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Abstract

Protein sidechain conformation prediction, or packing, is a key step in many in silico protein modeling
and design tasks. Popular protein packing methods typically rely on approximated energy functions and
complex algorithms to search dense rotamer libraries. Inspired by the recent success of deep learning in
protein modeling tasks, we present ZymePackNet, a graph neural network based protein packing tool that
does not require a rotamer library, scoring functions or a search algorithm. We train regression models
using protein crystal structures represented as graphs, which are employed sequentially to “germinate” the
sidechain starting from atoms anchoring the protein backbone to the sidechains’ termini, followed by an
iterative refinement stage. ZymePackNet is fast and accurate compared to state-of-the-art protein packing
methods. We validate our model on three native backbone datasets achieving a mean average error of
16.6◦, 24.1◦, 42.1◦, and 53.0◦ for sidechain dihedral angles (χ1 to χ4). ZymePackNet captures complex
physical interactions such as π stacking without explicitly accounting for it in the model; such effects are
currently lacking in the energy terms used in traditional packing tools.
Contact: abmukho@vt.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Accurate prediction of sidechain conformation is a key component
of protein modelling, mutagenesis, protein structure prediction, and
protein engineering and design problems. In single-site mutants and
in homologous proteins, the backbone conformation change may be
minimal and structure prediction can often be accomplished by accurately
predicting the sidechain conformation of the mutated region only.
Sidechain geometry is also key for binding site recognition, for in silico
binding affinity assessment, and for interface engineering between cognate
binding proteins and protein/ligand complexes. For structure refinement
methods that include backbone conformation change, one stage in the
refinement process is prediction of side-chain conformation, also known
as repacking. While accuracy is important, speed is key for refining a
large ensemble of decoys with different backbone geometry using in silico
methods. For the protein design problem, one needs to co-optimize changes
in the sequence along with backbone and side chain conformations;

consequently, in the absence of expert or prior knowledge about the
couplings between the mutation sites, there can be a combinatorial
explosion of possible solutions.

There is a plethora of sidechain packing algorithms that successfully
attempt to solve the sidechain packing problem to varied degrees
of accuracy or computational efficiency. Traditional packing methods
(Simonson et al., 2013; Miao et al., 2011; Cao et al., 2011; Huang
et al., 2020; Liang et al., 2011; Krivov et al., 2009) comprise broadly of
three components: (i) a rotamer library, (ii) an energy/scoring function,
and (iii) a search algorithm. These methods use search algorithms to
predict a set of rotamers, one rotamer for each amino acid, for the
region of interest in a protein to minimize the overall energy of the
system. Rotamer libraries (Dunbrack Jr, 2002; Xiang and Honig, 2001;
Shapovalov and Dunbrack Jr, 2011) are a collection of frequencies, mean
dihedral angles, and standard deviations of the discrete conformations
(rotamers) of the amino acid sidechains derived from proteins in the
crystal PDB database. Broadly, there are two categories of rotamer
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2 Mukhopadhyay et al.

