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ABSTRACT 
Intrinsically disordered proteins and protein regions (IDPs/IDRs - hereafter IDRs) are ubiquitous 
across all domains of life. Unlike their folded domain counterparts, IDRs sample a diverse 
ensemble of conformations - rapidly interconverting between heterogeneous states. Analogous 
to how folded proteins adhere to a sequence-structure-function relationship, IDRs follow a 
sequence-ensemble-function paradigm. While experimental methods to study the 
conformational properties of IDRs exist, they can be challenging, time-consuming, and often 
require specialized equipment and expertise. Recent methodological advances in biophysical 
modeling offer a unique opportunity to explore sequence ensemble relationships; however, 
these methods are often limited in throughput and require both software and technical expertise. 
In this work, we integrated rational sequence design, large-scale molecular simulations, and 
deep learning to develop ALBATROSS, a deep learning model for predicting IDR ensemble 
dimensions from sequence. ALBATROSS is lightweight, easy to use, and readily accessible as 
both a locally-installable software package, as well as a point-and-click style interface in the 
cloud. We first demonstrate the applicability of our predictors by examining the generalizability 
of sequence-ensemble relationships in IDRs. Then, we leverage the high-throughput nature of 
our networks to characterize emergent biophysical behavior of local and global IDR ensemble 
features across the human proteome.  
 

ASAPBio statement 
This preprint follows the ASAPBio philosophy of communicating and sharing new results at the 
speed at which they emerge. The results and tools presented in this preprint are robust, but we 
are continuing to iterate on improving the accuracy and stability of the methods presented and 
expanding the scope of the analyses our new tools enable. As a result, future versions of this 
manuscript will report differences in training data, predictor accuracy, and new analyses.  
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INTRODUCTION 

Intrinsically disordered proteins and protein regions (IDRs) make up an estimated 30% of most 
eukaryotic proteomes and play a variety of roles in molecular and cellular function1–4. Although 
folded domains are often well-described by a single (or small number of) three-dimensional (3D) 
structures, IDRs are defined by extensive conformational heterogeneity. This means they exist 
in a conformational ensemble - a collection of rapidly interconverting states that prohibits 
structural classification by any single reference structure5,6. This heterogeneity challenges many 
experimental, computational, and conceptual approaches developed for folded domains, 
necessitating the application of polymer physics to describe, classify, and interpret IDRs in a 
variety of contexts7–18.  
 
Although IDRs are defined by the absence of a defined folded state, they are not 
“unstructured”19. The same chemical moieties that drive protein folding and enable molecular 
recognition in folded domains are also found within IDRs. As such, while folded domains 
subscribe to a sequence-structure relationship, IDRs have an analogous sequence-ensemble 
relationship19. Over the last fifteen years, there has been a substantial effort to decode the 
mapping between IDR sequence and conformational properties, the so-called ‘sequence-
ensemble relationship’ 5,12,19–35.  
 
IDR conformational properties can be local or global. Local conformational properties typically 
involve transient secondary structure, especially transient helicity36. Global conformational 
properties report on ensemble-average dimensions - that is, the overall size and shape that the 
ensemble occupies5,19,36,37. Two common properties measured by both experiment and 
simulation are the radius of gyration (Rg) and end-to-end distance (Re). The Rg reports on the 
volume an ensemble occupies, while the Re reports on the average distance between the first 
and the last residue. Ensemble shape can be quantified in terms of asphericity, a parameter that 
lies between 0 (sphere) and 1 (prolate ellipsoid), and reports on how spherical an ensemble is. 
While Re, Rg, and asphericity are relatively coarse-grain, they can offer insight into the molecular 
conformations accessible to an IDR, as well as provide hints at the types of intramolecular 
interactions which may also be relevant for intermolecular interactions (especially in the context 
of low-complexity sequences)23,38,39. 
 
An in vitro assessment of sequence-ensemble relationships involves expression, purification, 

and measurement of ensemble properties using various biophysical techniques16,40,41. The 
experimental methods commonly used to study conformational properties include single-
molecule fluorescence spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and 
small angle X-ray scattering (SAXS) 16,40–42. While powerful, all three of these approaches can 
be technically demanding, necessitate access to specific instrumentation, and in the case of 
NMR and SAXS, require relatively high concentrations of protein. Beyond in vitro assessment, 
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integrating all-atom simulations with biophysical measurements has proven invaluable in 
obtaining a holistic description of sequence-ensemble relationships, yet these integrative 
studies can also be challenging 22,23,25,28,43–47. As such, obtaining insight into sequence-specific 
conformational biases for disordered proteins is often challenging for groups with a limited 
background in molecular biophysics. 
 
Recent efforts have led to a marked improvement in the accuracy of coarse-grained force fields 
for disordered protein simulations 48–53. In particular, simulations performed with the CALVADOS 
and Mpipi force fields offer robust predictions of global conformational properties for disordered 
proteins. However, setting up, running, and analyzing molecular simulations necessitate a level 
of expertise and resources beyond many (arguably most) research groups. As such, the 
democratization of exploring sequence-to-ensemble relationships in disordered proteins 
demands easy-to-use tools that are readily accessible (i.e., available in a web browser without 
any hardware constraints). 
 
Here, we address this gap by developing a rapid and accurate predictor for disordered protein 
global dimensions from sequences. We do this through a combination of rational sequence 
design, large-scale coarse-grained simulations, and deep learning (Fig. 1A). The resulting 

predictor (ALBATROSS; A deep-Learning Based Approach for predicTing pRoperties Of 
diSordered proteinS) not only pushes the boundaries of acronym development but provides a 
means to predict IDR global dimensions (Rg, Re, asphericity) directly from sequence. 
 
