRNA-seq yielded 65,588 high 

quality single-cell transcriptomes.  We then integrated our data with other whole-digested 

synovial tissue datasets15,18. This resulted in a meta-atlas of 520,603 cells (Fig. 5a and 

Extended Data Fig. 15).  

 

Expression of TNF was highest in cells of the myeloid lineage as well as T cells (Fig. 5b). 

Similar to IBD, prominent TNFRSF1A expression was seen on stromal cells, whilst 

TNFRSF1B expression was highest on immune cells and specifically myeloid cells. In 

keeping with our findings from the gut, TNF signalling was highest on myeloid cells and 

fibroblasts, and relatively lower on B cells and plasma cells in the RA synovium.  

 

Next, we derived cNMF profiles within each cell compartment and associated hubs for RA, 

as we had done for CD and UC (Fig. 5c, Extended Data Fig. 16,17, and Supplementary 

Table 12). To determine which GEPs were associated with inflammation, we used a recently 

developed score for discerning inflammation in the synovium45. Twenty out of 58 GEPs 

across six hubs positively correlated with inflammation (Fig. 5c,d and Supplementary 

Table 13).  We assessed whether GEPs were associated with specific histological features 

that have been characterised in RA synovial tissue. Fourteen GEPs correlated with infiltrate 

density, of which 11 belonged to hub 2. Of these five were also associated with aggregates 

(worst grade) (Fig. 5d). All GEPs enriched in patients with the lymphoid pathotype (pM13, 

pS10, pT04, pT18) were found in hub 2 (Fig. 5e).  
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Like hub 4 (CD) and hub 3 (UC) in IBD, genes in multiple GEPs across cell compartments in 

RA hub 2 (pM13, pS10, and pT22), specifically indicated response to IFN signalling (GBP1, 

STAT1, CXCL9), as well as B-cell activation and proliferation (e.g. TNFSF13B) (Extended 

Data Fig. 18a). pM13 was most enriched in IFN-responsive macrophages, whilst expression 

of pS10 was most prominent in sublining fibroblast cell states, specifically CHI3L2+ GGT5+ 

NOTCH3+ and CXCL12+ SFRP1+ sublining fibroblasts (Extended Data Fig. 17). Other GEPs 

such as germinal centre B cells (pB03) and T-cell-associated GEPs facilitating B-cell 

recruitment (pT04) and activation (pT18) were detected in CXCR6lo and CXCR6+ Tph, 

respectively, provided further evidence that hub 2 represents a pro-B cell microenvironment. 

 

Given the paucity of well-powered independent longitudinal cohorts examining anti-TNF 

response using synovial tissue, we sought to examine GEPs in the context of advanced 

therapy in RA, specifically rituximab and tocilizumab (Supplementary Table 13)42. Three B 

cell GEPs (pB03, pB06, pB08), and a plasma cell GEP (pP01) were associated with therapy 

response to rituximab at baseline (Extended Data Fig. 18b). pB03 and pB06 were indicative 

of germinal centre (MME, SUGCT) and naïve (IGHD, TCL1A) B cell states, respectively, 

whilst pB08 was characterised by mitochondrial (MT-) genes. pB03 and pB08 belonged to 

hub 2. Although generated from the plasma cell compartment, MS4A1 (encoding CD20) in 

addition to multiple MHC class II genes (HLA-DRA, HLA-DPA1, HLA-DPB1) were amongst 

the most top ranked genes in pP01 (Extended Data Fig. 18c). pB06 and pP01 belonged to 

hub 3. No individual GEP was associated with response to tocilizumab at baseline.  

 

Taken together, these findings suggest that across inflamed gut and joint, there are 

similarities with respect to TNF expression, receptor distribution, as well as cellular 

responders to TNF signalling. Furthermore, although the constituent GEPs might differ, 
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lymphocyte infiltration programmes associated with IFN signalling are present in multiple 

cell types across all three IMIDs we studied suggesting that targeting IFN signalling might be 

considered in these diseases.  

 

 

 

Discussion   

 

Here, we have profiled intestinal tissues at single-cell resolution in CD and UC, before and 

after administration of the most used biologic agent in the world, adalimumab. This resource 

represents the first longitudinal, therapeutic scRNA-seq atlas comprising ~1 million cells 

from 216 samples across 41 individuals (including controls) (Extended Data Fig. 19). This 

atlas will aid patient stratification and drug discovery efforts in the IBD research community. 

 

We first explored the shared and distinct drivers of inflammation in CD and UC. Although 

clinically disparate entities, bulk RNA sequencing studies have been limited in their ability to 

distinguish between them12. Through analysis of 145,704 CD4+ T cells from the gut, we can 

confirm Th1 expansion as a hallmark of inflammation in CD but not UC. In addition, we 

observed a marked expansion of Tph/Tfh cells, IgG+ plasma cells, and plasmablasts in UC, as 

recently reported7. However, rather than being characteristic of UC alone, this expansion was 

observed, albeit to a lesser degree, in CD. Distinctions between both diseases also extended 

to the epithelium. We describe an enterocyte cell state characterised by PLCG2 expression 

that is specifically expanded in inflammation in CD.  

 

Previous studies have endeavoured to uncover patterns of cell abundance that may relate to 

anti-TNF resistance12. However, discrete cell states do not account for continuous 

phenotypes. Therefore, we supplemented differential cell abundance analysis with cNMF-
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derived GEPs and identified communities of closely correlated GEPs, termed ‘hubs’ 

reflective of tissue ecology. Similarities were seen in inflammatory hubs in both diseases 

such as those characterised by response to IFN signalling, namely hub 4 in CD and hub 3 in 

UC.  Notably, at least half of the constituent GEPs of the IFN-responsive hubs in CD and 

UC, including pM14 were associated with anti-TNF therapy non-response at baseline.  

 

Using protein markers, pM14 (CXCL9+) was present in CD14+ CD40hi CD11c+ monocyte-

derived DCs which localised to two distinct spatial niches: (1) co-occurrence with CCL19+ 

stromal cells (pFP11) in T-cell aggregates and (2) areas of epithelial damage. CCL19+ 

fibroblasts and associated IFN signalling have been described in many IMIDs including 

RA45. We find that this signalling is also present in other stromal cells such as venous 

pericytes. In UC, pFP11 was strongly correlated with pCD4T15. This GEP is expressed in 

Th1 and Th1/17 cells which could be the source of IFNγ in this niche. Interestingly, Th1/17 

cells have also been implicated in aberrant lymphoid developmental programmes driving 

granuloma formation in sarcoidosis-affected skin41. In CD, we observed that pCD4T15 

correlated with pM04. pM04 was characterised by genes considered hallmarks of granuloma-

associated macrophages41.  

 

In regions of epithelial damage, neutrophil attractant fibroblasts are present10. In our data, 

these cells are represented by pFP01. This GEP was present in the same hub as pCD8T11. 

pCD8T11 was highly expressed in CD8+ FGFBP2+ T cells, demarcated by GZMB 

expression. Through multiplexed imaging, we observed that GZMB+ CD8A+ T cells localised 

to areas of epithelial damage along with S100A9+ MPO+ CD66B+ neutrophil aggregates and 

the CXCL9+ monocyte-derived DCs. As CD8+ FGFBP2+ T cells potently express IFNG, they 

could be driving the IFN response in the DCs within this niche.  
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Although scRNA-seq studies have previously explored anti-TNF resistance, they have neither 

directly profiled tissue from responders or non-responders, nor done so in a longitudinal 

manner12,13. As such, the inflammatory landscape following exposure to anti-TNF therapy in 

non-responders has remained uncharacterised at single-cell resolution. We sought to address 

this with our longitudinal study design. In CD, we describe an increase in genes associated 

with inflammatory monocytes (IL1RN, IL6) in non-responders post treatment. Despite TNF 

blockade, evidence of persisting and increasing TNF, IL-1 and NF-kappaB signalling was 

evident in the myeloid compartment in UC. Our group has previously described the relevance 

of inflammatory monocyte-derived IL-1 and subsequent autocrine signalling in anti-TNF 

resistance28 as well as their capacity to induce a neutrophil attractant programme on 

fibroblasts27. Consistent with these findings, we found an upregulation of genes (THY1, FAP) 

indicative of this pathogenic cell state in fibroblasts and pericytes in non-responders with UC.  

 

We also detected evidence of type I and II IFN response increasing across the CD4+ T, 

stroma, myeloid and colonic epithelial cells following treatment in non-responders with UC. 

Distinguishing between the various IFNs based on transcriptomics alone is challenging. IFNs 

are pleiotropic cytokines and type I and III IFN can enable epithelial regeneration46. The cell-

specific, and time-specific role of IFNs, and whether this increase is indeed pathogenic 

remains unknown. It has been reported that type I IFN released by pDCs contributes to 

paradoxical psoriasis following the administration of anti-TNF agents47 and interestingly, we 

did see an expansion of pDCs in non-responders with UC. Examining licensed advanced 

therapeutic agents in the non-responder cohort following treatment demonstrated that JAK1 

was expressed across all cell compartments despite anti-TNF therapy. As such, our data 
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suggest a rationale for why selective modulation of JAK1 may be effective in the subsequent 

treatment of anti-TNF non-responders, as appears to be the case in clinical practice 48–50.  