libraries – a backbone-dependent rotamer library (BBDRL), where the
frequencies, mean dihedral angles, and standard deviations of the rotamers
are a function of the protein backbone dihedral angles, and backbone-
independent rotamer libraries (BBIRL), where the frequencies and mean
dihedral angles are independent of the backbone conformation. Compared
to BBRIL, BBDRL is preferred by most modern packing algorithms
because of its smaller conformational search space (Huang et al., 2019).
Nevertheless, even BBDRLs are generic and lack details of residues’ local
environment, resulting in a computational burden incurred for scouting
parts of the rotamer space that are highly energetically unfavorable.
Certain terms in the scoring function are quite standard and commonplace
amongst available methods; these terms (Miao et al., 2011; Cao et al.,
2011; Huang et al., 2020; Krivov et al., 2009) account for Van Der
Waals interactions, hydrogen bonding, disulfide bonding, and rotamer
frequency. Due to analytical complexity, scoring functions are typically
overly simplified or intricately parameterized to maintain reasonable
accuracy while being computationally efficient. For example, non-covalent
interactions energy terms, such as the ones that account for electrostatics,
solvation effects (Pokala and Handel, 2004; Zhu et al., 2006; Simonson
et al., 2013; Mukhopadhyay et al., 2015; Onufriev and Case, 2019) or
aromatic π stacking (Li et al., 2011), are empirical or semi-empirical
models that can be too expensive to evaluate even with tractable numerical
methods. For sampling, while exhaustive enumeration is feasible to pack
a smaller number of amino acid sites or a conformation space limited by a
sparse rotamer library, for most real-world problems it is not tractable as the
number of possible solutions scales exponentially. Sampling algorithms
can be grouped into two types: deterministic algorithms that guarantee
finding a global or at least a local minimum, e.g. Dead-End Elimination
(Desmet et al., 1992), Iterated Conditional Modes (Besag, 1986; Xiang
and Honig, 2001), Integer Linear Programming(Zhu, 2007; Kingsford
et al., 2005; Saraf et al., 2006), Branch and Bound (Gordon and Mayo,
1999; Traoré et al., 2016), Tree Decomposition (Xu et al., 2005) and
stochastic or heuristic algorithms, e.g. Metropolis (Samish, 2017), Parallel
Tempering (Yang and Saven, 2005; Druart et al., 2016), Simulated
Annealing (Lee and Subbiah, 1991; Leaver-Fay et al., 2011), Genetic
Algorithms (Jones, 1994). Even if their implementation is parallelized,
such sampling algorithms are also limited by the exponential scaling
of the solution space, losing any sizable advantage gained from the
parallelization.

Recently, deep learning has gained popularity in this field due to its
demonstrated ability in effectively leveraging sequence and structure data
available in the public domain to solve difficult problems like protein
modeling and design. Some recent methods have also emerged that harness
applied machine learning methods for sidechain modeling. Most of these
methods are discriminative models that score rotamers given the protein
environment about a single amino acid site (Du et al., 2020) or replace
physics-based energy with neural network derived probabilistic scores for
every rotamer in the conformational space defined by rotamer libraries
(Liu et al., 2017; Misiura et al., 2021). Another recent method by Xu et al.
(2020) uses a hybrid approach where they enrich the rotamer library with
neural network derived rotamers and combine results of various sidechain
prediction results via an ensemble method to sample the conformational
space using simple energy terms e.g., Van der Waals like pair energy terms
and a rotamer-frequency based energy term.

Interestingly, inspired by the work of AlphaFold2 (Jumper et al., 2021),
the same group recently formulated a sampling-free “sidechain folding”
model that does not rely on using a rotamer library, or energy functions (Xu
et al., 2022). Along with features used in their previous method, this
program utilizes the sidechain density maps derived with another deep
learning model (Misiura et al., 2021), to train two independent modules:

one for predicting the side chain dihedral angles starting from only the
backbone and sequence information and the other predicts side chain
contact map. Using the contact map as a differentiable scoring function,
and the output of the predicted dihedrals as the initial conformation,
they deterministically fold the sidechains using a gradient-based method.
Although very accurate and entirely a deep learning approach, this method
relies heavily on many pre-engineered features taken from the outputs of
many different models.

Deep learning methods can discover hidden patterns in the data and
complex relationships between interdependent variables. We therefore
argue that the sidechain packing problem can be solved without
having to rely on pre-engineered features, more directly, using only
atomistic coordinate information. For example, a conceptually clear
and very intuitive way to solve this problem is to project the protein
structure into a 3D voxelated grid and train a 3D CNN model to
predict the missing sidechain atoms (Misiura et al., 2021). However, a
voxelated representation like this would be highly sparse, resulting in
inefficient training and poor accuracy. Data augmentation – using multiple
orientations for every protein structure data – may also be needed to
account for rotation and translation invariance, which adds further to the
computational inefficiency of such framework.

Graph Neural Networks (GNN) have gained much popularity in the
protein modeling and design community (Sanyal et al., 2020; Jing and Xu,
2021; Strokach et al., 2020; Gainza et al., 2020) due to the fact that graph
representation of a protein structure collapses its 3D conformation into a
set of nodes and a set of edges defining the relationships between those
nodes. Sequence and coordinate information can be embedded as node
and edge features and by construction, such representations are invariant
upon rotation and translation. A single GNN layer consists of updating all
node and edge states in the graph via a neighbourhood aggregation scheme.
These layers can be further stacked in order to iteratively refine the state
of the graph, resulting in a deep GNN model. The representation vector of
a node and the edges is computed and updated by recursively aggregating
and transforming node-edge representation vectors of its neighbors defined
via an adjacency matrix. The receptive field for the convolution operations
in GNN can be limited to, for example in the case of protein molecules,
spatially adjacent atoms defining only the local environment. Recently, a
GNN based method (Sanyal et al., 2020) was developed as an alternative to
physics and knowledge-based scoring functions to assess protein structure
quality where they use an invariant graph representation of protein.