ALBATROSS was developed with ease of use and portability in mind; no specific hardware is 
required, and predictions can be performed on either CPUs or GPUs. We provide both a locally-
installable implementation of ALBATROSS as well as point-and-click Google Colab notebooks 
that enable predictions to be performed on 30-60 sequences per second on a CPU and 
thousands of sequences per second on a GPU (Fig. 1B). In this work, we use ALBATROSS to 

demonstrate the generality of core sequence-ensemble relationships identified by foundational 
prior work, as well as assess general conformational biases observed at proteome-wide scales. 
Finally, we propose that local conformational behavior offers a route to discretize IDRs into 
conformationally-distinct subdomains. 
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Figure 1. ALBATROSS is a deep-learning framework for predicting sequence-dependent IDR
ensemble properties. A) Sequence design and simulation approach to generate training data for
ALBATROSS networks. The Python package GOOSE is used to generate synthetic IDRs across a
diverse area of sequence space. Coarse-grained molecular dynamics simulations are performed for each
sequence to generate labeled data for downstream deep neural network training and validation. B)
ALBATROSS is implemented as a point-and-click style interface on Google Colaboratory with support for
CPU and GPU inference. The user simply specifies the amino acid sequence or a fasta file of amino acid
sequences and then selects the predictions they would like to perform. 
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METHODS 

The overall approach for developing ALBATROSS involved several steps. First, we generated a 
library of synthetic disordered proteins that systematically titrated across compositional space 
using our artificial disordered protein design package GOOSE54. Next, we fine-tuned the Mpipi 
force field, making small changes to the previously published parameters to address minor 
shortcomings, leading to a version we refer to as Mpipi-GG49. We then performed simulations of 
the synthetic training sequences using Mpipi-GG and calculated ensemble-average 
parameters55. Finally, we trained bidirectional recurrent neural networks with long short-term 
memory cells (LSTM-BRNNs) to map between amino acid sequence and simulation-derived 
ensemble-average parameters56. Network weights, along with software to perform sequence-
ensemble predictions, were then packaged into our sequence analysis package SPARROW 
and via an easy-to-use Google colab notebook57. 
 
Sequence Library Design  
Using the IDR design package GOOSE, we assembled a library of chemically diverse synthetic 
disordered proteins (https://github.com/idptools/goose)54. Sequences varied charge, hydropathy, 
and charge patterning, as well as titrated across the amino acid composition. All sequences 
generated were between 10 and 750 residues in length. In total, we generated 16,885 
disordered protein sequences across a diverse sequence space (see Supplementary 
Information).  

 
Biological Sequences for Validation 
In addition to the synthetic sequence library, we curated a set of 19,075 naturally occurring IDRs 
by randomly sampling disordered proteins ranging in length from 10-750 residues from one of 
each of the following proteomes: Homo sapien, Mus musculus, Dictyostelium discoideum, 
Escherichia coli, Drosophilia melanogaster, Saccharomyces cerevisiae, Neurospora crassa, 
Schizosaccharomyces pombe, Xenopus laevis, Caenorhabditis elegans, Arabidopsis thaliana, 
and Danio rerio. All annotated IDRs from the aforementioned proteomes are available at 
https://github.com/holehouse-lab/shephard-data/tree/main/data/proteomes.  
 
Coarse-Grained Simulations 
All reported simulations were performed with the LAMMPS simulation engine and either the 
newly parameterized Mpipi-GG or Mpipi (for comparison to Mpipi-GG) force fields49,58. Initial 
disordered protein starting configurations were built by assembling beads as a random coil in 
the excluded volume limit. Each simulation was minimized for a maximum of 1000 iterations or 
until the force tolerance was below 1 x 10-8 (kcal/mol)/�. All simulations were performed with 
150 mM implicit salt concentration in the canonical (NVT) ensemble at a target temperature of 
300 K. The simulation temperature was maintained with a weakly-coupled Langevin thermostat 
that is adjusted every 100 picoseconds, and an integration timestep of 20 femtoseconds for all 
production runs. Simulations were performed with periodic boundary conditions in a 500 Å3 
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cubic box. Output coordinates for each trajectory were saved every 2 nanoseconds. All 
simulations were initially equilibrated for 10 ns, and structures from this equilibration period were 
discarded. Production simulations of disordered sequences with less than 250 residues were 
performed for 6 µs, whereas sequences greater than 250 residues were simulated for 10 µs. In 
terms of LAMMPS simulation parameters, these settings reflect saving IDR conformations every 
1 x 105 simulation steps, discarding the first 5 x 105 simulation steps as equilibration, and 
performing simulations for 3 x 108 steps for short sequences and 1 x 109 steps for long 
sequences. Simulation analysis was performed using SOURSOP and MDTraj 55,59.  
 
Deep Learning 
We leveraged Bidirectional Recurrent Neural Networks with Long Short-Term Memory cells 
(BRNN-LSTM) for all sequence-to-ensemble property prediction tasks with the flexible recurrent 
neural network framework PARROT56. We generated training, validation, and test data from 
coarse-grained simulations performed with the Mpipi-GG force field. 
 