 

The amenability of RA to anti-TNF therapy led us to compare across organ systems. We 

discerned common patterns in terms of TNF expression, as well as TNFR distribution in the 

inflamed gut and synovium. We also detected a hub of GEPs with IFN-response (pM13, 

pS10, and pT22) enriched in the lymphoid pathotype of patients with RA. As in IBD, we find 

this IFN-signature is shared with other stromal cell states and with haematopoietic cell states 

depending on disease context. Thus, we further refine our current understanding of 

lymphocyte infiltration programmes across IMIDs.  

 

Our longitudinal profiling strategy is a starting point to capture the dynamic evolution of 

IMIDs at a cellular level over time. To reduce batch effect associated with longitudinal 

sampling, it was necessary to use frozen samples in this study. This, along with known 

limitations of droplet-based scRNA-seq did not allow us to detect neutrophils. Another 

limitation of this study given its observational nature, was the disparity in sampling time after 

treatment. All patients were sampled after at least eight weeks of exposure to treatment, but 

sampling time varied up to 1.5 years after therapy initiation due to the COVID-19 pandemic. 

However, all patients were on therapy at the time of post-treatment sampling. 

 

With the advent of biosimilars and the plethora of available biologic therapies, it is 

imperative to characterise the impact of individual therapeutic interventions on the cellular 

landscape in diseased tissues to optimise drug positioning strategies for particular patient 

subpopulations51,52. Therefore, we examined the cellular basis of inflammation and drug 

response across CD, UC, and RA, specifically in the context of therapy. As the most used 
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first-line biologic, our in vivo perturbation atlas of adalimumab serves as a foundation for the 

investigation of other existing and emerging therapeutic agents in a wide range of IMIDs. 
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Methods 

No statistical method was used to predetermine sample size, and patients were not 

randomised as this was an observational study. 

 

Patient cohorts and ethics 

Biologic naïve patients with IBD due to be escalated to adalimumab were recruited from the 

IBD outpatient clinic at the John Radcliffe Hospital in Oxford. We selected patients with an 

inflammatory phenotype of CD as biopsies do not always reflect stricturing or penetrating 

phenotypes affecting the deeper bowel wall layers. Depending on the procedure, biopsies 

were collected [(IBD Cohort 09/H1204/30)/(GI Ethics 16/YH/0247)] from either terminal 

ileum, ascending colon, descending colon and rectum (colonoscopy) or the descending colon, 

sigmoid and rectum (flexible sigmoidoscopy). Clinical history and examination were 

undertaken to ascertain disease activity; Harvey Bradshaw Index (HBI) for CD and Simple 

Clinical Colitis Activity Index (SSCAI) for UC. Endoscopic (ulcerative colitis endoscopic 

index of severity (UCEIS) for UC, and the presence and absence of ulceration for CD) and 

histologic readouts (Nancy index) were also obtained from the electronic patient records. 
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During follow-up, serum trough adalimumab levels were taken to exclude antibody mediated 

therapy failure. Samples from the same regions as the pre-treatment endoscopy were taken in 

post-treatment endoscopy, subject to patient consent and welfare.  

 

Patients with clinically diagnosed RA were recruited to and followed up in an observational 

standard of care cohort (West Midlands Black Country: 14/WM/1109). Within this, serial 

synovial biopsies were taken from biologic naïve patients under the following nested ethics 

(West Midlands Black Country: 07/H1203/57). Patients with RA, according to ACR/EULAR 

2010 criteria with a DAS28-ESR score of at least 5.1 and active inflammation in at least one 

biopsiable joint on ultrasound scanning (GE LogiqE9/6-25MHz probe) underwent 

ultrasound-guided synovial biopsy. Small joints were biopsied using a spring loaded 16-

gauge biopsy needle (Bard Mission); large joints were biopsied using flexible 2.2 mm 

(Tontarra, Germany) forceps via a single 7 Fr disposable portal placed using Seldinger 

technique. Four to six synovial fragments were obtained for each small joint needle biopsy, 

and six to eight synovial fragments from each large joint, taking samples systematically from 

all available joint recesses. All biopsies were taken by an experienced operator with 

experience of over 300 procedures; no significant adverse events to biopsy were observed. 

Clinical assessments (including Disease Activity Score-28) were undertaken at time of 

biopsy. Patients were re-biopsied in the same joint for follow-up after treatment with 

adalimumab, subject to patient consent and welfare. 

 

Obtaining samples and preparation of samples for scRNA-seq 

All gut tissue samples were obtained in RPMI 1640 Medium (Gibco) in 50 ml falcon tubes 

and kept on ice. All samples were processed within 2h of the procedure. Sample processing 

was performed under sterile conditions. Samples to be used for single-cell analyses were 
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gently washed with 1X PBS, finely macerated with a scalpel and placed into 2 ml of 

CryoStore CS10 Cell Freezing Medium (CS10; Sigma-Aldrich). Following this, they were 

kept on ice for 10 min, after which they were transferred to -80°C freezer in Nalgene Mr. 

Frosty Freezing Containers. After 24 h, they were moved to liquid nitrogen. Samples for 

histology were placed into formalin for paraffin embedding. Synovial tissue was minced 

using scalpels to ensure fragments were <1 mm in diameter and randomly assigned into 1 ml 

cryovials into which 1 ml/vial of CS10 was added. Vials were equilibrated at 4°C for 10 min 

before transfer into a 4°C Mr. Frosty and storage at -80°C. 

 

10X Genomics scRNA-seq library preparation, tissue dissociation and sequencing 

Gut tissue samples were thawed into warm IMDM media with foetal bovine serum (FBS). 

CS10 was removed by washing. Samples were treated with EDTA pre-digestion with rotation 

for 15 min to remove dead/damaged epithelial cells. Samples were then dissociated 

enzymatically with Liberase TM and DNase into a single-cell suspension with rotation. Cells 

were washed, strained and counted for viability using acridine orange/propidium iodide and a 

maximum of 10,000 cells were loaded per 10X Chromium channel.  

 

Synovial tissue samples were thawed into warm IMDM with 10% FBS and washed two times 

to remove preservation media.  Samples were then digested in a cocktail of Liberase TL and 

DNase in warm media for 30 min, with agitation.  Samples were then strained at 40 microns, 

and washed two times with PBS with 0.4% BSA. Live events were counted using acridine 

orange/propidium iodide and a maximum of 10,000 cells were loaded per 10X Chromium 

channel. The GEX 3’ V3 protocol was followed throughout sequencing for both gut and 

synovium.  
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scRNA-seq pre-processing and quality control filtering 

Cell Ranger v3.1.0 was used to align reads to the hg19 human transcriptome and generate 

feature-barcode matrices from the Chromium single-cell RNA-seq output for TAURUS 

samples. Panpipes was used to generate anndata objects following quality control, and batch 

correction53. Filtering steps for high-quality single cells included removal of: doublets using 

Scrublet54, cells expressing fewer than 500 genes, and cells with mitochondrial gene count 

percentage greater than 60%. Genes that were detected in fewer than 3 cells were removed.   

 

Selection of variable genes, dimensionality reduction, clustering and annotation 

To account for differences in sequencing depth across cells, UMI counts were normalised by 

the total number of UMIs per cell and converted to transcripts-per-10,000. Data were then 

log-normalised. Highly variable genes were selected following which, a subset of genes 

consisting of T-cell receptor, immunoglobulin and HLA genes were removed. Data were then 

scaled prior to PCA. For gut samples, BBKNN was used for batch correction of samples and 

Leiden clustering was applied to derive broad cell populations55. This included: B cells, 

plasma cells, T cells, myeloid cells, ileal epithelial cells, colonic epithelial cells, and stromal 

cells. In the synovium, harmony was used to integrate across samples and the study of 

origin56. Leiden clustering was applied to derive broad cell populations including: B cells, 

plasma cells, T cells, myeloid cells, and stromal cells.  

 

These broad cell populations were then further clustered as described above, with tailored 

PCAs and n_neighbors as per dataset complexity in addition to harmony for batch correction. 

In instances where individual cell clusters in these partitioned datasets demonstrated 

biological anomalies (such as high B cell marker gene expression in a distinct T cell cluster), 

the Scrublet score was used to assess the likelihood that this cluster could be a doublet, in 
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which case these cells would be removed from the analysis. The Wilcoxon rank-sum test was 

used to conduct differential expression between clusters to derive marker genes. False 

discovery rate (FDR)-adjusted P-value < 0.05 considered significant for marker genes and all 

other analyses unless otherwise specified. 