Using GNN regression models, trained only on crystal PDB data, we
develop a computational framework to predict the sidechain geometry
that does not rely on a rotamer libary, sampling algorithm, or energy
functions. Specifically, we train two sets of models for each sidechain
dihedral, each requiring different granularity of the protein structure data,
and are employed in-steps to predict the sidechain conformation starting
from the protein backbone. The first set of models are used to populate
crude conformations of the sidechain which is further iteratively refined
using the more enriched second set of models (see Methods). Using non-
redundant, high resolution protein structures from the Protein Data Bank
(PDB) we use a bidirectional graph representation for each protein. Each
protein graph comprises of unique node descriptors specific to amino acid
identity and atom-type of a given residue within the protein. The edges are
defined using a set of three geometric descriptors that are transformed into
standardized features, invariant upon rotation and translation and unique
to the protein geometry. We include crystal symmetry mates in the training
data to emulate the crystal environment in order to improve model accuracy,
as shown in Krivov et al. (2009). ZymePackNet uses a GNN architecture
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ZymePackNet 3

Fig. 1. Overview of ZymePackNet. Beginning with the full protein structure, subgraphs for each residue (cyan) are created using the 40 nearest neighbours (orange) of the residue atoms.
The node and edge features are extracted from physical (position, distance), and chemical (residue type, atom type, presence of covalent bonding) properties. Only extant atoms are included
to construct these subgraphs specific to the query dihedral angle in a specific prediction stage. The GNN module (shown in the lower panel) uses these subgraphs to output the sine and
cosine of the desired dihedral angle.

based on XENet (Maguire et al., 2021) to perform joint message-passing
operations on the node and edge attributes.

2 Methods

2.1 Training Data

The training dataset was obtained using the Pisces server of culled PDB
datasets with a sequence similarity < 90%, resolution < 2.0 Å and
a maximum R-factor of 0.25. Only proteins with a maximum of 300
standard amino acids were selected. The structure files obtained from PDB
database were processed using GEMMI – an open-source python library
for structural biology. Alternate conformations, Het-atoms or structures
with missing residues were removed.

Ambiguity in the flip state of Asn and His χ2 and GLN χ3 was
addressed using Amber’s reduce -FLIPs tool. This tool, based on the
original MolProbity implementation, uses hydrogen bonding network and
crystal contact information to identify and selectively correct these side
chain dihedrals by 180°. As the model accuracy relies on an accurate
depiction of the true environment of an amino acid within the protein,
we populated the crystal symmetry mates within 4 Å to the asymmetric
unit using CRYST1 records and scale matrices; structures with residue
clashes with a crystal neighbor were removed from the dataset. No further
optimizations, such as energy minimization of the crystal structure, were
performed to avoid biasing or attempting to boost the predictive capabilities
of the training model. Approximately 4000 structures were used for
training and 1000 structures were withheld for validation.

2.1.1 Protein Graphs
The protein graph representation used here is similar to Sanyal et al. (2020)
with minor modifications made to work with our prediction framework.
The node attributes are chosen as simple categorical variables designating
the unique residue name and atom type for every atom in the 20 standard
amino acids. The edge attributes are unidirectional and comprise of three
types of standardized features, a) the pairwise distance: embedded as