Specifically, we developed predictors for the radius of gyration (Rg), end-to-end distance (Re), 
and asphericity, along with the polymer scaling law prefactors and scaling exponents 60,61. For 
each of these ensemble and polymeric property prediction tasks, we split the synthetic IDR data 
randomly into three sets: a training, validation, and a held-out test set via a 70%, 15%, and 15% 
random split, respectively. Following previous PARROT network protocols, we employed a one-
hot encoding scheme to translate the protein sequence data into numerical vectors amenable 
for deep neural network training. We used a training objective that sought to minimize an L1 
loss function between the predictions and labeled data for each of the sequence-to-ensemble 
property predictors. For each network, we chose a default learning rate of 0.001, and we 
performed a hyperparameters grid search over the following parameters: batch size (8 to 32 
incrementing by powers of 2), number of hidden layers (1 to 4), and a hidden dimension size (10 
to 70). We selected the optimal hyperparameters for each network by monitoring the predictive 
performance of the held-out synthetic data hyperparameters. To evaluate the generalization 
error of our models on sequences relevant to biological function, we evaluated the most 
accurate networks for each predictor using the entire set of naturally occurring biological 
sequences.  
 
Bioinformatics 
Proteome-wide bioinformatics was performed using SPARROW 
(https://github.com/idptools/sparrow) and SHEPHARD62. SPARROW is an in-development 
Python package for calculating IDR sequence properties, while SHEPHARD is a hierarchical 
analysis framework for annotating and analyzing large sets of protein sequences. IDRs and 
proteome data are available at https://github.com/holehouse-lab/shephard-data. Disordered 
regions were predicted using metapredict (V2), and proteomes were obtained from UniProt63,64. 
For Fig. 5 and 6, predictions were performed using the standard Rg prediction network 

(predictor.radius_of_gyration()). For Fig. 7, local subregions were predicted using the 
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end-to-end distance predictor from the scaled network 

(predictor.end_to_end_distance(use_scaled=True)), a decision we made as the scaled 

networks show slightly better performance for shorter IDRs. Normalized chain dimensions 
(normalized Re and normalized Rg) were calculated as the ALBATROSS-predicted Re or Rg 
divided by the Analytical Flory Random Coil (AFRC)-derived Re or Rg. The AFRC is a model that 
reports on the sequence-specific chain dimensions expected if an IDR behaved as a Gaussian 
chain (i.e., a Flory scaling exponent of 0.5)65. 
 
ALBATROSS implementation and distribution 
ALBATROSS is implemented within the SPARROW sequence analysis package 
(https://github.com/idptools/sparrow). In addition, a point-and-click style interface to 
ALBATROSS is provided via a stand-alone Google Colab notebook for both single-sequence 
and large-scale predictions of hundreds of sequences. If a FASTA file is uploaded and GPUs 
are selected, this notebook enables predictions for thousands of IDRs per second, facilitating in-
browser proteome-wide analysis. 
 
The notebook is available at:  
https://colab.research.google.com/github/holehouse-lab/ALBATROSS-
colab/blob/main/example_notebooks/polymer_property_predictors.ipynb 
 
Data and code availability 
All code used for sequence analysis, training weights, bioinformatic data, the SPARROW 
implementation, and the Google Colab notebook are linked from this manuscript’s main GitHub 
directory: https://github.com/holehouse-
lab/supportingdata/tree/master/2023/ALBATROSS_2023  
 

RESULTS 
Our approach in developing ALBATROSS was to perform coarse-grained simulations of a set of 
training sequences that would enable an LSTM-BRNN model to learn the mapping between IDR 
sequence and global conformational behavior. To this end, four distinct phases in this process 
were required: (1) Selecting an appropriate force field, (2) Designing a library of synthetic 
sequences, (3) Performing simulations of those sequences, and (4) Training and validating a 
deep learning model on the sequence-to-ensemble mapping. 
 
Force field selection and fine-tuning  
We opted to use the recently-published Mpipi force field for model coarse-grained simulations. 
Mpipi is a one-bead-per-residue coarse-grained force field that was parameterized via a bottom-
up, data-driven approach using statistics obtained from the PDB coupled with quantum 
mechanical calculations and all-atom simulations49. We (and others) have had great success in 
using Mpipi to provide molecular insight into a range of systems66,67. While Mpipi generally 
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shows very good accuracy when compared with experiments, in performing initial calibration 
simulations, we noticed a few minor discrepancies between known experimental trends and 
Mpipi behavior (see Supplementary Information and Fig. S1-S4). Focusing on specific sets of 

interactions where the chemical basis for those discrepancies was interpretable, we made 
several small modifications to the underlying parameters, yielding a version of Mpipi we refer to 
as Mpipi-GG. The changes made to the interaction matrix can be visualized in Fig. 2A, which 

reports on the change in the overall interaction parameter between Mpipi-GG and Mpipi. The 
overall interaction parameter reports the net integral of both the short-range (Wang-Frenkel) and 
long-range (Coulombic) interaction potentials. We emphasize that these changes were made 
explicitly with single-chain behavior in mind and have not been tested in terms of their impact on 
phase behavior. As such, while the original Mpipi model may be preferable for studying two-
phase systems, we proceeded to use Mpipi-GG for single-chain sequence-ensemble 
predictions.  
 
To assess how Mpipi-GG differs in terms of overall accuracy compared to the original Mpipi 
parameters, we curated a set of 137 trusted radii of gyration obtained from the literature for 
disordered proteins that are diverse in sequence chemistry and complexity (Fig. 2B). 