 

Derivation of the inflammation score 

The inflammation score is a composite gene score. We identified genes differentially 

expressed between histologically inflamed (as per Nancy index) IBD resections to non-

inflamed/non-IBD gut tissue following multiple comparison correction using DESeq2Ref27,57 

(Supplementary Table 4). Data derived from TAURUS were pseudobulked (sum) at the 

sample level. We then used the aforementioned list of differentially expressed genes as a 

gene signature and applied the enrichIt function from the escape package58. The score was 

then scaled between 0-10. This resulted in a vector representing enrichment of the 

inflammation score on a per sample basis. The highest inflammation score in the healthy 

sample was selected as a heuristic cut off for the inflammation score. This corresponds to the 

90th percentile of inflammation score found in macroscopically non-inflamed samples. 

 

Treatment response criteria 

Patients with CD who experienced 30% decrease in HBI and changed to no macroscopic 

ulceration following treatment were considered to be responders. Patients with UC who 

experienced 30% decrease in SSCAI, Nancy index and UCEIS were considered to be 

responders. If these outcome measures were incongruent, the inflammation score in the post 

treatment samples were examined. Patients in whom any post-treatment samples remained 

inflamed as per the inflammation score (>6.5) were categorised as non-responders. If all post-

treatment samples were below the inflammation score threshold (<6.5), patients would be 
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considered responders. Any patient who required surgical intervention, or necessitated 

change in therapy due to disease activity was categorised as a non-responder. For RA, we 

used a EULAR good or moderate response to define binary response in RA59. 

 

Differential abundance analysis 

Differential abundance was carried out using MASC with nested random effects accounting 

for multiple samples per patient, and covariates including treatment status60,61. Differential 

abundance was conducted in two ways: 

i. To detect cell state specific changes in inflammation, comparison across CD and 

UC, treatment response associations at baseline and effect of treatment, cell state 

abundance was analysed as proportion of the ‘low’ resolution category (Extended 

Data Fig. 1b) 

ii. To detect compartment-specific changes following treatment across responders 

and non-responders, compartment abundance was analysed as proportion of the 

entire sample. 

 

PROGENy analysis 

To quantify TNF signalling, we applied PROGENy to our dataset38. Each cell received a 

score for each of 14 pathways including TNF signalling.  Linear mixed effects model using 

the lmer function as part of the lmerTest package was used to test for association between 

TNF signalling scores before and after anti-TNF therapy with the patient variable accounted 

as random effects.  

 

scRNA-seq differential expression and pathway analysis 
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Pseudobulked profiles were generated at the compartment level for differential expression 

analysis. Comparisons between ileum and colon were performed using limma-voom with 

duplicateCorrelation to account for multiple samples per patient62. Linear model was fit 

using lmFit, and moderated t-statistics as well as associated P-values were generated using 

the ebayes function.  

 

To longitudinally monitor compartmental changes following therapy, we applied glmmSeq to 

paired samples42. Counts Per Million (CPM) normalisation was applied to pseudobulked 

profiles. Given that glmmSeq used negative binomial models, we generated estimates of the 

common, trended and genewise dispersions across all genes using estimateDisp function in 

edgeR63. An interaction term of treatment (pre/post) by response (responder/non-responder) 

was used alongside a nested random effects design to account for multiple samples from the 

same patient. For overrepresentation analysis, enrichGO from clusterProfiler was used64. All 

genes tested were used as the background genes i.e. the gene universe. Genes with positive 

fold change in non-responders as well as q-value < 0.05 for treatment:response were tested 

for Gene Ontology (GO) term enrichment.  

 

Identification of gene expression programmes (GEPs) by consensus non-negative matrix 

factorisation (cNMF) 

We leveraged cNMF to complement the Leiden-based clustering approach to simultaneously 

capture functional programmes, and activation states in addition to cell identity40. cNMF was 

iteratively applied to broad categories of cell types as identified with Leiden clustering. In the 

gut, this consisted of: B cells, plasma cells, CD4+ T cells, CD8+ T cells, myeloid cells 

(monocytes, macrophages and dendritic cells, mast cells), stromal cells (fibroblasts and 

pericytes), myofibroblasts, endothelial cells, colonic epithelial cells, ileal epithelial cells, glial 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2023. ; https://doi.org/10.1101/2023.05.05.539635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539635


33 
 

cells and innate lymphoid cells. In the synovium, this consisted of: B cells, plasma cells, T 

cells, myeloid, and the stroma. 

 

Briefly, we applied cNMF to a count matrix, N (cells) x M (genes) to derive two matrices: k 

(GEP) x M (genes), and, N (cells) x k (GEP) with the usage of each GEP for each cell40. 

Selection of k was dependant on several factors including prioritising solutions that were 

biologically meaningful according to top weighted genes, factorisation stability as determined 

by the silhouette score and minimisation of the Frobenius reconstruction error. Consensus 

solutions were then filtered for outliers through inspections of distances between components 

and their nearest neighbours through a histogram. Genes statistically associated with each 

GEP was identified using multiple least squares regression of normalised (z-scored) gene 

expression against the consensus GEP usage matrix. Overrepresentation analysis for all GEPs 

were conducted through using GOATOOLS with top 150 weighted genes65 as input and all 

genes in the relevant matrix as the gene universe. 

 

Identification of hubs and calculating NMF transcriptional programme activity 

Hubs were identified through analysis of covarying GEPs in inflamed samples for CD and 

UC separately66. Programme activity was calculated for every GEP according to the cell type 

in which the GEP was initially discerned. For the gut, this was restricted to the main non-

epithelial cell types; B cells, plasma cells, CD4+ T cells, CD8+ T cells, myeloid cells 

(monocytes, macrophages and DC), and stromal cells (fibroblasts and pericytes). For the 

synovium, this included B cells, plasma cells, T cells, myeloid, and the stroma.  

 

As previously demonstrated, we summarised programme activity for each GEP across 

individual samples66. We calculated GEP expression across five quantiles (0.25, 0.5, 0.75, 
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0.95, 0.99) individually for each sample. For each quantile, a Pearson correlation co-efficient 

(R) was derived for each pair of GEPs across all samples. The correlation was Fisher 

transformed and the mean of these correlations were used as a test statistic. We compared R 

against a null distribution derived through permuting the sample identity 10,000 times 

keeping cell type constant. A P-value was generated through counting how often the 

permuted R value was above and below the true R value. The minimum count was scaled by 

two and designated the P-value statistic. Multiple comparisons were corrected at Benjamini-

Hochberg FDR of 10%. We derived an adjusted R value by calculating the difference of 

mean true R values and the mean of permuted R values.  

 

Significant Fisher transformed associations, R (edges) and their constituent GEPs (nodes) 

were used to create a signed weighted network. Hubs within this network were detected using 

a module detection algorithm used for signed graphs67. This was applied by resolution 

parameter in the range of 0.001 to 0.2, and tau=0.2. This method was iteratively applied, and 

hubs split if they were larger than three nodes, and improved modularity of the solution.  

 

Testing GEP enrichment in inflammation 

In order to capture GEPs that are active even in a small number of cells, we calculated the 

mean of programme activity values at five percentiles (0.25 0.5, 0.75, 0.95, 0.99). Linear 

mixed effects model using the lmer function as part of the lmerTest package was used to test 

for enrichment of GEPs in inflammation in the gut. Association between mean GEP 

expression and inflammation status was tested with covariates including patient and 

treatment. Hubs in IBD were deemed to be inflammatory if more than half of the constituent 

GEPs in a particular hub was enriched in inflammation. Hubs in RA were deemed to be 
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inflammatory if more than half of the constituent GEPs in a particular hub was positively 

correlated with the proportion of CD45+ cells in samples45. 

 

Projection of GEPs to bulk RNA sequencing/microarray data 

As outlined above, cNMF yields a k (GEP) x M (genes) matrix, henceforth referred to as H. 

The gene expression matrix from the relevant microarray/bulk RNA sequencing data were 

subsetted to genes shared with H. NMF was initialised with H and the gene expression matrix 

to generate the projected component matrix, W (samples x k).  The NMF implementation 

used was sklearn.decomposition.non_negative_factorization. 

 

Processing bulk RNA sequencing data from R4RA 

FASTQ files generated from the R4RA trial were downloaded from EMBL-EBI (E-MTAB-

11611). FASTQ files were trimmed to remove low-quality reads using trimgalore (0.6.6) in 

paired mode. FASTQ files were aligned to the human genome (GRCh38, Ensembl release 

101) using STAR (2.7.3a). Gene counts were summarised using featureCounts (Subread 

v2.0.1). Raw counts were RPKM-normalised using edgeR functions calcNormFactors 

(TMM) and rpkm. 