exp−r2ij/κ, where κ is a square of electrostatic cutoff distance – chosen
as 10 Å, and rij is the pairwise distance between the two atoms measured
in Å, b) a set of three dimensional directional features comprising of the
direction of atom j from atom i using a local coordinate frame constructed
using coordinates of the atom i and two contiguous bonded atoms (see
Supporting Information), to account for apparent anisotropy in relative
placement inside the protein and c) a binary input, bij , identifying whether
the two atoms are covalently bonded. When training the model on a GPU,
we found that for larger structures, the entire protein graph could not be
processed due to memory limitations. We therefore restrict our models to
predict side chain conformations based solely on the local environment
of the residue in question, similar in flavor to DLPacker (Misiura et al.,
2021). We begin by forming a global adjacency matrix such that an edge
is created between each atom and its 40 nearest neighbors. The XENet
message-passing scheme is specifically designed for symmetric directed
graphs with asymmetric edge features (Maguire et al., 2021). Therefore, in
order to utilize the XENet model, we use a mutual neighbourhood scheme
in order to symmetrize our adjacency matrix – if atom i is amongst the
40 nearest neighbours of atom j, but the converse is not true, we add
the missing edge (i, j). For each residue, only the subgraph consisting of
the residue’s atoms and their neighbors is inputted into the model instance,
allowing the model to make graph level predictions. Subgraphs for residues
with missing side chain or side chains with low electron density (RSRZ
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4 Mukhopadhyay et al.

outliers detected using REST API (Mir et al., 2018)) were removed from
the training data.

2.2 Model Architecture

The architecture of a single model in ZymePackNet consists of a node
feature embedding layer, followed by two XENet layers (Maguire et al.,
2021) adopted from the open-source GNN library, Spektral (Grattarola
and Alippi, 2021), to perform message-passing operations on the node
attributes and edge attributes simultaneously. For the feature stack
layer (Maguire et al., 2021), pRelu activation was used and for both
the outputs of XENet layer, the node and edge attributes, elu activation
was used. Each XENet layer was followed by a dropout layer (with
a drop out rate of 0.3) and a batchnorm layer. The node features
output by the second XENet layer are masked to include only features
from a subset of atoms (see Supporting Information) in the residue of
interest. These features are passed through an attention sum pooling
layer (GlobalAttnSumPool implementation in Spektral(Grattarola
and Alippi, 2021) GNN library) which entails a simple attention layer
that learns the relative importance of the masked atoms, assigns attention
weights to each atom based on importance, and finally computes the
weighted average over the entire residue graph. This residue encoding
is passed through a single dense layer with a tanh activation, resulting in
a 2-dimensional vector representing the sine and cosine of the desired
chi angle– sine-cosine representation was chosen over the raw data to
account of periodicity.

Fig. 2. Overview of ZymePackNet prediction protocol. Individually trained Partial Context
models are used to progressively grow out the sidechain one χ-angle at a time. Afterwards,
the Full Context models are applied in sequence in order to refine the model’s predictions.
This procedure can be repeated until a desired tolerance in the change between angles of
structures from successive iterations is reached.

2.3 Training

We train two sets of models which we refer to as partial-context (PC)
and full-context (FC), and within each set we train four models, one
for each sidechain dihedral angle. While same network architecture is
used for each PC and FC model, these models are applied at different
stages during prediction and the amount of information inputted as protein
graphs are different. Starting from protein backbone, PC models first
populates the side chain from χ1 to χ4, and once all side chains are
placed they are iteratively refined using the FC models during prediction.
The protein graph used for training PC models on χi is constructed using
all backbone atoms and side chain atoms up to and including χi−1 for
every standard residue in the protein, except for χ1 where the protein
graphs are constructed with protein backbone and Cβ atoms. For FC

models however, the graphs are constructed using the backbone atoms and
side chain atoms up to and including χi−1 for the residue in question,
and all backbone and side chain atoms for all other residues in the
protein. The atoms needed to construct protein graphs for each stage
is listed in the Supporting Information. The mean squared error (MSE)
between the network’s predictions and the sine and cosine of the true
sidechain dihedral, χ̂i, was used to train the network. For symmetric
sidechain (Dunbrack Jr and Karplus, 1993) dihedrals χ2 of ASP, PHE,
TYR and χ3 of GLU, the lower of the two MSE losses pertaining to χ̂i or
π−χ̂i was used. A comparision of the prediction and the ground truth side
chain dihedral angles for each of the four models for PC and FC models
are shown as scatter plots in the Supporting Information. Each model
was trained for 300 epochs with the ADAM optimizer, using an adaptive
learning rate and an early stopping criteria, see Supporting Information.

Fig. 3. Visualization of improving prediction by adding crystal contact information.
Predicted structures using the FC-tol protocol on an example (PDB: 2FW7) from the DB379
dataset, without (left) and with (right) crystal contact information. Atoms close to the native
structure are coloured in yellow, while atoms far from the native structure are coloured in
red.