Comparing the predictive power of Mpipi-GG to the original Mpipi force field for these 
sequences reveals comparable accuracy, with Mpipi-GG performing modestly better with an R2 
of 0.896 vs. 0.921 for Mpipi, although both models are highly accurate (Fig. 2C). We note that 

the Mpipi-GG force field has modest qualitative improvements for sequences of low complexity, 
which is a feature common to many disordered proteins (Fig. 2C).  
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Figure 2. Reparameterization and accuracy of the Mpipi-GG force field. A) Pairwise interaction matrix
for the reparameterized Mpipi-GG force field. Pairwise interactions are colored by the relative change in
interaction energies between the Mpipi force field and the new Mpipi-GG force field. Interaction energies
are the sum of the net contributions from both the pairwise Coulombic interactions as well as the pairwise
WF interactions. B) Composition of the curated experimental SAXS sequence dataset by amino acid
type. The blue color gradient signifies the Wootton-Federhen complexity of the sequence. C-D)
Correlations and RMSEs between the original Mpipi and Mpipi-GG force fields and a curated set of 137
experimental radii of gyration. 101 sequences (circles) were used for validating the Mpipi-GG force field,
and 36 were new sequences held-out during parameter fitting (diamonds). The same color gradient
signifying sequence complexity used in B is used in panel C.  
 
Design of a library of synthetic IDRs  
Next, we created a library of artificially disordered regions that more extensively titrate across
the relevant chemical space accessible to disordered proteins. To do this, we used GOOSE, our
recently developed computational package for synthetic IDR design, to construct a library of
16,885 sequences that titrate across a range of sequence features known to impact IDR
conformational behavior (see Methods). We reasoned that systematically exploring IDR

sequence space would provide a good representation of the sequence chemistries relevant for
disordered protein conformational behavior as opposed to training on biological sequences
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where intrinsic biases may limit the number of sequences with certain sequence compositions. 
Moreover, we opted to take advantage of GOOSE’s ability to limit compositional exploration to 
sequences predicted to be disordered, such that our initial library is centered on sequences 
predicted with high confidence to be IDRs.  
 
We first began by titrating sequences with different compositions of hydropathy and net charge 
per residue, two parameters known to alter average chain dimensions in IDRs (Fig. 3A). Next, 

we ensured that our sequence library had broad coverage of another important IDR sequence 
parameter kappa (�), which describes the patterning of oppositely charged residues in a 
sequence, by systematically generating sequences that had varied fractions of charged 
residues each at different residue positions (Fig. 3B). Our synthetic disordered sequence library 
also covered broad chemical space in terms of the fraction of aliphatic and polar residues (Fig. 
3C) as well as the fraction of positively charged residues and aromatic residues (Fig. 3D). An 

overview of the amino acid compositions and overall sequence complexity for the synthetic 
library is summarized in Fig. 3E. Moreover, we also ensured our sequence library had broad 

coverage of the sequence charge decoration (SCD) parameter defined by Sawle and Ghosh as 
well as the sequence hydropathy decoration parameters (SHD) (Fig. S9)11,68. 
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Figure 3. Composition of the synthetic IDR sequence library used for training. Two-dimensional
scatter plots showing the chemical space explored by our synthetic IDR library. Each point in all panels is
colored by the length of that particular sequence. A) Net charge per residue versus the Kyte Doolittle
hydrophobicity of the sequence. B) Fraction of charged residues versus the charge patterning parameter
kappa (�). C) Fraction of polar residues versus the fraction of aliphatic residues in a given sequence. D)
Fraction of aromatic residues and the fraction of positively charged residues (RK). E) Composition of the
synthetic sequence library by amino acid type. The blue color gradient signifies the Wootton-Federhen
complexity of the sequence. 

 
Training an IDR sequence-to-ensemble deep learning model 
After designing synthetic IDR sequences and both selecting and tuning our force field, we
performed molecular dynamics simulations of all 16,885 sequences to examine their sequence-
dependent ensemble features. Specifically, we focused on the radius of gyration, end-to-end
distance, asphericity, and the scaling exponent and prefactor for the polymer scaling law fit the
internal scaling data23,69,70. These data served as the foundation for training bidirectional
recurrent neural networks with LSTM cells with PARROT for sequence-dependent property
prediction tasks (see Methods). The collective group of these networks we term ALBATROSS.  
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We first began training the ALBATROSS Rg network. We leveraged the PARROT framework to
train LSTM-based deep learning models on the simulated radius of gyration data. Promisingly,
we saw a strong correlation on a synthetic sequence test set held out during the training (R2 =
0.997, Fig. 4A). We note that these synthetic sequences, which explore a more extreme and
diverse region of disordered sequence space, deviate strongly from the expected radius of
gyration obtained from the Analytical Flory Random Coil (AFRC), a Gaussian-chain-like model
for disordered proteins (R2 = 0.676, Fig. S5A). We next turned to evaluate the accuracy of our

networks on the Re prediction task. Similarly to the ALBATROSS Rg network, we observed a
strong correlation between the ALBATROSS Re and the Mpipi-GG Re (R

2 = 0.994, Fig. 4B). The

impact of sequence chemistry is more pronounced on the end-to-end distance than the radius of
gyration, as illustrated by the weaker correlation between the ALBATROSS-predicted Re and
the AFRC-derived Re (R

2 = 0.470, Fig. S5B). 

 
In addition to these Rg and Re networks, we also trained networks for the mean asphericity,
which displayed strong quantitative agreement on the synthetic sequence prediction test set (R2

= 0.956, Fig. 4C). Finally, we trained predictors based on the two parameters obtained by fitting
the internal scaling of the beads to a polymer scaling model; the scaling exponent and prefactor.
The accuracy of the predictions from these networks was comparably strong on the synthetic
sequences with correlation coefficients of 0.978 and 0.924, respectively (Fig. S6).  
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Figure 4. ALBATROSS network accuracy on two independent test sets of both synthetic 
sequences and naturally occurring biological sequences. A, B, C) Accuracy of ALBATROSS in 
predicting Rg, Re, and asphericity for previously unseen synthetic sequences. D, E, F) Accuracy of 
ALBATROSS in predicting Rg, Re, and asphericity for previously unseen biological sequences. For each 
correlation plot, a Gaussian kernel density estimation is used, where darker colors indicate regions where 
there are many sequences sharing a particular prediction value. 