 

Multiplexed imaging using Cell DIVE 

Slide clearing and blocking 

4 μM Formalin-Fixed Paraffin Embedded (FFPE) biopsy tissues slides (CD or UC) were 

deparaffinised and rehydrated. The slides were then permeabilised for 10 min in 0.3% Triton 

X-100 and washed further in 1X PBS. Antigen retrieval was performed using the NxGen 

decloaking chamber (Biocare Medical, Pacheco, CA, USA) in boiling pH6 Citrate (Agilent, 

S1699) and pH9 Tris-based antigen retrieval solutions for 20 min each. Tissue slides were 
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blocked in 1X PBS with a 3% BSA (Merck, A7906), 10% Donkey serum (Bio-Rad, C06SB) 

solution for 1 h at room temperature. Slides were washed in 1X PBS for 10 min and then 

stained with DAPI (Thermo, D3571) for 15 min. Slides were washed in 1X PBS for 5 min 

and coverslipped with mounting media (50% glycerol – Sigma, G5516 and 4% propyl gallate 

– Sigma, 2370). 

 

Scan plan and background acquisition  

The GE Cell DIVE system was used to image all FFPE slides. A scan plan was acquired at 

10X magnification to select regions of interest followed by imaging at 20X to acquire 

background autofluorescence and generate virtual H&E images. Background imaging is used 

to subtract autofluorescence from all subsequent rounds of staining. Slides were decover-

slipped in 1X PBS prior to staining. 

 

Staining and bleaching 

Multiplexed imaging consisted of staining for the following protein markers: CD68, CD3, 

CCL19, CD8A, CK8, CD4, CXCL13, CD20, CD208, CXCL9, S100A9, KI67, MPO, 

GZMB, CD66B, CD14, MZB1, CK8, COL1A1, CCR7, CD11C, CD40, PD1. Each staining 

round consisted of a mix of three antibodies prepared in blocking buffer (PBS, 3% BSA, 10% 

donkey serum). The initial round used primary antibodies which were incubated overnight at 

4°C followed by washes in 1X PBS and 0.05% Tween20 (Sigma, P9416). Secondary 

antibodies raised in Donkey were then incubated for an additional hour at room temperature 

which were either conjugated to Alexa Fluorophore 488, 555 or 647 (Invitrogen). Each 

subsequent staining round used directly conjugated antibodies to either of these dyes and 

were incubated overnight at 4°C. Antibodies manually conjugated were purchased in a BSA-

AZIDE free format and conjugated using antibody labelling kit (Invitrogen). Fluorophores 
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were bleached between each staining round using NaHCO3 (0.1 M, pH 11.2; Sigma, S6297) 

and 3% H2O2 (Merck, 216763). Fresh bleaching solutions were prepared and slides were 

bleached two times (15 min each) with a 1 min 1X PBS wash in between bleaching rounds. 

Slides were re-stained for DAPI for 2 min and washed in 1X PBS for 5 min before imaging 

the dye-inactivated round as the new background round (for subsequent background 

subtraction). DAPI staining between imaging rounds assists in image registration and 

alignment. Slides were multiplexed with the next panel of three markers with iterative 

staining, bleaching and imaging. 
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Figure legends 

Fig. 1| An overview of the TAURUS study. 

a, TAURUS-IBD study design outlining sample collection before and after treatment from 

biologic naïve patients with IBD. b, Clinical characteristics of patients included in TAURUS-

IBD. See Supplementary Table 1 for more details. c, TAURUS workflow outlining number 

of high-quality transcriptomes (987,743 cells) generated across compartments with associated 

cell states and uniform manifold approximation and projection visualisations. AC, ascending 

colon; CD, Crohn’s disease; colono, colonocyte; DC, dendritic cell; DC, descending colon; 

EEC, enteroendocrine cell; entero, enterocyte; F, female; fibro, fibroblast; GC, germinal 

centre; hi, high; HBI, Harvey-Bradshaw Index; IFN-resp, interferon-responsive; ILC, innate 

lymphoid cell; lo, low; M, male; macro, macrophage; MAIT, mucosal-associated invariant T; 

MNP, mononuclear phagocyte; mono, monocyte; NK, natural killer cells; pDC, plasmacytoid 

dendritic cell; peri, pericyte; R, rectum; RPShi, ribosomal protein S-high; SSCAI, simple 

clinical colitis activity index; SC, sigmoid colon; TA, transit-amplifying; Tfh, CD4+ follicular 

helper T cell; Tph, CD4+ peripheral helper T cell; Th, CD4+ T helper cell; TI, terminal ileum; 
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Treg, CD4+ regulatory T cell; UCEIS, ulcerative colitis endoscopic index of severity; UC, 

ulcerative colitis; Undiff, undifferentiated. 

 

Fig. 2| Epithelial and lymphocyte stoichiometry underpins cellular distinctions between 

CD and UC. 

a, Stacked barplots showing proportion of cell compartments within individual gut samples. 

Samples are ordered according to inflammatory score. b, Violin plots showing distribution of 

inflammation scores across healthy (n=12 samples from 3 patients), CD (n=33 inflamed, 63 

non-inflamed samples from 16 patients) and UC (n=50 inflamed, 53 non-inflamed samples 

from 22 patients) samples. Wilcoxon rank-sum test used to test significance. c-g, Boxplots 

showing cell state as a proportion of the ‘low’ resolution cell subpopulations (see Extended 

Data Fig. 1 for cellular hierarchy), for CD non-inflamed (CD-NI), CD inflamed (CD-I), UC 

non-inflamed (UC-NI), and UC inflamed (UC-I) gut samples. Sample numbers as in (b). 

MASC used to test abundance across inflammation status and disease with nested random 

effects accounting for multiple samples per patient, and covariates including treatment status. 

Only significant (Padj < 0.05) differences after multiple comparisons correction with 

Benjamini-Hochberg are shown. h, Mean expression of mRNA transcripts at the 

‘intermediate’ cell resolution is shown for TNF, TNFRSF1A and TNFRSF1B in pre-treatment 

inflamed samples in CD and UC. PROGENy was applied to pre-treatment inflamed samples 

to calculate TNF signalling scores38. Heatmap shows relative enrichment of TNF signalling 

scores. i, Fraction of total TNF transcripts (mean across inflamed samples) at the 

‘intermediate’ cell resolution in inflamed samples pre-treatment. DC, dendritic cell; EEC, 

enteroendocrine cell; entero, enterocyte; GC, germinal centre; hi: high; ILC, innate lymphoid 

cell; lo, low; MNP, mononuclear phagocyte; Tfh, CD4+ follicular helper T cell; Tph, CD4+ 

peripheral helper T cell; Th, CD4+ T helper cell; Treg, CD4+ regulatory T cell. 
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Fig. 3| Hubs of gene expression programmes are associated with spatial niches in CD 

and UC with implications for anti-TNF therapy response.  

a,b, Network graph of covarying GEPs that constitute inflammatory hubs in (a) CD and (b) 

UC. Common weighted genes (within top 50) across constituent GEPs within hubs are shown 

below network graph. See Supplementary Table 5 for full list of cNMF GEPs in IBD and 

associated GO term enrichment in GEPs. c,d, Virtual H&E with multiplexed imaging 

highlighting representative regions of tissue and associated protein markers in (c) CD and (d) 

UC. Sections shown from two patients from each disease. e, Boxplots showing expression of 

GEPs significantly associated with anti-TNF therapy outcome at baseline in both CD (n=36 

patients, 17 non-responders, 19 responders) and UC (n=24 patients, 16 non-responders, 8 

responders) in an external microarray dataset of gut tissue (GSE16879)23. Wilcoxon rank-

sum test used to assess significance of pre-treatment differences in GEP expression across 

response status. DC, dendritic cell; FC, fold change; IL, innate lymphoid; MAIT, mucosal-

associated invariant T; Non-resp, anti-TNF non-responders; pB, B cell GEP; pCD4T, CD4+ T 

cell GEP; pCD8T, CD8+ T cell/NK GEP; pFP, fibroblast and pericyte GEP; pM, myeloid cell 

GEP; pP, plasma cell GEP; pV, vascular cell GEP; Resp, anti-TNF responders; Treg, CD4+ 

regulatory T cell. 

 

Fig. 4| Cellular and molecular changes following anti-TNF therapy in IBD. 

a, Effect of treatment on the cell compartment as a proportion of total cells per sample in 

anti-TNF responders and non-responders with CD (R: n=36 samples from 10 patients, NR: 

n=16 samples from 7 patients) and UC (R: n=18 samples from 5 patients, NR: n=40 samples 

from 12 patients). Dots show the odds ratio (OR) and error bars show the 95% confidence 

interval (CI). b-d, Longitudinal changes in gene expression within (b) myeloid cells in CD, 
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and (c) fibroblasts and pericytes in CD and (d) UC. Each paired dot represents median gene 

expression in a single patient. Significance testing (Padj < 0.05) performed using glmmSeq for 

treatment:response (TxR) with nested random effects for multiple samples per patient. Only 

paired samples included. e,f,  Following over-representation analysis in cell compartments, 

genes differentially expressed for TxR and associated with type I IFN response 

(GO:0034340), and type II IFN response (GO:0034341; GO0060333 in CD4+ T cells) were 

examined in the paired samples included in the differential expression analysis. Genes were 

log-transformed, and scaled from raw counts. The heatmap was generated using 

ComplexHeatmap and split into responders and non-responders with column-wise and row-

wise hierarchical clustering. Expression was scaled between -1 to 1. g, Dotplot showing 

expression of genes associated with approved advanced therapies, before and after anti-TNF 

in non-responders with UC. Bar chart shows median abundance of compartment in context of 

treatment (pre/post) as a proportion of total cells in sample. 