2.4 Prediction

The sidechain bond lengths and angles are adopted from the default Amber
amino acid parameters library (Case et al., 2021). Starting with the protein
backbone only, for every residue in the protein, we place dummy sidechains
(default Amber coordinates) by aligning their backbone atoms. We then
employ the trained PC-χ1 model on the graph generated using only
backbone and the Cβ atoms to predict χ1’s for all residues in the protein.
To apply the predicted χ1’s, for each residue the dummy sidechain beyond
Cβ is twisted about the Cα-Cβ axis (treating rest of the side chain as rigid
object) to match the predicted χ1. Once all side chains are updated to have
the predictedχ1 we repeat the same process to modify the higher dihedrals
using PC-χ2 through PC-χ4; at each step the predictions are conditioned
on the graph generated in the previous step. Using the PC models predicted
side chains as initial conformation, we interatively refine our predictions
using the FC models. During each iteration, the sidechains are modified
sequentially from χ1 to χ4 similar to the PC stage and predictions are
conditioned upon the previous graph state. The iteration is stopped when
the mean difference in the predictions from two successive iterations is
within the desired tolerance, Fig 2.

3 Results

3.1 Different Refinement Protocols of ZymePackNet

Here we evaluate different refinement protocols and the effect of adding
crystal environment for sidechain dihedral angle prediction. Among the
three test datasets used in this work, DB379 was the only data set with
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CRYST1 records and scale matrices required to generate the crystal
environment and was therefore chosen for this analysis. We use the same
protocol to obtain the symmetry mates as described in the Training Data
subsection in Methods. In this construct, the neighbors in the residue
subgraphs of the asymmetric unit (AU) may contain atoms from the crystal
symmetry mates (SM) if they are among the 40 nearest neighbors to the
AU atoms for the residue of interest. While we predict the sidechain
dihedrals for residues in the AU only, the same residue level predictions
are applied to both AU and mirrored residues in all the crystal SMs. The
same criteria was used to populate graphs irrespective of whether crystal
contact information was used or not e.g. PC-χ1 model only received the
graph attributes comprising of backbone and Cβ atoms for all residues.

Table 1. Performance of adding crystal contact symmetry mates(SM), and
different refinement procedures on the DB379 dataset. χ1-χ4 MAE’s are
measured in degrees and ACC is measured in %.

SM Model χ1 χ2 χ3 χ4 ACC Time
✗ PC 17.53 24.87 44.18 54.36 61.93 1.00
✗ FC 16.10 24.03 42.44 52.52 64.02 2.02
✗ FC-tol 15.73 23.47 42.01 52.02 64.87 3.03
✓ PC 16.92 24.04 43.2 54.21 63.15 2.43
✓ FC 15.26 23.08 41.52 53.38 65.42 5.34
✓ FC-tol 14.77 22.44 40.78 52.48 66.44 7.92

Apart from assessing the benefit of using the crystal symmetry
information, we also experimented with different prediction protocols, see
Table 1, – (i) PC: predictions based on PC models without FC refinement,
(ii) FC: PC predictions followed by a single FC refinement, and (iii) FC-tol:
PC followed by an iterative FC refinement. For Fc-tol, we used an arbitrary
convergence criteria i.e. we stop the FC iterations if the average difference
in the predicted dihedrals between two subsequent rounds of FC model
is less than the specified tolerance (FC-tol=0.2 rad in Table 1). We used
two metrics to quantify the prediction accuracy (i) mean absolute error
(MAE) for each of the chi angles in degrees and (ii) ACC, the percentage
of the residues in the dataset where all the predicted side chain dihedrals
are within 20◦ of the native structure.

Evidently, the prediction accuracy can be significantly improved both
by adding multiple FC refinement stages, and by adding the crystal
environment when making predictions at the expense of added compute.
In particular, the FC method significantly outperforms the PC method
with twice the compute time, and FC-tol slightly outperforms FC but
1.5 times slower. Adding crystal contacts significantly improves accuracy
for all three protocols but amounts to approximately 2.5 higher runtime.
Adding crystal environment improves the accuracy on the surface residues,
particularly the ones that are involved in making contacts with the
symmetry mates, as shown in Fig 3.