 
Evaluating our networks on naturally occurring biological sequences 
While our networks were trained solely on synthetic disordered proteins, we hypothesized the 
sequence diversity explored during training would permit these networks to generalize to 
naturally occurring biological sequences. We first began by confirming the ALBATROSS radii of 
gyration match the Mpipi-GG radii of gyration for the same experimental data presented in Fig. 
2. Indeed, we see strong quantitative agreement between ALBATROSS-derived radii of gyration 

and the experimental radii of gyration, despite the fact none of these sequences were in our 
training data (R2 = 0.92, Fig. S7). Inspired by this result, we next sought to assess how 

accurately ALBATROSS was able to predict the simulated Mpipi-GG Rg values. To quantify the 
predictive power for this task, we randomly selected 19,075 predicted biological IDRs from 
several different model organism proteomes and performed coarse-grained molecular dynamics 
simulations for these sequences (see Methods). These IDRs served as an independent test set 

to evaluate the true generalization error of our tuned models in the sequence space relevant to 
biological function. Quantitative comparison of the Mpipi-GG radii of gyration to the 
ALBATROSS Rg predictions on the biological sequences reveals excellent predictive power (R2 
= 0.985, Fig. 4D). We also test the accuracy of the ALBATROSS Re network and observe a 
comparatively strongly predictive model (R2 = 0.988, Fig. 4E).  

 
The ALBATROSS asphericity networks performed moderately well on the biological test set (R2 
= 0.697, Fig. 4F). However, the correlation between the ALBATROSS � network and the Mpipi-

GG scaling exponent and scaling law prefactor were comparatively poor (R2 = 0.358 and 0.347, 
Fig. S6). As such, while we are continuing to improve our ability to predict scaling exponents, 
we will focus on the three bulk polymeric properties (Rg, Re, asphericity) from here on out. 
 
ALBATROSS performance 
While our three main networks are highly accurate, the primary benefit they provide is 
throughput for the systematic exploration of sequence-ensemble relationships. While coarse-
grained simulations can take minutes, hours, or even days, ALBATROSS enables thousands of 
predictions per minute. A summary of our performance benchmarks on modest commodity CPU 
hardware is provided in Fig. S8, a criterion we focussed on, given many researchers do not 

have access to high-end GPUs. However, we note that one can compute Rg predictions for the 
entire human proteome in ~8 seconds via our Google Collab notebook running on GPUs. As 
such, ALBATROSS is an accurate and high-performance route to map sequence-ensemble 
relationships for Re, Rg, and asphericity. 
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Systematic assessment of sequence-to-ensemble properties  
Having developed and validated ALBATROSS, we used it to systematically interrogate 
sequence ensemble relationships. A common critique of machine learning approaches is that 
while they offer remarkable predictive power, they generally do not provide mechanistic insight. 
Here, we addressed this limitation here by returning to our sequence design approach to assess 
how systematic variation in different sequence parameters dictates global ensemble 
dimensions. Specifically, by generating thousands of synthetic disordered sequences that are 
well-controlled in terms of length and composition, we can systematically interrogate how 
individual sequence features influence global IDR dimensions. 
 
Early work established that an IDR’s absolute net charge strongly influences global 
dimensions12,21,22,24. In support of this, a systematic titration across the diagram of states 
developed by Das & Pappu revealed a strong dependence of IDR dimensions on the net charge 

per residue (Fig. 5A, B)12. For net neutral sequences (Net Charge Per Residue, NCPR ≈ 0), 

global dimensions were strongly influenced by the combination of the fraction of charged 

residues and the patterning of oppositely charged residues, quantified here by the parameter 

kappa (κ) (Fig. 5C)12. Sequences with evenly-distributed charged residues (low κ) become more 

expanded as the fraction of charged residues increases, whereas sequences with segregated 
charged residues (high κ) become more compact as the fraction of charged residues increases. 
While in line with prior computational and experimental observations, this analysis confirms the 
broad generality of these findings and provides calibration for expected dimensions given a 
sequence’s composition 11,12,71. 
 
We next systematically investigated the impact of different types of amino acids using libraries 
of sequences constructed using GOOSE, in which the overall sequence fraction of a specific 
residue was systematically titrated from 0% to 40%. While several caveats should be 
considered (see Discussion), this analysis provides a first-order approximation to the relative 

roles of different residues in an otherwise ‘neutral’ IDR background. 
 
Increasing the fraction of aromatic amino acids lead to systematic chain compaction, with the 
rank order of W > Y > F in terms of the strength of interactions, in agreement with prior work 
establishing the relative strength of aromatic residues in the context of phase separation 23,72–74. 
Increasing the fraction of aliphatic residues, at least to 40%, has a seemingly minimal impact on 
global dimensions, largely in agreement with work to date (Fig. 5D)75–77. Increasing the fraction 
of polar amino acids leads to modest compaction for Q and N, yet for T, S, and H, very little 
change in global dimensions is observed, in line with expectations from prior work on low-
complexity polar-rich sequences (Fig. 5D)20,35,76,78,79. Finally, while glycine and cysteine have 
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only a minor impact on global dimensions over the range explored, proline drives chain
expansion, in agreement with previous studies (Fig. 5D)25,28,32,80.  