 

Fig. 5| Inflammatory pathways shared between IBD and RA are associated with the 

lymphoid pathotype in the joint. 

a, TAURUS-RA study design and integration with external datasets to create a meta-atlas for 

synovial tissue15,18. b, Mean expression of mRNA transcripts at the cell state resolution is 

shown for TNF, TNFRSF1A and TNFRSF1B in inflamed samples with RA. PROGENy was 

applied to inflamed RA samples to calculate TNF signalling scores38. Heatmap generated to 

show relative enrichment of TNF signalling scores. c, Correlations of gene expression 

programmes (GEPs). Asterisk (*) indicates significantly correlated GEP pairs (Padj < 0.1). 

Solid lines demarcate hubs of highly correlated GEPs. d, Only samples from the AMP2 were 

included in this analysis as only this dataset had H&E grading for aggregates, and H&E 

infiltrate density. Spearman correlations between GEP expression and proportion of CD45+ 
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cells per sample, worst grade of aggregates and mean infiltration as indicated by associated 

H&E with FDR correction for number of GEPs within cell compartments. Number of 

asterisks indicates level of significance. e, Associations between GEP expression and 

histological pathotypes. Only AMP2 data were included in this analysis; diffuse (n=30 

patients), lymphoid (n=33 patients) and pauci-immune (n=7 patients) pathotypes. One-way 

ANOVA conducted to test association between GEPs within cell compartments which were 

positively correlated with proportion of CD45+ cells, with FDR correction for number of 

GEPs within cell compartments. Pairwise Wilcoxon rank-sum tests only conducted for 

significant GEPs, with FDR correction for pairwise comparisons between histological 

pathotypes. Significant adjusted P-values displayed above relevant comparisons. CRP, C-

reactive protein; CDAI, clinical disease activity index; DC, dendritic cell; ESR, erythrocyte 

sedimentation rate; fibro, fibroblast; GC, germinal centre; H&E, haematoxylin-eosin; HSPhi, 

heat shock protein-high; IFIThi, Interferon induced proteins with tetratricopeptide repeat 

genes-high; ILC, innate lymphoid cell; MAIT, mucosal-associated invariant T; MNP, 

mononuclear phagocyte; MThi, mitochondrial-high; NK, natural killer; OA, osteoarthritis; 

pB, B cell GEP; pDC, plasmacytoid dendritic cell; physglob, physician global assessment 

RA; pM, myeloid cell GEP; pP, plasma cell GEP; pS, stromal cell GEP; pT, T/NK cell GEP; 

RPShi, ribosomal protein S-high; Tph, CD4+ peripheral helper T cell; Treg, CD4+ regulatory 

T cell. 

 

Extended Data Fig. 1| Sample processing and annotation hierarchy 

a, Schematic showing bioinformatic pre-processing strategy for gut samples. Panpipes 

pipeline was used for pre-processing53. Uniform manifold approximation and projection 

(UMAP) visualisations show the cellular landscape of gut samples coloured by inflammation 

status, and batch. See Methods for more details. b, Hierarchy shows annotation across 
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increasing cell type resolution: compartment, low, intermediate and cell state. Colono, 

colonocyte; DC, dendritic cell; EEC, enteroendocrine cell; entero, enterocyte; fibro, 

fibroblast; GC, germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate 

lymphoid cell; lo, low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP, 

mononuclear phagocyte; mono, monocyte; NK, natural killer; PC: principal components; 

pDC, plasmacytoid dendritic cell; peri, pericyte; TA, transit-amplifying; Tfh, CD4+ follicular 

helper T cell; Th, CD4+ helper T cell; Tph, CD4+ peripheral helper T cell; Treg, regulatory T 

cell; Undiff, undifferentiated. 

 

Extended Data Fig. 2| Marker genes of cell states in the gut. 

Dotplot showing expression of marker genes of cell states in the scRNA-seq dataset: (a) 

CD4+ T cell, (b) CD8+ T/innate T/NK/IL cell, (c) B cell, (d) myeloid cell, (e) plasma cell, 

(f) stromal cell, (g) ileal epithelial cell and (h) colonic epithelial cell. Genes relate to 

Supplementary Table 2. Colono, colonocyte; DC, dendritic cell; EEC, enteroendocrine cell; 

entero, enterocyte; fibro, fibroblast; GC, germinal centre; hi, high; IFN-resp, interferon-

responsive; ILC, innate lymphoid cell; lo, low; macro, macrophage; MAIT, mucosal-

associated invariant T; MNP, mononuclear phagocyte; mono, monocyte; NK, natural killer; 

pDC, plasmacytoid dendritic cell; peri, pericyte; TA, transit-amplifying; Tfh, CD4+ follicular 

helper T cell; Th, CD4+ helper T cell; Tph, CD4+ peripheral helper T cell; Treg, regulatory T 

cell; Undiff, undifferentiated. 

 

Extended Data Fig. 3| Differences between the healthy ileum and colon. 

a, Barplot summarising number of differentially expressed genes (DEGs) (Padj < 0.05) 

comparing healthy ileum (three samples) to healthy colon (nine samples) in three patients in 

each cell compartment. Limma-voom with DuplicateCorrelation used to adjust for multiple 
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samples per patient62. b,c, Cell state distribution within the epithelial compartment in (b) 

ileum and (c) colon displayed on a bar plot. Error bar indicates standard error of mean. d, 

prcomp from base R used to conduct PCA on CPM normalised and log-transformed read 

counts. Samples in context of principal components (PC) 1 and 2 along with associated 

percentage of variation explained. e, Loadings of genes associated with PC1 and PC2 shown 

in the bar plots. f, Volcano plot showing results of differential expression between ileum and 

colon in the epithelial compartment. Dashed lines demarcate Padj =0.05 and log2 fold change 

(FC)=0.5. g, Relative expression of vitamin-associated epithelial genes differentially 

expressed between ileum and colon shown in dotplot. Full results can be found in 

Supplementary Table 3. h,i, Over-representation analysis was performed by using the 

enrichGO function from clusterProfiler64. All genes significantly associated with (h) ileum 

and (i) colon respectively tested for overrepresentation using gene ontology (GO) biological 

process gene sets. Red dashed line indicative of q-value=0.05. j, Relative expression of 

mucin and mucin-associated genes differentially expressed between ileum and colon shown 

in dotplot. Full results can be found in Supplementary Table 3. 

 

Extended Data Fig. 4| The inflammation score in context of CD and UC. 

a, Violin plot showing the distribution of the inflammation score across healthy and 

macroscopically non-inflamed, as well as inflamed samples. b, PCA examining compartment 

abundance as a proportion of sample in CD. c, PCA of samples with CD with inflammation 

score plotted as a quantitative variable. d, PC1 loadings associated with cell compartment in 

samples with CD. e, PCA examining compartment abundance as a proportion of sample in 

UC. f, PCA of samples with UC with inflammation score plotted as a quantitative variable g, 

PC1 loadings associated with cell compartment in samples with UC h, Spearman correlation 

between inflammation score per sample and the recently described biopsy molecular 
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inflammation score (bMIS)29 i, j, Differential abundance of cell states in CD (i) and UC (j) 

comparing non-inflamed to inflamed tissue. Error bars show 95% confidence interval. DC, 

dendritic cell; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low; 

macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte; 

mono, monocyte; NK, natural killer; pDC, plasmacytoid dendritic cell; TA, transit-

amplifying; Tfh, CD4+ follicular helper T cell; Th, CD4+ helper T cell; Tph, CD4+ peripheral 

helper T cell; Treg, regulatory T cell. 

 

Extended Data Fig. 5| Top weighted genes of GEPs in the gut. 

Weighted genes for each gene expression programme (GEP) derived from the gut. cNMF 

was run separately in: CD4+ T, CD8+ T, B, plasma cells, myeloid cells (monocytes, 

macrophages and DC), vascular cells, and fibroblasts and pericytes. See Supplementary 

Table 5 for full list of weighted genes, as well as results of overrepresentation analysis. See 

Supplementary Table 6 for results of enrichment testing of GEPs in inflammation. pB: B 

cell GEP; pCD4T: CD4+ T cell GEP; pCD8T: CD8+ T cell/NK GEP; pFP: fibroblast and 

pericyte GEP; pM: myeloid cell GEP; pP: plasma cell GEP; pV: vascular cell GEP. 