3.2 ZymePackNet Performance on Three Native Backbone
Test Sets

In Table 2 we compare the performance of ZymePackNet with other state-
of-the-art methods on three native backbone test sets originally described
in Xu et al. (2020): DB379, CASP-FM, and CAMEO-Hard61. For each
dataset, we calculate the prediction error over all structures in the respective
dataset, in terms of the MAE for each of the four χ angles and ACC.
Crystal contact information was only available for DB379, and was used
to achieve the results reported for each ZymePackNet instance. Numbers
for all other methods aside from DLPacker are taken from Xu et al. (2020)
For DLPacker, we performed the calculations according to the author’s
described procedure.

Table 2. Performance of state-of-the-art sidechain modelling methods
on DB379, CASP-FM, and CAMEO-Hard61 datasets. Methods used
for comparison with different refinement protocols of ZymepackNet
are RotamerLib(Dunbrack Jr, 2002), FASPR(Huang et al., 2020),
SCWRL4(Krivov et al., 2009), OSCAR-STAR(Liang et al., 2011), OPUS-
Rota3(Xu et al., 2020), OPUS-Rota3(Xu et al., 2020). χ1-χ4 MAE’s are
measured in degrees and ACC is measured in %.

Dataset Method χ1 χ2 χ3 χ4 ACC
RotamerLib 34.47 45.38 56.50 53.28 46.82
FASPR 21.52 36.41 53.09 53.45 57.98
SCWRL4 21.99 36.89 52.84 52.55 58.03
OSCAR-STAR 19.48 35.71 51.67 52.05 59.02

DB379 OPUS-Rota3* 17.52 32.85 48.96 50.42 61.52
DLPacker 15.41 23.24 44.88 64.27 66.98
ZymePackNetPC 16.92 24.04 43.2 54.21 63.15
ZymePackNetFC 15.26 23.08 41.52 53.38 65.42
ZymePackNetFC-tol 14.77 22.44 40.78 52.48 66.44
RotamerLib 38.07 47.53 55.65 52.86 44.95
FASPR 26.63 39.75 53.40 54.81 53.11
SCWRL4 27.09 40.44 52.67 54.61 53.17
OSCAR-STAR 24.63 37.68 50.61 53.35 54.84

CASP-FM OPUS-Rota3* 21.38 34.50 49.07 51.51 58.05
DLPacker 21.24 28.70 48.39 66.24 59.01
ZymePackNetPC 22.54 29.30 47.71 55.11 54.88
ZymePackNetFC 21.51 28.65 45.68 53.67 56.48
ZymePackNetFC-tol 21.34 28.88 45.78 52.65 56.65
RotamerLib 41.39 50.25 58.52 54.44 40.44
FASPR 28.47 42.03 55.52 56.91 49.85
SCWRL4 28.26 42.35 55.96 55.97 50.40
OSCAR-STAR 26.33 41.47 55.07 56.44 50.87

CAMEO- OPUS-Rota3* 26.28 41.43 55.21 56.46 51.14
Hard61 DLPacker 23.17 29.34 48.27 67.18 57.30

ZymePackNetPC 25.23 31.17 48.55 59.75 51.52
ZymePackNetFC 23.70 30.43 46.74 56.50 53.30
ZymePackNetFC-tol 23.32 29.76 46.65 56.58 53.55
RotamerLib 35.73 46.22 56.65 53.38 45.82
FASPR 22.95 37.48 53.42 54.03 56.43
SCWRL4 23.34 37.96 53.20 53.20 56.54
OSCAR-STAR 20.90 36.64 51.97 52.74 57.55

Total OPUS-Rota3* 19.03 34.09 49.74 51.29 59.85
DLPacker 17.02 24.61 45.69 64.85 64.89
ZymePackNetPC 18.58 25.51 44.37 54.99 60.79
ZymePackNetFC 17.00 24.61 42.63 53.80 62.92
ZymePackNetFC-tol 16.56 24.07 42.07 53.00 63.75

* Uses OSCAR-STAR(Liang et al., 2011) to make predictions.