 
In addition to titrating the aromatic fraction, we designed synthetic repeat proteins consisting of
glycine-serine-repeat “spacers” and poly-tyrosine “stickers” 72,81,82. These synthetic IDRs allow
us to assess how spacer length and sticker strength (tuned by the number of tyrosine residues
in a sticker) influence chain dimensions. Our results demonstrate that both spacer length and
sticker strength can synergistically influence IDR global dimensions (Fig. 5E). The dependence

of the individual chain Rg on spacer length (y-axis) and sticker strength (x-axis) mirrors
conclusions drawn from sticker-spacer architecture polymers from simulations and experiment
23,83–85. 

 

 
Figure 5. Sequence composition modulates the conformational preferences in disordered
proteins. For panels A-D, each data point reports the average of many 100-residue synthetic disordered
sequences with the specified composition. A) Diagram of states for weak to strong polyampholytes.
Sequences are colored by a blue-to-yellow-to-red gradient based on their ALBATROSS radii of gyration.
B) ALBATROSS radii of gyration as a function of net charge per residue. Both net negative (red) and net
positive (blue) charged polyampholytes can drive chain expansion. C) The patterning of positively or
negatively charged residues dictates the radius of gyration for highly-charged sequences but not those
with a low fraction of charged residues. D) ALBATROSS radii of gyration as a function of the fraction of
amino acid content for sixteen of the different amino acids. Aromatic residues drive compaction, while
proline drives expansion. In each case, the fraction of other residues was held approximately fixed while
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one specific residue was systematically varied. E) Dependence of the normalized radius of gyration for 
sticker-spacer IDRs in which spacers are glycine serine repeats, and stickers are one or more tyrosine 
residues. The normalized radius of gyration is calculated as the ALBATROSS Rg divided by the Rg 

expected for a sequence-matched version of the protein behaving as a Gaussian chain (the AFRC 
model)65. Each sequence here contains 8 sticker-spacer repeats. Each repeat contains spacer regions 
(glycine-serine dipeptide repeats) that vary in length from 2 to 120 residues and sticker regions (poly-
tyrosine repeats) that vary in length from 0 tyrosines to 8 tyrosines.  
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Predicting emergent biophysical properties throughout the human proteome  
Given ALBATROSS’ accuracy and throughput, we next performed large-scale bioinformatic 
characterization of the biophysical properties of disordered regions across the human proteome 
(Fig. 6A, B). Focusing initially on IDRs between 35 and 750 residues in length, we calculated 
normalized radii of gyration (Fig. 6C), normalized end-to-end distance (Fig. 6D), and asphericity 
(Fig. 6E). Normalization here was essential to account for the variability in absolute radii of 

gyration with sequence length, and was achieved by dividing the ALBATROSS Rg with the 
sequence-specific Rg expected if the IDR behaved as a Gaussian chain65. These analyses 
suggest that most IDRs behave as relatively expanded chains. Assessing the absolute radius of 
gyration vs. IDR length, the majority of more compact IDRs are enriched for aromatic residues 
(Fig. 6F). Indeed, plotting the asphericity (a measure of IDR ensemble shape) vs. the 
normalized radius of gyration and coloring by either the fraction of aromatic residues (Fig. 6G) 
or the absolute net charge and the fraction of proline residues (Fig. 6H) suggest that IDRs with 

an ensemble that is expanded and elongated have a net charge and/or are enriched for proline, 
whereas IDRs with an ensemble that is compact and more spherical are enriched for aromatic 
residues. Segregating IDRs into the 1000 most compact and 1000 most expanded sequences 
reveals that compact IDRs tend to be depleted in proline residues and have a low NCPR, 
whereas those that are expanded are enriched in proline and/or have an absolute NCPR, 
although we found many examples of proline-rich charge depleted IDRs that were relatively 
expanded. Taken together, our analysis of the human IDR-ome mirrors insights gleaned from 
the analysis of synthetic sequences in Fig. 5, although we emphasize that the implication that 
most IDRs are relatively expanded may be an oversimplification (see Discussion). 
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Figure 6. Human proteome-wide biophysical characterization of predicted IDRs.  
A) ALBATROSS was used to perform sequence-dependent ensemble predictions for all IDRs in the 
human proteome. B) Histogram of all human IDRs ranging from 35 to 750 residues. C) Normalized mean 
ALBATROSS Rg distribution for all human IDRs. D) Normalized mean ALBATROSS Re distribution for all 
human IDRs. E) Mean ALBATROSS asphericity distribution for all IDRs in the human proteome. F) Mean 
ALBATROSS radius of gyration as a function sequence length. Individual data points are colored by the 
fraction of aromatic residues in the sequence. The dashed line represents the fitted scaling law, which 
reports an apparent scaling exponent of 0.56. Deviations above and below this line suggest sequence-
specific expansion or compaction, respectively. G) Full distribution of human IDRs plotted in terms of the 
normalized radius of gyration and asphericity, colored by the fraction of aromatic residues. H) Full 
distribution of human IDRs plotted in terms of the normalized radius of gyration and asphericity, colored 
by the absolute net charge per residue plus the fraction of proline residues. I) Top 1000 most compact 
(left) and top 1000 most expanded (right) IDRs plotted in terms of the fraction of proline residues and 
absolute net charge per residue.  
 