 

Extended Data Fig. 6| Enrichment of GEPs across cell states in the gut. 

cNMF was used to derive GEP score for individual cells from inflamed samples with CD and 

UC in (a) CD4+ T, (b) CD8+ T, (c) B, (d) plasma, (e) vascular, (f) myeloid, and (g) fibroblast 

and pericyte cells. Mean expression of GEP quantified per cell state is plotted. pB: B cell 

GEP; pCD4T: CD4+ T cell GEP; pCD8T: CD8+ T cell/NK GEP; pFP: fibroblast and pericyte 

GEP; pM: myeloid cell GEP; pP: plasma cell GEP; pV: vascular cell GEP. DC, dendritic cell; 

fibro, fibroblast; GC, germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate 

lymphoid cell; lo, low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP, 
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mononuclear phagocyte; mono, monocyte; NK, natural killer cell; pDC, plasmacytoid 

dendritic cell; peri, pericyte; Tfh, CD4+ follicular helper T cell; Tph, CD4+ peripheral helper 

T cell; Th, CD4+ T helper cell; Treg, CD4+ regulatory T cell. 

 

Extended Data Fig. 7| Covarying GEPs in inflamed samples with CD. 

Correlogram demonstrating significant correlations (asterisks: FDR< 0.1) between GEPs 

across cell compartments in inflamed samples with CD. Lines demarcate hubs. A module 

detection algorithm used for signed graphs was leveraged to detect hubs from a graph 

consisting of significantly correlated GEPs (nodes) and associated fisher-transformed 

correlations (edges)67. DC, dendritic cell; fibro, fibroblast; GC, germinal centre; hi, high; 

HSP, heat-shock proteins; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, 

low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear 

phagocyte; mono, monocyte; MThi, mitochondrial-high; NK, natural killer cell; pB, B cell 

GEP; pCD4T, CD4+ T cell GEP; pCD8T, CD8+ T cell/NK GEP; pDC, plasmacytoid 

dendritic cell; peri, pericyte; pFP, fibroblast and pericyte GEP; pM, myeloid cell GEP; pP, 

plasma cell GEP; pV, vascular cell GEP; RPShi, ribosomal protein S-high; Tfh, CD4+ 

follicular helper T cell; Tph, CD4+ peripheral helper T cell; Th, CD4+ T helper cell; Treg, 

CD4+ regulatory T cell. 

 

Extended Data Fig. 8| Covarying GEPs in inflamed samples with UC. 

Correlogram demonstrating significant correlations (asterisks: FDR< 0.1) between GEPs 

across cell compartments in inflamed samples with UC. Lines demarcate hubs. A module 

detection algorithm used for signed graphs was leveraged to detect hubs from a graph 

consisting of significantly correlated GEPs (nodes) and associated fisher-transformed 

correlations (edges)67. DC, dendritic cell; fibro, fibroblast; GC, germinal centre; hi, high; 
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HSP, heat-shock proteins; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, 

low; macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear 

phagocyte; mono, monocyte; MThi, mitochondrial-high; NK, natural killer cell; pB, B cell 

GEP; pCD4T, CD4+ T cell GEP; pCD8T, CD8+ T cell/NK GEP; pDC, plasmacytoid 

dendritic cell; peri, pericyte; pFP, fibroblast and pericyte GEP; pM, myeloid cell GEP; pP, 

plasma cell GEP; pV, vascular cell GEP; RPShi, ribosomal protein S-high; Tfh, CD4+ 

follicular helper T cell; Tph, CD4+ peripheral helper T cell; Th, CD4+ T helper cell; Treg, 

CD4+ regulatory T cell. 

 

Extended Data Fig. 9| GO over-representation analysis of changes following anti-TNF 

therapy in the myeloid and stromal compartments of non-responding patients with CD 

and UC.  

a,b, Over-representation analysis was performed by using the enrichGO function from 

clusterProfiler64. Genes with positive fold change in non-responders with significance (Padj 

<0.05) for treatment:response (TxR) were tested for GO term enrichment and shown in 

barchart for (a) myeloid compartment in CD (b) stromal compartment in UC. Dashed line 

indicates q-value = 0.05. c-e) Following over-representation analysis in the stromal 

compartment of non-responders with UC, genes differentially expressed and associated with 

specific GO terms, (c) GO:0038061 (d) GO:0042119 (e) GO: 0001525 were examined in the 

paired samples included in the differential expression analysis. Genes were log transformed, 

and scaled from raw counts. The heatmap was then generated using ComplexHeatmap and 

split into responders and non-responders with column-wise and row-wise hierarchical 

clustering. Expression was scaled between -1 to 1. 
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Extended Data Fig 10| Changes in colonic epithelium, CD4+ T cells, B cells and myeloid 

cells following treatment with anti-TNF in non-responding patients with UC.  

a-d, Over-representation analysis was performed by using the enrichGO function from 

clusterProfiler64. Genes with positive fold change in non-responders with significance (Padj < 

0.05) for treatment:response were tested for GO term enrichment and shown in bar chart for 

(a) colonic epithelium (b) CD4+ T cells (c) B cells and (d) myeloid cells in UC. e, Boxplot 

showing proportion of plasmacytoid DC (pDC) cell state out of the proportion of 

mononuclear phagocytes before and after treatment with anti-TNF in non-responders with 

UC. Only paired samples included in the analysis. Differential abundance tested using MASC 

with nested random effects accounting for multiple samples per patient (Padj < 0.05).  

 

Extended Data Fig. 11| Characterisation of the TNF pathway following anti-TNF 

therapy in IBD. 

a, PROGENy was used to calculate TNF signalling scores at a per cell level38. The 75th 

percentile score for TNF signalling in each of cell types at the ‘intermediate’ level of 

resolution was taken to be representative of individual samples. Only paired samples were 

used to calculate median fold change (medFC) in responders (Resp) and non-responders 

(Non-resp) with significance testing using lmer function as part of the lmerTest package with 

individual patients modelled as random effects. b,c, Spearman correlation between TNF 

signalling fold change and TNF signalling score pre-therapy in responders to anti-TNF 

treatment in (b) CD and (c) UC. DC, dendritic cell; EEC, enteroendocrine cell; GC, germinal 

centre; hi: high; ILC, innate lymphoid cell; lo, low; MNP, mononuclear phagocyte; Th, CD4+ 

T helper cell; Treg, CD4+ regulatory T cell. 
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Extended Data Fig. 12| Expression of genes associated with approved advanced 

therapies in CD and UC in post-anti-TNF samples from non-responders. 

a, Dotplot showing expression of genes associated with advanced therapies before and after 

therapy at the compartment level in inflamed samples (inflam) from non-responders (NR) 

with CD. Bar chart shows median abundance of cell compartment in context of treatment (pre 

and post) as proportion of total cells in sample. b, Dotplot showing expression of genes 

associated with advanced therapies before and after anti-TNF therapy at the ‘intermediate’ 

level of resolution in inflamed samples (inflam) from non-responders (NR) with CD and UC. 

Bar chart shows median abundance of intermediate cell subpopulation in context of treatment 

(pre and post) as proportion of total cells in sample. 

 

Extended Data Fig. 13| Therapeutic atlas for CD. 

Inflamed samples with CD following treatment with anti-TNF were pseudobulked at the cell-

state resolution. A list of therapeutically relevant genes including curated cytokine and 

receptors from KEGG (M9809)68, members of the JAK family, checkpoint co-inhibitory and 

co-stimulatory molecules, and cell trafficking molecules was compiled. Genes with 

expression in over 97% of cells were kept. Column-wise, and row-wise k-means clustering 

was applied. The first column to the right of the genes indicates whether the gene has been 

implicated in genome-wide association studies (GWAS; yellow). The second column 

indicates stage of development of therapeutic agent associated with the gene (Phase 1/2/3/4), 

green colour indicative of trial success. The third column is indicative of the number of 

druggable pockets as outlined on Pi69. DC, dendritic cell; EEC, enteroendocrine cell; GC, 

germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low; 

macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte; 

mono, monocyte; NK, natural killer cells; pDC, plasmacytoid dendritic cell; peri, pericyte; 
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TA, transit-amplifying; Tfh, CD4+ follicular helper T cell; Tph, CD4+ peripheral helper T 

cell; Th, CD4+ T helper cell; Treg, CD4+ regulatory T cell. 

 

 

Extended Data Fig. 14| Therapeutic atlas for UC. 