From the results above we see the following trend: Without
crystal contact information, for χ1, and χ2, ZymePackNetFC, and
ZymePackNetFC-tol achieve marginally worse performance than the best
performing alternative – DLPacker. For χ3, regardless of crystal contact
information, ZymePackNetFC-tol achieves the best performance among
available methods. For χ4, OPUS-ROTA3 achieves the best performance,
and when measured according to ACC, DLPacker achieves the best
performance. However, when crystal contact information is available (such
as for DB379), ZymePackNet achieves better performance than all other
methods for χ1, χ2, and χ3. When compared across all structures in the
validation set, ZymePackNet outperforms all alternatives on χ1, χ2, and
χ3, while achieving the third and second-best performance on χ4, and
ACC respectively.
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3.3 Compute Time Comparison

In order to compare ZymePackNet’s runtime with other methods in the
literature, we use the CAMEO-Hard61 dataset as used in Xu et al. (2020).
Here we report the running time of ZymePackNet with different refinement
protocols, and two other methods FASPR and DLPacker on the same CPU
node, Table 3. As FASPR (Huang et al., 2020) took the same amount of
time (10 s) as reported in Xu et al. (2020), we hypothesize that a similar
hardware was used there and therefore the runtime for other methods
like SCRWL4, OPUS-Rota3 and OSCAR-STAR reported there should
be comparable to what is reported. ZymePackNetPC is the second fastest

Table 3. Computing time of sidechain modelling methods on CAMEO-Hard61.

Method Time (s)
FASPR(Huang et al., 2020) 10
ZymePackNetPC 173
ZymePackNetFC 356
ZymePackNetFC-tol 614
DLPacker (Misiura et al., 2021) 1379

method reported – slightly faster than SCRWL4. ZymePackNetFC is fifth
fastest method, slightly slower than OSCAR-STAR, and moderately faster
than OPUS-ROTA3. ZymePackNetFC-tol is the second slowest method,
albeit, significantly faster than the only other pure machine learning
method – DLPacker. Overall, ZymePackNet is able to trade off speed
at the cost of accuracy.

3.4 Recovery of π Stacking

For sidechain packing algorithms guided by physical energy functions,
reconstruction of residue-pair π stacking conformations is challenging.
The difficulty arises from the fact that there is a range of π stacking
interactions e.g. π − π stacking, π-cation, π-anion interactions, each
requiring a different energy term to account for its energetic effect.
Furthermore, these interactions are typically modeled as simplistic
two-body interactions, but in reality can manifest due to multi-body
interactions. As ZymePackNet uses the local microenvironment, these
complicated interactions are predicted without having to explicitly
acounting for them in the model, Table 4. In native and repacked
structures, these conformations can be detected using a geometric criterion
(Brocchieri and Karlin, 1994), given the centroid and π plane of each
residue contributing to a potential π stacking pair (Figure 4). A centroid is
either the geometric center of a benzene (PHE, TYR, TRP) or imidozole
(HIS) ring, the position of an ARG Cz atom or a LYS Nz atom.

Fig. 4. An example (Native 3-dehydroquinase from Salmonella typhi, PDB 1GQN)
demonstrating ZymePackNet’s ability to accurately capture π stacking. π stacking pairs
are estimated based on geometric criteria outlined in (Brocchieri and Karlin, 1994). The
sidechains involved stacking for the native PDB structure are shown in cyan. ZymePackNet
predicted stacks are shown in green for accurately predicted stacks and red for mispredicted.

Table 4. π Stacking recovery metrics on the DB379 dataset.

Metric Precision Recall F1-score
Score 0.82 0.86 0.84

3.5 Interpretability Via Global Attention

ZymePackNet uses an attention pooling layer to intelligently combine the
representations of the extant atoms from the residue of interest. In order to
better understand which atoms are most important for the network when
making predictions, we visualize the attention coefficients produced for
each standard amino acid type on an example – PDB 1XDZ from the
DB379 dataset. This visualization is provided in Figure 5, where for each
PC model, on every standard amino acid, we average and normalize the
coefficients produced by the attention layer.

Fig. 5. The attention of the final pooling layer visualized for PC-χ1 − χ4 over an
example (PDB 1XDZ) from the DB379 dataset. The attention coefficients are averaged
and normalized for each standard amino acid. Darker (navy blue) square represent areas of
low attention, while brighter (yellow) square represent higher areas of attention.