Characterizing local dimensions of IDR subsequences 
Our proteome-wide analysis in Fig. 6 focused on ensemble-average properties calculated for 

entire IDRs. While convenient for revealing gross properties, we reasoned that for large (200+ 
residue) IDRs, it may be more informative to assess local conformational behavior with a 
sliding-window analysis. To this end, using a window size of 51 residues, we calculated the local 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.08.539824doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.08.539824
http://creativecommons.org/licenses/by-nc-nd/4.0/


end-to-end distance across every 51-mer fragment in the human proteome, enabling us to 
extract the 2,146,400 51-mer fragments that lay entirely within every IDR (Fig. 7A). The 

distribution of normalized end-to-end distances is tighter than the corresponding distribution for 
full-length IDRs, with 212,565 (i.e., around 10%) of subregions behaving as polymers more 
compact than a corresponding Gaussian chain (normalized Rg < 1 ) (Fig. 7B). 

 
The linear assessment of local dimensions enables the demarcation of conformationally-distinct 
subdomains within an IDR. As a proof-of-concept, we plotted the normalized local end-to-end 
distance for two large IDRs, revealing distinct subregions within each (Fig. 7C, D). First, we 

analyzed the 2227 residue IDR from the nuclear speckle protein Son, identifying distinct 
subregions with specific conformational properties that map to previously analyzed subregions 
within the sequence (Fig. 7C)86. Second, we analyzed the N-terminal IDR of GIGYF1, a highly 

disordered protein with a potential role in Type II diabetes 87–89. The N-terminal IDR in GIGYF1 
contains three subregions, an expanded N-terminal region that may fold upon binding (residues 
1-90), a comparatively compact central region (residues 91-280), and an expanded C-terminal 
acidic region (residues 281-469). The ability to – from sequence alone – demark potential 
subdomains within an IDR paves the way for more sophisticated mutagenesis studies, as well 
as the ability to predict if and how mutations might influence local conformational behavior.  
 
Finally, we used the set of ~2 million IDR subregions to assess which residues were enriched in 
expanded or compact IDRs (Fig. 7E, D). Enrichment was assessed based on the fraction of the 

twenty amino acids in subregions taken from the top/bottom 2.5% of all subregions with respect 
to normalized end-to-end distance, compared to the overall fraction for all subregions. Aromatic 
residues, histidine, arginine, glycine, and glutamine were all found to be enriched in compact 
subregions. In contrast, proline and glutamic acid were found to be enriched for expanded 
subregions. Intriguingly, the residues most strongly enriched for compact IDRs match those 
residues known to engage in RNA binding66,90–93. Moreover, a gene ontology analysis for 
proteins with 10 or more compact subfragments found strong enrichment for RNA binding 
(Table S1). In contrast, we saw no obvious patterns in proteins that possessed expanded 
subregions (Table S2). Taken together, our analysis suggests IDRs that favor intramolecular 

interaction may share a common molecular function in RNA binding, whereas those that are 
highly expanded likely play a variety of context-specific roles.  
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Figure 7. Local analysis of disordered protein subregions reveals sequence-dependent expansion 
and compaction. A) Graphical summary illustrating the sliding window subregion analysis presented in 
this figure. B) Distribution of the normalized end-to-end distance obtained from all 51-residue 
subfragments within IDRs in the human proteome. C) Linear analysis of local subregions in the 2227 
residue IDR from the nuclear speckle protein Son, with conformationally-distinct subregions highlighted 
(UniProt: P18583). D) Linear analysis of local subregions in the 469-residue IDR from the cytosolic 
GIGYF1, with conformationally-distinct subregions highlighted (UniProt: O75420). E) Log2-fold enrichment 
for amino acids found in compact subregions. Residues implicated in RNA binding are highlighted. D) 
Log2-fold enrichment for amino acids found in expanded subregions. 
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DISCUSSION  
Intrinsically disordered proteins and protein regions (IDRs) are ubiquitous, yet the absence of a 
fixed 3D structure coupled with limited sequence conservation has challenged conventional 
routes for mapping between protein sequence and molecular function. Given IDR function can 
be influenced or even dictated by the sequence-encoded conformational biases, a robust 
understanding of sequence-ensemble relationships remains an important feature for interpreting 
how IDRs conduct their cellular roles 19,94,95. 
 
Here, we present ALBATROSS, a deep learning approach trained on coarse-grained 
simulations that allow for direct prediction of ensemble-average global dimensions from protein 
sequences. While there are several caveats that should be considered (discussed below), 
ALBATROSS enables us to assess sequence-to-ensemble relationships for both synthetic and 
natural IDRs. By providing ALBATROSS as both a locally-installable Python package and an 
easy-to-use Google Colab notebook, we aim to lower the barrier for sequence-to-ensemble 
predictions for single IDRs or for entire proteomes. 
 
While ALBATROSS is accessible and accurate, there are a number of important limitations that 
must be considered. ALBATROSS was trained on simulations performed using Mpipi-GG, a 
one-bead-per-residue, coarse-grained force field. With this in mind, all of the caveats associated 
with one-bead-per-residue coarse-grained simulations should be considered. These include the 
inability to acquire secondary or tertiary structure, the assumption of an isotropic interaction 
potential, and the steric approximation of non-spherical amino acids as spherical beads. Recent 
work has shown that, despite these simplifying assumptions, coarse-grained simulation can 
achieve good accuracy, at least in terms of global ensemble properties 49,53. Furthermore, the 
computational advantages of coarse-grained simulations provide (relative to all-atom) enable 
running a sufficient number of simulations for deep learning datasets; performing tens of 
thousands of coarse-grained simulations is feasible, whereas performing tens of thousands of 
all-atom simulations is out of reach for nearly all academic groups. Nevertheless, we suggest a 
few specific caveats that should be considered when evaluating ALBATROSS predictions. 
Firstly, we likely overestimate the dimensions of IDRs in which local secondary structure (e.g., 
helicity) occurs. Secondly, we likely underestimate the impact of solvation effects on charged 
amino acids, such that highly charged net-neutral IDRs are likely less expanded than they 
should be. Finally, we likely underestimate the hydrophobic effect for aliphatic residues, an 
intrinsically challenging phenomenon to capture in such a simple model. 
 