Inflamed samples with UC following treatment with anti-TNF were pseudobulked at the cell-

state resolution. A list of therapeutically relevant genes: curated cytokine and receptors from 

KEGG (M9809)68, members of the JAK family, checkpoint co-inhibitory and co-stimulatory 

molecules, cell trafficking molecules was compiled. Genes with expression in over 97% of 

cells were kept. Column-wise, and row-wise K-means clustering applied. The first column to 

the right of the genes indicates whether the gene has been implicated in in genome-wide 

association studies (GWAS; yellow). The second column indicates stage of development of 

therapeutic agent associated with the gene (Phase 1/2/3/4), green colour indicative of trial 

success. The third column is indicative of the number of druggable pockets as outlined on 

Pi69. DC, dendritic cell; EEC, enteroendocrine cell; GC, germinal centre; hi, high; IFN-resp, 

interferon-responsive; ILC, innate lymphoid cell; lo, low; macro, macrophage; MAIT, 

mucosal-associated invariant T; MNP, mononuclear phagocyte; mono, monocyte; NK, 

natural killer cells; pDC, plasmacytoid dendritic cell; peri, pericyte; TA, transit-amplifying; 

Tfh, CD4+ follicular helper T cell; Tph, CD4+ peripheral helper T cell; Th, CD4+ T helper 

cell; Treg, CD4+ regulatory T cell. 

 

Extended Data Fig. 15| Cell states of the synovium.  

Uniform manifold approximation and projections (UMAPs) and associated dot plots show the 

expression of marker genes of cell states in the scRNA-seq dataset: (a) myeloid cells, (b) 

T/NK/IL cells, (c) B cells, (d) stromal cells. DC, dendritic cell; fibro, fibroblast; GC, 
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germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low; 

macro, macrophage; MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte; 

mono, monocyte; MThi, Mitochondrial high; NK, natural killer cell; pDC, plasmacytoid 

dendritic cell; Tfh, CD4+ follicular helper T cell; Tph, CD4+ peripheral helper T cell; Treg, 

CD4+ regulatory T cell. 

 

Extended Data Fig. 16| Top weighted genes of GEPs in the synovium. 

Weighted genes for each gene expression programme (GEP) derived from the synovium. 

cNMF was run separately in: T cells, B cells, plasma cells, myeloid cells and stromal cells. 

See Supplementary Table 12 for full list of weighted genes, as well as results of 

overrepresentation analysis. See Supplementary Table 13 for results of enrichment testing 

of GEPs in inflammation. pB, B cell GEP; pM, myeloid cell GEP; pP, plasma cell GEP; pS, 

stromal cell GEP; pT, T/NK cell GEP. 

 

Extended Data Fig. 17| Enrichment of GEPs across cell states in the synovium. 

cNMF was used to derive GEP score for individual cells from inflamed samples with RA in 

(a) T/NK/IL, (b) B, (c) plasma, (d) myeloid, and (e) stromal cells. Mean expression of GEP 

quantified per cell state. DC, dendritic cell; endo, endothelium; fibro, fibroblast; GC, 

germinal centre; hi, high; IFN-resp, interferon-responsive; ILC, innate lymphoid cell; lo, low; 

MAIT, mucosal-associated invariant T; MNP, mononuclear phagocyte; MThi: Mitochondrial 

high; NK, natural killer cell; pB: B cell GEP; pDC, plasmacytoid dendritic cell; pM: myeloid 

cell GEP; pP: plasma cell GEP; pS: stromal cell GEP; pT: T/NK cell GEP; Tfh, CD4+ 

follicular helper T cell; Tph, CD4+ peripheral helper T cell; Treg, CD4+ regulatory T cell. 
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Extended Data Fig. 18| Association of synovial GEPs with clinical response to rituximab 

and GO pathway enrichment analysis. 

a, Baseline visit samples in the R4RA study was selected for analysis42. GEPs positively 

correlated with inflammation were tested for association with therapy non-response. 

Wilcoxon signed-rank test used to test for significance (Padj < 0.05) between responders (29 

patients) and non-responders (39 patients) to rituximab (n=68 patients) at baseline. See 

Supplementary Table 13 for full results. b, GO term enrichment for GEPs associated with 

clinical response to rituximab. See Supplementary Table 13 for full results. GO terms were 

generated through applying overrepresentation analysis through GOATOOLS to the top 150 

weighted genes in constituent GEPs65. All genes tested were used as the gene universe. See 

Supplementary Table 12 for full list of cNMF GEPs in RA and associated GO term 

enrichment in GEPs. pB, B cell GEP; pP, plasma cell GEP. 

 

Extended Data Fig. 19| A longitudinal single-cell therapeutic atlas of anti-TNF 

treatment in IBD. 

Schematic summarising the TAURUS study design and key findings. Our resource provides a 

longitudinal, therapeutic scRNA-seq atlas comprising ~1 million cells organised into 109 cell 

states from 216 gut biopsies across 41 individuals (16 responders, 22 non-responders, 3 

healthy). This atlas reveals differences in gut cell state abundance that distinguish CD and 

UC. Using a systems-biology approach we identify hubs of multi-cellular communities, based 

on 75 IBD gene programmes, which localise to distinct tissue microenvironments including 

granulomas specific to CD and areas of epithelial tissue damage and lymphoid aggregates 

found in both CD and UC. Specific programmes are associated with anti-TNF resistance pre-

treatment, thereby linking drug response to spatial niches in the inflamed gut. Analysis of the 

longitudinal dynamics of therapeutic perturbation demonstrates that whilst cellular remission 
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occurs in responders, in non-responders disease progression is associated with increased 

multi-cellular IFN and NF-kappaB signalling after anti-TNF. Extending the study to RA 

through the generation of a synovial meta-atlas comprising 520,603 cells reveals a shared 

TNF pathway expression pattern in CD, UC and RA, as well IFN signalling associated with a 

lymphoid pathotype. Our therapeutic atlas informs drug positioning across IMIDs, and 

suggests a rationale for the use of JAK inhibition following anti-TNF resistance. DC, 

dendritic cell; pCD8T, CD8+ T cell/NK GEP; pFP, fibroblast/pericyte GEP; pM: myeloid cell 

GEP; Th, CD4+ helper T cell; Tfh, CD4+ follicular helper T cell; Tph, CD4+ peripheral helper 

T cell. 

 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2023. ; https://doi.org/10.1101/2023.05.05.539635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539635


Figure 1

S2
S3

B1
B1p
B2
B3

17-31
31-40
41-50
>50

M
F

No
Yes

1
2
3

4
5
6

L1
L2
L3

E1
E2
E3

b
CD UC

Age (yr)

Sex

Ulceration UCEIS

6-8
9-11
12-14
15

HBI

6-8
9-11
12-13

SSCAI

Location

Behaviour

Extent

Severity

c

a

Biologic-naive 
CD patients, n = 16
UC patients, n = 22
Healthy controls, n = 3

Pre-treatment
biopsy

Serum adalimumab
trough levels

Adalimumab
treatment initiation

Post-treatment
biopsy 

(site-matched)

Responder
Non-responder

CD UC

AC DC

TI

SC

R

Total samples = 216
Tissue

dissociation

10x Genomics
3’ scRNAseq

Library
sequencing

Data
processing

987,743 cells post QC
109 cell states

Hyperplexed
imaging

23 protein markers

UMAP1
U

M
AP

2

CD4+ T cells
CD8+ T/innate T/NK cells
Innate lymphoid cells
B cells
Plasma cells
Myeloid cells
Stromal cells
Ileal epithelial cells
Colonic epithelial cells

Cell compartments

Histology

n = 145,704 n = 74,840; 3,680 n = 60,204 n = 141,951 n = 30,858 n = 174,862

Ileal 
epithelial cells

Colonic
epithelial cells
n = 305,862 n = 49,782

Stromal cellsMyeloid cellsPlasma cellsB cellsCD8+ T/NK cells; ILCsCD4+ T cells

CD8+ IL7Rhi T
CD8+ GZMKhi T
CD8+ GZMKint T
CD8+ EGR1hi T
CD8+ naive T
NK
γδ SOX4+ T
γδ T
ILC
CD8+ FGFBP2+ T
MAIT
Cycling CD8+ T
CD8+ CTLA4hi TIGIThi T
CD8+ IL17A+ IL26+ IL23R+ T
CD8+ TNFhi IFNGhi IL2+ T

Memory B
Follicular B
Intermediate B
Cycling B
FCRL4+ memory B
IFN-resp memory B
CCL22+ memory B
GC-like B
IgGhi/IgAhi memory B
CCL3+ CCL4+ follicular B
IGLC6hi memory B

IgA+ plasma
IgG+ CXCR4hi plasma
IgG+ CXCR4lo plasma
Plasmablast
IgA+ IFN-resp plasma

CD1Chi DC
S100A8/9hi mono
C1Qhi IL1Bhi macro
C1Qhi IL1Blo macro
Mast
XCR1+ DC
Cycling MNP
LAMP3+ DC
pDC
LAMP3+ IL1B+ DC
S100A8/9hi TNFhi IL6+