For the most part, the network pays the most attention to atoms
anchoring the chi angle being predicted –Cβ forχ1,Cγ forχ2,Cδ forχ3,
andCϵ forχ4. For specific cases, the network seems to be focusing on other
important characteristics. For example, when predicting the first two χ

angles of Proline, the network pays relatively high attention to theN atom,
which can be explained by the sidechain of proline forming a pyrrolidine
loop connecting the Cα and N backbone atoms. Another finding is that
when predicting the first χ angle of Isoleucine and Threonine, the network
pays relatively high attention to the C atom, while paying low attention
to the Cβ atom. Isoleucine and Threonine are the only two proteinogenic
amino acids for whichCβ comprises a second chiral carbon alongsideCα.
This might make it more difficult for the network to use the encoding of
Cβ in order to make predictions, although does not explain why there is
particularly high attention on the backbone C atom.

The above findings were fairly consistent across the validation set.
Although lending some intuition as to how the network is using the
information from different atoms to make the final prediction, it is
important to keep in mind that vectors over which attention is performed are
higher-order representations of atoms in the original structure. Since two
rounds of message-passing have already been performed, individual node
vectors encode information about atoms and their local neighbourhoods.
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4 Discussion
Current protein side chain prediction models focus on developing scoring
functions and efficient sampling procedures. In this study, we use a simple,
interpretable computational framework using deep learning to demonstrate
that side chain dihedral angles can be predicted directly by training on
protein structure data.

We train a set of neural network regressor models using only crystal
PDB structures, and use these trained models to predict the side chain
conformations directly without having to rely on sampling from rotamer
library or complex energy functions. The computational framework relies
on graph represention of protein structures, where the nodes and edges
encode geometric and chemical properties of the structure. Due to
graphical nature of the input data, in order to improve prediction accuracy,
we also add crystal environment for model training and prediction.

The method entails using two separate modules for prediction, one
populates the side chains conditioned upon only protein backbone, while
the other refines the initial predictions iteratively with the full context of
the amino acid’s local environment. One or both modules can be applied
to trade off speed with efficiency. When run in the fastest configuration,
i.e. only uses the populating module, ZymePackNet produces sidechain
conformations more accurately and faster than SCWRL4 – one of the
fastest methods available. At the other end of the spectrum, ZymePackNet
can use multiple rounds of iterative refinement along with crystal contact
information, producing more accurate results than that of the most accurate
protein packing methods. We use an attention based pooling module
that allows one to interpret the model by elucidating, via the attention
weights, the atoms of varied importance in predicting a particular side
chain dihedral.

Traditional side-chain packing methods rely heavily on scoring
functions, which are often poorly modeled or heavy approximated for
computational tractability. In addition to the well-studied interactions, Van
der Waals forces, electrostatics and solvation interactions, and hydrogen
bonds, there are also less studied interactions such as π stacking that
are currently lacking from these methods. Despite not relying on any
energy function, we demonstrate that the model can actively recover
complex physical interactions within the protein structure such as π

stacking. Whether other methods are capable of predicting π stacks is
beyond the scope of this work, traditional energy based models typically
ignore this from their scoring functions due to lack of reliable models and
computational complexity.

One key step in predicting protein conformation from XRay
crystallography and cryo-EM density maps is predicting the side chain
conformations. These PDB structures serve as the ‘gold standard‘ for
developing and validating the protein side chain prediction tools. In
practice, the closest rotamer from a discrete rotamer library is assigned
that matches the density. Such rotamer libraries are also used by traditional
methods to sample within the discrete conformational space. Error
introduced by assigning the closest rotamer to build the atomistic models
from crystallograhy or EM data are therefore not rectified by such sampling
based models. While PDB structures are required to develop a side chain
packing method, ZymePackNet eliminates the need for rotamer-library-
based sampling. We argue that sample errors originating from assigning
discrete rotamer in the structures are "averaged out" during training over
a diverse set of structures.

One limitation of ZymePackNet is that the model does not explicitly
account for steric clashes. Although we did not notice evidence of

clashes more that any other standard packing method such as SCRWL4,
one can selectively perform energy minimization within specific regions
to eliminate occasional atomic clashes. Alternatively, the training loss
function can be modified to penalize inter-atomic clashes, as a future
improvement to ZymePackNet.
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