Beyond the limitations associated with coarse-grained simulations, a second batch of limitations 
stems from the training dataset. We opted to train on a large set of synthetic sequences that 
titrate across IDR sequence features known to impact ensemble dimensions (composition, 
charge, charge patterning, etc.). Although our predictive power for unseen synthetic sequences 

is excellent, for some of the networks (e.g., the scaling exponent network), our ability to 
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accurately predict properties for biological sequences is limited. Encouragingly, for the radius of 
gyration and end-to-end distance predictors, the accuracy with biological sequences after 
training on synthetic sequences is extremely high, suggesting we are already in a relatively 
robust regime. Nevertheless, further work is being carried out to refine and improve the 
available training data and better capture sequence features that were missing in our original 
training set. 
 
Our decision to focus on an LSTM-BRNN architecture for training was motivated by the desire 
to develop trained networks that were performant (10-50 sequences/second) on commodity 
hardware. While more complex architectures (e.g., transformer-based networks) may offer more 
accurate predictors, we see two central limitations here. First, transformer-based architectures 
are memory intensive, and although some low-memory transformer-based architectures exist, 
most pre-trained biological transformers have memory requirements that scale quadratically 
with sequence length96–101. These large memory requirements can be prohibitive on commodity 
hardware, and we wanted to focus on developing and distributing portable tools for the 
community. Second, our LSTM-based architecture generates predictions that are already quite 
accurate. The error associated with our predictions is on the order of the experimental error (0 - 
4 Å), so treating model architecture as a tunable hyperparameter for the performance of these 
prediction tasks, while an interesting question, did not merit further experimentation.  
 
Our proteome-wide analysis suggests that IDR expansion can be driven by net charge, proline 
residues, or a combination of the two (Fig. 6I). In contrast, the subset of amino acids 
(Y/W/F/H/R/G/Q) enriched in compact IDR subregions overlap strongly with those residues 
previously reported to engage in RNA binding (Fig. 7E). Previous work has shown that 

disordered regions can chaperone RNA, both in isolation and in the context of biomolecular 
condensates66,102–105. Moreover, were intrigued to note that these same RNA binding residues 
are also over-represented in IDR subregions that can drive phase separation in vitro and form 
condensates in vivo 23,72,74,106–110. One interpretation of these observations is that compact IDRs 

have evolved to self-assemble and recruit RNA into condensates. Another interpretation is that 
these RNA-binding IDRs are constitutively bound to RNA in cells where they exchange 
compaction-driving intramolecular protein:protein interactions for expansion-driving 
intermolecular protein:RNA interactions. Under this interpretation, compact IDRs are only 
compact in an unphysiological RNA-free context, such that they expand to envelop and 
chaperone RNA molecules while themselves being reciprocally chaperoned by RNA. These 
interpretations are not mutually exclusive, nor do they prohibit a model in which RNA 
chaperoning requires many copies of RNA-binding proteins forming dynamic condensates.  
 
Recent work from several groups touches on ideas or results that dovetail well with our own. As 
a proof-of-principle, Janson et al. trained a generative adversarial network using a transformer 
architecture with self-attention (idpGAN) to predict ensemble properties for coarse-grained 
simulations111. This study demonstrates the potential for multi-resolution models that interpolate 
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between coarse-grained and atomistic simulations, with implications for enhanced sampling, 
whereby latent configurational space could be explored via a learned network to seed distinct 
but thermodynamically reasonable starting configurations. In parallel, Chao et al. presented a 

novel approach to represent IDR ensembles and train several different machine learning 
architectures to predict global dimensions from sequence112. This work suggests alternative 
representation schemes may be useful to capture sequence-specific effects and that 
representing IDRs in a length-free way using the Bag of Amino Acids (BAA) representation 
offers some advantages in terms of input for model training. Finally, Tesei & Trolle et al. recently 
performed an analogous proteome-wide assessment of the IDR-ome using the CALVADOS2 
force field48,53,113. Despite utilizing an entirely distinct coarse-grained simulation forcefield, this 
workTesei et al. reached similar conclusions to the human proteome-wide analysis in this work, 
including the propensity for relatively expanded IDRs, the importance of net charge, charge 
patterning, and aromatic residues in tuning overall dimensions, and the association between 
RNA binding proteins and compact IDRs. Overall, the distribution of IDR dimensions from 
CALVADOS2 is slightly more compact than from Mpipi-GG, a difference we suspect reflects an 
underestimation of aliphatic residue interactions in the Mpipi-GG force field. Nevertheless, the 
general trends between the two studies show good agreement, a compelling result given the 
differences in approaches, forcefields, and assumptions. 
 

CONCLUSION 

In this work, we present ALBATROSS, an accessible and accurate route to predict IDR global 
dimensions from sequence. All of the data associated with the proteome-wide analysis 
presented in Fig. 6 and Fig. 7 are shared as SHEPHARD-compliant datafiles, and we 

encourage other groups to explore these predictions in the context of other protein annotations 
using SHEPHARD and the set of precomputed annotations provided therein62. Our results are in 
good agreement with prior experimental and recent analogous computational work, suggesting 
that ALBATROSS offers a convenient route to obtain biophysical insight into IDR sequence-
ensemble relationships. 
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