Ileal entero
TA
LGR5+ stem
PLCG2hi entero
RPShi entero
Goblet
Tuft
Paneth
CHGAhi CHGBhi EEC
CHGAlo CHGBlo EEC
BEST4 OTOP2
DUOX2+ MUC6+ PGC+

entero
DUOX2+ LCN2+

entero

Undiff entero
TA
CT colono
LGR5+ stem
PLCG2hi entero
Goblet
DUOXA2+ entero
BEST4 OTOP2
DDC+ CHGA+ EEC
Tuft
GCG+ PYY+ EEC
M-like
NEUROG3+ EEC
Paneth
DUOXA2+ CXCL11+

entero

CD4+ FOS+ T
CD4+ FOShi T
CD4+ naive T
Th22
CXCL13+ Tph/Tfh
Tph/Tfh
CD4+ KLF2hi T
CD4+ KLF2int T
Th17
Th1
Th1/17/22
GZMAhi Th1/17
GZMA+ Th1/17
CD4+ TWIST1+ Treg
CD4+ HSPhi Treg
CD4+ TNFSF13Bhi T
CD4+ HSPhi CD70+ Treg
CD4+ IKZF2lo LAG3+ Treg
CD4+ IKZF2hi TNFRSF18lo Treg
CD4+ IKZF2hi TNFRSF18hi Treg 

mono

Glia
Myofibroblast
Cycling stroma
Arterial endothelium
Venous endothelium
Lymphatic endothelium
C3hi CCL19+ fibro
C3hi RSPO3+ fibro
NOTCH3hi TNClo peri
SOX6+ POSTN+ fibro
NOTCH3hi MYH11+ peri
THY1+ FAP+ PDPN+ fibro
SOX6+ NRG1hi NPY+ fibro
ABCA8+ WNT2B+ FOShi fibro
ABCA8+ WNT2B+ FOSlo fibro
NOTCH3hi TNChi LOXL2+ peri
NOTCH3hi TNCint CCL19+ peri
CD74hi HLA-DRB1hi arterial peri
CD74hi HLA-DRB1hi venous peri

TAURUS-IBD study designwas not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2023. ; https://doi.org/10.1101/2023.05.05.539635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539635


Figure 2

a

Non-inflamed

Cell compartment
Epithelium
Stroma
ILC
Plasma cells
B cells
Myeloid
CD8+ T/innate T/
NK cells

0.00

0.25

0.50

0.75

1.00

P
ro

po
rti

on
 o

f t
ot

al
 g

ut
 c

el
ls

Inflamed InflamedNon-inflamed

Crohn’s disease Ulcerative colitisHealthy

CD4+ T cells

CD non-inflamed (CD-NI)

CD inflamed (CD-I)

UC non-inflamed (UC-NI)

UC inflamed (UC-I)

c
Th1

CD4+ IKZF2hi

TNFRSF18lo Treg

0

2

4

6

8

10

12

CD4+ TWIST1+

Treg
CXCL13+

Tph/Tfh

0

5

10

15

20

25

30

0
2
4
6
8

10
12
14

25

30

Th17

%
 o

f t
ot

al
 C

D
4+  T

 c
el

ls

0

2

4

6

8

10

12
0.018

0.002

0

2

4

6

8

10

12

3.4x10-5

0.019
8.4x10-9

3.4x10-5

0.001
1.7x10-5

1.8x10-5

2.1x10-4

4.6x10-6

0.002

b
Healthy CD UC

In
fla

m
m

at
io

n 
sc

or
e

0

4

8

Inflamed InflamedNon-
inflamed

Non-
inflamed

0.327
0.400

10

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

d
CD8+

GZMKhi T

%
 o

f t
ot

al
 C

D
8+  T

/in
na

te
 T

/N
K

 c
el

ls

0

10

20

30

40

CD8+

FGFBP2+ T

0

5

10

15

20

25

CD8+ CTLA4hi

TIGIThi T

0

5

10

15

20

1.2x10-4

2.2x10-4

9.5x10-7

0.004

0.006
4.7x10-8

2.6x10-8

2.8x10-6

e

0

5

10

15

40

IFN-responsive
memory B

%
 o

f t
ot

al
 B

 c
el

ls

0

2

4

6

8

10

IgGhi/IgAhi

memory B

f g
IgG+ CXCR4hi

plasma

%
 o

f t
ot

al
 p

la
sm

a 
ce

lls

0

10

20

30

40

0

10

20

30

IgG+ CXCR4lo

plasma Plasmablasts

0

5

10

15

20

30

402.1x10-5

0.005
0.014 3.8x10-4

1.0x10-4

4.9x10-6
0.003

5.7x10-6

1.7x10-8

0.003

1.0x10-4

7.6x10-8

0

10

20

30

40

%
 o

f t
ot

al
 c

ol
on

ic
 e

nt
er

oc
yt

es

PLCG2hi

enterocytes
DUOXA2+ CXCL11+

enterocytes

0

5

10

15

201.8x10-4

0.007 0.007
2.3x10-5

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

C
D

-N
I

C
D

-I
U

C
-N

I
U

C
-I

h

9.5x10-4 7.4x10-4

9.1x10-4

6.4x10-4

C
D

4+
 T

h

C
D

4+
 m

em
 T

C
D

4+
 n

ai
ve

 T

C
D

4+
 T

re
g

C
D

8+
 m

em
or

y 
T

U
nc

on
ve

nt
io

na
l T

C
D

8+
 n

ai
ve

 T

M
ac

ro
ph

ag
e

M
on

oc
yt

e

D
C

C
yc

lin
g 

M
N

P

Ig
A

+
 p

la
sm

a

Ig
G

+
 p

la
sm

a

P
la

sm
a

bl
as

t

Fo
lli

cu
la

r B

M
em

or
y 

B

In
te

rm
ed

ia
te

 B

G
C

-li
ke

 B

B
lo

od
 e

nd
ot

he
liu

m
Ly

m
ph

at
ic

en
do

th
el

iu
m

Pe
ric

yt
e

La
m

in
a 

pr
op

ria
fib

ro
bl

as
t

S
ub

-e
pi

th
el

ia
l

fib
ro

bl
as

t

C
3hi

 fi
br

ob
la

st

C
ol

on
ic

 M
-li

ke

Ile
al

 e
nt

er
oc

yt
e

Ile
al

 L
G

R
5+  s

te
m

Ile
al

 p
an

et
h

Ile
al

 E
E

C

Ile
al

 g
ob

le
t

Ile
al

 tu
ft

Ile
al

B
E

S
T4

 O
TO

P
2 

IL
C

M
as

t

G
lia

M
yo

fib
ro

bl
as

t

C
yc

lin
g 

st
ro

m
a

C
ol

on
ic

 p
an

et
h

C
ol

on
ic

 E
E

C

C
ol

on
ic

B
E

S
T4

 O
TO

P
2 

C
ol

on
ic

LG
R

5+  s
te

m

C
ol

on
ic

 g
ob

le
t

C
ol

on
ic

 tu
ft

C
ol

on
ic

en
te

ro
cy

te

TH
Y

1+  F
A

P
+

P
D

P
N

+  f
ib

ro
bl

as
t

Myeloid CD4+ T CD8+ T ILC B Plasma Stroma Colonic epithelium Ileal epithelium

CD 
(inflamed,
pre-treatment)

TNF

TNFRSF1A
TNFRSF1B

TNF signalling

TNF

TNFRSF1A
TNFRSF1B

TNF signalling

UC 
(inflamed,
pre-treatment)

0.50.0

10-1

0.50.0

Normalised mean expression

10 20 30

10 30 50 70

10-1

10

0.40.2

UC

% of cells
expressing

TNF 10 20 30 40

10 30 50 70

CD

% of cells
expressing

TNFR genes

TNF

TNFR genes

TNF signalling

Cellular sources of TNF in inflammation 

DC
Macrophage
CD4+ Treg
Innate lymphocytes
Unconventional T
Other

CD4+ memory T
CD8+ memory T
CD4+ T helper
Memory B

Monocyte
Intermediate B

CD

29.0%

20.2%
14.5%

UC

29.6%

18.2%
14.3%

i

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2023. ; https://doi.org/10.1101/2023.05.05.539635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539635


Figure 3
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Figure 4
a Cell type abundance differences post- relative to pre-treatment
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Figure 5
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Extended Data Figure 1
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Extended Data Figure 2
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Extended Data Figure 3
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Extended Data Figure 4
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Extended Data Figure 5
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Extended Data Figure 6
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Extended Data Figure 7
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Extended Data Figure 8
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Extended Data Figure 9
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Extended Data Figure 10
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Extended Data Figure 11
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Extended Data Figure 12
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Extended Data Figure 13
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Extended Data Figure 14
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Extended Data Figure 15
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Extended Data Figure 16
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Extended Data Figure 17
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Extended Data Figure 18

a bSynovial GEP projections onto pre-treatment bulk RNAseq data 
from rituximab responders and non-responders
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